code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor A: Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
109
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Any = data UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def _snake_case ( UpperCamelCase : Node | None ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _snake_case ( UpperCamelCase : Node | None ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _snake_case ( UpperCamelCase : Node ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _snake_case ( ): # Main function for testing. UpperCAmelCase : int = Node(1 ) UpperCAmelCase : Tuple = Node(2 ) UpperCAmelCase : Any = Node(3 ) UpperCAmelCase : Optional[int] = Node(4 ) UpperCAmelCase : Any = Node(5 ) UpperCAmelCase : Optional[int] = Node(6 ) UpperCAmelCase : int = Node(7 ) UpperCAmelCase : str = Node(8 ) UpperCAmelCase : str = Node(9 ) print(is_full_binary_tree(UpperCamelCase ) ) print(depth_of_tree(UpperCamelCase ) ) print("""Tree is: """ ) display(UpperCamelCase ) if __name__ == "__main__": main()
109
1
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self, lowercase_ = None, lowercase_ = 256, lowercase_ = 256, lowercase_ = 256, lowercase_ = 1024, lowercase_ = "relu", lowercase_ = 6, lowercase_ = 10, lowercase_ = 8, lowercase_ = 0.0, lowercase_ = 2048, lowercase_ = False, lowercase_ = False, lowercase_ = 4, lowercase_ = 255, lowercase_ = 100, lowercase_ = 0.1, lowercase_ = 2.0, lowercase_ = 5.0, lowercase_ = 5.0, lowercase_ = 12544, lowercase_ = 3.0, lowercase_ = 0.75, lowercase_ = 0.02, lowercase_ = 1.0, lowercase_ = True, lowercase_ = [4, 8, 16, 32], lowercase_ = None, **lowercase_, ) -> int: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) snake_case = CONFIG_MAPPING['swin']( image_size=224, in_channels=3, patch_size=4, embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7, drop_path_rate=0.3, use_absolute_embeddings=lowercase_, out_features=['stage1', 'stage2', 'stage3', 'stage4'], ) if isinstance(lowercase_, lowercase_ ): snake_case = backbone_config.pop('model_type' ) snake_case = CONFIG_MAPPING[backbone_model_type] snake_case = config_class.from_dict(lowercase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) snake_case = backbone_config snake_case = feature_size snake_case = mask_feature_size snake_case = hidden_dim snake_case = encoder_feedforward_dim snake_case = activation_function snake_case = encoder_layers snake_case = decoder_layers snake_case = num_attention_heads snake_case = dropout snake_case = dim_feedforward snake_case = pre_norm snake_case = enforce_input_projection snake_case = common_stride snake_case = ignore_value snake_case = num_queries snake_case = no_object_weight snake_case = class_weight snake_case = mask_weight snake_case = dice_weight snake_case = train_num_points snake_case = oversample_ratio snake_case = importance_sample_ratio snake_case = init_std snake_case = init_xavier_std snake_case = use_auxiliary_loss snake_case = feature_strides snake_case = output_auxiliary_logits snake_case = decoder_layers super().__init__(**lowercase_ ) @classmethod def _lowerCamelCase ( cls, lowercase_, **lowercase_ ) -> str: return cls( backbone_config=lowercase_, **lowercase_, ) def _lowerCamelCase ( self ) -> Dict[str, any]: snake_case = copy.deepcopy(self.__dict__ ) snake_case = self.backbone_config.to_dict() snake_case = self.__class__.model_type return output
332
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) _lowerCamelCase =logging.getLogger(__name__) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =git.Repo(search_parent_directories=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'repo_id': str(lowerCAmelCase_ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(lowerCAmelCase_, 'git_log.json' ), 'w' ) as f: json.dump(lowerCAmelCase_, lowerCAmelCase_, indent=4 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if params.n_gpu <= 0: SCREAMING_SNAKE_CASE =0 SCREAMING_SNAKE_CASE =-1 SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 SCREAMING_SNAKE_CASE =int(os.environ['WORLD_SIZE'] ) SCREAMING_SNAKE_CASE =int(os.environ['N_GPU_NODE'] ) SCREAMING_SNAKE_CASE =int(os.environ['RANK'] ) # number of nodes / node ID SCREAMING_SNAKE_CASE =params.world_size // params.n_gpu_per_node SCREAMING_SNAKE_CASE =params.global_rank // params.n_gpu_per_node SCREAMING_SNAKE_CASE =True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =0 SCREAMING_SNAKE_CASE =0 SCREAMING_SNAKE_CASE =0 SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode SCREAMING_SNAKE_CASE =params.node_id == 0 and params.local_rank == 0 SCREAMING_SNAKE_CASE =params.n_nodes > 1 # summary SCREAMING_SNAKE_CASE =F'--- Global rank: {params.global_rank} - ' logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://', backend='nccl', ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
334
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__(self , lowercase , lowercase=7 , lowercase=3 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , lowercase=True , lowercase=1 / 255 , lowercase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A_ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} A_ : str = parent A_ : Optional[int] = batch_size A_ : List[str] = num_channels A_ : Optional[Any] = min_resolution A_ : Tuple = max_resolution A_ : Optional[int] = do_resize A_ : Dict = size A_ : List[str] = do_normalize A_ : Dict = image_mean A_ : List[Any] = image_std A_ : Dict = do_rescale A_ : str = rescale_factor A_ : Dict = do_pad def _a (self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _a (self , lowercase , lowercase=False ): if not batched: A_ : str = image_inputs[0] if isinstance(lowercase , Image.Image ): A_, A_ : Dict = image.size else: A_, A_ : List[str] = image.shape[1], image.shape[2] if w < h: A_ : List[Any] = int(self.size["""shortest_edge"""] * h / w ) A_ : Tuple = self.size["""shortest_edge"""] elif w > h: A_ : List[str] = self.size["""shortest_edge"""] A_ : Dict = int(self.size["""shortest_edge"""] * w / h ) else: A_ : str = self.size["""shortest_edge"""] A_ : Union[str, Any] = self.size["""shortest_edge"""] else: A_ : Union[str, Any] = [] for image in image_inputs: A_, A_ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : List[str] = max(lowercase , key=lambda lowercase : item[0] )[0] A_ : Optional[int] = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = DeformableDetrImageProcessor if is_vision_available() else None def _a (self ): A_ : List[Any] = DeformableDetrImageProcessingTester(self ) @property def _a (self ): return self.image_processor_tester.prepare_image_processor_dict() def _a (self ): A_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , """image_mean""" ) ) self.assertTrue(hasattr(lowercase , """image_std""" ) ) self.assertTrue(hasattr(lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase , """do_resize""" ) ) self.assertTrue(hasattr(lowercase , """do_rescale""" ) ) self.assertTrue(hasattr(lowercase , """do_pad""" ) ) self.assertTrue(hasattr(lowercase , """size""" ) ) def _a (self ): A_ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowercase ) A_ : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowercase ) def _a (self ): pass def _a (self ): # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input A_ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_, A_ : Optional[int] = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_, A_ : List[Any] = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) A_ : List[Any] = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a (self ): # Initialize image_processing A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_, A_ : Dict = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : str = image_processing(lowercase , return_tensors="""pt""" ).pixel_values A_, A_ : Optional[int] = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a (self ): # Initialize image_processing A_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input A_ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A_, A_ : Tuple = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ : Any = image_processing(lowercase , return_tensors="""pt""" ).pixel_values A_, A_ : Dict = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _a (self ): # prepare image and target A_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A_ : Any = json.loads(f.read() ) A_ : List[Any] = {"""image_id""": 39769, """annotations""": target} # encode them A_ : str = DeformableDetrImageProcessor() A_ : Optional[int] = image_processing(images=lowercase , annotations=lowercase , return_tensors="""pt""" ) # verify pixel values A_ : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase ) A_ : str = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area A_ : Tuple = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase ) ) # verify boxes A_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase ) A_ : Optional[Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase , atol=1E-3 ) ) # verify image_id A_ : Any = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase ) ) # verify is_crowd A_ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase ) ) # verify class_labels A_ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase ) ) # verify orig_size A_ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase ) ) # verify size A_ : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase ) ) @slow def _a (self ): # prepare image, target and masks_path A_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A_ : int = json.loads(f.read() ) A_ : int = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} A_ : List[Any] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A_ : Dict = DeformableDetrImageProcessor(format="""coco_panoptic""" ) A_ : List[Any] = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors="""pt""" ) # verify pixel values A_ : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowercase ) A_ : Any = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area A_ : int = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase ) ) # verify boxes A_ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase ) A_ : int = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase , atol=1E-3 ) ) # verify image_id A_ : Any = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase ) ) # verify is_crowd A_ : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase ) ) # verify class_labels A_ : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase ) ) # verify masks A_ : int = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase ) # verify orig_size A_ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase ) ) # verify size A_ : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase ) )
135
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCamelCase :Optional[int] = logging.getLogger(__name__) lowerCamelCase :Optional[int] = tf.data.AUTOTUNE def a ( ): '''simple docstring''' A_ : Any = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCamelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCamelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCamelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCamelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCamelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCamelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCamelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCamelCase__ , default=2**18 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCamelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCamelCase__ , default=1E-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCamelCase__ , default=1E-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCamelCase__ , default=5_12 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCamelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCamelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) A_ : Dict = parser.parse_args() return args def a ( lowerCamelCase__ ): '''simple docstring''' try: if args.tpu_name: A_ : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: A_ : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCamelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCamelCase__ ) return tpu def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = 0 for file in file_list: A_ : Optional[Any] = file.split("""/""" )[-1] A_ : Optional[int] = re.search(r"""-\d+-(\d+)\.tfrecord""" , lowerCamelCase__ ).group(1 ) A_ : Any = int(lowerCamelCase__ ) num_samples += sample_count return num_samples def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' A_ : List[Any] = count_samples(lowerCamelCase__ ) A_ : List[str] = tf.data.Dataset.from_tensor_slices(lowerCamelCase__ ) if shuffle: A_ : Optional[int] = dataset.shuffle(len(lowerCamelCase__ ) ) A_ : Tuple = tf.data.TFRecordDataset(lowerCamelCase__ , num_parallel_reads=lowerCamelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A_ : Union[str, Any] = dataset.apply(tf.data.experimental.assert_cardinality(lowerCamelCase__ ) ) A_ : Any = dataset.map(lowerCamelCase__ , num_parallel_calls=lowerCamelCase__ ) if shuffle: assert shuffle_buffer_size is not None A_ : List[str] = dataset.shuffle(args.shuffle_buffer_size ) A_ : str = dataset.batch(lowerCamelCase__ , drop_remainder=lowerCamelCase__ ) A_ : str = dataset.map(lowerCamelCase__ , num_parallel_calls=lowerCamelCase__ ) A_ : Optional[int] = dataset.prefetch(lowerCamelCase__ ) return dataset def a ( lowerCamelCase__ ): '''simple docstring''' if not args.no_tpu: A_ : Dict = initialize_tpu(lowerCamelCase__ ) A_ : str = tf.distribute.TPUStrategy(lowerCamelCase__ ) else: A_ : Union[str, Any] = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A_ : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer ) A_ : str = AutoConfig.from_pretrained(args.pretrained_model_config ) A_ : Optional[int] = tokenizer.vocab_size A_ : Dict = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) A_ : Optional[int] = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) A_ : Dict = count_samples(lowerCamelCase__ ) A_ : Optional[Any] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A_ : Dict = steps_per_epoch * args.num_epochs with strategy.scope(): A_ : Optional[int] = TFAutoModelForMaskedLM.from_config(lowerCamelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A_, A_ : Any = create_optimizer( num_train_steps=lowerCamelCase__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCamelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCamelCase__ ): A_ : Optional[int] = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCamelCase__ , lowerCamelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A_ : Optional[int] = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCamelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCamelCase__ ): # TF really needs an isin() function A_ : str = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A_, A_ : Union[str, Any] = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCamelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCamelCase__ , ) return batch A_ : str = args.per_replica_batch_size * strategy.num_replicas_in_sync A_ : Tuple = prepare_dataset( lowerCamelCase__ , decode_fn=lowerCamelCase__ , mask_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ , shuffle=lowerCamelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) A_ : Optional[Any] = prepare_dataset( lowerCamelCase__ , decode_fn=lowerCamelCase__ , mask_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ , shuffle=lowerCamelCase__ , ) A_ : Union[str, Any] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCamelCase__ ) ) model.fit( lowerCamelCase__ , validation_data=lowerCamelCase__ , epochs=args.num_epochs , callbacks=lowerCamelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCamelCase :Tuple = parse_args() main(args)
135
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : List[str] = np.full((len(_lowerCAmelCase ), sequence_length, 2) , _lowerCAmelCase ) else: snake_case__ : Union[str, Any] = np.full((len(_lowerCAmelCase ), sequence_length) , _lowerCAmelCase ) for i, tensor in enumerate(_lowerCAmelCase ): if padding_side == "right": if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : int = tensor[:sequence_length] else: snake_case__ : Tuple = tensor[:sequence_length] else: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Dict = tensor[:sequence_length] else: snake_case__ : Optional[int] = tensor[:sequence_length] return out_tensor.tolist() def __snake_case( _lowerCAmelCase ) -> Any: snake_case__ : Tuple = ord(_lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True snake_case__ : str = unicodedata.category(_lowerCAmelCase ) if cat.startswith("""P""" ): return True return False @dataclass class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = 42 lowercase = True lowercase = None lowercase = None lowercase = -1_00 lowercase = "pt" def lowerCamelCase ( self : Dict , snake_case_ : str ): import torch snake_case__ : Any = """label""" if """label""" in features[0].keys() else """labels""" snake_case__ : Any = [feature[label_name] for feature in features] if label_name in features[0].keys() else None snake_case__ : Tuple = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch snake_case__ : Optional[int] = torch.tensor(batch["""entity_ids"""] ).shape[1] snake_case__ : Tuple = self.tokenizer.padding_side if padding_side == "right": snake_case__ : Union[str, Any] = [ list(snake_case_ ) + [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) for label in labels ] else: snake_case__ : Optional[int] = [ [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) + list(snake_case_ ) for label in labels ] snake_case__ : Any = [feature["""ner_tags"""] for feature in features] snake_case__ : Union[str, Any] = padding_tensor(snake_case_ , -1 , snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = [feature["""original_entity_spans"""] for feature in features] snake_case__ : Optional[int] = padding_tensor(snake_case_ , (-1, -1) , snake_case_ , snake_case_ ) snake_case__ : Tuple = {k: torch.tensor(snake_case_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
35
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer A_ : int = logging.get_logger(__name__) A_ : List[str] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A_ : str = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } A_ : List[Any] = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } A_ : Dict = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = SqueezeBertTokenizer def __init__( self ,a_=None ,a_=None ,a_=True ,a_="[UNK]" ,a_="[SEP]" ,a_="[PAD]" ,a_="[CLS]" ,a_="[MASK]" ,a_=True ,a_=None ,**a_ ,) -> Optional[int]: super().__init__( a_ ,tokenizer_file=a_ ,do_lower_case=a_ ,unk_token=a_ ,sep_token=a_ ,pad_token=a_ ,cls_token=a_ ,mask_token=a_ ,tokenize_chinese_chars=a_ ,strip_accents=a_ ,**a_ ,) _UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,a_ ) != do_lower_case or normalizer_state.get("""strip_accents""" ,a_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,a_ ) != tokenize_chinese_chars ): _UpperCAmelCase : List[Any] = getattr(a_ ,normalizer_state.pop("""type""" ) ) _UpperCAmelCase : Optional[Any] = do_lower_case _UpperCAmelCase : List[Any] = strip_accents _UpperCAmelCase : Optional[Any] = tokenize_chinese_chars _UpperCAmelCase : Tuple = normalizer_class(**a_ ) _UpperCAmelCase : str = do_lower_case def _snake_case ( self ,a_ ,a_=None ) -> int: _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: _UpperCAmelCase : Union[str, Any] = [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: _UpperCAmelCase : str = self._tokenizer.model.save(a_ ,name=a_ ) return tuple(a_ )
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : int = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : Dict = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Dict = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } __lowerCAmelCase : Optional[int] = '▁' class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["""input_ids""", """attention_mask"""] a__ = BarthezTokenizer def __init__( self : Any , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : List[str]="</s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : int="<unk>" , UpperCamelCase__ : Tuple="<pad>" , UpperCamelCase__ : Tuple="<mask>" , **UpperCamelCase__ : List[Any] , ) -> List[Any]: """simple docstring""" __magic_name__ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) __magic_name__ = vocab_file __magic_name__ = False if not self.vocab_file else True def _lowercase ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ = [self.cls_token_id] __magic_name__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
88
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE : List[Any] = "PoolFormerConfig" # Base docstring _SCREAMING_SNAKE_CASE : Any = "sail/poolformer_s12" _SCREAMING_SNAKE_CASE : str = [1, 5_12, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE : Any = "sail/poolformer_s12" _SCREAMING_SNAKE_CASE : List[Any] = "tabby, tabby cat" _SCREAMING_SNAKE_CASE : List[str] = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ = 0.0 ,UpperCamelCase_ = False ): """simple docstring""" if drop_prob == 0.0 or not training: return input snake_case = 1 - drop_prob snake_case = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case = keep_prob + torch.rand(UpperCamelCase_ ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize snake_case = input.div(UpperCamelCase_ ) * random_tensor return output class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case = None ): super().__init__() snake_case = drop_prob def a_ ( self , __snake_case ): return drop_path(__snake_case , self.drop_prob , self.training ) def a_ ( self ): return "p={}".format(self.drop_prob ) class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None ): super().__init__() snake_case = patch_size if isinstance(__snake_case , collections.abc.Iterable ) else (patch_size, patch_size) snake_case = stride if isinstance(__snake_case , collections.abc.Iterable ) else (stride, stride) snake_case = padding if isinstance(__snake_case , collections.abc.Iterable ) else (padding, padding) snake_case = nn.Convad(__snake_case , __snake_case , kernel_size=__snake_case , stride=__snake_case , padding=__snake_case ) snake_case = norm_layer(__snake_case ) if norm_layer else nn.Identity() def a_ ( self , __snake_case ): snake_case = self.projection(__snake_case ) snake_case = self.norm(__snake_case ) return embeddings class A__ ( nn.GroupNorm ): """simple docstring""" def __init__( self , __snake_case , **__snake_case ): super().__init__(1 , __snake_case , **__snake_case ) class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case ): super().__init__() snake_case = nn.AvgPoolad(__snake_case , stride=1 , padding=pool_size // 2 , count_include_pad=__snake_case ) def a_ ( self , __snake_case ): return self.pool(__snake_case ) - hidden_states class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case ): super().__init__() snake_case = nn.Convad(__snake_case , __snake_case , 1 ) snake_case = nn.Convad(__snake_case , __snake_case , 1 ) snake_case = PoolFormerDropPath(__snake_case ) if isinstance(config.hidden_act , __snake_case ): snake_case = ACTaFN[config.hidden_act] else: snake_case = config.hidden_act def a_ ( self , __snake_case ): snake_case = self.conva(__snake_case ) snake_case = self.act_fn(__snake_case ) snake_case = self.drop(__snake_case ) snake_case = self.conva(__snake_case ) snake_case = self.drop(__snake_case ) return hidden_states class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): super().__init__() snake_case = PoolFormerPooling(__snake_case ) snake_case = PoolFormerOutput(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case = PoolFormerGroupNorm(__snake_case ) snake_case = PoolFormerGroupNorm(__snake_case ) # Useful for training neural nets snake_case = PoolFormerDropPath(__snake_case ) if drop_path > 0.0 else nn.Identity() snake_case = config.use_layer_scale if config.use_layer_scale: snake_case = nn.Parameter( config.layer_scale_init_value * torch.ones((__snake_case) ) , requires_grad=__snake_case ) snake_case = nn.Parameter( config.layer_scale_init_value * torch.ones((__snake_case) ) , requires_grad=__snake_case ) def a_ ( self , __snake_case ): if self.use_layer_scale: snake_case = self.pooling(self.before_norm(__snake_case ) ) snake_case = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case = hidden_states + self.drop_path(__snake_case ) snake_case = () snake_case = self.output(self.after_norm(__snake_case ) ) snake_case = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case = hidden_states + self.drop_path(__snake_case ) snake_case = (output,) + outputs return outputs else: snake_case = self.drop_path(self.pooling(self.before_norm(__snake_case ) ) ) # First residual connection snake_case = pooling_output + hidden_states snake_case = () # Second residual connection inside the PoolFormerOutput block snake_case = self.drop_path(self.output(self.after_norm(__snake_case ) ) ) snake_case = hidden_states + layer_output snake_case = (output,) + outputs return outputs class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case ): super().__init__() snake_case = config # stochastic depth decay rule snake_case = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case = nn.ModuleList(__snake_case ) # Transformer blocks snake_case = [] snake_case = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __snake_case , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__snake_case ) ) snake_case = nn.ModuleList(__snake_case ) def a_ ( self , __snake_case , __snake_case=False , __snake_case=True ): snake_case = () if output_hidden_states else None snake_case = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case = layers # Get patch embeddings from hidden_states snake_case = embedding_layer(__snake_case ) # Send the embeddings through the blocks for _, blk in enumerate(__snake_case ): snake_case = blk(__snake_case ) snake_case = layer_outputs[0] if output_hidden_states: snake_case = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = PoolFormerConfig __magic_name__ = 'poolformer' __magic_name__ = 'pixel_values' __magic_name__ = True def a_ ( self , __snake_case ): if isinstance(__snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__snake_case , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def a_ ( self , __snake_case , __snake_case=False ): if isinstance(__snake_case , __snake_case ): snake_case = value _SCREAMING_SNAKE_CASE : Optional[Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _SCREAMING_SNAKE_CASE : Dict = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , snake_case__ , ) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case ): super().__init__(__snake_case ) snake_case = config snake_case = PoolFormerEncoder(__snake_case ) # Initialize weights and apply final processing self.post_init() def a_ ( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a_ ( self , __snake_case = None , __snake_case = None , __snake_case = None , ): snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) snake_case = self.encoder( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , ) snake_case = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__snake_case , hidden_states=encoder_outputs.hidden_states , ) class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case ): super().__init__() snake_case = nn.Linear(config.hidden_size , config.hidden_size ) def a_ ( self , __snake_case ): snake_case = self.dense(__snake_case ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , snake_case__ , ) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case ): super().__init__(__snake_case ) snake_case = config.num_labels snake_case = PoolFormerModel(__snake_case ) # Final norm snake_case = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a_ ( self , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , ): snake_case = return_dict if return_dict is not None else self.config.use_return_dict snake_case = self.poolformer( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , ) snake_case = outputs[0] snake_case = self.classifier(self.norm(__snake_case ).mean([-2, -1] ) ) snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case = '''single_label_classification''' else: snake_case = '''multi_label_classification''' if self.config.problem_type == "regression": snake_case = MSELoss() if self.num_labels == 1: snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case = loss_fct(__snake_case , __snake_case ) elif self.config.problem_type == "single_label_classification": snake_case = CrossEntropyLoss() snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case = BCEWithLogitsLoss() snake_case = loss_fct(__snake_case , __snake_case ) if not return_dict: snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
127
0
"""simple docstring""" import numpy as np def A_ ( snake_case_ : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" def A_ ( snake_case_ : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(snake_case_ ,(list, tuple) ) or not all( isinstance(snake_case_ ,snake_case_ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) UpperCamelCase : int = numbers[0] for i in range(1 ,len(snake_case_ ) ): # update the maximum and minimum subarray products UpperCamelCase : List[str] = numbers[i] if number < 0: UpperCamelCase , UpperCamelCase : Optional[int] = min_till_now, max_till_now UpperCamelCase : Dict = max(snake_case_ ,max_till_now * number ) UpperCamelCase : Union[str, Any] = min(snake_case_ ,min_till_now * number ) # update the maximum product found till now UpperCamelCase : Union[str, Any] = max(snake_case_ ,snake_case_ ) return max_prod
27
0
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __A = mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: __A = max( mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) __A = val return f[i][j] def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Dict: """simple docstring""" __A = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __A = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __A = dp[i - 1][w_] return dp[n][w_], dp def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" if not (isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(__lowerCAmelCase , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) __A = len(__lowerCAmelCase ) if num_items != len(__lowerCAmelCase ): __A = ( '''The number of weights must be the same as the number of values.\n''' F'''But got {num_items} weights and {len(__lowerCAmelCase )} values''' ) raise ValueError(__lowerCAmelCase ) for i in range(__lowerCAmelCase ): if not isinstance(wt[i] , __lowerCAmelCase ): __A = ( '''All weights must be integers but got weight of ''' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(__lowerCAmelCase ) __A = knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __A = set() _construct_solution(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return optimal_val, example_optional_set def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> Any: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__lowerCAmelCase , __lowerCAmelCase , i - 1 , __lowerCAmelCase , __lowerCAmelCase ) else: optimal_set.add(__lowerCAmelCase ) _construct_solution(__lowerCAmelCase , __lowerCAmelCase , i - 1 , j - wt[i - 1] , __lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = [3, 2, 4, 4] SCREAMING_SNAKE_CASE :Optional[int] = [4, 3, 2, 3] SCREAMING_SNAKE_CASE :Union[str, Any] = 4 SCREAMING_SNAKE_CASE :str = 6 SCREAMING_SNAKE_CASE :Optional[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :int = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
15
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __snake_case : __lowerCamelCase : str = BlenderbotConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : Optional[int] = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : Dict =seq_length UpperCAmelCase : Optional[Any] =is_training UpperCAmelCase : List[str] =use_labels UpperCAmelCase : List[Any] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : str =hidden_dropout_prob UpperCAmelCase : Optional[int] =attention_probs_dropout_prob UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : List[Any] =eos_token_id UpperCAmelCase : Optional[int] =pad_token_id UpperCAmelCase : Tuple =bos_token_id def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder() UpperCAmelCase : Any =inputs_dict['''input_ids'''] UpperCAmelCase : str =input_ids[:1, :] UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : Tuple =inputs_dict['''head_mask'''] UpperCAmelCase : List[Any] =1 # first forward pass UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str: '''simple docstring''' if attention_mask is None: UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Tuple =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =TFBlenderbotModelTester(self ) UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""] __lowerCamelCase : Dict = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase : Optional[int] =self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
348
0
'''simple docstring''' def __a ( ) -> Union[str, Any]: """simple docstring""" _snake_case = 0 for i in range(1 , 1_001 ): total += i**i return str(_UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
350
'''simple docstring''' from __future__ import annotations from typing import Any def __a ( _UpperCamelCase: list[Any] ) -> None: """simple docstring""" create_state_space_tree(_UpperCamelCase , [] , 0 ) def __a ( _UpperCamelCase: list[Any] , _UpperCamelCase: list[Any] , _UpperCamelCase: int ) -> None: """simple docstring""" if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": UpperCamelCase_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
142
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _snake_case ( a__ ): snake_case__ = (EulerDiscreteScheduler,) snake_case__ = 10 def lowerCamelCase__ ( self : List[Any] , **UpperCAmelCase : Optional[Any] ): __lowerCamelCase : int = { "num_train_timesteps": 1100, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**UpperCAmelCase ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase ) def lowerCamelCase__ ( self : Any ): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Optional[int] = self.scheduler_classes[0] __lowerCamelCase : Union[str, Any] = self.get_scheduler_config() __lowerCamelCase : List[Any] = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCamelCase : Dict = self.dummy_model() __lowerCamelCase : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase : Union[str, Any] = sample.to(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase : Union[str, Any] = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : List[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ) __lowerCamelCase : Tuple = output.prev_sample __lowerCamelCase : Optional[Any] = torch.sum(torch.abs(UpperCAmelCase ) ) __lowerCamelCase : Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1E-3 def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] __lowerCamelCase : int = self.get_scheduler_config(prediction_type="v_prediction" ) __lowerCamelCase : Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) __lowerCamelCase : Dict = self.dummy_model() __lowerCamelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase : Dict = sample.to(UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase : Tuple = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Tuple = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ) __lowerCamelCase : Tuple = output.prev_sample __lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(UpperCAmelCase ) ) __lowerCamelCase : Optional[int] = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : int = self.scheduler_classes[0] __lowerCamelCase : Union[str, Any] = self.get_scheduler_config() __lowerCamelCase : Any = scheduler_class(**UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase ) __lowerCamelCase : Tuple = torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = self.dummy_model() __lowerCamelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCamelCase : List[Any] = sample.to(UpperCAmelCase ) for t in scheduler.timesteps: __lowerCamelCase : List[Any] = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : List[str] = model(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = output.prev_sample __lowerCamelCase : Tuple = torch.sum(torch.abs(UpperCAmelCase ) ) __lowerCamelCase : Any = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1E-3 def lowerCamelCase__ ( self : str ): __lowerCamelCase : Optional[Any] = self.scheduler_classes[0] __lowerCamelCase : Optional[int] = self.get_scheduler_config() __lowerCamelCase : Dict = scheduler_class(**UpperCAmelCase , use_karras_sigmas=UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase ) __lowerCamelCase : Tuple = torch.manual_seed(0 ) __lowerCamelCase : str = self.dummy_model() __lowerCamelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCamelCase : List[Any] = sample.to(UpperCAmelCase ) for t in scheduler.timesteps: __lowerCamelCase : str = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : int = model(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Dict = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase ) __lowerCamelCase : str = output.prev_sample __lowerCamelCase : Optional[int] = torch.sum(torch.abs(UpperCAmelCase ) ) __lowerCamelCase : Tuple = torch.mean(torch.abs(UpperCAmelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1E-3
135
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __A = logging.get_logger(__name__) enable_full_determinism() class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = UNetaDModel snake_case__ = "sample" @property def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : int = 4 __lowerCamelCase : List[Any] = 3 __lowerCamelCase : List[Any] = (32, 32) __lowerCamelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) __lowerCamelCase : List[Any] = torch.tensor([10] ).to(UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self : int ): return (3, 32, 32) @property def lowerCamelCase__ ( self : Tuple ): return (3, 32, 32) def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Tuple = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } __lowerCamelCase : Tuple = self.dummy_input return init_dict, inputs_dict class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = UNetaDModel snake_case__ = "sample" @property def lowerCamelCase__ ( self : str ): __lowerCamelCase : Optional[Any] = 4 __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = (32, 32) __lowerCamelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = torch.tensor([10] ).to(UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self : Union[str, Any] ): return (4, 32, 32) @property def lowerCamelCase__ ( self : Any ): return (4, 32, 32) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Dict = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } __lowerCamelCase : Dict = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : Any ): __lowerCamelCase , __lowerCamelCase : Tuple = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase ) __lowerCamelCase : Any = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase , __lowerCamelCase : List[Any] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase ) model.to(UpperCAmelCase ) __lowerCamelCase : int = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase__ ( self : Tuple ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` __lowerCamelCase , __lowerCamelCase : Optional[int] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase ) model_accelerate.to(UpperCAmelCase ) model_accelerate.eval() __lowerCamelCase : List[Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) __lowerCamelCase : int = noise.to(UpperCAmelCase ) __lowerCamelCase : Optional[int] = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase ) __lowerCamelCase : int = model_accelerate(UpperCAmelCase , UpperCAmelCase )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() __lowerCamelCase , __lowerCamelCase : str = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase , low_cpu_mem_usage=UpperCAmelCase ) model_normal_load.to(UpperCAmelCase ) model_normal_load.eval() __lowerCamelCase : Any = model_normal_load(UpperCAmelCase , UpperCAmelCase )["sample"] assert torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-3 ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Tuple = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(UpperCAmelCase ) __lowerCamelCase : str = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __lowerCamelCase : Optional[int] = noise.to(UpperCAmelCase ) __lowerCamelCase : Tuple = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : Optional[Any] = model(UpperCAmelCase , UpperCAmelCase ).sample __lowerCamelCase : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __lowerCamelCase : Optional[Any] = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-3 ) ) class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = UNetaDModel snake_case__ = "sample" @property def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[Any]=(32, 32) ): __lowerCamelCase : Tuple = 4 __lowerCamelCase : int = 3 __lowerCamelCase : Dict = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) __lowerCamelCase : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__ ( self : Optional[Any] ): return (3, 32, 32) @property def lowerCamelCase__ ( self : Optional[Any] ): return (3, 32, 32) def lowerCamelCase__ ( self : int ): __lowerCamelCase : Union[str, Any] = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1E-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } __lowerCamelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase__ ( self : Any ): __lowerCamelCase , __lowerCamelCase : List[str] = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase ) __lowerCamelCase : int = self.dummy_input __lowerCamelCase : int = floats_tensor((4, 3) + (256, 256) ).to(UpperCAmelCase ) __lowerCamelCase : int = noise __lowerCamelCase : int = model(**UpperCAmelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : int = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = 4 __lowerCamelCase : List[Any] = 3 __lowerCamelCase : Tuple = (256, 256) __lowerCamelCase : int = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) __lowerCamelCase : List[Any] = torch.tensor(batch_size * [1E-4] ).to(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : Tuple = model(UpperCAmelCase , UpperCAmelCase ).sample __lowerCamelCase : Optional[int] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __lowerCamelCase : List[Any] = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-2 ) ) def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : str = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = 4 __lowerCamelCase : Any = 3 __lowerCamelCase : Union[str, Any] = (32, 32) __lowerCamelCase : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) __lowerCamelCase : Dict = torch.tensor(batch_size * [1E-4] ).to(UpperCAmelCase ) with torch.no_grad(): __lowerCamelCase : List[str] = model(UpperCAmelCase , UpperCAmelCase ).sample __lowerCamelCase : int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __lowerCamelCase : int = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1E-2 ) ) def lowerCamelCase__ ( self : int ): # not required for this model pass
135
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __UpperCamelCase : List[str] = { "RUCAIBox/mvp": 1024, } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ["""input_ids""", """attention_mask"""] UpperCamelCase_ = MvpTokenizer def __init__( self : Optional[int] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : str="replace" , UpperCamelCase__ : Any="<s>" , UpperCamelCase__ : List[Any]="</s>" , UpperCamelCase__ : Optional[Any]="</s>" , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : Optional[int]="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : List[str]="<mask>" , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int=True , **UpperCamelCase__ : Any , ): '''simple docstring''' super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _a ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_a , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_a ) SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[str] = """post_processor""" SCREAMING_SNAKE_CASE : str = getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : str = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : str = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : str = False if state.get('''add_prefix_space''' , _a ) != add_prefix_space: SCREAMING_SNAKE_CASE : List[str] = add_prefix_space SCREAMING_SNAKE_CASE : List[Any] = True if state.get('''trim_offsets''' , _a ) != trim_offsets: SCREAMING_SNAKE_CASE : Any = trim_offsets SCREAMING_SNAKE_CASE : Tuple = True if changes_to_apply: SCREAMING_SNAKE_CASE : Optional[int] = getattr(_a , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Dict = component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property def __A ( self : Union[str, Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __A ( self : Dict , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value SCREAMING_SNAKE_CASE : Any = value def __A ( self : int , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = kwargs.get('''is_split_into_words''' , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_a , **_a ) def __A ( self : List[str] , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = kwargs.get('''is_split_into_words''' , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_a , **_a ) def __A ( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : int = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def __A ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __A ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
362
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __UpperCamelCase : Dict = logging.get_logger(__name__) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = UniSpeechSatForSequenceClassification.from_pretrained(_lowercase , config=_lowercase ) SCREAMING_SNAKE_CASE : Any = downstream_dict['''projector.weight'''] SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict['''projector.bias'''] SCREAMING_SNAKE_CASE : Optional[Any] = downstream_dict['''model.post_net.linear.weight'''] SCREAMING_SNAKE_CASE : int = downstream_dict['''model.post_net.linear.bias'''] return model def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = UniSpeechSatForAudioFrameClassification.from_pretrained(_lowercase , config=_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = downstream_dict['''model.linear.weight'''] SCREAMING_SNAKE_CASE : str = downstream_dict['''model.linear.bias'''] return model def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : str = UniSpeechSatForXVector.from_pretrained(_lowercase , config=_lowercase ) SCREAMING_SNAKE_CASE : str = downstream_dict['''connector.weight'''] SCREAMING_SNAKE_CASE : Dict = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE : Optional[Any] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] SCREAMING_SNAKE_CASE : List[str] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] SCREAMING_SNAKE_CASE : int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] SCREAMING_SNAKE_CASE : Any = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] SCREAMING_SNAKE_CASE : Tuple = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] SCREAMING_SNAKE_CASE : List[str] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] SCREAMING_SNAKE_CASE : Any = downstream_dict['''objective.W'''] return model @torch.no_grad() def A ( _lowercase , _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = torch.load(_lowercase , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Any = checkpoint['''Downstream'''] SCREAMING_SNAKE_CASE : List[Any] = UniSpeechSatConfig.from_pretrained(_lowercase ) SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor.from_pretrained( _lowercase , return_attention_mask=_lowercase , do_normalize=_lowercase ) SCREAMING_SNAKE_CASE : Tuple = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): SCREAMING_SNAKE_CASE : str = convert_classification(_lowercase , _lowercase , _lowercase ) elif arch.endswith('''ForAudioFrameClassification''' ): SCREAMING_SNAKE_CASE : List[Any] = convert_diarization(_lowercase , _lowercase , _lowercase ) elif arch.endswith('''ForXVector''' ): SCREAMING_SNAKE_CASE : int = convert_xvector(_lowercase , _lowercase , _lowercase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE : int = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(_lowercase ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') __UpperCamelCase : Union[str, Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
258
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
349
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( __A ,__A=False ): '''simple docstring''' try: __UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCamelCase = default else: # KEY is set, convert it to True or False. try: __UpperCamelCase = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True) a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio a__ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam a__ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility a__ : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows a__ : Tuple = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowercase ( __A ): '''simple docstring''' try: import faiss # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires faiss""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import regex # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires regex""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TORCH_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TF_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.JAX_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires JAX""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.PIL_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("""test requires spacy""" )(__A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A ) else: return test_case return _require_spacy_model def _lowercase ( __A ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __UpperCamelCase = unittest.skip("""test is slow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __UpperCamelCase = unittest.skip("""test is local""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCamelCase = unittest.skip("""test is packaged""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __UpperCamelCase = unittest.skip("""test requires remote""" )(__A ) return test_case def _lowercase ( *__A ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("""test""" ): for decorator in decorators: __UpperCamelCase = decorator(__A ) setattr(cls ,__A ,__A ) return cls return decorate class UpperCAmelCase__ ( UpperCAmelCase_): pass class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 @contextmanager def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ): '''simple docstring''' __UpperCamelCase = requests.Session().request def timeout_request(__A ,__A ,__A ,**__A ): # Change the url to an invalid url so that the connection hangs __UpperCamelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __UpperCamelCase = timeout try: return online_request(__A ,__A ,**__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCamelCase = url __UpperCamelCase = e.args[0] __UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),) __UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__A ,__A ,**__A ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,__A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,__A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _lowercase ( *__A ,**__A ): '''simple docstring''' __UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( __A ,__A ): '''simple docstring''' return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist() def _lowercase ( __A ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A ,*__A ,**__A ): try: return func(*__A ,**__A ) except HTTPError as err: if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper ,__A ) class UpperCAmelCase__ : def __init__( self , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = returncode __UpperCamelCase = stdout __UpperCamelCase = stderr async def _lowercase ( __A ,__A ): '''simple docstring''' while True: __UpperCamelCase = await stream.readline() if line: callback(__A ) else: break async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ): '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(__A ) ) __UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCamelCase = [] __UpperCamelCase = [] def tee(__A ,__A ,__A ,__A="" ): __UpperCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A ,__A ,file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=__A ,) return _RunOutput(await p.wait() ,__A ,__A ) def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ): '''simple docstring''' __UpperCamelCase = asyncio.get_event_loop() __UpperCamelCase = loop.run_until_complete( _stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) ) __UpperCamelCase = """ """.join(__A ) if result.returncode > 0: __UpperCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def _lowercase ( ): '''simple docstring''' __UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) __UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M ) return int(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 29_500 __UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
349
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig UpperCAmelCase__ : str =logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] ='''T5Config''' class __A ( a ): __A = """mt5""" __A = MTaConfig class __A ( a ): __A = """mt5""" __A = MTaConfig class __A ( a ): __A = """mt5""" __A = MTaConfig
262
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase__ : Union[str, Any] =subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') UpperCAmelCase__ : List[str] =( subprocess.check_output(F"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode('''utf-8''').split() ) UpperCAmelCase__ : Tuple ='''|'''.join(sys.argv[1:]) UpperCAmelCase__ : List[str] =re.compile(rF"^({joined_dirs}).*?\.py$") UpperCAmelCase__ : Any =[x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
262
1
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule): def __init__( self : str , lowercase_ : Optional[int] ): super().__init__() lowercase_ : Optional[Any] = model lowercase_ : Any = 2 lowercase_ : Any = nn.Linear(self.model.config.hidden_size , self.num_labels ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): pass def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> Dict: # load longformer model from model identifier lowercase_ : str = LongformerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) lowercase_ : Any = LightningModel(_SCREAMING_SNAKE_CASE ) lowercase_ : str = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model lowercase_ : Any = LongformerForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowercase : List[Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
239
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
0
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Dict ) -> float: """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : Union[str, Any] ) -> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: a_ : int = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) try: if dataset.shape[1] != value_array.shape[1]: a_ : Optional[int] = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: a_ : Any = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(SCREAMING_SNAKE_CASE_ ) a_ : int = [] for value in value_array: a_ : int = euclidean(SCREAMING_SNAKE_CASE_ , dataset[0] ) a_ : Union[str, Any] = dataset[0].tolist() for dataset_value in dataset[1:]: a_ : Optional[int] = euclidean(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if dist > temp_dist: a_ : Optional[int] = temp_dist a_ : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def SCREAMING_SNAKE_CASE_ ( __A : str , __A : List[str] ) -> float: """simple docstring""" return np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / (norm(SCREAMING_SNAKE_CASE_ ) * norm(SCREAMING_SNAKE_CASE_ )) if __name__ == "__main__": import doctest doctest.testmod()
366
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : int = '''instructblip_vision_model''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=1_4_0_8 , SCREAMING_SNAKE_CASE__ : int=6_1_4_4 , SCREAMING_SNAKE_CASE__ : Dict=3_9 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_2_4 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_4 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=1E-6 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=1E-10 , SCREAMING_SNAKE_CASE__ : str=True , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : List[str] = hidden_size a_ : Any = intermediate_size a_ : str = num_hidden_layers a_ : Dict = num_attention_heads a_ : str = patch_size a_ : Any = image_size a_ : Dict = initializer_range a_ : List[Any] = attention_dropout a_ : Union[str, Any] = layer_norm_eps a_ : Optional[Any] = hidden_act a_ : Optional[Any] = qkv_bias @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": a_ : List[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[Any] = '''instructblip_qformer''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : str=7_6_8 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : Any=1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : int=1E-12 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]="absolute" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : str=1_4_0_8 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = vocab_size a_ : List[str] = hidden_size a_ : Any = num_hidden_layers a_ : Dict = num_attention_heads a_ : Optional[int] = hidden_act a_ : List[str] = intermediate_size a_ : Tuple = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : List[str] = max_position_embeddings a_ : List[str] = initializer_range a_ : Any = layer_norm_eps a_ : Tuple = position_embedding_type a_ : List[str] = cross_attention_frequency a_ : Union[str, Any] = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE ( cls : str , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Union[str, Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": a_ : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[str, Any] = '''instructblip''' snake_case__ : List[str] = True def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : int=3_2 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE__ ) if vision_config is None: a_ : Dict = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: a_ : List[str] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: a_ : Any = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) a_ : int = InstructBlipVisionConfig(**SCREAMING_SNAKE_CASE__ ) a_ : int = InstructBlipQFormerConfig(**SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' a_ : List[Any] = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.text_config.tie_word_embeddings a_ : List[Any] = self.text_config.is_encoder_decoder a_ : Optional[Any] = num_query_tokens a_ : int = self.vision_config.hidden_size a_ : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a_ : Optional[int] = 1.0 a_ : Any = 0.02 @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : InstructBlipVisionConfig , SCREAMING_SNAKE_CASE__ : InstructBlipQFormerConfig , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: a_ : List[Any] = copy.deepcopy(self.__dict__ ) a_ : Optional[int] = self.vision_config.to_dict() a_ : Optional[Any] = self.qformer_config.to_dict() a_ : Union[str, Any] = self.text_config.to_dict() a_ : Optional[Any] = self.__class__.model_type return output
120
0
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): @property def lowerCAmelCase_ ( self : List[str] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = ort.SessionOptions() _UpperCAmelCase = False return options def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _UpperCAmelCase = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = '''A red cat sitting on a park bench''' _UpperCAmelCase = np.random.RandomState(0 ) _UpperCAmelCase = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__lowerCAmelCase , output_type="""np""" , ) _UpperCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
289
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase_ ): _UpperCAmelCase : int = ["transformers", "torch", "note_seq"] def __init__( self : Union[str, Any] , *A : int , **A : Optional[int] ) ->str: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCamelCase ( cls : Any , *A : Optional[int] , **A : int ) ->int: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCamelCase ( cls : List[Any] , *A : List[str] , **A : str ) ->Optional[Any]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
142
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase : Any = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class snake_case ( UpperCAmelCase ): def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(A , 'num_encoder_blocks' ) ) class snake_case : def __init__( self : List[Any] , A : Dict , A : List[Any]=1_3 , A : str=6_4 , A : Union[str, Any]=3 , A : Union[str, Any]=4 , A : Union[str, Any]=[2, 2, 2, 2] , A : List[str]=[8, 4, 2, 1] , A : Optional[Any]=[1_6, 3_2, 6_4, 1_2_8] , A : Optional[Any]=[1, 4, 8, 1_6] , A : Tuple=[1, 2, 4, 8] , A : Optional[Any]=True , A : Any=True , A : Optional[Any]="gelu" , A : Optional[int]=0.1 , A : List[Any]=0.1 , A : List[str]=0.02 , A : List[Any]=3 , A : str=None , ): '''simple docstring''' a : Optional[Any] = parent a : Optional[Any] = batch_size a : Optional[Any] = image_size a : Optional[int] = num_channels a : List[str] = num_encoder_blocks a : Optional[Any] = sr_ratios a : Any = depths a : Any = hidden_sizes a : Union[str, Any] = downsampling_rates a : Any = num_attention_heads a : int = is_training a : Dict = use_labels a : str = hidden_act a : Optional[int] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : Optional[Any] = initializer_range a : Dict = num_labels a : Union[str, Any] = scope def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : int = None if self.use_labels: a : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a : str = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , A : str , A : List[Any] , A : List[Any] ): '''simple docstring''' a : Optional[Any] = SegformerModel(config=A ) model.to(A ) model.eval() a : Union[str, Any] = model(A ) a : Optional[int] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowerCamelCase__ ( self : Optional[int] , A : Union[str, Any] , A : str , A : Optional[Any] ): '''simple docstring''' a : List[Any] = self.num_labels a : Optional[int] = SegformerForSemanticSegmentation(A ) model.to(A ) model.eval() a : str = model(A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) a : int = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCamelCase__ ( self : Dict , A : Dict , A : Any , A : Optional[Any] ): '''simple docstring''' a : Optional[int] = 1 a : List[Any] = SegformerForSemanticSegmentation(config=A ) model.to(A ) model.eval() a : Any = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(A ) a : Dict = model(A , labels=A ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : str = self.prepare_config_and_inputs() a, a, a : str = config_and_inputs a : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __magic_name__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __magic_name__ = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Union[str, Any] = SegformerModelTester(self ) a : Tuple = SegformerConfigTester(self , config_class=A ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*A ) def lowerCamelCase__ ( self : int ): '''simple docstring''' a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*A ) @unittest.skip('SegFormer does not use inputs_embeds' ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a, a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Dict = model_class(A ) a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : List[str] = [*signature.parameters.keys()] a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a, a : Any = self.model_tester.prepare_config_and_inputs_for_common() a : Any = True for model_class in self.all_model_classes: a : Optional[Any] = True a : Tuple = False a : int = True a : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : Dict = model(**self._prepare_for_class(A , A ) ) a : Union[str, Any] = outputs.attentions a : Tuple = sum(self.model_tester.depths ) self.assertEqual(len(A ) , A ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a : Tuple = True a : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : str = model(**self._prepare_for_class(A , A ) ) a : Optional[int] = outputs.attentions self.assertEqual(len(A ) , A ) # verify the first attentions (first block, first layer) a : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 a : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a : Tuple = (self.model_tester.image_size // 3_2) ** 2 a : Tuple = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a : str = len(A ) # Check attention is always last and order is fine a : str = True a : Tuple = True a : List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : Dict = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 1 , len(A ) ) a : str = outputs.attentions self.assertEqual(len(A ) , A ) # verify the first attentions (first block, first layer) a : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 a : Optional[int] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowerCamelCase__ ( self : int ): '''simple docstring''' def check_hidden_states_output(A : Optional[Any] , A : List[str] , A : Union[str, Any] ): a : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): a : Optional[Any] = model(**self._prepare_for_class(A , A ) ) a : Tuple = outputs.hidden_states a : Optional[Any] = self.model_tester.num_encoder_blocks self.assertEqual(len(A ) , A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a, a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[str] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : str = True check_hidden_states_output(A , A , A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return a, a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() a : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(A ): continue a : List[Any] = model_class(A ) model.to(A ) model.train() a : Tuple = self._prepare_for_class(A , A , return_labels=A ) a : Any = model(**A ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase__ ( self : str ): '''simple docstring''' pass @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = SegformerModel.from_pretrained(A ) self.assertIsNotNone(A ) def snake_case (): '''simple docstring''' a : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a : int = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) a : Dict = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( A ) a : str = prepare_img() a : List[str] = image_processor(images=A , return_tensors='pt' ) a : List[str] = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): a : Optional[int] = model(A ) a : Any = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , A ) a : str = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Optional[Any] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) a : Optional[Any] = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(A ) a : List[Any] = prepare_img() a : Optional[Any] = image_processor(images=A , return_tensors='pt' ) a : int = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): a : Optional[Any] = model(A ) a : Tuple = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape , A ) a : Optional[Any] = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-1 ) ) @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' a : str = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A ) a : Optional[int] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( A ) a : int = prepare_img() a : Any = image_processor(images=A , return_tensors='pt' ) a : List[Any] = encoded_inputs.pixel_values.to(A ) with torch.no_grad(): a : str = model(A ) a : str = outputs.logits.detach().cpu() a : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(5_0_0, 3_0_0)] ) a : Dict = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , A ) a : int = image_processor.post_process_semantic_segmentation(outputs=A ) a : Any = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape , A )
186
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __snake_case ( _UpperCAmelCase = "isbn/0140328726" ): __a = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __a = f'{olid} is not a valid Open Library olid' raise ValueError(_UpperCAmelCase ) return requests.get(f'https://openlibrary.org/{new_olid}.json' ).json() def __snake_case ( _UpperCAmelCase ): __a = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __a = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __a = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __a = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = ''', '''.join(_UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __snake_case :List[Any] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(f'\nSearching Open Library for ISBN: {isbn}...\n') try: __snake_case :Optional[Any] = summarize_book(get_openlibrary_data(f'isbn/{isbn}')) print('''\n'''.join(f'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'Sorry, there are no results for ISBN: {isbn}.')
49
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BioGptTokenizer __lowerCAmelCase = False def A (self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] A = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def A (self : Tuple , _lowerCAmelCase : List[str] ): A = """lower newer""" A = """lower newer""" return input_text, output_text def A (self : List[Any] ): A = BioGptTokenizer(self.vocab_file , self.merges_file ) A = """lower""" A = ["""low""", """er</w>"""] A = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) A = tokens + ["""<unk>"""] A = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def A (self : Union[str, Any] ): A = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) A = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) A = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) A = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
258
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A : int = 2 class __lowerCamelCase : """simple docstring""" def __init__( self : List[str] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE : int="<pad>" , SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE : Tuple="<unk>" , SCREAMING_SNAKE_CASE : List[Any]=None , ): _A , _A , _A , _A : Any = bos, unk, pad, eos _A : Optional[Any] = [] _A : Optional[Any] = [] _A : Optional[int] = {} _A : Dict = self.add_symbol(SCREAMING_SNAKE_CASE) _A : List[str] = self.add_symbol(SCREAMING_SNAKE_CASE) _A : str = self.add_symbol(SCREAMING_SNAKE_CASE) _A : Any = self.add_symbol(SCREAMING_SNAKE_CASE) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE) _A : List[str] = len(self.symbols) def __eq__( self : int , SCREAMING_SNAKE_CASE : Optional[Any]): return self.indices == other.indices def __getitem__( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self : Union[str, Any]): return len(self.symbols) def __contains__( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str]): return sym in self.indices @classmethod def A ( cls : Dict , SCREAMING_SNAKE_CASE : Optional[Any]): _A : Any = cls() d.add_from_file(SCREAMING_SNAKE_CASE) return d def A ( self : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int]=1 , SCREAMING_SNAKE_CASE : int=False): if word in self.indices and not overwrite: _A : str = self.indices[word] _A : List[str] = self.count[idx] + n return idx else: _A : Optional[Any] = len(self.symbols) _A : Union[str, Any] = idx self.symbols.append(SCREAMING_SNAKE_CASE) self.count.append(SCREAMING_SNAKE_CASE) return idx def A ( self : Dict , SCREAMING_SNAKE_CASE : Optional[int]): return 0 def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any]): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): try: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8') as fd: self.add_from_file(SCREAMING_SNAKE_CASE) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE)) return _A : Union[str, Any] = f.readlines() _A : Any = self._load_meta(SCREAMING_SNAKE_CASE) for line in lines[indices_start_line:]: try: _A , _A : List[str] = line.rstrip().rsplit(' ' , 1) if field == "#fairseq:overwrite": _A : int = True _A , _A : List[str] = line.rsplit(' ' , 1) else: _A : Union[str, Any] = False _A : List[str] = int(SCREAMING_SNAKE_CASE) _A : Optional[Any] = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE)) self.add_symbol(SCREAMING_SNAKE_CASE , n=SCREAMING_SNAKE_CASE , overwrite=SCREAMING_SNAKE_CASE) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'') def lowerCAmelCase__ ( lowerCamelCase : Optional[int] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _A : Union[str, Any] = dict((re.sub(R'@@$' ,'' ,lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' ,'</w>' ,lowerCamelCase ), v) for k, v in d.items() ) _A : Optional[Any] = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] _A : str = d[k] # restore return da def lowerCAmelCase__ ( lowerCamelCase : List[str] ,lowerCamelCase : List[str] ): # prep if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models _A : Dict = os.path.join(lowerCamelCase ,'checkpoint.pt' ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) _A : int = torch.load(lowerCamelCase ,map_location='cpu' ) _A : Dict = chkpt['cfg']['model'] # dicts _A : Any = os.path.join(lowerCamelCase ,'dict.txt' ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) _A : Any = Dictionary.load(lowerCamelCase ) _A : Optional[int] = rewrite_dict_keys(src_dict.indices ) _A : List[Any] = len(lowerCamelCase ) _A : str = os.path.join(lowerCamelCase ,VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase ,ensure_ascii=lowerCamelCase ,indent=lowerCamelCase ) ) # merges_file (bpecodes) _A : Optional[int] = os.path.join(lowerCamelCase ,'bpecodes' ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) _A : Dict = os.path.join(lowerCamelCase ,VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCamelCase ,lowerCamelCase ) # model config _A : str = os.path.join(lowerCamelCase ,'config.json' ) _A : int = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase ,ensure_ascii=lowerCamelCase ,indent=lowerCamelCase ) ) # tokenizer config _A : Union[str, Any] = os.path.join(lowerCamelCase ,lowerCamelCase ) _A : Any = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase ,ensure_ascii=lowerCamelCase ,indent=lowerCamelCase ) ) # model _A : List[Any] = chkpt['model'] # remove unneeded keys _A : int = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase ,lowerCamelCase ) _A : Any = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _A : str = model_state_dict.pop(lowerCamelCase ) else: _A : Dict = model_state_dict.pop(lowerCamelCase ) _A : Any = BioGptConfig.from_pretrained(lowerCamelCase ) _A : Union[str, Any] = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save _A : Union[str, Any] = os.path.join(lowerCamelCase ,lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase ,lowerCamelCase ) print('Conversion is done!' ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
227
'''simple docstring''' A : Dict = '''Alexander Joslin''' import operator as op from .stack import Stack def lowerCAmelCase__ ( lowerCamelCase : str ): _A : Dict = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A : Stack[int] = Stack() _A : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase ) elif i == ")": # RULE 4 _A : List[str] = operator_stack.peek() operator_stack.pop() _A : Dict = operand_stack.peek() operand_stack.pop() _A : Optional[int] = operand_stack.peek() operand_stack.pop() _A : Dict = operators[opr](lowerCamelCase ,lowerCamelCase ) operand_stack.push(lowerCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A : Dict = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
227
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case__( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> int: lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : List[Any] = 3 lowerCAmelCase_ : Optional[int] = (3_2, 3_2) lowerCAmelCase_ : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowercase ) return image @property def lowercase_ ( self ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def lowercase_ ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def lowercase_ ( self ) -> Any: torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(__lowercase ) @property def lowercase_ ( self ) -> List[Any]: def extract(*__lowercase , **__lowercase ): class snake_case__: '''simple docstring''' def __init__( self ) -> Any: lowerCAmelCase_ : Optional[int] = torch.ones([0] ) def lowercase_ ( self , __lowercase ) -> str: self.pixel_values.to(__lowercase ) return self return Out() return extract def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Union[str, Any] = self.dummy_cond_unet lowerCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=__lowercase ) lowerCAmelCase_ : Union[str, Any] = self.dummy_vae lowerCAmelCase_ : Dict = self.dummy_text_encoder lowerCAmelCase_ : Optional[int] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCAmelCase_ : Optional[int] = 7_7 lowerCAmelCase_ : List[Any] = self.dummy_image.to(__lowercase ) lowerCAmelCase_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCAmelCase_ : str = AltDiffusionImgaImgPipeline( unet=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , safety_checker=__lowercase , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowercase ) lowerCAmelCase_ : List[str] = alt_pipe.to(__lowercase ) alt_pipe.set_progress_bar_config(disable=__lowercase ) lowerCAmelCase_ : Optional[int] = '''A painting of a squirrel eating a burger''' lowerCAmelCase_ : int = torch.Generator(device=__lowercase ).manual_seed(0 ) lowerCAmelCase_ : str = alt_pipe( [prompt] , generator=__lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__lowercase , ) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : List[str] = torch.Generator(device=__lowercase ).manual_seed(0 ) lowerCAmelCase_ : Dict = alt_pipe( [prompt] , generator=__lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__lowercase , return_dict=__lowercase , )[0] lowerCAmelCase_ : str = image[0, -3:, -3:, -1] lowerCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase_ : Any = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def lowercase_ ( self ) -> Any: lowerCAmelCase_ : Tuple = self.dummy_cond_unet lowerCAmelCase_ : List[str] = PNDMScheduler(skip_prk_steps=__lowercase ) lowerCAmelCase_ : int = self.dummy_vae lowerCAmelCase_ : List[Any] = self.dummy_text_encoder lowerCAmelCase_ : Any = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCAmelCase_ : List[Any] = 7_7 lowerCAmelCase_ : Tuple = self.dummy_image.to(__lowercase ) # put models in fp16 lowerCAmelCase_ : Union[str, Any] = unet.half() lowerCAmelCase_ : Any = vae.half() lowerCAmelCase_ : int = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ : str = AltDiffusionImgaImgPipeline( unet=__lowercase , scheduler=__lowercase , vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , safety_checker=__lowercase , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowercase ) lowerCAmelCase_ : Dict = alt_pipe.to(__lowercase ) alt_pipe.set_progress_bar_config(disable=__lowercase ) lowerCAmelCase_ : Union[str, Any] = '''A painting of a squirrel eating a burger''' lowerCAmelCase_ : Tuple = torch.manual_seed(0 ) lowerCAmelCase_ : Dict = alt_pipe( [prompt] , generator=__lowercase , num_inference_steps=2 , output_type='''np''' , image=__lowercase , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase_ : Union[str, Any] = init_image.resize((7_6_0, 5_0_4) ) lowerCAmelCase_ : int = '''BAAI/AltDiffusion''' lowerCAmelCase_ : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( __lowercase , safety_checker=__lowercase , ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() lowerCAmelCase_ : int = '''A fantasy landscape, trending on artstation''' lowerCAmelCase_ : Tuple = torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = pipe( prompt=__lowercase , image=__lowercase , strength=0.75 , guidance_scale=7.5 , generator=__lowercase , output_type='''np''' , ) lowerCAmelCase_ : Any = output.images[0] lowerCAmelCase_ : Dict = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) lowerCAmelCase_ : Tuple = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case__( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> str: lowerCAmelCase_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCAmelCase_ : List[Any] = init_image.resize((7_6_8, 5_1_2) ) lowerCAmelCase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowerCAmelCase_ : Tuple = '''BAAI/AltDiffusion''' lowerCAmelCase_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( __lowercase , safety_checker=__lowercase , ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() lowerCAmelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCAmelCase_ : int = torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = pipe( prompt=__lowercase , image=__lowercase , strength=0.75 , guidance_scale=7.5 , generator=__lowercase , output_type='''np''' , ) lowerCAmelCase_ : Optional[Any] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
262
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _UpperCAmelCase : Union[str, Any] ="""pt""" elif is_tf_available(): _UpperCAmelCase : List[Any] ="""tf""" else: _UpperCAmelCase : Optional[int] ="""jax""" class snake_case__( UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = PerceiverTokenizer SCREAMING_SNAKE_CASE__ : Optional[Any] = False def lowercase_ ( self ) -> Optional[int]: super().setUp() lowerCAmelCase_ : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ) -> Any: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def lowercase_ ( self , **__lowercase ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) def lowercase_ ( self , __lowercase , __lowercase=False , __lowercase=2_0 , __lowercase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCAmelCase_ : Optional[Any] = [] for i in range(len(__lowercase ) ): try: lowerCAmelCase_ : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowercase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase_ : List[str] = list(filter(lambda __lowercase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __lowercase ) ) lowerCAmelCase_ : Optional[int] = list(filter(lambda __lowercase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowercase ) , __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: lowerCAmelCase_ : Union[str, Any] = toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: lowerCAmelCase_ : Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase_ : List[str] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase_ : int = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: lowerCAmelCase_ : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: lowerCAmelCase_ : Any = ''' ''' + output_txt lowerCAmelCase_ : List[str] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) return output_txt, output_ids def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : List[str] = self.perceiver_tokenizer lowerCAmelCase_ : Any = '''Unicode €.''' lowerCAmelCase_ : Dict = tokenizer(__lowercase ) lowerCAmelCase_ : Any = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding lowerCAmelCase_ : str = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]Unicode €.[SEP]''' ) lowerCAmelCase_ : Optional[int] = tokenizer('''e è é ê ë''' ) lowerCAmelCase_ : str = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , __lowercase ) # decoding lowerCAmelCase_ : int = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : Any = self.perceiver_tokenizer lowerCAmelCase_ : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCAmelCase_ : Optional[int] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on lowerCAmelCase_ : Optional[int] = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) if FRAMEWORK != "jax": lowerCAmelCase_ : str = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase_ : Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : int = self.perceiver_tokenizer lowerCAmelCase_ : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCAmelCase_ : List[Any] = tokenizer(__lowercase , padding=__lowercase , return_tensors=__lowercase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __lowercase ) self.assertIn('''attention_mask''' , __lowercase ) self.assertNotIn('''decoder_input_ids''' , __lowercase ) self.assertNotIn('''decoder_attention_mask''' , __lowercase ) def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : Optional[Any] = self.perceiver_tokenizer lowerCAmelCase_ : int = [ '''Summary of the text.''', '''Another summary.''', ] lowerCAmelCase_ : List[str] = tokenizer( text_target=__lowercase , max_length=3_2 , padding='''max_length''' , truncation=__lowercase , return_tensors=__lowercase ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def lowercase_ ( self ) -> Optional[Any]: # safety check on max_len default value so we are sure the test works lowerCAmelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test lowerCAmelCase_ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase_ : str = ''' He is very happy, UNwant\u00E9d,running''' lowerCAmelCase_ : Optional[int] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) lowerCAmelCase_ : Any = tokenizer.__class__.from_pretrained(__lowercase ) lowerCAmelCase_ : Tuple = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) shutil.rmtree(__lowercase ) lowerCAmelCase_ : Optional[int] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowerCAmelCase_ : Any = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCAmelCase_ : str = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) lowerCAmelCase_ : str = tokenizer.__class__.from_pretrained(__lowercase ) lowerCAmelCase_ : Optional[Any] = after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) lowerCAmelCase_ : str = tokenizer.__class__.from_pretrained(__lowercase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__lowercase ) def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowerCAmelCase_ : Tuple = json.load(__lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowerCAmelCase_ : Any = json.load(__lowercase ) lowerCAmelCase_ : Optional[int] = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] lowerCAmelCase_ : Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCAmelCase_ : Any = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase_ : int = tokenizer_class.from_pretrained( __lowercase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase_ : Tuple = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__lowercase )] lowerCAmelCase_ : Dict = tokenizer_class.from_pretrained( __lowercase , additional_special_tokens=__lowercase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Any = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self ) -> Any: pass def lowercase_ ( self ) -> Tuple: pass def lowercase_ ( self ) -> List[str]: pass def lowercase_ ( self ) -> Dict: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowerCAmelCase_ : Tuple = self.get_tokenizers(fast=__lowercase , do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase_ : List[str] = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] lowerCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(__lowercase , __lowercase )
262
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Optional[Any] = CLIPTokenizer __UpperCAmelCase : Union[str, Any] = CLIPTokenizerFast __UpperCAmelCase : Any = True __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : str = False def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) UpperCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCAmelCase__ = {"unk_token": "<unk>"} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) def lowercase_ (self : int , **__UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def lowercase_ (self : List[Any] , **__UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def lowercase_ (self : List[Any] , __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = "lower newer" UpperCAmelCase__ = "lower newer" return input_text, output_text def lowercase_ (self : Dict ) -> int: """simple docstring""" UpperCAmelCase__ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ = "lower newer" UpperCAmelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) @require_ftfy def lowercase_ (self : int ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCAmelCase__ = tokenizer_s.tokenize(__UpperCAmelCase ) UpperCAmelCase__ = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCAmelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCAmelCase__ = tokenizer_s.tokenize(__UpperCAmelCase ) UpperCAmelCase__ = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Test that the tokenization is identical on unicode of space type UpperCAmelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCAmelCase__ = tokenizer_s.tokenize(__UpperCAmelCase ) UpperCAmelCase__ = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Test that the tokenization is identical on unicode of line break type UpperCAmelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCAmelCase__ = tokenizer_s.tokenize(__UpperCAmelCase ) UpperCAmelCase__ = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : Tuple ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase__ = f"""{text_of_1_token} {text_of_1_token}""" UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , ) UpperCAmelCase__ = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) UpperCAmelCase__ = f""" {text}""" UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , ) UpperCAmelCase__ = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) def lowercase_ (self : str ) -> int: """simple docstring""" with self.assertRaises(__UpperCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ (self : Optional[Any] ) -> Tuple: """simple docstring""" pass
143
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
143
1
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase = 6008_5147_5143 ): '''simple docstring''' try: __lowerCAmelCase = int(_UpperCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __lowerCAmelCase = 2 __lowerCAmelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __lowerCAmelCase = i while n % i == 0: __lowerCAmelCase = n // i i += 1 return int(_UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
57
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Optional[Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'gpt_neox' def __init__( self : Optional[int] , lowerCamelCase : Tuple=5_04_32 , lowerCamelCase : Optional[int]=61_44 , lowerCamelCase : Tuple=44 , lowerCamelCase : Any=64 , lowerCamelCase : List[Any]=2_45_76 , lowerCamelCase : List[Any]="gelu" , lowerCamelCase : Optional[Any]=0.25 , lowerCamelCase : Any=1_00_00 , lowerCamelCase : Any=0.0 , lowerCamelCase : str=0.0 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[Any]=20_48 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Any=1E-5 , lowerCamelCase : Dict=True , lowerCamelCase : Optional[int]=0 , lowerCamelCase : List[str]=2 , lowerCamelCase : Dict=False , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[int]=None , **lowerCamelCase : int , ) -> Optional[Any]: super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[Any] = rotary_pct lowerCAmelCase_ : Any = rotary_emb_base lowerCAmelCase_ : List[str] = attention_dropout lowerCAmelCase_ : Union[str, Any] = hidden_dropout lowerCAmelCase_ : Tuple = classifier_dropout lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Any = layer_norm_eps lowerCAmelCase_ : str = use_cache lowerCAmelCase_ : str = tie_word_embeddings lowerCAmelCase_ : str = use_parallel_residual lowerCAmelCase_ : Any = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def __lowercase ( self : List[str] ) -> List[str]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'got {self.rope_scaling}' ) lowerCAmelCase_ : Optional[Any] = self.rope_scaling.get("""type""" , lowerCamelCase ) lowerCAmelCase_ : int = self.rope_scaling.get("""factor""" , lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowerCamelCase , lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
120
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _A : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') _A : Tuple = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') _A : Any = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class _lowercase ( _lowercase , unittest.TestCase ): a = CamembertTokenizer a = CamembertTokenizerFast a = True a = True def lowerCamelCase_ ( self: Optional[Any] ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : List[str] = CamembertTokenizer(UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = """<pad>""" lowerCamelCase__ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_004 ) def lowerCamelCase_ ( self: List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Dict = CamembertTokenizer(UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Tuple = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) lowerCamelCase__ : Any = """I was born in 92000, and this is falsé.""" lowerCamelCase__ : Tuple = tokenizer.encode(UpperCamelCase__ ) lowerCamelCase__ : Any = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : int = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) lowerCamelCase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): if not self.test_rust_tokenizer: return lowerCamelCase__ : Dict = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase__ : int = """I was born in 92000, and this is falsé.""" lowerCamelCase__ : Any = tokenizer.tokenize(UpperCamelCase__ ) lowerCamelCase__ : int = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = self.get_rust_tokenizer() lowerCamelCase__ : str = tokenizer.encode(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: str ): # fmt: off lowerCamelCase__ : Any = {"""input_ids""": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. lowerCamelCase__ : Optional[int] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCamelCase__ , )
356
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> list[str]: if nth_term == "": return [""] lowerCamelCase__ : str = int(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = int(UpperCamelCase ) lowerCamelCase__ : list[str] = [] for temp in range(int(UpperCamelCase ) ): series.append(f'''1 / {pow(temp + 1 , int(UpperCamelCase ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() _A : Optional[Any] =int(input('''Enter the last number (nth term) of the P-Series''')) _A : List[str] =int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
129
0
from __future__ import annotations from collections import namedtuple def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> tuple: """simple docstring""" _lowercase =namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
5
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=sys.maxsize )->Any: '''simple docstring''' A_ : Dict = '''bilinear''' A_ : Optional[Any] = max_size A_ : Optional[Any] = short_edge_length def __call__( self , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : str = [] for img in imgs: A_ , A_ : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize A_ : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img A_ : int = size * 1.0 / min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if h < w: A_ , A_ : Tuple = size, scale * w else: A_ , A_ : List[str] = scale * h, size if max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > self.max_size: A_ : List[Any] = self.max_size * 1.0 / max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Any = newh * scale A_ : List[str] = neww * scale A_ : List[Any] = int(neww + 0.5 ) A_ : Tuple = int(newh + 0.5 ) if img.dtype == np.uinta: A_ : List[str] = Image.fromarray(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) A_ : Dict = np.asarray(_SCREAMING_SNAKE_CASE ) else: A_ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw A_ : List[str] = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=_SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(_SCREAMING_SNAKE_CASE ) return img_augs class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : Tuple = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) A_ : Union[str, Any] = cfg.INPUT.FORMAT A_ : int = cfg.SIZE_DIVISIBILITY A_ : Tuple = cfg.PAD_VALUE A_ : List[Any] = cfg.INPUT.MAX_SIZE_TEST A_ : List[str] = cfg.MODEL.DEVICE A_ : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A_ : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) A_ : List[Any] = lambda _SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Any = tuple(max(_SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) A_ : List[Any] = [im.shape[-2:] for im in images] A_ : Any = [ nn.functional.pad( _SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] return torch.stack(_SCREAMING_SNAKE_CASE ), torch.tensor(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )->Dict: '''simple docstring''' with torch.no_grad(): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Dict = [images] if single_image: assert len(_SCREAMING_SNAKE_CASE ) == 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_SCREAMING_SNAKE_CASE , images.pop(_SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(_SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge A_ : List[str] = torch.tensor([im.shape[:2] for im in images] ) A_ : Union[str, Any] = self.aug(_SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic A_ : List[str] = [self.normalizer(_SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations A_ , A_ : Any = self.pad(_SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad A_ : str = torch.true_divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert torch.isfinite(SCREAMING_SNAKE_CASE ).all(), "Box tensor contains infinite or NaN!" A_ , A_ : int = box_size tensor[:, 0].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 1].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 2].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 3].clamp_(min=0 , max=SCREAMING_SNAKE_CASE )
186
0
"""simple docstring""" from collections import defaultdict class _UpperCAmelCase : def __init__( self : int , _lowercase : str , _lowercase : List[Any] ): __UpperCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __UpperCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_lowercase ) ) ] __UpperCAmelCase = defaultdict(_lowercase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __UpperCAmelCase = (1 << len(_lowercase )) - 1 def a ( self : Dict , _lowercase : int , _lowercase : Any ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __UpperCAmelCase = self.count_ways_until(_lowercase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __UpperCAmelCase = total_ways_util return self.dp[mask][task_no] def a ( self : Any , _lowercase : Tuple ): # Store the list of persons for each task for i in range(len(_lowercase ) ): for j in task_performed[i]: self.task[j].append(_lowercase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _lowercase : Tuple = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _lowercase : Dict = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
370
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( enum.Enum ): a__ : str = 0 a__ : List[Any] = 1 a__ : str = 2 @add_end_docstrings(_lowerCAmelCase ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : Optional[Any] , *_lowercase : Any , **_lowercase : Optional[int] ): super().__init__(*_lowercase , **_lowercase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __UpperCAmelCase = None if self.model.config.prefix is not None: __UpperCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __UpperCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self._sanitize_parameters(prefix=_lowercase , **self._forward_params ) __UpperCAmelCase = {**self._preprocess_params, **preprocess_params} __UpperCAmelCase = {**self._forward_params, **forward_params} def a ( self : Any , _lowercase : Optional[Any]=None , _lowercase : List[str]=None , _lowercase : int=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=None , _lowercase : List[Any]=None , **_lowercase : str , ): __UpperCAmelCase = {} if prefix is not None: __UpperCAmelCase = prefix if prefix: __UpperCAmelCase = self.tokenizer( _lowercase , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) __UpperCAmelCase = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ''' [None, \'hole\']''' ) __UpperCAmelCase = handle_long_generation preprocess_params.update(_lowercase ) __UpperCAmelCase = generate_kwargs __UpperCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) __UpperCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) __UpperCAmelCase = ReturnType.TENSORS if return_type is not None: __UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: __UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: __UpperCAmelCase = self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) if len(_lowercase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a ( self : Optional[int] , *_lowercase : Optional[int] , **_lowercase : Any ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_lowercase , **_lowercase ) def __call__( self : List[str] , _lowercase : str , **_lowercase : Optional[Any] ): return super().__call__(_lowercase , **_lowercase ) def a ( self : Union[str, Any] , _lowercase : Any , _lowercase : Dict="" , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): __UpperCAmelCase = self.tokenizer( prefix + prompt_text , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) __UpperCAmelCase = prompt_text if handle_long_generation == "hole": __UpperCAmelCase = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: __UpperCAmelCase = generate_kwargs['''max_new_tokens'''] else: __UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __UpperCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) __UpperCAmelCase = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: __UpperCAmelCase = inputs['''attention_mask'''][:, -keep_length:] return inputs def a ( self : Union[str, Any] , _lowercase : List[str] , **_lowercase : Optional[int] ): __UpperCAmelCase = model_inputs['''input_ids'''] __UpperCAmelCase = model_inputs.get('''attention_mask''' , _lowercase ) # Allow empty prompts if input_ids.shape[1] == 0: __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = 1 else: __UpperCAmelCase = input_ids.shape[0] __UpperCAmelCase = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __UpperCAmelCase = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: __UpperCAmelCase = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: __UpperCAmelCase = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __UpperCAmelCase = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __UpperCAmelCase = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase , **_lowercase ) __UpperCAmelCase = generated_sequence.shape[0] if self.framework == "pt": __UpperCAmelCase = generated_sequence.reshape(_lowercase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __UpperCAmelCase = tf.reshape(_lowercase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a ( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Optional[int]=ReturnType.FULL_TEXT , _lowercase : List[str]=True ): __UpperCAmelCase = model_outputs['''generated_sequence'''][0] __UpperCAmelCase = model_outputs['''input_ids'''] __UpperCAmelCase = model_outputs['''prompt_text'''] __UpperCAmelCase = generated_sequence.numpy().tolist() __UpperCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __UpperCAmelCase = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __UpperCAmelCase = self.tokenizer.decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __UpperCAmelCase = 0 else: __UpperCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) ) if return_type == ReturnType.FULL_TEXT: __UpperCAmelCase = prompt_text + text[prompt_length:] else: __UpperCAmelCase = text[prompt_length:] __UpperCAmelCase = {'''generated_text''': all_text} records.append(_lowercase ) return records
86
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCamelCase_ (self , lowerCamelCase_=0 ): """simple docstring""" a = np.random.RandomState(lowerCamelCase_ ) a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase_ (self ): """simple docstring""" a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs() a = pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs() a = pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs() a = pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs() a = pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs() a = pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs() a = pipe(**lowerCamelCase_ ).images a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) a = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs() a = 3 * [inputs["prompt"]] # forward a = pipe(**lowerCamelCase_ ) a = output.images[0, -3:, -3:, -1] a = self.get_dummy_inputs() a = 3 * [inputs.pop("prompt" )] a = pipe.tokenizer( lowerCamelCase_ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="np" , ) a = text_inputs["input_ids"] a = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] a = prompt_embeds # forward a = pipe(**lowerCamelCase_ ) a = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCamelCase_ (self ): """simple docstring""" a = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = self.get_dummy_inputs() a = 3 * ["this is a negative prompt"] a = negative_prompt a = 3 * [inputs["prompt"]] # forward a = pipe(**lowerCamelCase_ ) a = output.images[0, -3:, -3:, -1] a = self.get_dummy_inputs() a = 3 * [inputs.pop("prompt" )] a = [] for p in [prompt, negative_prompt]: a = pipe.tokenizer( lowerCamelCase_ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=lowerCamelCase_ , return_tensors="np" , ) a = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) a , a = embeds # forward a = pipe(**lowerCamelCase_ ) a = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): """simple docstring""" @property def UpperCamelCase_ (self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ (self ): """simple docstring""" a = ort.SessionOptions() a = False return options def UpperCamelCase_ (self ): """simple docstring""" a = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = "A painting of a squirrel eating a burger" np.random.seed(0 ) a = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) a = output.images a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" a = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) a = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = "open neural network exchange" a = np.random.RandomState(0 ) a = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase_ , output_type="np" ) a = output.images a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" a = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) a = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = "open neural network exchange" a = np.random.RandomState(0 ) a = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase_ , output_type="np" ) a = output.images a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" a = 0 def test_callback_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> None: a = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) a = latents[0, -3:, -3:, -1] a = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) a = latents[0, -3:, -3:, -1] a = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 a = False a = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = "Andromeda galaxy in a bottle" a = np.random.RandomState(0 ) pipe( prompt=lowerCamelCase_ , num_inference_steps=5 , guidance_scale=7.5 , generator=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCamelCase_ (self ): """simple docstring""" a = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert pipe.safety_checker is None a = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) a = OnnxStableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None a = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
227
def a( A : int ) -> str: """simple docstring""" if number > 0: raise ValueError("input must be a negative integer" ) a = len(bin(A )[3:] ) a = bin(abs(A ) - (1 << binary_number_length) )[3:] a = ( ( "1" + "0" * (binary_number_length - len(A )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
227
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (DDPMScheduler,) def lowercase_ ( self : int , **__lowerCamelCase : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Tuple ) -> str: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : Any ) -> Tuple: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : str ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> Optional[Any]: self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def lowercase_ ( self : Dict ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: for t in [0, 500, 999]: self.check_over_forward(time_step=__lowerCamelCase ) def lowercase_ ( self : int ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def lowercase_ ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps for i, timestep in enumerate(__lowerCamelCase ): if i == len(__lowerCamelCase ) - 1: SCREAMING_SNAKE_CASE__ = -1 else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] SCREAMING_SNAKE_CASE__ = scheduler.previous_timestep(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = prev_t.item() self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [100, 87, 50, 51, 0] with self.assertRaises(__lowerCamelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) with self.assertRaises(__lowerCamelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [scheduler.config.num_train_timesteps] with self.assertRaises( __lowerCamelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__lowerCamelCase )
218
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
218
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : Dict = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """layoutlmv3""" def __init__( self , __UpperCamelCase=50265 , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1E-5 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=1024 , __UpperCamelCase=128 , __UpperCamelCase=128 , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=128 , __UpperCamelCase=64 , __UpperCamelCase=256 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=224 , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=None , **__UpperCamelCase , ) -> Dict: '''simple docstring''' super().__init__( vocab_size=__UpperCamelCase , hidden_size=__UpperCamelCase , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , intermediate_size=__UpperCamelCase , hidden_act=__UpperCamelCase , hidden_dropout_prob=__UpperCamelCase , attention_probs_dropout_prob=__UpperCamelCase , max_position_embeddings=__UpperCamelCase , type_vocab_size=__UpperCamelCase , initializer_range=__UpperCamelCase , layer_norm_eps=__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : Any = max_ad_position_embeddings snake_case__ : Tuple = coordinate_size snake_case__ : Dict = shape_size snake_case__ : Any = has_relative_attention_bias snake_case__ : Any = rel_pos_bins snake_case__ : Any = max_rel_pos snake_case__ : str = has_spatial_attention_bias snake_case__ : Union[str, Any] = rel_ad_pos_bins snake_case__ : Tuple = max_rel_ad_pos snake_case__ : List[str] = text_embed snake_case__ : str = visual_embed snake_case__ : int = input_size snake_case__ : Tuple = num_channels snake_case__ : str = patch_size snake_case__ : str = classifier_dropout class __snake_case ( _lowerCamelCase ): __lowerCamelCase = version.parse("""1.12""" ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def __a ( self ) -> float: '''simple docstring''' return 1E-5 @property def __a ( self ) -> int: '''simple docstring''' return 12 def __a ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = 3 , __UpperCamelCase = 40 , __UpperCamelCase = 40 , ) -> Mapping[str, Any]: '''simple docstring''' setattr(processor.image_processor , 'apply_ocr' , __UpperCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case__ : Any = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case__ : Any = processor.tokenizer.num_special_tokens_to_add(__UpperCamelCase ) snake_case__ : Any = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence snake_case__ : Optional[Any] = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes snake_case__ : Dict = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) snake_case__ : str = self._generate_dummy_images(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case__ : Optional[int] = dict( processor( __UpperCamelCase , text=__UpperCamelCase , boxes=__UpperCamelCase , return_tensors=__UpperCamelCase , ) ) return inputs
143
from __future__ import annotations def UpperCamelCase__ ( A__ , A__ , A__ ) -> tuple[float, list[float]]: snake_case__ : Optional[Any] = list(range(len(A__ ) ) ) snake_case__ : str = [v / w for v, w in zip(A__ , A__ )] index.sort(key=lambda A__ : ratio[i] , reverse=A__ ) snake_case__ : float = 0 snake_case__ : list[float] = [0] * len(A__ ) for i in index: if weight[i] <= capacity: snake_case__ : str = 1 max_value += value[i] capacity -= weight[i] else: snake_case__ : str = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
143
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __A( a__ ): snake_case_ = """Speech2TextFeatureExtractor""" snake_case_ = """Speech2TextTokenizer""" def __init__( self , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) __a = self.feature_extractor __a = False def __call__( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) __a = kwargs.pop('''raw_speech''' ) else: __a = kwargs.pop('''audio''' , lowerCAmelCase__ ) __a = kwargs.pop('''sampling_rate''' , lowerCAmelCase__ ) __a = kwargs.pop('''text''' , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __a = self.feature_extractor(lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: __a = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings["input_ids"] return inputs def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @contextmanager def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) __a = True __a = self.tokenizer yield __a = self.feature_extractor __a = False
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = tempfile.mkdtemp() _lowercase : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _lowercase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file, 'w', encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) _lowercase : Tuple = { '''do_resize''': True, '''size''': {'''height''': 2_24, '''width''': 2_24}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], '''do_convert_rgb''': True, } _lowercase : Tuple = os.path.join(self.tmpdirname, __lowerCamelCase) with open(self.image_processor_file, 'w', encoding='utf-8') as fp: json.dump(__lowerCamelCase, __lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> List[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname, **__lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname, **__lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> List[str]: """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **__lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = [np.random.randint(2_55, size=(3, 30, 4_00), dtype=np.uinta)] _lowercase : Optional[int] = [Image.fromarray(np.moveaxis(__lowerCamelCase, 0, -1)) for x in image_inputs] return image_inputs def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : int = self.get_rust_tokenizer() _lowercase : List[str] = self.get_image_processor() _lowercase : str = ChineseCLIPProcessor(tokenizer=__lowerCamelCase, image_processor=__lowerCamelCase) processor_slow.save_pretrained(self.tmpdirname) _lowercase : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=__lowerCamelCase) _lowercase : int = ChineseCLIPProcessor(tokenizer=__lowerCamelCase, image_processor=__lowerCamelCase) processor_fast.save_pretrained(self.tmpdirname) _lowercase : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __lowerCamelCase) self.assertIsInstance(processor_fast.tokenizer, __lowerCamelCase) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __lowerCamelCase) self.assertIsInstance(processor_fast.image_processor, __lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[str] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowercase : Tuple = self.get_tokenizer(cls_token='(CLS)', sep_token='(SEP)') _lowercase : int = self.get_image_processor(do_normalize=__lowerCamelCase) _lowercase : Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token='(CLS)', sep_token='(SEP)', do_normalize=__lowerCamelCase) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __lowerCamelCase) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : int = ChineseCLIPProcessor(tokenizer=__lowerCamelCase, image_processor=__lowerCamelCase) _lowercase : Any = self.prepare_image_inputs() _lowercase : Any = image_processor(__lowerCamelCase, return_tensors='np') _lowercase : Union[str, Any] = processor(images=__lowerCamelCase, return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : Dict = self.get_tokenizer() _lowercase : Optional[int] = ChineseCLIPProcessor(tokenizer=__lowerCamelCase, image_processor=__lowerCamelCase) _lowercase : List[Any] = '''Alexandra,T-shirt的价格是15便士。''' _lowercase : List[str] = processor(text=__lowerCamelCase) _lowercase : str = tokenizer(__lowerCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Any = self.get_image_processor() _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : int = ChineseCLIPProcessor(tokenizer=__lowerCamelCase, image_processor=__lowerCamelCase) _lowercase : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。''' _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Any = processor(text=__lowerCamelCase, images=__lowerCamelCase) self.assertListEqual(list(inputs.keys()), ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase): processor() def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Any = self.get_image_processor() _lowercase : Tuple = self.get_tokenizer() _lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=__lowerCamelCase, image_processor=__lowerCamelCase) _lowercase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : Union[str, Any] = processor.batch_decode(__lowerCamelCase) _lowercase : Any = tokenizer.batch_decode(__lowerCamelCase) self.assertListEqual(__lowerCamelCase, __lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=__lowerCamelCase, image_processor=__lowerCamelCase) _lowercase : Optional[Any] = '''Alexandra,T-shirt的价格是15便士。''' _lowercase : Tuple = self.prepare_image_inputs() _lowercase : Union[str, Any] = processor(text=__lowerCamelCase, images=__lowerCamelCase) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
21
def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]]): '''simple docstring''' lowerCAmelCase__ : list[list[float]] = [] for data in source_data: for i, el in enumerate(lowerCamelCase_): if len(lowerCamelCase_) < i + 1: data_lists.append([]) data_lists[i].append(float(lowerCamelCase_)) return data_lists def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]] ,lowerCamelCase_ : list[int]): '''simple docstring''' lowerCAmelCase__ : list[list[float]] = [] for dlist, weight in zip(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : str = min(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = max(lowerCamelCase_) lowerCAmelCase__ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind))) except ZeroDivisionError: score.append(1) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind)) except ZeroDivisionError: score.append(0) # weight not 0 or 1 else: lowerCAmelCase__ : Optional[int] = f"""Invalid weight of {weight:f} provided""" raise ValueError(lowerCamelCase_) score_lists.append(lowerCamelCase_) return score_lists def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]]): '''simple docstring''' lowerCAmelCase__ : list[float] = [0 for i in range(len(score_lists[0]))] for slist in score_lists: for j, ele in enumerate(lowerCamelCase_): lowerCAmelCase__ : str = final_scores[j] + ele return final_scores def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]] ,lowerCamelCase_ : list[int]): '''simple docstring''' lowerCAmelCase__ : Optional[int] = get_data(lowerCamelCase_) lowerCAmelCase__ : Dict = calculate_each_score(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = generate_final_scores(lowerCamelCase_) # append scores to source data for i, ele in enumerate(lowerCamelCase_): source_data[i].append(lowerCamelCase_) return source_data
129
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } _snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Any = {} with open(snake_case__, "r" ) as file: for line_number, line in enumerate(snake_case__ ): __UpperCAmelCase : Any = line.strip() if line: __UpperCAmelCase : List[Any] = line.split() __UpperCAmelCase : int = line_number __UpperCAmelCase : Optional[int] = words[0] __UpperCAmelCase : Tuple = value return result def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Tuple: for attribute in key.split("." ): __UpperCAmelCase : Optional[Any] = getattr(snake_case__, snake_case__ ) __UpperCAmelCase : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case__ ): __UpperCAmelCase : Union[str, Any] = PARAM_MAPPING[full_name.split("." )[-1]] __UpperCAmelCase : Dict = "param" if weight_type is not None and weight_type != "param": __UpperCAmelCase : Any = getattr(snake_case__, snake_case__ ).shape elif weight_type is not None and weight_type == "param": __UpperCAmelCase : int = hf_pointer for attribute in hf_param_name.split("." ): __UpperCAmelCase : Dict = getattr(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = shape_pointer.shape # let's reduce dimension __UpperCAmelCase : Any = value[0] else: __UpperCAmelCase : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase : Any = value elif weight_type == "weight_g": __UpperCAmelCase : List[str] = value elif weight_type == "weight_v": __UpperCAmelCase : List[Any] = value elif weight_type == "bias": __UpperCAmelCase : Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split("." ): __UpperCAmelCase : Optional[Any] = getattr(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = value else: __UpperCAmelCase : str = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> str: __UpperCAmelCase : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case__ ): __UpperCAmelCase : Union[str, Any] = PARAM_MAPPING[full_name.split("." )[-1]] __UpperCAmelCase : Any = "param" if weight_type is not None and weight_type != "param": __UpperCAmelCase : Optional[int] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCAmelCase : Dict = ".".join([key, hf_param_name] ) else: __UpperCAmelCase : List[Any] = key __UpperCAmelCase : List[str] = value if "lm_head" in full_key else value[0] _snake_case = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=None, snake_case__=None ) -> int: __UpperCAmelCase : Tuple = False for key, mapped_key in MAPPING.items(): __UpperCAmelCase : Dict = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: __UpperCAmelCase : List[str] = name.split(snake_case__ )[0].split("." )[-2] __UpperCAmelCase : Optional[Any] = mapped_key.replace("*", snake_case__ ) if "weight_g" in name: __UpperCAmelCase : Optional[int] = "weight_g" elif "weight_v" in name: __UpperCAmelCase : Union[str, Any] = "weight_v" elif "bias" in name: __UpperCAmelCase : Optional[int] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase : List[str] = "weight" else: __UpperCAmelCase : Optional[Any] = None if hf_dict is not None: rename_dict(snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) else: set_recursively(snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) return is_used return is_used def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : int = [] __UpperCAmelCase : Tuple = fairseq_model.state_dict() __UpperCAmelCase : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( snake_case__, snake_case__, snake_case__, snake_case__, hf_model.config.feat_extract_norm == "group", ) __UpperCAmelCase : Tuple = True else: __UpperCAmelCase : Dict = load_wavaveca_layer(snake_case__, snake_case__, snake_case__ ) if not is_used: unused_weights.append(snake_case__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Optional[int] = full_name.split("conv_layers." )[-1] __UpperCAmelCase : str = name.split("." ) __UpperCAmelCase : Dict = int(items[0] ) __UpperCAmelCase : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase : int = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __UpperCAmelCase : Tuple = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase : Tuple = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=None, snake_case__=None, snake_case__=True, snake_case__=False ) -> List[Any]: if config_path is not None: __UpperCAmelCase : Optional[int] = WavaVecaConfig.from_pretrained(snake_case__ ) else: __UpperCAmelCase : Optional[Any] = WavaVecaConfig() if is_seq_class: __UpperCAmelCase : List[Any] = read_txt_into_dict(snake_case__ ) __UpperCAmelCase : Optional[Any] = idalabel __UpperCAmelCase : List[Any] = WavaVecaForSequenceClassification(snake_case__ ) __UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0, do_normalize=snake_case__, return_attention_mask=snake_case__, ) feature_extractor.save_pretrained(snake_case__ ) elif is_finetuned: if dict_path: __UpperCAmelCase : List[str] = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : int = target_dict.pad_index __UpperCAmelCase : Union[str, Any] = target_dict.bos_index __UpperCAmelCase : Optional[int] = target_dict.eos_index __UpperCAmelCase : List[str] = len(target_dict.symbols ) __UpperCAmelCase : List[Any] = os.path.join(snake_case__, "vocab.json" ) if not os.path.isdir(snake_case__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(snake_case__ ) ) return os.makedirs(snake_case__, exist_ok=snake_case__ ) __UpperCAmelCase : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase : str = 0 __UpperCAmelCase : Union[str, Any] = 1 with open(snake_case__, "w", encoding="utf-8" ) as vocab_handle: json.dump(snake_case__, snake_case__ ) __UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( snake_case__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=snake_case__, ) __UpperCAmelCase : List[Any] = True if config.feat_extract_norm == "layer" else False __UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0, do_normalize=snake_case__, return_attention_mask=snake_case__, ) __UpperCAmelCase : Optional[int] = WavaVecaProcessor(feature_extractor=snake_case__, tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) __UpperCAmelCase : Optional[int] = WavaVecaForCTC(snake_case__ ) else: __UpperCAmelCase : Dict = WavaVecaForPreTraining(snake_case__ ) if is_finetuned or is_seq_class: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: __UpperCAmelCase : Any = argparse.Namespace(task="audio_pretraining" ) __UpperCAmelCase : str = fairseq.tasks.setup_task(snake_case__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=snake_case__ ) __UpperCAmelCase : int = model[0].eval() recursively_load_weights(snake_case__, snake_case__, not is_finetuned ) hf_wavavec.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) _snake_case = parser.parse_args() _snake_case = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
342
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
1
from __future__ import annotations class snake_case : '''simple docstring''' def __init__( self : int , lowerCAmelCase : Any) -> Optional[int]: """simple docstring""" _snake_case : Any = order # a_{0} ... a_{k} _snake_case : Optional[int] = [1.0] + [0.0] * order # b_{0} ... b_{k} _snake_case : Dict = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _snake_case : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] _snake_case : List[Any] = [0.0] * self.order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" if len(_SCREAMING_SNAKE_CASE) < self.order: _snake_case : int = [1.0, *a_coeffs] if len(_SCREAMING_SNAKE_CASE) != self.order + 1: _snake_case : Any = ( F'''Expected a_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(_SCREAMING_SNAKE_CASE)}''' ) raise ValueError(_SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) != self.order + 1: _snake_case : int = ( F'''Expected b_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(_SCREAMING_SNAKE_CASE)}''' ) raise ValueError(_SCREAMING_SNAKE_CASE) _snake_case : Tuple = a_coeffs _snake_case : Optional[int] = b_coeffs def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" _snake_case : Dict = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _snake_case : Union[str, Any] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _snake_case : str = self.input_history[:-1] _snake_case : int = self.output_history[:-1] _snake_case : List[Any] = sample _snake_case : str = result return result
317
"""simple docstring""" import math import sys def __lowerCAmelCase (_UpperCamelCase ): if number != int(_UpperCamelCase ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __lowerCAmelCase : Any = [-1] * (number + 1) __lowerCAmelCase : List[Any] = 0 for i in range(1 , number + 1 ): __lowerCAmelCase : List[Any] = sys.maxsize __lowerCAmelCase : Optional[int] = int(math.sqrt(_UpperCamelCase ) ) for j in range(1 , root + 1 ): __lowerCAmelCase : Optional[Any] = 1 + answers[i - (j**2)] __lowerCAmelCase : Any = min(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
86
0
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: lowercase__ : Optional[int] = tmp_path / '''cache''' lowercase__ : List[Any] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Tuple = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : str = tmp_path / '''cache''' lowercase__ : Tuple = {'''text''': '''string'''} lowercase__ : Optional[int] = features.copy() if features else default_expected_features lowercase__ : List[Any] = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : int = TextDatasetReader(__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Any = tmp_path / '''cache''' lowercase__ : int = {'''text''': '''string'''} lowercase__ : Tuple = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , split=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: if issubclass(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Dict = text_path elif issubclass(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Tuple = [text_path] lowercase__ : List[str] = tmp_path / '''cache''' lowercase__ : List[str] = {'''text''': '''string'''} lowercase__ : List[Any] = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=("train",) ) -> List[str]: assert isinstance(__lowerCamelCase , __lowerCamelCase ) for split in splits: lowercase__ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : List[Any] = tmp_path / '''cache''' lowercase__ : List[str] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Optional[int] = TextDatasetReader({'''train''': text_path} , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_text_datasetdict(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : List[str] = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowercase__ : str = {'''text''': '''string'''} lowercase__ : Dict = features.copy() if features else default_expected_features lowercase__ : Any = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Optional[Any] = TextDatasetReader({'''train''': text_path} , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_datasetdict(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: if split: lowercase__ : Any = {split: text_path} else: lowercase__ : Dict = '''train''' lowercase__ : Optional[int] = {'''train''': text_path, '''test''': text_path} lowercase__ : Any = tmp_path / '''cache''' lowercase__ : Union[str, Any] = {'''text''': '''string'''} lowercase__ : Optional[Any] = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_datasetdict(__lowerCamelCase , __lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
364
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = ["pixel_values"] def __init__( self : Tuple ,_snake_case : bool = True ,_snake_case : Optional[Dict[str, int]] = None ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : bool = True ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : Dict[str, int] = None ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Optional[Any] ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : str = size if size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ) lowercase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name='''crop_size''' ) lowercase__ : Tuple = do_resize lowercase__ : List[Any] = do_rescale lowercase__ : Any = do_normalize lowercase__ : List[str] = do_center_crop lowercase__ : Optional[Any] = crop_size lowercase__ : Union[str, Any] = size lowercase__ : Any = resample lowercase__ : int = rescale_factor lowercase__ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : str ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" lowercase__ : List[str] = get_size_dict(_snake_case ) if "shortest_edge" in size: lowercase__ : str = get_resize_output_image_size(_snake_case ,size=size['''shortest_edge'''] ,default_to_square=_snake_case ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowercase__ : int = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Tuple ,) -> np.ndarray: """simple docstring""" lowercase__ : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_snake_case ,size=(size['''height'''], size['''width''']) ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : np.ndarray ,_snake_case : float ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Dict ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : ImageInput ,_snake_case : Optional[bool] = None ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[float] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**_snake_case : List[str] ,) -> BatchFeature: """simple docstring""" lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : int = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(_snake_case ,param_name='''crop_size''' ,default_to_square=_snake_case ) lowercase__ : Tuple = resample if resample is not None else self.resample lowercase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : List[str] = image_std if image_std is not None else self.image_std lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : int = get_size_dict(_snake_case ) if not is_batched(_snake_case ): lowercase__ : Optional[Any] = [images] if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: lowercase__ : str = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: lowercase__ : Optional[Any] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : List[str] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
302
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'efficientnet' def __init__( self , __snake_case = 3 , __snake_case = 600 , __snake_case = 2.0 , __snake_case = 3.1 , __snake_case = 8 , __snake_case = [3, 3, 5, 3, 5, 5, 3] , __snake_case = [32, 16, 24, 40, 80, 112, 192] , __snake_case = [16, 24, 40, 80, 112, 192, 320] , __snake_case = [] , __snake_case = [1, 2, 2, 2, 1, 2, 1] , __snake_case = [1, 2, 2, 3, 3, 4, 1] , __snake_case = [1, 6, 6, 6, 6, 6, 6] , __snake_case = 0.25 , __snake_case = "swish" , __snake_case = 2560 , __snake_case = "mean" , __snake_case = 0.02 , __snake_case = 0.001 , __snake_case = 0.99 , __snake_case = 0.5 , __snake_case = 0.2 , **__snake_case , ) -> Tuple: '''simple docstring''' super().__init__(**__snake_case ) __a =num_channels __a =image_size __a =width_coefficient __a =depth_coefficient __a =depth_divisor __a =kernel_sizes __a =in_channels __a =out_channels __a =depthwise_padding __a =strides __a =num_block_repeats __a =expand_ratios __a =squeeze_expansion_ratio __a =hidden_act __a =hidden_dim __a =pooling_type __a =initializer_range __a =batch_norm_eps __a =batch_norm_momentum __a =dropout_rate __a =drop_connect_rate __a =sum(__snake_case ) * 4 class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-5
218
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowerCAmelCase : Optional[Any] = False class __magic_name__ ( unittest.TestCase ): pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a =torch.manual_seed(0 ) __a =pipe( image=__snake_case , generator=__snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __a =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
218
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase : """simple docstring""" # setable values SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[jnp.ndarray] = None SCREAMING_SNAKE_CASE_ : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def lowerCamelCase__ ( cls ): return cls() @dataclass class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : jnp.ndarray SCREAMING_SNAKE_CASE_ : jnp.ndarray SCREAMING_SNAKE_CASE_ : KarrasVeSchedulerState class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" @property def lowerCamelCase__ ( self ): return True @register_to_config def __init__( self ,UpperCAmelCase_ = 0.02 ,UpperCAmelCase_ = 1_00 ,UpperCAmelCase_ = 1.007 ,UpperCAmelCase_ = 80 ,UpperCAmelCase_ = 0.05 ,UpperCAmelCase_ = 50 ,): pass def lowerCamelCase__ ( self ): return KarrasVeSchedulerState.create() def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = () ): _lowercase : Dict = jnp.arange(0 ,UpperCAmelCase_ )[::-1].copy() _lowercase : str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=UpperCAmelCase_ ,schedule=jnp.array(UpperCAmelCase_ ,dtype=jnp.floataa ) ,timesteps=UpperCAmelCase_ ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): if self.config.s_min <= sigma <= self.config.s_max: _lowercase : Any = min(self.config.s_churn / state.num_inference_steps ,2**0.5 - 1 ) else: _lowercase : str = 0 # sample eps ~ N(0, S_noise^2 * I) _lowercase : Union[str, Any] = random.split(UpperCAmelCase_ ,num=1 ) _lowercase : str = self.config.s_noise * random.normal(key=UpperCAmelCase_ ,shape=sample.shape ) _lowercase : Optional[Any] = sigma + gamma * sigma _lowercase : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Any = sample_hat + sigma_hat * model_output _lowercase : List[str] = (sample_hat - pred_original_sample) / sigma_hat _lowercase : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase_ ,derivative=UpperCAmelCase_ ,state=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Any = sample_prev + sigma_prev * model_output _lowercase : Optional[Any] = (sample_prev - pred_original_sample) / sigma_prev _lowercase : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase_ ,derivative=UpperCAmelCase_ ,state=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): raise NotImplementedError()
336
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType snake_case_ = logging.get_logger(__name__) snake_case_ = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off snake_case_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] snake_case_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """whisper""" __UpperCamelCase = ["""past_key_values"""] __UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Optional[Any] , lowercase_ :Dict=5_18_65 , lowercase_ :Tuple=80 , lowercase_ :str=6 , lowercase_ :Optional[Any]=4 , lowercase_ :Union[str, Any]=6 , lowercase_ :Any=4 , lowercase_ :Optional[int]=15_36 , lowercase_ :Optional[Any]=15_36 , lowercase_ :Tuple=0.0 , lowercase_ :List[Any]=0.0 , lowercase_ :List[Any]=5_02_57 , lowercase_ :str=True , lowercase_ :Optional[int]=True , lowercase_ :Tuple="gelu" , lowercase_ :Union[str, Any]=2_56 , lowercase_ :Optional[int]=0.0 , lowercase_ :List[Any]=0.0 , lowercase_ :List[str]=0.0 , lowercase_ :Dict=0.02 , lowercase_ :Any=False , lowercase_ :str=15_00 , lowercase_ :Union[str, Any]=4_48 , lowercase_ :List[str]=5_02_56 , lowercase_ :Any=5_02_56 , lowercase_ :Optional[int]=5_02_56 , lowercase_ :List[Any]=None , lowercase_ :Dict=[2_20, 5_02_56] , lowercase_ :Optional[int]=False , lowercase_ :Optional[int]=2_56 , lowercase_ :Tuple=False , lowercase_ :Any=0.05 , lowercase_ :Tuple=10 , lowercase_ :Dict=2 , lowercase_ :Union[str, Any]=0.0 , lowercase_ :List[str]=10 , lowercase_ :str=0 , lowercase_ :Tuple=7 , **lowercase_ :Optional[int] , ) -> Optional[Any]: UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , suppress_tokens=lowercase_ , begin_suppress_tokens=lowercase_ , **lowercase_ , ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def UpperCAmelCase__ ( self :Any ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: UpperCAmelCase = {0: 'batch'} else: UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction='inputs' ) return common_inputs def UpperCAmelCase__ ( self :int , lowercase_ :Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ :int = -1 , lowercase_ :int = -1 , lowercase_ :bool = False , lowercase_ :Optional["TensorType"] = None , lowercase_ :int = 2_20_50 , lowercase_ :float = 5.0 , lowercase_ :int = 2_20 , ) -> Mapping[str, Any]: UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase_ , framework=lowercase_ , sampling_rate=lowercase_ , time_duration=lowercase_ , frequency=lowercase_ , ) UpperCAmelCase = encoder_inputs['input_features'].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = encoder_inputs.pop('input_features' ) UpperCAmelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCAmelCase__ ( self :Dict ) -> float: return 1E-3
78
"""simple docstring""" def lowercase ( __snake_case : int ): if n == 1 or not isinstance(__snake_case , __snake_case ): return 0 elif n == 2: return 1 else: lowercase_ : Dict = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowercase ( __snake_case : int ): lowercase_ : str = 0 lowercase_ : List[str] = 2 while digits < n: index += 1 lowercase_ : Any = len(str(fibonacci(__snake_case ) ) ) return index def lowercase ( __snake_case : int = 1_0_0_0 ): return fibonacci_digits_index(__snake_case ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
33
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : List[str]=7 , snake_case__ : Optional[Any]=3 , snake_case__ : Dict=30 , snake_case__ : Dict=400 , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=None , snake_case__ : str=True , snake_case__ : str=[0.5, 0.5, 0.5] , snake_case__ : int=[0.5, 0.5, 0.5] , snake_case__ : int=True , snake_case__ : Optional[int]=1 / 255 , snake_case__ : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ : List[str] =size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCamelCase_ : List[str] =parent lowerCamelCase_ : Any =batch_size lowerCamelCase_ : Any =num_channels lowerCamelCase_ : List[Any] =min_resolution lowerCamelCase_ : Any =max_resolution lowerCamelCase_ : str =do_resize lowerCamelCase_ : Union[str, Any] =size lowerCamelCase_ : Dict =do_normalize lowerCamelCase_ : Dict =image_mean lowerCamelCase_ : Any =image_std lowerCamelCase_ : List[Any] =do_rescale lowerCamelCase_ : Tuple =rescale_factor lowerCamelCase_ : Dict =do_pad def UpperCAmelCase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self : Any , snake_case__ : str , snake_case__ : Any=False ): if not batched: lowerCamelCase_ : str =image_inputs[0] if isinstance(snake_case__ , Image.Image ): lowerCamelCase_ , lowerCamelCase_ : Dict =image.size else: lowerCamelCase_ , lowerCamelCase_ : int =image.shape[1], image.shape[2] if w < h: lowerCamelCase_ : Union[str, Any] =int(self.size["shortest_edge"] * h / w ) lowerCamelCase_ : Dict =self.size["shortest_edge"] elif w > h: lowerCamelCase_ : int =self.size["shortest_edge"] lowerCamelCase_ : Dict =int(self.size["shortest_edge"] * w / h ) else: lowerCamelCase_ : Optional[int] =self.size["shortest_edge"] lowerCamelCase_ : Tuple =self.size["shortest_edge"] else: lowerCamelCase_ : Dict =[] for image in image_inputs: lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ : Tuple =max(snake_case__ , key=lambda snake_case__ : item[0] )[0] lowerCamelCase_ : Tuple =max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Any =ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , snake_case__ ) lowerCamelCase_ : List[Any] =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): pass def UpperCAmelCase__ ( self : Union[str, Any] ): # Initialize image_processing lowerCamelCase_ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCamelCase_ : List[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ : Tuple =self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) lowerCamelCase_ : Union[str, Any] =image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : List[str] ): # Initialize image_processing lowerCamelCase_ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowerCamelCase_ : str =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ : List[Any] =self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : Union[str, Any] =image_processing(snake_case__ , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ : List[str] =self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : List[Any] ): # Initialize image_processing lowerCamelCase_ : str =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowerCamelCase_ : Dict =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : List[Any] =image_processing(snake_case__ , return_tensors="pt" ).pixel_values lowerCamelCase_ , lowerCamelCase_ : int =self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): # prepare image and target lowerCamelCase_ : List[str] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCamelCase_ : Optional[Any] =json.loads(f.read() ) lowerCamelCase_ : str ={"image_id": 3_9769, "annotations": target} # encode them lowerCamelCase_ : Any =ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) lowerCamelCase_ : Tuple =image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="pt" ) # verify pixel values lowerCamelCase_ : str =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) lowerCamelCase_ : List[Any] =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) ) # verify area lowerCamelCase_ : Dict =torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes lowerCamelCase_ : Any =torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) lowerCamelCase_ : List[str] =torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1E-3 ) ) # verify image_id lowerCamelCase_ : List[str] =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd lowerCamelCase_ : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels lowerCamelCase_ : Any =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify orig_size lowerCamelCase_ : Union[str, Any] =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size lowerCamelCase_ : Optional[Any] =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): # prepare image, target and masks_path lowerCamelCase_ : List[str] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCamelCase_ : Union[str, Any] =json.loads(f.read() ) lowerCamelCase_ : int ={"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} lowerCamelCase_ : Optional[int] =pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCamelCase_ : List[Any] =ConditionalDetrImageProcessor(format="coco_panoptic" ) lowerCamelCase_ : Dict =image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="pt" ) # verify pixel values lowerCamelCase_ : Any =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) lowerCamelCase_ : Optional[int] =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) ) # verify area lowerCamelCase_ : Dict =torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes lowerCamelCase_ : int =torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) lowerCamelCase_ : Optional[Any] =torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1E-3 ) ) # verify image_id lowerCamelCase_ : Tuple =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd lowerCamelCase_ : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels lowerCamelCase_ : int =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify masks lowerCamelCase_ : Tuple =82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , snake_case__ ) # verify orig_size lowerCamelCase_ : List[str] =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size lowerCamelCase_ : List[Any] =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) )
209
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _snake_case ( lowerCamelCase__ : Any ) -> Union[str, Any]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _snake_case ( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" lowerCamelCase_ : Optional[Any] =[1, 2, 3] with pytest.raises(lowerCamelCase__ ): with parallel_backend("unsupported backend" ): map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=2 ) with pytest.raises(lowerCamelCase__ ): with parallel_backend("unsupported backend" ): map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def _snake_case ( lowerCamelCase__ : Tuple ) -> Optional[Any]: lowerCamelCase_ : str =[1, 2] lowerCamelCase_ : List[str] ={"a": 1, "b": 2} lowerCamelCase_ : List[str] ={"a": [1, 2], "b": [3, 4]} lowerCamelCase_ : Optional[int] ={"a": {"1": 1}, "b": 2} lowerCamelCase_ : int ={"a": 1, "b": 2, "c": 3, "d": 4} lowerCamelCase_ : Optional[int] =[2, 3] lowerCamelCase_ : List[Any] ={"a": 2, "b": 3} lowerCamelCase_ : int ={"a": [2, 3], "b": [4, 5]} lowerCamelCase_ : str ={"a": {"1": 2}, "b": 3} lowerCamelCase_ : Dict ={"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa assert map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) == expected_map_nested_sa
209
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __magic_name__: Any = logging.get_logger(__name__) __magic_name__: Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __magic_name__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Any = {} with open(_A, """r""" ) as file: for line_number, line in enumerate(_A ): __magic_name__ : Optional[int] = line.strip() if line: __magic_name__ : Optional[Any] = line.split() __magic_name__ : str = line_number __magic_name__ : Optional[Any] = words[0] __magic_name__ : int = value return result def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" for attribute in key.split(""".""" ): __magic_name__ : int = getattr(_A, _A ) __magic_name__ : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_A ): __magic_name__ : Tuple = PARAM_MAPPING[full_name.split(""".""" )[-1]] __magic_name__ : List[Any] = """param""" if weight_type is not None and weight_type != "param": __magic_name__ : Tuple = getattr(_A, _A ).shape elif weight_type is not None and weight_type == "param": __magic_name__ : List[Any] = hf_pointer for attribute in hf_param_name.split(""".""" ): __magic_name__ : List[str] = getattr(_A, _A ) __magic_name__ : List[Any] = shape_pointer.shape # let's reduce dimension __magic_name__ : int = value[0] else: __magic_name__ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __magic_name__ : int = value elif weight_type == "weight_g": __magic_name__ : Dict = value elif weight_type == "weight_v": __magic_name__ : Tuple = value elif weight_type == "bias": __magic_name__ : Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __magic_name__ : str = getattr(_A, _A ) __magic_name__ : Any = value else: __magic_name__ : str = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" __magic_name__ : Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_A ): __magic_name__ : Dict = PARAM_MAPPING[full_name.split(""".""" )[-1]] __magic_name__ : str = """param""" if weight_type is not None and weight_type != "param": __magic_name__ : Dict = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __magic_name__ : Dict = """.""".join([key, hf_param_name] ) else: __magic_name__ : Optional[Any] = key __magic_name__ : str = value if """lm_head""" in full_key else value[0] __magic_name__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def UpperCamelCase ( _A, _A, _A=None, _A=None ): """simple docstring""" __magic_name__ : str = False for key, mapped_key in MAPPING.items(): __magic_name__ : Optional[int] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __magic_name__ : Optional[int] = True if "*" in mapped_key: __magic_name__ : Any = name.split(_A )[0].split(""".""" )[-2] __magic_name__ : Optional[int] = mapped_key.replace("""*""", _A ) if "weight_g" in name: __magic_name__ : Any = """weight_g""" elif "weight_v" in name: __magic_name__ : Optional[int] = """weight_v""" elif "bias" in name: __magic_name__ : Optional[int] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __magic_name__ : int = """weight""" else: __magic_name__ : Union[str, Any] = None if hf_dict is not None: rename_dict(_A, _A, _A, _A, _A ) else: set_recursively(_A, _A, _A, _A, _A ) return is_used return is_used def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Union[str, Any] = [] __magic_name__ : List[str] = fairseq_model.state_dict() __magic_name__ : Dict = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __magic_name__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _A, _A, _A, _A, hf_model.config.feat_extract_norm == """group""", ) __magic_name__ : List[Any] = True else: __magic_name__ : Union[str, Any] = load_wavaveca_layer(_A, _A, _A ) if not is_used: unused_weights.append(_A ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCamelCase ( _A, _A, _A, _A, _A ): """simple docstring""" __magic_name__ : List[Any] = full_name.split("""conv_layers.""" )[-1] __magic_name__ : Optional[Any] = name.split(""".""" ) __magic_name__ : Tuple = int(items[0] ) __magic_name__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __magic_name__ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __magic_name__ : str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __magic_name__ : str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __magic_name__ : List[str] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_A ) @torch.no_grad() def UpperCamelCase ( _A, _A, _A=None, _A=None, _A=True, _A=False ): """simple docstring""" if config_path is not None: __magic_name__ : Optional[Any] = WavaVecaConfig.from_pretrained(_A ) else: __magic_name__ : Tuple = WavaVecaConfig() if is_seq_class: __magic_name__ : int = read_txt_into_dict(_A ) __magic_name__ : List[Any] = idalabel __magic_name__ : str = WavaVecaForSequenceClassification(_A ) __magic_name__ : Tuple = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=_A, return_attention_mask=_A, ) feature_extractor.save_pretrained(_A ) elif is_finetuned: if dict_path: __magic_name__ : Tuple = Dictionary.load(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __magic_name__ : int = target_dict.pad_index __magic_name__ : Dict = target_dict.bos_index __magic_name__ : Tuple = target_dict.eos_index __magic_name__ : Any = len(target_dict.symbols ) __magic_name__ : List[Any] = os.path.join(_A, """vocab.json""" ) if not os.path.isdir(_A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_A ) ) return os.makedirs(_A, exist_ok=_A ) __magic_name__ : int = target_dict.indices # fairseq has the <pad> and <s> switched __magic_name__ : Optional[int] = 0 __magic_name__ : Union[str, Any] = 1 with open(_A, """w""", encoding="""utf-8""" ) as vocab_handle: json.dump(_A, _A ) __magic_name__ : int = WavaVecaCTCTokenizer( _A, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="""|""", do_lower_case=_A, ) __magic_name__ : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __magic_name__ : Dict = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=_A, return_attention_mask=_A, ) __magic_name__ : List[str] = WavaVecaProcessor(feature_extractor=_A, tokenizer=_A ) processor.save_pretrained(_A ) __magic_name__ : Dict = WavaVecaForCTC(_A ) else: __magic_name__ : Dict = WavaVecaForPreTraining(_A ) if is_finetuned or is_seq_class: __magic_name__ ,__magic_name__ ,__magic_name__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __magic_name__ : Union[str, Any] = argparse.Namespace(task="""audio_pretraining""" ) __magic_name__ : int = fairseq.tasks.setup_task(_A ) __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=_A ) __magic_name__ : List[Any] = model[0].eval() recursively_load_weights(_A, _A, not is_finetuned ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": __magic_name__: List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __magic_name__: List[str] = parser.parse_args() __magic_name__: Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
342
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = 42 lowerCamelCase_ = None lowerCamelCase_ = None def UpperCamelCase ( ): '''simple docstring''' A_ : List[Any] = Node(1 ) A_ : str = Node(2 ) A_ : List[str] = Node(3 ) A_ : List[Any] = Node(4 ) A_ : List[str] = Node(5 ) return tree def UpperCamelCase ( __lowercase : Node | None ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __lowercase : Node | None ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __lowercase : Node | None ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __lowercase : Node | None ): '''simple docstring''' return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __lowercase : Node | None ): '''simple docstring''' A_ : list[Any] = [] if root is None: return output A_ : Optional[Any] = deque([root] ) while process_queue: A_ : List[str] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __lowercase : Node | None ,__lowercase : int ): '''simple docstring''' A_ : list[Any] = [] def populate_output(__lowercase : Node | None ,__lowercase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(__lowercase ,__lowercase ) return output def UpperCamelCase ( __lowercase : Node | None ,__lowercase : int ): '''simple docstring''' A_ : list[Any] = [] def populate_output(__lowercase : Node | None ,__lowercase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(__lowercase ,__lowercase ) return output def UpperCamelCase ( __lowercase : Node | None ): '''simple docstring''' if root is None: return [] A_ : list[Sequence[Node | None]] = [] A_ : Optional[Any] = 0 A_ : List[str] = height(__lowercase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__lowercase ,__lowercase ) ) A_ : Dict = 1 else: output.append(get_nodes_from_right_to_left(__lowercase ,__lowercase ) ) A_ : str = 0 return output def UpperCamelCase ( ): # Main function for testing. '''simple docstring''' A_ : Union[str, Any] = make_tree() print(f'''In-order Traversal: {inorder(__lowercase )}''' ) print(f'''Pre-order Traversal: {preorder(__lowercase )}''' ) print(f'''Post-order Traversal: {postorder(__lowercase )}''' ,'\n' ) print(f'''Height of Tree: {height(__lowercase )}''' ,'\n' ) print('Complete Level Order Traversal: ' ) print(level_order(__lowercase ) ,'\n' ) print('Level-wise order Traversal: ' ) for level in range(1 ,height(__lowercase ) + 1 ): print(f'''Level {level}:''' ,get_nodes_from_left_to_right(__lowercase ,level=__lowercase ) ) print('\nZigZag order Traversal: ' ) print(zigzag(__lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
192
import math def UpperCamelCase ( __lowercase : int = 1_00 ): '''simple docstring''' A_ : List[Any] = sum(i * i for i in range(1 ,n + 1 ) ) A_ : int = int(math.pow(sum(range(1 ,n + 1 ) ) ,2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
192
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( lowerCamelCase__ ): '''simple docstring''' lowerCAmelCase : str = ['image_processor', 'tokenizer'] lowerCAmelCase : Union[str, Any] = 'ChineseCLIPImageProcessor' lowerCAmelCase : Optional[int] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : List[Any] ,_snake_case : List[str]=None ,_snake_case : Tuple=None ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,__lowercase ,) lowercase__ : List[str] = kwargs.pop('''feature_extractor''' ) lowercase__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowercase ,__lowercase ) lowercase__ : Dict = self.image_processor def __call__( self : int ,_snake_case : List[Any]=None ,_snake_case : Optional[Any]=None ,_snake_case : Union[str, Any]=None ,**_snake_case : Union[str, Any] ) -> Dict: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : str = self.tokenizer(__lowercase ,return_tensors=__lowercase ,**__lowercase ) if images is not None: lowercase__ : Optional[int] = self.image_processor(__lowercase ,return_tensors=__lowercase ,**__lowercase ) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowercase ) ,tensor_type=__lowercase ) def UpperCAmelCase ( self : Dict ,*_snake_case : Optional[Any] ,**_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__lowercase ,**__lowercase ) def UpperCAmelCase ( self : Dict ,*_snake_case : str ,**_snake_case : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*__lowercase ,**__lowercase ) @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.tokenizer.model_input_names lowercase__ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,__lowercase ,) return self.image_processor_class
16
import string import numpy def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE : __lowerCamelCase : List[str] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCamelCase : List[Any] =numpy.vectorize(lambda lowerCamelCase__ : x % 36 ) __lowerCamelCase : Optional[Any] =numpy.vectorize(lowerCamelCase__ ) def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray ): '''simple docstring''' __a = self.modulus(__lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __a = encrypt_key.shape[0] def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' return self.key_string.index(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : int ): '''simple docstring''' return self.key_string[round(__lowercase )] def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = len(self.key_string ) if greatest_common_divisor(__lowercase , len(self.key_string ) ) != 1: __a = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' __a = [char for char in text.upper() if char in self.key_string] __a = chars[-1] while len(__lowercase ) % self.break_key != 0: chars.append(__lowercase ) return "".join(__lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : str ): '''simple docstring''' __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(self.encrypt_key.dot(__lowercase ) ).T.tolist()[ 0 ] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __a = det % len(self.key_string ) __a = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __a = i break __a = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowercase ) ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = self.make_decrypt_key() __a = self.process_text(text.upper() ) __a = """""" for i in range(0 , len(__lowercase ) - self.break_key + 1 , self.break_key ): __a = text[i : i + self.break_key] __a = [self.replace_letters(__lowercase ) for char in batch] __a = numpy.array([vec] ).T __a = self.modulus(decrypt_key.dot(__lowercase ) ).T.tolist()[0] __a = """""".join( self.replace_digits(__lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase__ ( ): """simple docstring""" __a = int(input("""Enter the order of the encryption key: """ ) ) __a = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(_SCREAMING_SNAKE_CASE ): __a = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(_SCREAMING_SNAKE_CASE ) __a = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __a = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __a = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(_SCREAMING_SNAKE_CASE ) ) elif option == "2": __a = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __A = '''base_with_context''' def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: _lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) _lowerCAmelCase =nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=A_ ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase =weights[F'''layers_{lyr_num}'''] _lowerCAmelCase =nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase =ly_weight['''attention'''] _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> List[Any]: _lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=A_ ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase =weights[F'''layers_{lyr_num}'''] _lowerCAmelCase =ly_weight['''attention'''] _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> Tuple: _lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=A_ ) _lowerCAmelCase =nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowerCAmelCase =weights[F'''layers_{lyr_num}'''] _lowerCAmelCase =nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase =nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _lowerCAmelCase =ly_weight['''self_attention'''] _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowerCAmelCase =ly_weight['''MultiHeadDotProductAttention_0'''] _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase =nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) _lowerCAmelCase =nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def _lowerCamelCase(__UpperCamelCase ) -> List[Any]: _lowerCAmelCase =checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowerCAmelCase =jnp.tree_util.tree_map(onp.array , A_ ) _lowerCAmelCase =[ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] _lowerCAmelCase =os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) _lowerCAmelCase =inference.parse_training_gin_file(A_ , A_ ) _lowerCAmelCase =inference.InferenceModel(args.checkpoint_path , A_ ) _lowerCAmelCase =DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) _lowerCAmelCase =SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _lowerCAmelCase =SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _lowerCAmelCase =TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowerCAmelCase =load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , A_ ) _lowerCAmelCase =load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , A_ ) _lowerCAmelCase =load_decoder(ta_checkpoint["""target"""]["""decoder"""] , A_ ) _lowerCAmelCase =OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) _lowerCAmelCase =SpectrogramDiffusionPipeline( notes_encoder=A_ , continuous_encoder=A_ , decoder=A_ , scheduler=A_ , melgan=A_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help='Path to the original jax model checkpoint.', ) __A = parser.parse_args() main(args)
358
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowerCamelCase() -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
341
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCAmelCase : # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) @classmethod def __magic_name__ ( cls : Any ): return cls() @dataclass class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @property def __magic_name__ ( self : Optional[int] ): return True @register_to_config def __init__( self : Optional[int], __A : float = 0.0_2, __A : float = 1_0_0, __A : float = 1.0_0_7, __A : float = 8_0, __A : float = 0.0_5, __A : float = 5_0, ): pass def __magic_name__ ( self : Optional[Any] ): return KarrasVeSchedulerState.create() def __magic_name__ ( self : int, __A : KarrasVeSchedulerState, __A : int, __A : Tuple = () ): UpperCAmelCase : Optional[Any] = jnp.arange(0, __A )[::-1].copy() UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__A, schedule=jnp.array(__A, dtype=jnp.floataa ), timesteps=__A, ) def __magic_name__ ( self : List[Any], __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : random.KeyArray, ): if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : int = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1 ) else: UpperCAmelCase : Optional[int] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : Union[str, Any] = random.split(__A, num=1 ) UpperCAmelCase : List[str] = self.config.s_noise * random.normal(key=__A, shape=sample.shape ) UpperCAmelCase : Tuple = sigma + gamma * sigma UpperCAmelCase : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : int = sample_hat + sigma_hat * model_output UpperCAmelCase : Dict = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Tuple, __A : KarrasVeSchedulerState, __A : jnp.ndarray, __A : float, __A : float, __A : jnp.ndarray, __A : jnp.ndarray, __A : jnp.ndarray, __A : bool = True, ): UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__A, derivative=__A, state=__A ) def __magic_name__ ( self : Optional[Any], __A : KarrasVeSchedulerState, __A : Optional[int], __A : int, __A : Union[str, Any] ): raise NotImplementedError()
336
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __UpperCAmelCase ( lowerCamelCase__ ): def __get__( self : Tuple, __A : Optional[Any], __A : Optional[int]=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase : str = '''__cached_''' + self.fget.__name__ UpperCAmelCase : int = getattr(__A, __A, __A ) if cached is None: UpperCAmelCase : Any = self.fget(__A ) setattr(__A, __A, __A ) return cached def a__ ( UpperCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Any = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_torch_fx_proxy(UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Union[str, Any]: return isinstance(UpperCAmelCase , np.ndarray ) def a__ ( UpperCAmelCase : str ) -> Tuple: return _is_numpy(UpperCAmelCase ) def a__ ( UpperCAmelCase : str ) -> List[Any]: import torch return isinstance(UpperCAmelCase , torch.Tensor ) def a__ ( UpperCAmelCase : str ) -> List[Any]: return False if not is_torch_available() else _is_torch(UpperCAmelCase ) def a__ ( UpperCAmelCase : Tuple ) -> List[str]: import torch return isinstance(UpperCAmelCase , torch.device ) def a__ ( UpperCAmelCase : Any ) -> Any: return False if not is_torch_available() else _is_torch_device(UpperCAmelCase ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: import torch if isinstance(UpperCAmelCase , UpperCAmelCase ): if hasattr(UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = getattr(UpperCAmelCase , UpperCAmelCase ) else: return False return isinstance(UpperCAmelCase , torch.dtype ) def a__ ( UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(UpperCAmelCase ) def a__ ( UpperCAmelCase : Any ) -> str: import tensorflow as tf return isinstance(UpperCAmelCase , tf.Tensor ) def a__ ( UpperCAmelCase : int ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[str] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCAmelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCAmelCase ) return type(UpperCAmelCase ) == tf.Tensor def a__ ( UpperCAmelCase : int ) -> List[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCAmelCase ) def a__ ( UpperCAmelCase : List[Any] ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(UpperCAmelCase , jnp.ndarray ) def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: return False if not is_flax_available() else _is_jax(UpperCAmelCase ) def a__ ( UpperCAmelCase : int ) -> Tuple: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return [to_py_obj(UpperCAmelCase ) for o in obj] elif is_tf_tensor(UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ).tolist() elif isinstance(UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( UpperCAmelCase : Any ) -> List[str]: if isinstance(UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(UpperCAmelCase ) for k, v in obj.items()} elif isinstance(UpperCAmelCase , (list, tuple) ): return np.array(UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCAmelCase ): return np.asarray(UpperCAmelCase ) else: return obj class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self, class_fields[0].name ) UpperCAmelCase : str = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A, __A ): UpperCAmelCase : Tuple = first_field.items() UpperCAmelCase : Any = True else: try: UpperCAmelCase : Optional[Any] = iter(__A ) UpperCAmelCase : Optional[Any] = True except TypeError: UpperCAmelCase : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A, (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0], __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: UpperCAmelCase : Union[str, Any] = element[1] elif first_field is not None: UpperCAmelCase : Union[str, Any] = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self, field.name ) if v is not None: UpperCAmelCase : Optional[int] = v def __delitem__( self : Union[str, Any], *__A : str, **__A : Tuple ): raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : List[str], *__A : Union[str, Any], **__A : Optional[Any] ): raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Any, *__A : Dict, **__A : str ): raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __magic_name__ ( self : Dict, *__A : int, **__A : Dict ): raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[str], __A : List[str] ): if isinstance(__A, __A ): UpperCAmelCase : int = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any], __A : Dict, __A : Union[str, Any] ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A, __A ) super().__setattr__(__A, __A ) def __setitem__( self : Dict, __A : List[Any], __A : Union[str, Any] ): # Will raise a KeyException if needed super().__setitem__(__A, __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A, __A ) def __magic_name__ ( self : List[str] ): return tuple(self[k] for k in self.keys() ) class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): @classmethod def __magic_name__ ( cls : List[Any], __A : Tuple ): raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """longest""" UpperCamelCase = """max_length""" UpperCamelCase = """do_not_pad""" class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """pt""" UpperCamelCase = """tf""" UpperCamelCase = """np""" UpperCamelCase = """jax""" class __UpperCAmelCase : def __init__( self : Any, __A : List[ContextManager] ): UpperCAmelCase : Tuple = context_managers UpperCAmelCase : Tuple = ExitStack() def __enter__( self : Any ): for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self : List[Any], *__A : Union[str, Any], **__A : Dict ): self.stack.__exit__(*__A, **__A ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> str: UpperCAmelCase : int = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(UpperCAmelCase ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( UpperCAmelCase : MutableMapping , UpperCAmelCase : str = "" , UpperCAmelCase : str = "." ) -> Union[str, Any]: def _flatten_dict(UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str]="" , UpperCAmelCase : Any="." ): for k, v in d.items(): UpperCAmelCase : List[str] = str(UpperCAmelCase ) + delimiter + str(UpperCAmelCase ) if parent_key else k if v and isinstance(UpperCAmelCase , UpperCAmelCase ): yield from flatten_dict(UpperCAmelCase , UpperCAmelCase , delimiter=UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) @contextmanager def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : bool = False ) -> Optional[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ) -> Optional[Any]: if is_numpy_array(UpperCAmelCase ): return np.transpose(UpperCAmelCase , axes=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.T if axes is None else array.permute(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.transpose(UpperCAmelCase , perm=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.transpose(UpperCAmelCase , axes=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.reshape(*UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.reshape(UpperCAmelCase , UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.reshape(UpperCAmelCase , UpperCAmelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None ) -> Any: if is_numpy_array(UpperCAmelCase ): return np.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.squeeze(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : str , UpperCAmelCase : int ) -> str: if is_numpy_array(UpperCAmelCase ): return np.expand_dims(UpperCAmelCase , UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.unsqueeze(dim=UpperCAmelCase ) elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return jnp.expand_dims(UpperCAmelCase , axis=UpperCAmelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : Dict ) -> List[str]: if is_numpy_array(UpperCAmelCase ): return np.size(UpperCAmelCase ) elif is_torch_tensor(UpperCAmelCase ): return array.numel() elif is_tf_tensor(UpperCAmelCase ): import tensorflow as tf return tf.size(UpperCAmelCase ) elif is_jax_tensor(UpperCAmelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCAmelCase )}.''' ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> Dict: for key, value in auto_map.items(): if isinstance(UpperCAmelCase , (tuple, list) ): UpperCAmelCase : List[Any] = [f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : List[Any] = f'''{repo_id}--{value}''' return auto_map def a__ ( UpperCAmelCase : Tuple ) -> Union[str, Any]: for base_class in inspect.getmro(UpperCAmelCase ): UpperCAmelCase : Any = base_class.__module__ UpperCAmelCase : Dict = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
336
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __A = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __A = '''▁''' class lowercase ( snake_case__): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : List[str] = PRETRAINED_VOCAB_FILES_MAP a__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Dict = ["input_ids", "attention_mask"] a__ : List[Any] = BarthezTokenizer def __init__( self : Union[str, Any] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : List[Any]="<s>" , __UpperCAmelCase : Any="</s>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : Union[str, Any]="<s>" , __UpperCAmelCase : Optional[Any]="<unk>" , __UpperCAmelCase : Tuple="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , **__UpperCAmelCase : Any , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_= AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase_= vocab_file UpperCAmelCase_= False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_= [self.cls_token_id] UpperCAmelCase_= [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_= [self.sep_token_id] UpperCAmelCase_= [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_= os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
370
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __a ( lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_= [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ ,lowerCAmelCase_ ) def __a ( lowerCAmelCase_ : Any ) -> str: '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_= emb.weight.shape UpperCAmelCase_= nn.Linear(lowerCAmelCase_ ,lowerCAmelCase_ ,bias=lowerCAmelCase_ ) UpperCAmelCase_= emb.weight.data return lin_layer def __a ( lowerCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_= torch.load(lowerCAmelCase_ ,map_location="""cpu""" ) UpperCAmelCase_= Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCAmelCase_= checkpoint["""model"""] remove_ignore_keys_(lowerCAmelCase_ ) UpperCAmelCase_= state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCAmelCase_= {key.replace("""decoder""" ,"""model""" ): val for key, val in state_dict.items()} UpperCAmelCase_= XGLMConfig( vocab_size=lowerCAmelCase_ ,max_position_embeddings=args.max_target_positions ,num_layers=args.decoder_layers ,attention_heads=args.decoder_attention_heads ,ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.decoder_embed_dim ,layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function="""gelu""" ,scale_embedding=not args.no_scale_embedding ,tie_word_embeddings=args.share_decoder_input_output_embed ,) UpperCAmelCase_= XGLMForCausalLM(lowerCAmelCase_ ) UpperCAmelCase_= model.load_state_dict(lowerCAmelCase_ ,strict=lowerCAmelCase_ ) print(lowerCAmelCase_ ) UpperCAmelCase_= make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __A = parser.parse_args() __A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
277
0
def lowerCAmelCase__(__snake_case = 100 ) -> int: '''simple docstring''' lowerCamelCase__ = 0 lowerCamelCase__ = 0 for i in range(1 ,n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
209
_a = 65_521 def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = 1 lowerCamelCase__ = 0 for plain_chr in plain_text: lowerCamelCase__ = (a + ord(__snake_case )) % MOD_ADLER lowerCamelCase__ = (b + a) % MOD_ADLER return (b << 16) | a
209
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[int]: """simple docstring""" A__ = 0 A__ = len(lowercase_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A__ = i + 1 else: A__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
231
def SCREAMING_SNAKE_CASE ( lowercase_ = 50 ) -> int: """simple docstring""" A__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
231
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Dict = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys A_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
192
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A_ : List[str] = logging.get_logger(__name__) A_ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A_ : List[Any] = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } A_ : Tuple = { 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } A_ : Union[str, Any] = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Dict = VOCAB_FILES_NAMES UpperCAmelCase__: Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__: Optional[int] = RoFormerTokenizer def __init__( self , A__=None , A__=None , A__=True , A__="[UNK]" , A__="[SEP]" , A__="[PAD]" , A__="[CLS]" , A__="[MASK]" , A__=True , A__=None , **A__ , ): super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) A__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , A__ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , A__ ) != strip_accents ): A__ : List[Any] = getattr(A__ , pre_tok_state.pop("""type""" ) ) A__ : Optional[int] = do_lower_case A__ : int = strip_accents A__ : str = pre_tok_class(**A__ ) A__ : Any = do_lower_case def __getstate__( self ): A__ : int = self.__dict__.copy() A__ : Union[str, Any] = BertPreTokenizer() return state def __setstate__( self , A__ ): A__ : Union[str, Any] = d A__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() A__ : Dict = PreTokenizer.custom(JiebaPreTokenizer(A__ ) ) def __A ( self , A__ , A__=None ): A__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , A__ , A__ = None ): A__ : Tuple = [self.sep_token_id] A__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A__ , A__ = None ): A__ : Any = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ ) def __A ( self , A__ , A__=None , A__=None , A__=False , **A__ , ): A__ : str = BertPreTokenizer() return super().save_pretrained(A__ , A__ , A__ , A__ , **A__ )
192
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase : Any = logging.get_logger(__name__) lowercase : Optional[int] = '▁' lowercase : Dict = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} lowercase : Any = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } lowercase : List[Any] = {'vinai/bartpho-syllable': 1024} class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self :str , a :Any , a :Optional[Any] , a :Dict="<s>" , a :Dict="</s>" , a :Optional[Any]="</s>" , a :Union[str, Any]="<s>" , a :Optional[Any]="<unk>" , a :Tuple="<pad>" , a :Any="<mask>" , a :Tuple = None , **a :str , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase : int = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token __UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __UpperCamelCase : int = vocab_file __UpperCamelCase : Tuple = monolingual_vocab_file __UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility __UpperCamelCase : str = {} __UpperCamelCase : Any = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_a ) not in self.fairseq_tokens_to_ids: __UpperCamelCase : Dict = cnt cnt += 1 with open(_a , "r" , encoding="utf-8" ) as f: for line in f.readlines(): __UpperCamelCase : List[Any] = line.strip().split()[0] __UpperCamelCase : str = len(self.fairseq_tokens_to_ids ) if str(_a ) not in self.fairseq_tokens_to_ids: __UpperCamelCase : Tuple = len(self.fairseq_tokens_to_ids ) __UpperCamelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :Union[str, Any] ) -> Tuple: __UpperCamelCase : Tuple = self.__dict__.copy() __UpperCamelCase : List[str] = None __UpperCamelCase : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self :Optional[Any] , a :int ) -> Any: __UpperCamelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Tuple = {} __UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _lowerCamelCase ( self :Optional[Any] , a :int , a :int = None ) -> Optional[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase : Optional[int] = [self.cls_token_id] __UpperCamelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCamelCase ( self :List[str] , a :Dict , a :Optional[Any] = None , a :str = False ) -> Optional[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def _lowerCamelCase ( self :Optional[int] , a :Tuple , a :List[str] = None ) -> Tuple: __UpperCamelCase : Any = [self.sep_token_id] __UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCamelCase ( self :Any ) -> Optional[int]: return len(self.fairseq_ids_to_tokens ) def _lowerCamelCase ( self :Dict ) -> int: __UpperCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self :Tuple , a :Any ) -> Optional[int]: return self.sp_model.encode(_a , out_type=_a ) def _lowerCamelCase ( self :Tuple , a :Optional[int] ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _lowerCamelCase ( self :Any , a :str ) -> str: return self.fairseq_ids_to_tokens[index] def _lowerCamelCase ( self :List[str] , a :Tuple ) -> int: __UpperCamelCase : str = "".join(_a ).replace(_a , " " ).strip() return out_string def _lowerCamelCase ( self :Dict , a :List[str] , a :Union[str, Any] = None ) -> List[str]: if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : int = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase : Tuple = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: __UpperCamelCase : str = self.sp_model.serialized_model_proto() fi.write(_a ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _a ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _a ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_a , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(_a )} \n' ) return out_vocab_file, out_monolingual_vocab_file
361
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int]) -> Dict: '''simple docstring''' return EnvironmentCommand() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict) -> Dict: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file) class lowerCamelCase__ ( __lowercase): '''simple docstring''' @staticmethod def _lowerCamelCase ( a :ArgumentParser ) -> str: __UpperCamelCase : List[Any] = parser.add_parser("env" ) download_parser.set_defaults(func=a ) download_parser.add_argument( "--accelerate-config_file" , default=a , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=a ) def __init__( self :Tuple , a :Dict , *a :List[str] ) -> None: __UpperCamelCase : List[str] = accelerate_config_file def _lowerCamelCase ( self :int ) -> Dict: __UpperCamelCase : int = "not installed" if is_safetensors_available(): import safetensors __UpperCamelCase : List[str] = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors __UpperCamelCase : Optional[Any] = f'{safetensors.__version__} but is ignored because of PyTorch version too old.' __UpperCamelCase : List[str] = "not installed" __UpperCamelCase : List[str] = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCamelCase : Tuple = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a ): __UpperCamelCase : Dict = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCamelCase : int = ( "\n".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(a , a ) else f'\t{accelerate_config}' ) __UpperCamelCase : List[Any] = "not installed" __UpperCamelCase : Dict = "NA" if is_torch_available(): import torch __UpperCamelCase : Optional[int] = torch.__version__ __UpperCamelCase : Optional[Any] = torch.cuda.is_available() __UpperCamelCase : Dict = "not installed" __UpperCamelCase : str = "NA" if is_tf_available(): import tensorflow as tf __UpperCamelCase : Optional[Any] = tf.__version__ try: # deprecated in v2.1 __UpperCamelCase : Dict = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCamelCase : Optional[Any] = bool(tf.config.list_physical_devices("GPU" ) ) __UpperCamelCase : List[Any] = "not installed" __UpperCamelCase : Any = "not installed" __UpperCamelCase : Tuple = "not installed" __UpperCamelCase : Optional[int] = "NA" if is_flax_available(): import flax import jax import jaxlib __UpperCamelCase : int = flax.__version__ __UpperCamelCase : Any = jax.__version__ __UpperCamelCase : Optional[int] = jaxlib.__version__ __UpperCamelCase : List[Any] = jax.lib.xla_bridge.get_backend().platform __UpperCamelCase : Optional[Any] = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f'{safetensors_version}', "Accelerate version": f'{accelerate_version}', "Accelerate config": f'{accelerate_config_str}', "PyTorch version (GPU?)": f'{pt_version} ({pt_cuda_available})', "Tensorflow version (GPU?)": f'{tf_version} ({tf_cuda_available})', "Flax version (CPU?/GPU?/TPU?)": f'{flax_version} ({jax_backend})', "Jax version": f'{jax_version}', "JaxLib version": f'{jaxlib_version}', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a ) ) return info @staticmethod def _lowerCamelCase ( a :str ) -> int: return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
151
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: UNetaDModel _lowerCamelCase: KarrasVeScheduler def __init__( self : List[Any] ,A_ : UNetaDModel ,A_ : KarrasVeScheduler ) -> Dict: super().__init__() self.register_modules(unet=A_ ,scheduler=A_ ) @torch.no_grad() def __call__( self : Optional[Any] ,A_ : int = 1 ,A_ : int = 50 ,A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A_ : Optional[str] = "pil" ,A_ : bool = True ,**A_ : Optional[Any] ,) -> Union[Tuple, ImagePipelineOutput]: A = self.unet.config.sample_size A = (batch_size, 3, img_size, img_size) A = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) A = randn_tensor(A_ ,generator=A_ ,device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper A = self.scheduler.schedule[t] A = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat A , A = self.scheduler.add_noise_to_input(A_ ,A_ ,generator=A_ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. A = (sigma_hat / 2) * model((sample_hat + 1) / 2 ,sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev A = self.scheduler.step(A_ ,A_ ,A_ ,A_ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 ,sigma_prev / 2 ).sample A = self.scheduler.step_correct( A_ ,A_ ,A_ ,A_ ,step_output.prev_sample ,step_output['derivative'] ,) A = step_output.prev_sample A = (sample / 2 + 0.5).clamp(0 ,1 ) A = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": A = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
74
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "deberta-v2" def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]: super().__init__(**UpperCAmelCase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = relative_attention _snake_case = max_relative_positions _snake_case = pad_token_id _snake_case = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: _snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )] _snake_case = pos_att_type _snake_case = vocab_size _snake_case = layer_norm_eps _snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase ) _snake_case = pooler_dropout _snake_case = pooler_hidden_act class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowercase (self ) -> int: return 12 def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]: _snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
341
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __a ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) _UpperCAmelCase = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(_SCREAMING_SNAKE_CASE ) from datasets import load_dataset _UpperCAmelCase = load_dataset('nielsr/rvlcdip-demo' ) _UpperCAmelCase = dataset['train'][0]['image'].convert('RGB' ) _UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.logits _UpperCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=_SCREAMING_SNAKE_CASE , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
185
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__ :Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase__ :str = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' lowerCAmelCase__ :List[Any] = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' lowerCAmelCase__ :Optional[int] = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def lowerCAmelCase__ ( a__: int , a__: int , a__: Dict=False , a__: str=False , a__: Optional[int]=True , a__: Any=False , a__: str="dummy_doc" ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = {doc: key_lines} _UpperCAmelCase = {doc: sys_lines} _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase , _UpperCAmelCase = reader.get_doc_mentions(a__ , key_doc_lines[doc] , a__ ) key_singletons_num += singletons_num if NP_only or min_span: _UpperCAmelCase = reader.set_annotated_parse_trees(a__ , key_doc_lines[doc] , a__ , a__ ) _UpperCAmelCase , _UpperCAmelCase = reader.get_doc_mentions(a__ , sys_doc_lines[doc] , a__ ) sys_singletons_num += singletons_num if NP_only or min_span: _UpperCAmelCase = reader.set_annotated_parse_trees(a__ , key_doc_lines[doc] , a__ , a__ ) if remove_nested: _UpperCAmelCase , _UpperCAmelCase = reader.remove_nested_coref_mentions(a__ , a__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _UpperCAmelCase , _UpperCAmelCase = reader.remove_nested_coref_mentions(a__ , a__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _UpperCAmelCase = reader.get_mention_assignments(a__ , a__ ) _UpperCAmelCase = reader.get_mention_assignments(a__ , a__ ) _UpperCAmelCase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( 'Number of resulting singleton clusters in the key ' F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' 'files, respectively' ) return doc_coref_infos def lowerCAmelCase__ ( a__: Any , a__: List[str] , a__: List[str] , a__: Optional[int] , a__: Optional[Any] , a__: Any , a__: Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = get_coref_infos(a__ , a__ , a__ , a__ , a__ , a__ ) _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 for name, metric in metrics: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = evaluator.evaluate_documents(a__ , a__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(1_0 ) , F'''Recall: {recall * 1_0_0:.2f}''' , F''' Precision: {precision * 1_0_0:.2f}''' , F''' F1: {fa * 1_0_0:.2f}''' , ) if conll_subparts_num == 3: _UpperCAmelCase = (conll / 3) * 1_0_0 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({'conll_score': conll} ) return output_scores def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: _UpperCAmelCase = line.split()[5] if not parse_col == "-": _UpperCAmelCase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str: """simple docstring""" _UpperCAmelCase = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: _UpperCAmelCase = util.check_gold_parse_annotation(_SCREAMING_SNAKE_CASE ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _UpperCAmelCase = evaluate( key_lines=_SCREAMING_SNAKE_CASE , sys_lines=_SCREAMING_SNAKE_CASE , metrics=_SCREAMING_SNAKE_CASE , NP_only=_SCREAMING_SNAKE_CASE , remove_nested=_SCREAMING_SNAKE_CASE , keep_singletons=_SCREAMING_SNAKE_CASE , min_span=_SCREAMING_SNAKE_CASE , ) return score
185
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: # Load configuration defined in the metadata file with open(lowerCAmelCase__ ) as metadata_file: __a = json.load(lowerCAmelCase__ ) __a = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path __a = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['module'] # Load the entity vocab file __a = load_original_entity_vocab(lowerCAmelCase__ ) # add an entry for [MASK2] __a = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __a = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks __a = AddedToken('''<ent>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) __a = AddedToken('''<ent2>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''r''' ) as f: __a = json.load(lowerCAmelCase__ ) __a = 'MLukeTokenizer' with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) __a = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) # Initialize the embeddings of the special tokens __a = tokenizer.convert_tokens_to_ids(['''@'''] )[0] __a = tokenizer.convert_tokens_to_ids(['''#'''] )[0] __a = state_dict['embeddings.word_embeddings.weight'] __a = word_emb[ent_init_index].unsqueeze(0 ) __a = word_emb[enta_init_index].unsqueeze(0 ) __a = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __a = state_dict[bias_name] __a = decoder_bias[ent_init_index].unsqueeze(0 ) __a = decoder_bias[enta_init_index].unsqueeze(0 ) __a = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __a = f'''encoder.layer.{layer_index}.attention.self.''' __a = state_dict[prefix + matrix_name] __a = state_dict[prefix + matrix_name] __a = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __a = state_dict['entity_embeddings.entity_embeddings.weight'] __a = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) __a = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __a = state_dict['entity_predictions.bias'] __a = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) __a = torch.cat([entity_prediction_bias, entity_mask_bias] ) __a = LukeForMaskedLM(config=lowerCAmelCase__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) __a = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): __a = state_dict[key] else: __a = state_dict[key] __a = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if set(lowerCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowerCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __a = MLukeTokenizer.from_pretrained(lowerCAmelCase__ , task='''entity_classification''' ) __a = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' __a = (0, 9) __a = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='''pt''' ) __a = model(**lowerCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __a = torch.Size((1, 33, 768) ) __a = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __a = torch.Size((1, 1, 768) ) __a = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __a = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) __a = 'Tokyo is the capital of <mask>.' __a = (24, 30) __a = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='''pt''' ) __a = model(**lowerCAmelCase__ ) __a = encoding['input_ids'][0].tolist() __a = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) __a = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase__ ) __a = outputs.entity_logits[0][0].argmax().item() __a = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(lowerCAmelCase__ ) ) model.save_pretrained(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : List[str] ) -> Tuple: __a = ['[MASK]', '[PAD]', '[UNK]'] __a = [json.loads(lowerCAmelCase__ ) for line in open(lowerCAmelCase__ )] __a = {} for entry in data: __a = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __a = entity_id break __a = f'''{language}:{entity_name}''' __a = entity_id return new_mapping if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowercase_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
45
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowercase_ (A : List[str] ): snake_case__ : Tuple = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A , A ) def lowercase_ (A : str ): snake_case__ , snake_case__ : Union[str, Any] = emb.weight.shape snake_case__ : str = nn.Linear(A , A , bias=A ) snake_case__ : str = emb.weight.data return lin_layer def lowercase_ (A : Optional[int] , A : Union[str, Any]=None ): snake_case__ : Any = {} for old_key in state_dict.keys(): snake_case__ : Tuple = old_key if "moe_layer.experts." in key: if expert_idx is not None: snake_case__ : int = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''' ) else: snake_case__ : Any = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: snake_case__ : Dict = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: snake_case__ : str = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: snake_case__ : str = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: snake_case__ : Tuple = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: snake_case__ : Tuple = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: snake_case__ : Optional[int] = key.replace('final_layer_norm' , 'ff_layer_norm' ) snake_case__ : Dict = state_dict[old_key] return new_dict def lowercase_ (A : List[Any] , A : Tuple , A : List[Any] , A : List[str] , A : str = WEIGHTS_NAME ): snake_case__ : Dict = [] snake_case__ : str = 0 os.makedirs(A , exist_ok=A ) for expert in range(A ): snake_case__ : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(A ): snake_case__ : Optional[Any] = torch.load(A )['model'] remove_ignore_keys_(A ) snake_case__ : Optional[Any] = rename_fairseq_keys(A , A ) snake_case__ : Dict = os.path.join( A , weights_name.replace('.bin' , F'''-{len(A )+1:05d}-of-???.bin''' ) ) torch.save(A , A ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A )[0]].dtype ) # Add the last block snake_case__ : Tuple = os.path.join(A , weights_name.replace('.bin' , F'''-{len(A )+1:05d}-of-???.bin''' ) ) snake_case__ : Union[str, Any] = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(A ) snake_case__ : str = rename_fairseq_keys(A , A ) snake_case__ : Any = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A ) == 1: snake_case__ : Any = os.path.join(A , A ) torch.save(A , A ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A , A ) # Otherwise, let's build the index snake_case__ : Tuple = {} for idx, shard in enumerate(A ): snake_case__ : Optional[int] = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(A ):05d}.bin''' ) snake_case__ : List[Any] = os.path.join(A , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(A , os.path.join(A , A ) ) for key in shard: snake_case__ : Any = shard_file # Add the metadata snake_case__ : int = {'total_size': total_size} snake_case__ : Dict = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(A , A ) , 'w' , encoding='utf-8' ) as f: snake_case__ : Any = json.dumps(A , indent=2 , sort_keys=A ) + '\n' f.write(A ) return metadata, index if __name__ == "__main__": a_ :int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) a_ :Optional[Any] = parser.parse_args() a_ , a_ :Optional[Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) a_ :List[str] = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ :int = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
277
0
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __UpperCamelCase = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' __UpperCamelCase = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' __UpperCamelCase = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="auto" , lowerCAmelCase__=-1 , lowerCAmelCase__=0.9 , lowerCAmelCase__=5 , lowerCAmelCase__=500 , lowerCAmelCase__="gpt2-large" , lowerCAmelCase__=-1 , lowerCAmelCase__=1_024 , lowerCAmelCase__=25 , lowerCAmelCase__=5 , lowerCAmelCase__=True , lowerCAmelCase__=25 , ) -> Optional[int]: SCREAMING_SNAKE_CASE = compute_mauve( p_text=lowerCAmelCase__ , q_text=lowerCAmelCase__ , p_features=lowerCAmelCase__ , q_features=lowerCAmelCase__ , p_tokens=lowerCAmelCase__ , q_tokens=lowerCAmelCase__ , num_buckets=lowerCAmelCase__ , pca_max_data=lowerCAmelCase__ , kmeans_explained_var=lowerCAmelCase__ , kmeans_num_redo=lowerCAmelCase__ , kmeans_max_iter=lowerCAmelCase__ , featurize_model_name=lowerCAmelCase__ , device_id=lowerCAmelCase__ , max_text_length=lowerCAmelCase__ , divergence_curve_discretization_size=lowerCAmelCase__ , mauve_scaling_factor=lowerCAmelCase__ , verbose=lowerCAmelCase__ , seed=lowerCAmelCase__ , ) return out
38
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE_ : Any = """FlavaImageProcessor""" SCREAMING_SNAKE_CASE_ : List[str] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> List[str]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if images is not None: SCREAMING_SNAKE_CASE = self.image_processor( lowerCAmelCase__ , return_image_mask=lowerCAmelCase__ , return_codebook_pixels=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self ) -> str: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase__ , ) return self.image_processor_class @property def __A ( self ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase__ , ) return self.image_processor
38
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCAmelCase ( unittest.TestCase ): def __a ( self , _UpperCamelCase ) -> Optional[int]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase_ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(_UpperCamelCase ) def __a ( self ) -> Tuple: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[str]: lowerCAmelCase_ = "sgugger/tiny-distilbert-classification" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , only_pretrain_model=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , torchscript=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def __a ( self ) -> Any: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , fpaa=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[str]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCamelCase ) # set architectures equal to `None` lowerCAmelCase_ = None lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[str]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_UpperCamelCase , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> Tuple: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> int: lowerCAmelCase_ = "sshleifer/tinier_bart" lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> int: lowerCAmelCase_ = "sshleifer/tiny-gpt2" lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> int: lowerCAmelCase_ = "sshleifer/tinier_bart" lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> List[str]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , save_to_csv=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCamelCase , "inf_time.csv" ) , train_memory_csv_file=os.path.join(_UpperCamelCase , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(_UpperCamelCase , "inf_mem.csv" ) , train_time_csv_file=os.path.join(_UpperCamelCase , "train_time.csv" ) , env_info_csv_file=os.path.join(_UpperCamelCase , "env.csv" ) , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_UpperCamelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , "env.csv" ) ).exists() ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(_UpperCamelCase ): self.assertTrue(hasattr(_UpperCamelCase , "sequential" ) ) self.assertTrue(hasattr(_UpperCamelCase , "cumulative" ) ) self.assertTrue(hasattr(_UpperCamelCase , "current" ) ) self.assertTrue(hasattr(_UpperCamelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCamelCase , "log.txt" ) , log_print=_UpperCamelCase , trace_memory_line_by_line=_UpperCamelCase , multi_process=_UpperCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCamelCase ) lowerCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_UpperCamelCase , "log.txt" ) ).exists() )
231
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _A = logging.get_logger(__name__) _A = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCamelCase__ ( __lowerCAmelCase : List[DatasetType] , __lowerCAmelCase : Optional[List[float]] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[DatasetInfo] = None , __lowerCAmelCase : Optional[NamedSplit] = None , __lowerCAmelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , (Dataset, IterableDataset) ): if isinstance(__lowerCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(__lowerCAmelCase )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__lowerCAmelCase ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__lowerCAmelCase ).__name__}.""" ) if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , info=__lowerCAmelCase , split=__lowerCAmelCase , stopping_strategy=__lowerCAmelCase ) else: return _interleave_iterable_datasets( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , info=__lowerCAmelCase , split=__lowerCAmelCase , stopping_strategy=__lowerCAmelCase ) def lowerCamelCase__ ( __lowerCAmelCase : List[DatasetType] , __lowerCAmelCase : Optional[DatasetInfo] = None , __lowerCAmelCase : Optional[NamedSplit] = None , __lowerCAmelCase : int = 0 , ): """simple docstring""" if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(__lowerCAmelCase ): if not isinstance(__lowerCAmelCase , (Dataset, IterableDataset) ): if isinstance(__lowerCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(__lowerCAmelCase )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__lowerCAmelCase ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__lowerCAmelCase ).__name__}.""" ) if i == 0: lowerCAmelCase_ , lowerCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__lowerCAmelCase , info=__lowerCAmelCase , split=__lowerCAmelCase , axis=__lowerCAmelCase ) else: return _concatenate_iterable_datasets(__lowerCAmelCase , info=__lowerCAmelCase , split=__lowerCAmelCase , axis=__lowerCAmelCase )
231
1
import csv import tweepy # Twitter API credentials _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = '''''' def UpperCamelCase_( snake_case__: str ) -> None: # authorize twitter, initialize tweepy UpperCAmelCase__ = tweepy.OAuthHandler(_UpperCAmelCase , _UpperCAmelCase ) auth.set_access_token(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = tweepy.API(_UpperCAmelCase ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase__ = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase__ = api.user_timeline(screen_name=_UpperCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # save the id of the oldest tweet less one UpperCAmelCase__ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCAmelCase ) > 0: print(f"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase__ = api.user_timeline( screen_name=_UpperCAmelCase , count=2_00 , max_id=_UpperCAmelCase ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # update the id of the oldest tweet less one UpperCAmelCase__ = alltweets[-1].id - 1 print(f"...{len(_UpperCAmelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase__ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"new_{screen_name}_tweets.csv" , 'w' ) as f: UpperCAmelCase__ = csv.writer(_UpperCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(_UpperCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
350
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase_ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase_ = '''path-to-your-trained-model''' lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase_ = pipe.to(device) # to channels last lowerCAmelCase_ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase_ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase_ = torch.randn(2, 4, 64, 64) lowerCAmelCase_ = torch.rand(1) * 9_99 lowerCAmelCase_ = torch.randn(2, 77, 7_68) lowerCAmelCase_ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase_ = 6_66 lowerCAmelCase_ = torch.Generator(device).manual_seed(seed) lowerCAmelCase_ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
8
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : Optional[Union[str, Path]] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : Optional[Dict] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : int = 1 UpperCAmelCase_ : Optional[Union[str, bool]] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : Optional[Dict] = None UpperCAmelCase_ : Optional[str] = None def UpperCAmelCase_ ( self : Tuple ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(lowercase_ ) for k, v in self.__dict__.items()} )
151
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
305
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) SCREAMING_SNAKE_CASE_ = BlipaProcessor(__magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def __A ( self : Dict , **__magic_name__ : List[Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def __A ( self : int ) -> Any: shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
305
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
185
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Dict = ['image_processor'] lowerCamelCase : str = 'SamImageProcessor' def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.image_processor __lowerCamelCase : str = -10 __lowerCamelCase : List[str] = self.image_processor.size['longest_edge'] def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> BatchEncoding: __lowerCamelCase : Union[str, Any] = self.image_processor( SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # pop arguments that are not used in the foward but used nevertheless __lowerCamelCase : List[Any] = encoding_image_processor['original_sizes'] if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): # Checks if Torch or TF tensor __lowerCamelCase : Dict = original_sizes.numpy() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self._check_and_preprocess_points( input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Tuple = self._normalize_and_convert( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , ) return encoding_image_processor def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="pt" , ) -> Optional[int]: if input_points is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] ) for point in input_points ] else: __lowerCamelCase : List[Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for point, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCamelCase , __lowerCamelCase : Tuple = self._pad_points_and_labels(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_labels is not None: __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box in input_boxes ] else: __lowerCamelCase : Optional[int] = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] __lowerCamelCase : Optional[int] = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if return_tensors == "pt": __lowerCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __lowerCamelCase : Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCamelCase : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __lowerCamelCase : str = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCamelCase : Dict = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Tuple = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCamelCase : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCamelCase : str = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __lowerCamelCase : Dict = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : List[str] = max([point.shape[0] for point in input_points] ) __lowerCamelCase : Union[str, Any] = [] for i, point in enumerate(SCREAMING_SNAKE_CASE_ ): if point.shape[0] != expected_nb_points: __lowerCamelCase : Optional[int] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __lowerCamelCase : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = processed_input_points return input_points, input_labels def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> np.ndarray: __lowerCamelCase , __lowerCamelCase : Tuple = original_size __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.image_processor._get_preprocess_shape(SCREAMING_SNAKE_CASE_ , longest_edge=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = deepcopy(SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) if is_bounding_box: __lowerCamelCase : Optional[int] = coords.reshape(-1 , 2 , 2 ) __lowerCamelCase : List[Any] = coords[..., 0] * (new_w / old_w) __lowerCamelCase : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCamelCase : Tuple = coords.reshape(-1 , 4 ) return coords def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> Optional[Any]: if input_points is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): # Checks for TF or Torch tensor __lowerCamelCase : List[str] = input_points.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_points[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('Input points must be a list of list of floating points.' ) __lowerCamelCase : str = [np.array(SCREAMING_SNAKE_CASE_ ) for input_point in input_points] else: __lowerCamelCase : Optional[Any] = None if input_labels is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): __lowerCamelCase : Union[str, Any] = input_labels.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_labels[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('Input labels must be a list of list integers.' ) __lowerCamelCase : Any = [np.array(SCREAMING_SNAKE_CASE_ ) for label in input_labels] else: __lowerCamelCase : Dict = None if input_boxes is not None: if hasattr(SCREAMING_SNAKE_CASE_ , 'numpy' ): __lowerCamelCase : int = input_boxes.numpy().tolist() if ( not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0] , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0][0] , SCREAMING_SNAKE_CASE_ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) __lowerCamelCase : List[Any] = [np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) for box in input_boxes] else: __lowerCamelCase : Tuple = None return input_points, input_labels, input_boxes @property def lowercase_ ( self ) -> Dict: __lowerCamelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self.image_processor.post_process_masks(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
185
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Union[str, Any] = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Optional[Any] = '''blip_text_model''' def __init__( self , lowercase=3_0524 , lowercase=768 , lowercase=768 , lowercase=3072 , lowercase=768 , lowercase=12 , lowercase=8 , lowercase=512 , lowercase="gelu" , lowercase=1e-12 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=3_0522 , lowercase=2 , lowercase=0 , lowercase=102 , lowercase=True , lowercase=True , **lowercase , ) -> Any: '''simple docstring''' super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , sep_token_id=lowercase , **lowercase , ) a__ : Any = vocab_size a__ : Tuple = hidden_size a__ : Optional[int] = encoder_hidden_size a__ : Tuple = intermediate_size a__ : Union[str, Any] = projection_dim a__ : str = hidden_dropout_prob a__ : List[Any] = num_hidden_layers a__ : Optional[int] = num_attention_heads a__ : Union[str, Any] = max_position_embeddings a__ : Any = layer_norm_eps a__ : str = hidden_act a__ : Any = initializer_range a__ : Any = attention_probs_dropout_prob a__ : Optional[int] = is_decoder a__ : Any = use_cache @classmethod def __lowercase ( cls , lowercase , **lowercase) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase) a__ , a__ : Dict = cls.get_config_dict(lowercase , **lowercase) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": a__ : Any = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(lowercase , **lowercase) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Optional[Any] = '''blip_vision_model''' def __init__( self , lowercase=768 , lowercase=3072 , lowercase=512 , lowercase=12 , lowercase=12 , lowercase=384 , lowercase=16 , lowercase="gelu" , lowercase=1e-5 , lowercase=0.0 , lowercase=1e-10 , **lowercase , ) -> List[Any]: '''simple docstring''' super().__init__(**lowercase) a__ : List[str] = hidden_size a__ : Tuple = intermediate_size a__ : List[Any] = projection_dim a__ : Optional[int] = num_hidden_layers a__ : int = num_attention_heads a__ : int = patch_size a__ : Optional[int] = image_size a__ : Any = initializer_range a__ : Union[str, Any] = attention_dropout a__ : Optional[Any] = layer_norm_eps a__ : Tuple = hidden_act @classmethod def __lowercase ( cls , lowercase , **lowercase) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase) a__ , a__ : Optional[int] = cls.get_config_dict(lowercase , **lowercase) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type') == "blip": a__ : int = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(lowercase , **lowercase) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Any = '''blip''' __A : Union[str, Any] = True def __init__( self , lowercase=None , lowercase=None , lowercase=512 , lowercase=2.65_92 , lowercase=256 , **lowercase , ) -> Any: '''simple docstring''' super().__init__(**lowercase) if text_config is None: a__ : Dict = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.') if vision_config is None: a__ : List[str] = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.') a__ : List[str] = BlipTextConfig(**lowercase) a__ : List[str] = BlipVisionConfig(**lowercase) a__ : Any = self.vision_config.hidden_size a__ : Tuple = projection_dim a__ : Union[str, Any] = logit_scale_init_value a__ : Tuple = 1.0 a__ : Dict = 0.02 a__ : Dict = image_text_hidden_size @classmethod def __lowercase ( cls , lowercase , lowercase , **lowercase) -> int: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Optional[int] = copy.deepcopy(self.__dict__) a__ : Optional[Any] = self.text_config.to_dict() a__ : Dict = self.vision_config.to_dict() a__ : str = self.__class__.model_type return output
225
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A_ ( A__ ) -> Optional[int]: if is_torch_version('<' , '2.0.0' ) or not hasattr(A__ , '_dynamo' ): return False return isinstance(A__ , torch._dynamo.eval_frame.OptimizedModule ) def A_ ( A__ , A__ = True ) -> int: a__ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) a__ : Union[str, Any] = is_compiled_module(A__ ) if is_compiled: a__ : List[str] = model a__ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__ , A__ ): a__ : str = model.module if not keep_fpaa_wrapper: a__ : Union[str, Any] = getattr(A__ , 'forward' ) a__ : List[Any] = model.__dict__.pop('_original_forward' , A__ ) if original_forward is not None: while hasattr(A__ , '__wrapped__' ): a__ : int = forward.__wrapped__ if forward == original_forward: break a__ : List[Any] = forward if getattr(A__ , '_converted_to_transformer_engine' , A__ ): convert_model(A__ , to_transformer_engine=A__ ) if is_compiled: a__ : List[str] = model a__ : Any = compiled_model return model def A_ ( ) -> int: PartialState().wait_for_everyone() def A_ ( A__ , A__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(A__ , A__ ) elif PartialState().local_process_index == 0: torch.save(A__ , A__ ) @contextmanager def A_ ( **A__ ) -> Any: for key, value in kwargs.items(): a__ : Optional[int] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A_ ( A__ ) -> List[str]: if not hasattr(A__ , '__qualname__' ) and not hasattr(A__ , '__name__' ): a__ : Dict = getattr(A__ , '__class__' , A__ ) if hasattr(A__ , '__qualname__' ): return obj.__qualname__ if hasattr(A__ , '__name__' ): return obj.__name__ return str(A__ ) def A_ ( A__ , A__ ) -> Dict: for key, value in source.items(): if isinstance(A__ , A__ ): a__ : Optional[Any] = destination.setdefault(A__ , {} ) merge_dicts(A__ , A__ ) else: a__ : Optional[int] = value return destination def A_ ( A__ = None ) -> bool: if port is None: a__ : List[Any] = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
225
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = torch.device('''cpu''') def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: """simple docstring""" UpperCamelCase :Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase :Any = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple ) -> Dict: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase :List[Any] = dct.pop(__magic_name__ ) UpperCamelCase :Optional[Any] = val def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase :Union[str, Any] = [] for k in state_dict.keys(): UpperCamelCase :int = k if ".pwconv" in k: UpperCamelCase :Any = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCamelCase :List[Any] = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCamelCase :Tuple = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCamelCase :Dict = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCamelCase :Tuple = k_new.split(""".""" ) if ls[2].isdigit(): UpperCamelCase :Optional[int] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCamelCase :Optional[int] = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase :Dict = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase :str = 1000 UpperCamelCase :Optional[int] = """huggingface/label-files""" UpperCamelCase :int = """imagenet-1k-id2label.json""" UpperCamelCase :List[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase :Optional[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCamelCase :Any = idalabel UpperCamelCase :Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCamelCase :List[Any] = [3, 3, 6, 4] UpperCamelCase :Union[str, Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCamelCase :Optional[Any] = [3, 3, 9, 6] UpperCamelCase :Dict = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCamelCase :Optional[int] = [4, 3, 10, 5] UpperCamelCase :str = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCamelCase :Any = [4, 4, 12, 6] UpperCamelCase :Any = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCamelCase :Optional[Any] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location="""cpu""" , check_hash=__magic_name__ ) else: UpperCamelCase :List[str] = torch.load(__magic_name__ , map_location="""cpu""" ) UpperCamelCase :Optional[int] = checkpoint UpperCamelCase :Optional[int] = create_rename_keys(__magic_name__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) # load HuggingFace model UpperCamelCase :Tuple = SwiftFormerForImageClassification(__magic_name__ ).eval() hf_model.load_state_dict(__magic_name__ ) # prepare test inputs UpperCamelCase :List[Any] = prepare_img() UpperCamelCase :int = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCamelCase :int = processor(images=__magic_name__ , return_tensors="""pt""" ) # compare outputs from both models UpperCamelCase :str = get_expected_output(__magic_name__ ) UpperCamelCase :Optional[int] = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __magic_name__ , atol=1E-3 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__magic_name__ ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
38
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : List[Any] , __lowerCamelCase : Callable , __lowerCamelCase : Optional[Features] = None , __lowerCamelCase : str = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[dict] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : List[Any] , ): super().__init__( features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase :Union[str, Any] = Generator( cache_dir=__lowerCamelCase , features=__lowerCamelCase , generator=__lowerCamelCase , gen_kwargs=__lowerCamelCase , **__lowerCamelCase , ) def _A ( self : List[str] ): # Build iterable dataset if self.streaming: UpperCamelCase :Any = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: UpperCamelCase :Tuple = None UpperCamelCase :Dict = None UpperCamelCase :Dict = None UpperCamelCase :List[str] = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) UpperCamelCase :Tuple = self.builder.as_dataset( split="""train""" , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
38
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> list: SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for i in range(len(__lowerCAmelCase ) - pat_len + 1 ): SCREAMING_SNAKE_CASE__ : List[Any] = True for j in range(__lowerCAmelCase ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE__ : Tuple = False break if match_found: position.append(__lowerCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
56
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters a :Optional[Any] = logging.get_logger(__name__) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[str]: # Recurse if needed if "." in tensor_name: SCREAMING_SNAKE_CASE__ : List[Any] = tensor_name.split(""".""" ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_module SCREAMING_SNAKE_CASE__ : Any = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = tensor_name in module._buffers SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = False if is_buffer or not is_bitsandbytes_available(): SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : List[Any] = False else: SCREAMING_SNAKE_CASE__ : str = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) SCREAMING_SNAKE_CASE__ : str = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: SCREAMING_SNAKE_CASE__ : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: SCREAMING_SNAKE_CASE__ : Tuple = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : int = value.to("""cpu""" ) if value.dtype == torch.inta: SCREAMING_SNAKE_CASE__ : str = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor(__lowerCAmelCase , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCAmelCase ) and fpaa_statistics is None: SCREAMING_SNAKE_CASE__ : Optional[int] = new_value.T SCREAMING_SNAKE_CASE__ : Union[str, Any] = old_value.__dict__ if is_abit: SCREAMING_SNAKE_CASE__ : str = bnb.nn.IntaParams(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) elif is_abit: SCREAMING_SNAKE_CASE__ : Union[str, Any] = bnb.nn.Paramsabit(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(__lowerCAmelCase ) ) else: if value is None: SCREAMING_SNAKE_CASE__ : str = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : List[str] = value.to(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(__lowerCAmelCase , device=__lowerCAmelCase ) if is_buffer: SCREAMING_SNAKE_CASE__ : List[str] = new_value else: SCREAMING_SNAKE_CASE__ : List[Any] = nn.Parameter(__lowerCAmelCase , requires_grad=old_value.requires_grad ) SCREAMING_SNAKE_CASE__ : Dict = new_value def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False ) -> List[Any]: for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] current_key_name.append(__lowerCAmelCase ) if (isinstance(__lowerCAmelCase , nn.Linear ) or isinstance(__lowerCAmelCase , __lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(__lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = module.weight.shape else: SCREAMING_SNAKE_CASE__ : str = module.in_features SCREAMING_SNAKE_CASE__ : Dict = module.out_features if quantization_config.quantization_method() == "llm_int8": SCREAMING_SNAKE_CASE__ : Dict = bnb.nn.LinearabitLt( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) SCREAMING_SNAKE_CASE__ : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = bnb.nn.Linearabit( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) SCREAMING_SNAKE_CASE__ : int = True # Store the module class in case we need to transpose the weight later SCREAMING_SNAKE_CASE__ : Dict = type(__lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCAmelCase ) if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_been_replaced=__lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> str: SCREAMING_SNAKE_CASE__ : int = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , __lowerCAmelCase , ) return replace_with_bnb_linear(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , __lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() SCREAMING_SNAKE_CASE__ : List[str] = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : List[Any] = sum(__lowerCAmelCase , [] ) SCREAMING_SNAKE_CASE__ : str = len(__lowerCAmelCase ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Optional[int] = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : int = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : str = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : Any = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Any = [""".weight""", """.bias"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace(__lowerCAmelCase , """""" ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names
56
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[int] , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any ) ->None: """simple docstring""" warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
0
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: str ): """simple docstring""" A__ = get_activation("""swish""" ) self.assertIsInstance(UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = get_activation("""silu""" ) self.assertIsInstance(UpperCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = get_activation("""mish""" ) self.assertIsInstance(UpperCamelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = get_activation("""gelu""" ) self.assertIsInstance(UpperCamelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
335
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __magic_name__: Tuple = "http://www.mocksite.com/file1.txt" __magic_name__: int = "\"text\": [\"foo\", \"foo\"]" __magic_name__: Any = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class snake_case__ : lowercase__ : List[Any] = 200 lowercase__ : Optional[int] = {'''Content-Length''': '''100'''} lowercase__ : Dict = {} def __magic_name__ ( self , **lowerCAmelCase__ ) -> Union[str, Any]: return [bytes(lowerCAmelCase__ , """utf-8""" )] def UpperCamelCase ( *_A, **_A ): """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""", [str, list, dict] ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" import requests monkeypatch.setattr(_A, """request""", _A ) __magic_name__ : Union[str, Any] = URL if issubclass(_A, _A ): __magic_name__ : Optional[int] = url elif issubclass(_A, _A ): __magic_name__ : str = [url] elif issubclass(_A, _A ): __magic_name__ : List[str] = {"""train""": url} __magic_name__ : Optional[int] = """dummy""" __magic_name__ : Tuple = """downloads""" __magic_name__ : Dict = tmp_path __magic_name__ : Any = DownloadConfig( cache_dir=os.path.join(_A, _A ), use_etag=_A, ) __magic_name__ : List[Any] = DownloadManager(dataset_name=_A, download_config=_A ) __magic_name__ : List[str] = dl_manager.download(_A ) __magic_name__ : str = urls for downloaded_paths in [downloaded_paths]: if isinstance(_A, _A ): __magic_name__ : str = [downloaded_paths] __magic_name__ : Optional[int] = [urls] elif isinstance(_A, _A ): assert "train" in downloaded_paths.keys() __magic_name__ : Union[str, Any] = downloaded_paths.values() __magic_name__ : str = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_A, _A ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __magic_name__ : List[Any] = Path(_A ) __magic_name__ : Tuple = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __magic_name__ : Tuple = downloaded_path.read_text() assert content == CONTENT __magic_name__ : Optional[Any] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __magic_name__ : Any = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""", [str, list, dict] ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Tuple = str(_A ) if issubclass(_A, _A ): __magic_name__ : str = filename elif issubclass(_A, _A ): __magic_name__ : Union[str, Any] = [filename] elif issubclass(_A, _A ): __magic_name__ : Any = {"""train""": filename} __magic_name__ : int = """dummy""" __magic_name__ : Optional[Any] = xz_file.parent __magic_name__ : Tuple = """extracted""" __magic_name__ : List[str] = DownloadConfig( cache_dir=_A, use_etag=_A, ) __magic_name__ : str = DownloadManager(dataset_name=_A, download_config=_A ) __magic_name__ : str = dl_manager.extract(_A ) __magic_name__ : int = paths for extracted_paths in [extracted_paths]: if isinstance(_A, _A ): __magic_name__ : List[Any] = [extracted_paths] __magic_name__ : Dict = [paths] elif isinstance(_A, _A ): assert "train" in extracted_paths.keys() __magic_name__ : Dict = extracted_paths.values() __magic_name__ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_A, _A ): assert extracted_path == dl_manager.extracted_paths[input_path] __magic_name__ : Union[str, Any] = Path(_A ) __magic_name__ : Union[str, Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(_A, etag=_A ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __magic_name__ : Dict = extracted_path.read_text() __magic_name__ : List[str] = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCamelCase ( _A, _A ): """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_A, start=1 ): __magic_name__ : Union[str, Any] = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""", ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : str = request.getfixturevalue(_A ) __magic_name__ : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_A ), start=1 ): _test_jsonl(_A, _A ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""", ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : List[Any] = request.getfixturevalue(_A ) __magic_name__ : int = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_A ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_A ), start=1 ): _test_jsonl(_A, _A ) assert num_tar == 1 assert num_jsonl == 2 def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_A ), start=1 ): assert os.path.basename(_A ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
352
__magic_name__: List[Any] = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __magic_name__: Dict = [{"type": "code", "content": INSTALL_CONTENT}] __magic_name__: Optional[Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
138
0
A : Tuple = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] A : List[Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
305
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Any = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = XLMProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) else: lowercase__ = ProphetNetForConditionalGenerationOld.from_pretrained(__magic_name__ ) lowercase__ , lowercase__ = ProphetNetForConditionalGeneration.from_pretrained( __magic_name__ , output_loading_info=__magic_name__ ) lowercase__ = ["""key_proj""", """value_proj""", """query_proj"""] lowercase__ = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: lowercase__ = key.split(""".""" ) if attributes[0] == "lm_head": lowercase__ = prophet lowercase__ = prophet_old else: lowercase__ = prophet.prophetnet lowercase__ = prophet_old.model lowercase__ = False for attribute in attributes: if attribute in mapping: lowercase__ = mapping[attribute] if not hasattr(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0: lowercase__ = attribute elif hasattr(__magic_name__ , __magic_name__ ): lowercase__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowercase__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowercase__ = True break elif attribute in special_keys and hasattr(__magic_name__ , """in_proj_weight""" ): lowercase__ = old_model.in_proj_weight.shape[0] // 3 lowercase__ = getattr(__magic_name__ , __magic_name__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ = True break if attribute.isdigit(): lowercase__ = model[int(__magic_name__ )] lowercase__ = old_model[int(__magic_name__ )] else: lowercase__ = getattr(__magic_name__ , __magic_name__ ) if old_attribute == "": lowercase__ = old_model else: if not hasattr(__magic_name__ , __magic_name__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowercase__ = getattr(__magic_name__ , __magic_name__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__magic_name__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase : Any = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( lowerCAmelCase): _a = (DDIMParallelScheduler,) _a = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def SCREAMING_SNAKE_CASE ( self: Any , **_lowerCAmelCase: Optional[Any] ): lowercase :List[Any] = { "num_train_timesteps": 10_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self: str , **_lowerCAmelCase: Any ): lowercase :Optional[int] = self.scheduler_classes[0] lowercase :Dict = self.get_scheduler_config(**_lowerCAmelCase ) lowercase :List[str] = scheduler_class(**_lowerCAmelCase ) lowercase , lowercase :str = 10, 0.0 lowercase :List[Any] = self.dummy_model() lowercase :int = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for t in scheduler.timesteps: lowercase :Optional[int] = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase :Dict = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) lowercase :Optional[Any] = self.scheduler_classes[0] lowercase :List[str] = self.get_scheduler_config(steps_offset=1 ) lowercase :Optional[int] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def SCREAMING_SNAKE_CASE ( self: Tuple ): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict ): self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: str ): for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCAmelCase , eta=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Dict = self.scheduler_classes[0] lowercase :Tuple = self.get_scheduler_config() lowercase :Optional[Any] = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Union[str, Any] = self.scheduler_classes[0] lowercase :Union[str, Any] = self.get_scheduler_config() lowercase :Union[str, Any] = scheduler_class(**_lowerCAmelCase ) lowercase , lowercase :Union[str, Any] = 10, 0.0 scheduler.set_timesteps(_lowerCAmelCase ) lowercase :Dict = self.dummy_model() lowercase :Dict = self.dummy_sample_deter lowercase :Union[str, Any] = self.dummy_sample_deter + 0.1 lowercase :int = self.dummy_sample_deter - 0.1 lowercase :Dict = samplea.shape[0] lowercase :Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase :Optional[Any] = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) lowercase :Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase :Optional[int] = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCAmelCase ) lowercase :int = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :int = self.full_loop() lowercase :Optional[int] = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Any = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Dict = self.full_loop(prediction_type="v_prediction" ) lowercase :int = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Optional[int] ): # We specify different beta, so that the first alpha is 0.99 lowercase :List[Any] = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) lowercase :List[Any] = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Any ): # We specify different beta, so that the first alpha is 0.99 lowercase :Tuple = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) lowercase :str = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :List[str] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
158
0
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowerCamelCase__ : List[str] = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def UpperCAmelCase_ ( __UpperCAmelCase : str = "dhaka" , __UpperCAmelCase : int = 5 ) -> int: SCREAMING_SNAKE_CASE_ = min(__UpperCAmelCase , 50 ) # Prevent abuse! SCREAMING_SNAKE_CASE_ = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } SCREAMING_SNAKE_CASE_ = requests.get('https://www.google.com/search' , params=__UpperCAmelCase , headers=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = BeautifulSoup(html.text , 'html.parser' ) SCREAMING_SNAKE_CASE_ = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) SCREAMING_SNAKE_CASE_ = json.dumps(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = json.loads(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , __UpperCAmelCase , ) if not matched_google_image_data: return 0 SCREAMING_SNAKE_CASE_ = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(__UpperCAmelCase ) , ) SCREAMING_SNAKE_CASE_ = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , __UpperCAmelCase , ) for index, fixed_full_res_image in enumerate(__UpperCAmelCase ): if index >= max_images: return index SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'ascii' ).decode( 'unicode-escape' ) SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'ascii' ).decode( 'unicode-escape' ) SCREAMING_SNAKE_CASE_ = urllib.request.build_opener() SCREAMING_SNAKE_CASE_ = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = f"query_{query.replace(' ' , '_' )}" if not os.path.exists(__UpperCAmelCase ): os.makedirs(__UpperCAmelCase ) urllib.request.urlretrieve( # noqa: S310 __UpperCAmelCase , f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: lowerCamelCase__ : int = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
225
from __future__ import annotations lowerCamelCase__ : Optional[int] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCamelCase__ : List[Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) for i in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = -1 for j in range(i + 1 , __UpperCAmelCase ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE_ = arr[j] break result.append(__UpperCAmelCase ) return result def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = [] for i, outer in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE_ = inner break result.append(__UpperCAmelCase ) return result def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [-1] * arr_size for index in reversed(range(__UpperCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE_ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase__ : List[str] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
225
1
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = OpenAIGPTTokenizer __UpperCAmelCase : int = OpenAIGPTTokenizerFast __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = False def __lowercase ( self : Optional[int] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _a : int = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[str] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ) as fp: fp.write(json.dumps(_a ) ) with open(self.merges_file ,'w' ) as fp: fp.write('\n'.join(_a ) ) def __lowercase ( self : int ,_a : int ): '''simple docstring''' return "lower newer", "lower newer" def __lowercase ( self : Any ): '''simple docstring''' _a : str = OpenAIGPTTokenizer(self.vocab_file ,self.merges_file ) _a : Dict = 'lower' _a : List[str] = ['low', 'er</w>'] _a : Tuple = tokenizer.tokenize(_a ) self.assertListEqual(_a ,_a ) _a : List[str] = tokens + ['<unk>'] _a : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) ,_a ) def __lowercase ( self : Union[str, Any] ,_a : Dict=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : int = self.rust_tokenizer_class.from_pretrained(_a ,**_a ) # Simple input _a : Dict = 'This is a simple input' _a : str = ['This is a simple input 1', 'This is a simple input 2'] _a : str = ('This is a simple input', 'This is a pair') _a : Union[str, Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_a ,tokenizer_r.encode ,_a ,max_length=_a ,padding='max_length' ) # Simple input self.assertRaises(_a ,tokenizer_r.encode_plus ,_a ,max_length=_a ,padding='max_length' ) # Simple input self.assertRaises( _a ,tokenizer_r.batch_encode_plus ,_a ,max_length=_a ,padding='max_length' ,) # Pair input self.assertRaises(_a ,tokenizer_r.encode ,_a ,max_length=_a ,padding='max_length' ) # Pair input self.assertRaises(_a ,tokenizer_r.encode_plus ,_a ,max_length=_a ,padding='max_length' ) # Pair input self.assertRaises( _a ,tokenizer_r.batch_encode_plus ,_a ,max_length=_a ,padding='max_length' ,) def __lowercase ( self : Any ): '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" pass
5
'''simple docstring''' def UpperCAmelCase_ (__a : list[int] , __a : list[int] ): """simple docstring""" if not len(__a ) == len(__a ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients _a, _a, _a : Tuple = equationa _a, _a, _a : str = equationa # Calculate the determinants of the matrices _a : Union[str, Any] = aa * ba - aa * ba _a : List[Any] = ca * ba - ca * ba _a : List[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : int = determinant_x / determinant _a : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
5
1
'''simple docstring''' # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter a : List[str] = logging.get_logger(__name__) a : Dict[Optional[str], Type[Formatter]] = {} a : Dict[Optional[str], str] = {} a : Dict[Optional[str], Exception] = {} def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = None, ) -> List[Any]: '''simple docstring''' snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) snake_case_ = format_type def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = None ) -> Any: '''simple docstring''' snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: a : Tuple = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: a : List[str] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: a : Optional[int] = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __magic_name__ ( __UpperCAmelCase ) -> Optional[str]: '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __magic_name__ ( __UpperCAmelCase, **__UpperCAmelCase ) -> Formatter: '''simple docstring''' snake_case_ = get_format_type_from_alias(__UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
56
'''simple docstring''' import re from filelock import FileLock try: import nltk a : Union[str, Any] = True except (ImportError, ModuleNotFoundError): a : Any = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' re.sub('''<n>''', '''''', __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
56
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = CustomTokenizer pass
90
def __UpperCamelCase ( lowerCAmelCase__ : list[list[int | float]] ): __a : int = len(lowerCAmelCase__ ) __a : Dict = len(matrix[0] ) __a : Union[str, Any] = min(lowerCAmelCase__ , lowerCAmelCase__ ) for row in range(lowerCAmelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCAmelCase__ ): __a : Dict = matrix[col][row] / matrix[row][row] for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __a : Optional[int] = True for i in range(row + 1 , lowerCAmelCase__ ): if matrix[i][row] != 0: __a , __a : Any = matrix[i], matrix[row] __a : Union[str, Any] = False break if reduce: rank -= 1 for i in range(lowerCAmelCase__ ): __a : Optional[Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
90
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Any = { '''speechbrain/m-ctc-t-large''': '''https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json''', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "mctct" def __init__( self: Tuple , UpperCamelCase: Any=80_65 , UpperCamelCase: str=15_36 , UpperCamelCase: int=36 , UpperCamelCase: Dict=61_44 , UpperCamelCase: List[str]=4 , UpperCamelCase: Dict=3_84 , UpperCamelCase: str=9_20 , UpperCamelCase: Tuple=1e-5 , UpperCamelCase: Tuple=0.3 , UpperCamelCase: Optional[Any]="relu" , UpperCamelCase: Tuple=0.02 , UpperCamelCase: Any=0.3 , UpperCamelCase: Optional[int]=0.3 , UpperCamelCase: Tuple=1 , UpperCamelCase: Union[str, Any]=0 , UpperCamelCase: Optional[int]=2 , UpperCamelCase: Optional[Any]=1 , UpperCamelCase: List[Any]=0.3 , UpperCamelCase: Union[str, Any]=1 , UpperCamelCase: List[str]=(7,) , UpperCamelCase: str=(3,) , UpperCamelCase: List[Any]=80 , UpperCamelCase: Union[str, Any]=1 , UpperCamelCase: Union[str, Any]=None , UpperCamelCase: str="sum" , UpperCamelCase: Any=False , **UpperCamelCase: Dict , ): """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = intermediate_size A__ = num_attention_heads A__ = attention_head_dim A__ = max_position_embeddings A__ = layer_norm_eps A__ = layerdrop A__ = hidden_act A__ = initializer_range A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = pad_token_id A__ = bos_token_id A__ = eos_token_id A__ = conv_glu_dim A__ = conv_dropout A__ = num_conv_layers A__ = input_feat_per_channel A__ = input_channels A__ = conv_channels A__ = ctc_loss_reduction A__ = ctc_zero_infinity # prevents config testing fail with exporting to json A__ = list(UpperCAmelCase_ ) A__ = list(UpperCAmelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ f"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
335
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : Optional[Any] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[Any] = "vit_mae" def __init__( self : Optional[int] , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Optional[Any]=3072 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-12 , UpperCAmelCase_ : Any=224 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : List[Any]=2048 , UpperCAmelCase_ : Tuple=0.75 , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : str , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Any = image_size lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : Any = qkv_bias lowerCAmelCase : Union[str, Any] = decoder_num_attention_heads lowerCAmelCase : Tuple = decoder_hidden_size lowerCAmelCase : int = decoder_num_hidden_layers lowerCAmelCase : Optional[Any] = decoder_intermediate_size lowerCAmelCase : Union[str, Any] = mask_ratio lowerCAmelCase : Any = norm_pix_loss
138
0
"""simple docstring""" from __future__ import annotations def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) lowerCAmelCase__ : List[str] = number_of_bytes // partitions lowerCAmelCase__ : Union[str, Any] = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = i * bytes_per_partition + 1 lowerCAmelCase__ : Union[str, Any] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
212
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _A = logging.get_logger(__name__) class _lowerCamelCase ( a_ ): def __init__( self : Union[str, Any] , *UpperCamelCase : int , **UpperCamelCase : List[Any] ) -> None: """simple docstring""" warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
212
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=UpperCAmelCase__ ): __UpperCamelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self :str , *SCREAMING_SNAKE_CASE :Dict , **SCREAMING_SNAKE_CASE :Optional[int] ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :str , *SCREAMING_SNAKE_CASE :List[Any] , **SCREAMING_SNAKE_CASE :List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :Optional[int] , *SCREAMING_SNAKE_CASE :Optional[Any] , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A__ ( metaclass=UpperCAmelCase__ ): __UpperCamelCase : Dict = ["torch", "transformers", "onnx"] def __init__( self :Optional[Any] , *SCREAMING_SNAKE_CASE :List[str] , **SCREAMING_SNAKE_CASE :Any ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :List[Any] , *SCREAMING_SNAKE_CASE :List[str] , **SCREAMING_SNAKE_CASE :List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :List[str] , *SCREAMING_SNAKE_CASE :Any , **SCREAMING_SNAKE_CASE :List[Any] ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A__ ( metaclass=UpperCAmelCase__ ): __UpperCamelCase : Tuple = ["torch", "transformers", "onnx"] def __init__( self :Any , *SCREAMING_SNAKE_CASE :Tuple , **SCREAMING_SNAKE_CASE :List[str] ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :List[Any] , *SCREAMING_SNAKE_CASE :Optional[int] , **SCREAMING_SNAKE_CASE :int ) -> str: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :Tuple , *SCREAMING_SNAKE_CASE :Any , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> str: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A__ ( metaclass=UpperCAmelCase__ ): __UpperCamelCase : Any = ["torch", "transformers", "onnx"] def __init__( self :Tuple , *SCREAMING_SNAKE_CASE :Union[str, Any] , **SCREAMING_SNAKE_CASE :List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :Any , *SCREAMING_SNAKE_CASE :Union[str, Any] , **SCREAMING_SNAKE_CASE :List[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :Optional[Any] , *SCREAMING_SNAKE_CASE :Optional[int] , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A__ ( metaclass=UpperCAmelCase__ ): __UpperCamelCase : List[Any] = ["torch", "transformers", "onnx"] def __init__( self :Optional[int] , *SCREAMING_SNAKE_CASE :int , **SCREAMING_SNAKE_CASE :Dict ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :int , *SCREAMING_SNAKE_CASE :List[str] , **SCREAMING_SNAKE_CASE :Any ) -> int: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :List[Any] , *SCREAMING_SNAKE_CASE :Dict , **SCREAMING_SNAKE_CASE :List[str] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class A__ ( metaclass=UpperCAmelCase__ ): __UpperCamelCase : str = ["torch", "transformers", "onnx"] def __init__( self :Optional[int] , *SCREAMING_SNAKE_CASE :str , **SCREAMING_SNAKE_CASE :Any ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :List[str] , *SCREAMING_SNAKE_CASE :Union[str, Any] , **SCREAMING_SNAKE_CASE :Union[str, Any] ) -> str: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def __UpperCAmelCase ( cls :Dict , *SCREAMING_SNAKE_CASE :List[Any] , **SCREAMING_SNAKE_CASE :Optional[int] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
276
'''simple docstring''' import math import unittest def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> str: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _snake_case ( self ) -> List[Any]: with self.assertRaises(_lowerCAmelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
158
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowercase : Tuple = Lock() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A , __A , __A ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _snake_case = min(__A , __A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _snake_case = max(__A , __A ) # after all swaps are performed, send the values back to main result_pipe[1].send(__A ) def SCREAMING_SNAKE_CASE__ ( __A ) -> List[Any]: _snake_case = [] _snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _snake_case = Pipe() _snake_case = Pipe() process_array_.append( Process( target=__A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _snake_case = temp_rs _snake_case = temp_rr for i in range(1 , len(__A ) - 1 ): _snake_case = Pipe() _snake_case = Pipe() process_array_.append( Process( target=__A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _snake_case = temp_rs _snake_case = temp_rr process_array_.append( Process( target=__A , args=( len(__A ) - 1, arr[len(__A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__A ) ): _snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: _snake_case = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__A ) _snake_case = odd_even_transposition(__A ) print('Sorted List\n' ) print(*__A ) if __name__ == "__main__": main()
160
'''simple docstring''' import os import sys import unittest lowercase : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase : List[Any] = os.path.join(git_repo_path, "src", "diffusers") class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" _snake_case = find_backend(' if not is_torch_available():' ) self.assertEqual(lowerCAmelCase_ , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(lowerCAmelCase_ , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(lowerCAmelCase_ , 'torch_and_transformers_and_onnx' ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowerCAmelCase_ ) self.assertIn('torch_and_transformers' , lowerCAmelCase_ ) self.assertIn('flax_and_transformers' , lowerCAmelCase_ ) self.assertIn('torch_and_transformers_and_onnx' , lowerCAmelCase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(lowerCAmelCase_ , '\nCONSTANT = None\n' ) _snake_case = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( lowerCAmelCase_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) _snake_case = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' _snake_case = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' _snake_case = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , lowerCAmelCase_ )
160
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def __A (self ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _lowercase =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) _lowercase =['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def __A (self , UpperCAmelCase ) -> List[Any]: return "lower newer", "lower newer" def __A (self ) -> Dict: _lowercase =OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _lowercase ='''lower''' _lowercase =['''low''', '''er</w>'''] _lowercase =tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _lowercase =tokens + ['''<unk>'''] _lowercase =[1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def __A (self , UpperCAmelCase=1_5 ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowercase =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) # Simple input _lowercase ='''This is a simple input''' _lowercase =['''This is a simple input 1''', '''This is a simple input 2'''] _lowercase =('''This is a simple input''', '''This is a pair''') _lowercase =[ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding='''max_length''' , ) def __A (self ) -> str: pass @require_ftfy @require_spacy @require_tokenizers class lowerCamelCase__ ( lowerCAmelCase): pass
5
from __future__ import annotations from collections.abc import Callable UpperCAmelCase__ = list[list[float | int]] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> Matrix: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(size + 1 )] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for row in range(__snake_case ): for col in range(__snake_case ): _lowercase =matrix[row][col] _lowercase =vector[row][0] _lowercase =0 _lowercase =0 while row < size and col < size: # pivoting _lowercase =max((abs(augmented[rowa][col] ), rowa) for rowa in range(__snake_case , __snake_case ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase =augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __snake_case ): _lowercase =augmented[rowa][col] / augmented[row][col] _lowercase =0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __snake_case ): for row in range(__snake_case ): _lowercase =augmented[row][col] / augmented[col][col] for cola in range(__snake_case , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__snake_case ) ] def UpperCAmelCase_ ( __snake_case ) -> Callable[[int], int]: """simple docstring""" _lowercase =len(__snake_case ) _lowercase =[[0 for _ in range(__snake_case )] for _ in range(__snake_case )] _lowercase =[[0] for _ in range(__snake_case )] _lowercase =42 _lowercase =42 _lowercase =42 _lowercase =42 for x_val, y_val in enumerate(__snake_case ): for col in range(__snake_case ): _lowercase =(x_val + 1) ** (size - col - 1) _lowercase =y_val _lowercase =solve(__snake_case , __snake_case ) def interpolated_func(__snake_case ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__snake_case ) ) return interpolated_func def UpperCAmelCase_ ( __snake_case ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase_ ( __snake_case = question_function , __snake_case = 10 ) -> int: """simple docstring""" _lowercase =[func(__snake_case ) for x_val in range(1 , order + 1 )] _lowercase =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase =0 _lowercase =42 _lowercase =42 for poly in polynomials: _lowercase =1 while func(__snake_case ) == poly(__snake_case ): x_val += 1 ret += poly(__snake_case ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
5
1
'''simple docstring''' from __future__ import annotations UpperCAmelCase = [] def _snake_case ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" for i in range(len(_SCREAMING_SNAKE_CASE ) ): if board[row][i] == 1: return False for i in range(len(_SCREAMING_SNAKE_CASE ) ): if board[i][column] == 1: return False for i, j in zip(range(_SCREAMING_SNAKE_CASE , -1 , -1 ) , range(_SCREAMING_SNAKE_CASE , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_SCREAMING_SNAKE_CASE , -1 , -1 ) , range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) ): if board[i][j] == 1: return False return True def _snake_case ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if row >= len(_SCREAMING_SNAKE_CASE ): solution.append(_SCREAMING_SNAKE_CASE ) printboard(_SCREAMING_SNAKE_CASE ) print() return True for i in range(len(_SCREAMING_SNAKE_CASE ) ): if is_safe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = 1 solve(_SCREAMING_SNAKE_CASE , row + 1 ) lowerCAmelCase = 0 return False def _snake_case ( _SCREAMING_SNAKE_CASE : list[list[int]] ) -> None: """simple docstring""" for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(len(_SCREAMING_SNAKE_CASE ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) UpperCAmelCase = 8 UpperCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
369
'''simple docstring''' from __future__ import annotations UpperCAmelCase = [] def _snake_case ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" for i in range(len(_SCREAMING_SNAKE_CASE ) ): if board[row][i] == 1: return False for i in range(len(_SCREAMING_SNAKE_CASE ) ): if board[i][column] == 1: return False for i, j in zip(range(_SCREAMING_SNAKE_CASE , -1 , -1 ) , range(_SCREAMING_SNAKE_CASE , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_SCREAMING_SNAKE_CASE , -1 , -1 ) , range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) ): if board[i][j] == 1: return False return True def _snake_case ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" if row >= len(_SCREAMING_SNAKE_CASE ): solution.append(_SCREAMING_SNAKE_CASE ) printboard(_SCREAMING_SNAKE_CASE ) print() return True for i in range(len(_SCREAMING_SNAKE_CASE ) ): if is_safe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = 1 solve(_SCREAMING_SNAKE_CASE , row + 1 ) lowerCAmelCase = 0 return False def _snake_case ( _SCREAMING_SNAKE_CASE : list[list[int]] ) -> None: """simple docstring""" for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(len(_SCREAMING_SNAKE_CASE ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) UpperCAmelCase = 8 UpperCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
187
0
__A = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
90
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__="None" , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = relative_attention __lowerCamelCase = position_biased_input __lowerCamelCase = pos_att_type __lowerCamelCase = scope def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = DebertaModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ )[0] __lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ )[0] __lowerCamelCase = model(lowerCamelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = DebertaForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = DebertaForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = DebertaForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = DebertaForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = DebertaModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = DebertaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @slow def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = DebertaModel.from_pretrained('microsoft/deberta-base' ) __lowerCamelCase = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __lowerCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
90
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __a = logging.get_logger(__name__) __a = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __a = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __a = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __a = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __a = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __a = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __a = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __a = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __a = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __a = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __a = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __a = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __a = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __a = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __a = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __a = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_MAPPING __a = auto_class_update(FlaxAutoModel) class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING __a = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __a = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING __a = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __a = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __a = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __a = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __a = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __a = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __a = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __a = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __a = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __a( _BaseAutoModelClass ): """simple docstring""" lowerCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __a = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
235
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __a = logging.get_logger(__name__) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = r'''\w+[.]\d+''' UpperCAmelCase_ : int = re.findall(_lowercase , _lowercase ) for pat in pats: UpperCAmelCase_ : List[Any] = key.replace(_lowercase , '''_'''.join(pat.split('''.''' ) ) ) return key def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=42 ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ : str = flax_model.init_weights(PRNGKey(_lowercase ) ) UpperCAmelCase_ : List[Any] = flatten_dict(_lowercase ) UpperCAmelCase_ : int = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : Optional[int] = rename_key(_lowercase ) UpperCAmelCase_ : List[str] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase_, UpperCAmelCase_ : Any = rename_key_and_reshape_tensor(_lowercase , _lowercase , _lowercase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ : int = jnp.asarray(_lowercase ) return unflatten_dict(_lowercase )
235
1
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase__ = datasets.logging.get_logger(__name__) lowerCamelCase__ = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ lowerCamelCase__ = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ lowerCamelCase__ = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="dummy_doc" ) -> List[str]: lowerCAmelCase__ : List[str] = {doc: key_lines} lowerCAmelCase__ : int = {doc: sys_lines} lowerCAmelCase__ : Dict = {} lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ , lowerCAmelCase__ : int = reader.get_doc_mentions(SCREAMING_SNAKE_CASE_ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE_ ) key_singletons_num += singletons_num if NP_only or min_span: lowerCAmelCase__ : List[Any] = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE_ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = reader.get_doc_mentions(SCREAMING_SNAKE_CASE_ , sys_doc_lines[doc] , SCREAMING_SNAKE_CASE_ ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCAmelCase__ : int = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE_ , key_doc_lines[doc] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if remove_nested: lowerCAmelCase__ , lowerCAmelCase__ : Dict = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCAmelCase__ , lowerCAmelCase__ : int = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCAmelCase__ : Union[str, Any] = reader.get_mention_assignments(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = reader.get_mention_assignments(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( 'Number of resulting singleton clusters in the key ' F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' 'files, respectively' ) return doc_coref_infos def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = get_coref_infos(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = {} lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Optional[int] = 0 for name, metric in metrics: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = evaluator.evaluate_documents(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: lowerCAmelCase__ : List[Any] = (conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({'conll_score': conll} ) return output_scores def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCAmelCase__ : str = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowerCAmelCase__ : Union[str, Any] = line.split()[5] if not parse_col == "-": lowerCAmelCase__ : List[str] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def _lowerCamelCase ( self : int , a : List[str] , a : Tuple , a : Optional[Any]=True , a : Optional[Any]=False , a : Tuple=False , a : Optional[Any]=False ): '''simple docstring''' lowerCAmelCase__ : Dict = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowerCAmelCase__ : Any = util.check_gold_parse_annotation(a ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCAmelCase__ : Optional[int] = evaluate( key_lines=a , sys_lines=a , metrics=a , NP_only=a , remove_nested=a , keep_singletons=a , min_span=a , ) return score
212
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = AlbertTokenizer lowercase = AlbertTokenizerFast lowercase = True lowercase = True lowercase = True def _lowerCamelCase ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : int = AlbertTokenizer(a ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : List[str] , a : int ): '''simple docstring''' lowerCAmelCase__ : Any = 'this is a test' lowerCAmelCase__ : List[Any] = 'this is a test' return input_text, output_text def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = '<pad>' lowerCAmelCase__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(a ) , 30_000 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : str = self.get_rust_tokenizer() lowerCAmelCase__ : List[Any] = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ : str = tokenizer.tokenize(a ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Tuple = tokenizer.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase__ : Dict = tokenizer.encode(a ) lowerCAmelCase__ : List[Any] = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = AlbertTokenizer(a , keep_accents=a ) lowerCAmelCase__ : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(a , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [48, 25, 21, 1_289] ) lowerCAmelCase__ : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( a , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual(a , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) lowerCAmelCase__ : Any = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[str] = AlbertTokenizer(a ) lowerCAmelCase__ : Tuple = tokenizer.encode('sequence builders' ) lowerCAmelCase__ : Any = tokenizer.encode('multi-sequence build' ) lowerCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(a ) lowerCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
212
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _lowercase : lowercase = 42 lowercase = 42 class _lowercase : def __init__( self : List[Any] , snake_case : int ) -> str: """simple docstring""" UpperCamelCase_ : list[list[Edge]] = [[] for _ in range(snake_case )] UpperCamelCase_ : Optional[int] = size def __getitem__( self : str , snake_case : int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: """simple docstring""" return self._size def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : int , snake_case : int , snake_case : int ) -> Optional[Any]: """simple docstring""" if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(snake_case , snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : int , snake_case : int ) -> int | None: """simple docstring""" UpperCamelCase_ : List[str] = deque([start_vertex] ) UpperCamelCase_ : list[int | None] = [None] * self.size UpperCamelCase_ : List[str] = 0 while queue: UpperCamelCase_ : Any = queue.popleft() UpperCamelCase_ : Tuple = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCamelCase_ : Tuple = current_distance + edge.weight UpperCamelCase_ : Tuple = distances[edge.destination_vertex] if ( isinstance(snake_case , snake_case ) and new_distance >= dest_vertex_distance ): continue UpperCamelCase_ : List[str] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
50
import numpy # List of input, output pairs a_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) a_ = [2, 4, 1, 5] a_ = len(train_data) a_ = 0.009 def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : Any="train" ): return calculate_hypothesis_value(lowerCamelCase , lowerCamelCase ) - output( lowerCamelCase , lowerCamelCase ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : List[str] = 0 for i in range(len(lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowercase ( lowerCamelCase : int , lowerCamelCase : Any ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=m ): UpperCamelCase_ : str = 0 for i in range(lowerCamelCase ): if index == -1: summation_value += _error(lowerCamelCase ) else: summation_value += _error(lowerCamelCase ) * train_data[i][0][index] return summation_value def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : List[str] = summation_of_cost_derivative(lowerCamelCase , lowerCamelCase ) / m return cost_derivative_value def __lowercase ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_ : Optional[int] = 0.0_0_0_0_0_2 UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : Union[str, Any] = 0 while True: j += 1 UpperCamelCase_ : Dict = [0, 0, 0, 0] for i in range(0 , len(lowerCamelCase ) ): UpperCamelCase_ : Any = get_cost_derivative(i - 1 ) UpperCamelCase_ : List[str] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase , lowerCamelCase , atol=lowerCamelCase , rtol=lowerCamelCase , ): break UpperCamelCase_ : Optional[Any] = temp_parameter_vector print(('Number of iterations:', j) ) def __lowercase ( ): for i in range(len(lowerCamelCase ) ): print(('Actual output value:', output(lowerCamelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(lowerCamelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
50
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A = 16 A = 32 def __A ( a_ :Accelerator , a_ :int = 16) -> Optional[Any]: __a : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''') __a : str = load_dataset('''glue''' , '''mrpc''') def tokenize_function(a_ :Optional[int]): # max_length=None => use the model max length (it's actually the default) __a : List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=a_ , max_length=a_) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a : List[str] = datasets.map( a_ , batched=a_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : int = tokenized_datasets.rename_column('''label''' , '''labels''') def collate_fn(a_ :Optional[Any]): # On TPU it's best to pad everything to the same length or training will be very slow. __a : List[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a : Any = 16 elif accelerator.mixed_precision != "no": __a : Union[str, Any] = 8 else: __a : Any = None return tokenizer.pad( a_ , padding='''longest''' , max_length=a_ , pad_to_multiple_of=a_ , return_tensors='''pt''' , ) # Instantiate dataloaders. __a : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=a_ , collate_fn=a_ , batch_size=a_) __a : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=a_ , collate_fn=a_ , batch_size=a_) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A = mocked_dataloaders # noqa: F811 def __A ( a_ :List[str] , a_ :int) -> Optional[int]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , a_) == "1": __a : Dict = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __a : List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir) else: __a : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Dict = config['''lr'''] __a : List[str] = int(config['''num_epochs''']) __a : Optional[Any] = int(config['''seed''']) __a : Union[str, Any] = int(config['''batch_size''']) set_seed(a_) __a , __a : str = get_dataloaders(a_ , a_) __a : List[Any] = evaluate.load('''glue''' , '''mrpc''') # If the batch size is too big we use gradient accumulation __a : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __a : List[str] = batch_size // MAX_GPU_BATCH_SIZE __a : Optional[Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : str = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=a_) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : List[str] = model.to(accelerator.device) # Instantiate optimizer __a : Tuple = AdamW(params=model.parameters() , lr=a_) # Instantiate scheduler __a : int = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=1_00 , num_training_steps=(len(a_) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : Optional[int] = accelerator.prepare( a_ , a_ , a_ , a_ , a_) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __a : Dict = os.path.split(a_)[-1].split('''.''')[0] accelerator.init_trackers(a_ , a_) # Now we train the model for epoch in range(a_): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __a : int = 0 for step, batch in enumerate(a_): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) __a : List[str] = model(**a_) __a : Union[str, Any] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __a : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(a_) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a_): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device) with torch.no_grad(): __a : Optional[int] = model(**a_) __a : str = outputs.logits.argmax(dim=-1) __a , __a : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels'''])) metric.add_batch( predictions=a_ , references=a_ , ) __a : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , a_) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(a_), '''epoch''': epoch, } , step=a_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def __A ( ) -> Optional[Any]: __a : List[Any] = argparse.ArgumentParser(description='''Simple example of training script.''') parser.add_argument( '''--mixed_precision''' , type=a_ , default=a_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''') parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=a_ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __a : Optional[int] = parser.parse_args() __a : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(a_ , a_) if __name__ == "__main__": main()
160
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : Optional[int] = inspect.getfile(accelerate.test_utils ) __a : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __a : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def _lowerCamelCase ( self ): print(f"""Found {torch.cuda.device_count()} devices.""" ) __a : int = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def _lowerCamelCase ( self ): print(f"""Found {torch.cuda.device_count()} devices.""" ) __a : Any = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def _lowerCamelCase ( self ): __a : Optional[Any] = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def _lowerCamelCase ( self ): print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) __a : Union[str, Any] = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": A = Accelerator() A = (accelerator.state.process_index + 2, 10) A = torch.randint(0, 10, shape).to(accelerator.device) A = '''''' A = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." A = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." A = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
160
1
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): def update_area_of_max_square(_lowerCamelCase , _lowerCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 A : Optional[int] = update_area_of_max_square(_lowerCamelCase , col + 1 ) A : str = update_area_of_max_square(row + 1 , col + 1 ) A : List[Any] = update_area_of_max_square(row + 1 , _lowerCamelCase ) if mat[row][col]: A : Union[str, Any] = 1 + min([right, diagonal, down] ) A : Tuple = max(largest_square_area[0] , _lowerCamelCase ) return sub_problem_sol else: return 0 A : List[Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): def update_area_of_max_square_using_dp_array( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] A : int = update_area_of_max_square_using_dp_array(_lowerCamelCase , col + 1 , _lowerCamelCase ) A : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _lowerCamelCase ) A : Dict = update_area_of_max_square_using_dp_array(row + 1 , _lowerCamelCase , _lowerCamelCase ) if mat[row][col]: A : str = 1 + min([right, diagonal, down] ) A : Dict = max(largest_square_area[0] , _lowerCamelCase ) A : Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 A : Any = [0] A : List[Any] = [[-1] * cols for _ in range(_lowerCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _lowerCamelCase ) return largest_square_area[0] def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : str = [[0] * (cols + 1) for _ in range(rows + 1 )] A : Any = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): A : int = dp_array[row][col + 1] A : Union[str, Any] = dp_array[row + 1][col + 1] A : List[str] = dp_array[row + 1][col] if mat[row][col] == 1: A : int = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A : Any = max(dp_array[row][col] , _lowerCamelCase ) else: A : int = 0 return largest_square_area def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : List[str] = [0] * (cols + 1) A : Dict = [0] * (cols + 1) A : List[str] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): A : Optional[Any] = current_row[col + 1] A : Optional[int] = next_row[col + 1] A : Dict = next_row[col] if mat[row][col] == 1: A : Optional[Any] = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A : str = max(current_row[col] , _lowerCamelCase ) else: A : List[str] = 0 A : Tuple = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
361
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __SCREAMING_SNAKE_CASE = 637_8137.0 __SCREAMING_SNAKE_CASE = 635_6752.31_4245 __SCREAMING_SNAKE_CASE = 6378137 def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude A : Tuple = atan((1 - flattening) * tan(radians(_lowerCamelCase ) ) ) A : Tuple = atan((1 - flattening) * tan(radians(_lowerCamelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius A : List[str] = haversine_distance(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values A : List[Any] = (b_lata + b_lata) / 2 A : Optional[Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) A : List[str] = (sin(_lowerCamelCase ) ** 2) * (cos(_lowerCamelCase ) ** 2) A : Optional[int] = cos(sigma / 2 ) ** 2 A : int = (sigma - sin(_lowerCamelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) A : List[str] = (cos(_lowerCamelCase ) ** 2) * (sin(_lowerCamelCase ) ** 2) A : Union[str, Any] = sin(sigma / 2 ) ** 2 A : int = (sigma + sin(_lowerCamelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
256
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A ( lowercase , lowercase=False ) -> List[str]: '''simple docstring''' try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value _UpperCAmelCase : Dict = parse_flag_from_env("RUN_SLOW", default=False) def A ( lowercase ) -> int: '''simple docstring''' return unittest.skip('Test was skipped' )(_A ) def A ( lowercase ) -> Dict: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_A ) def A ( lowercase ) -> Dict: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_A ) def A ( lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_A ) def A ( lowercase ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_A ) def A ( lowercase ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_A ) def A ( lowercase ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_A ) def A ( lowercase ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_A ) def A ( lowercase ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_A ) def A ( lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_A ) def A ( lowercase ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_A ) def A ( lowercase ) -> List[str]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_A ) def A ( lowercase ) -> Dict: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_A ) def A ( lowercase ) -> Any: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_A ) def A ( lowercase ) -> str: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_A ) def A ( lowercase ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_A ) def A ( lowercase=None , lowercase=None ) -> Dict: '''simple docstring''' if test_case is None: return partial(_A , version=_A ) return unittest.skipUnless(is_torch_version('>=' , _A ) , f'''test requires torch version >= {version}''' )(_A ) def A ( lowercase ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_A ) def A ( lowercase ) -> int: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_A ) def A ( lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_A ) _UpperCAmelCase : List[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A ( lowercase ) -> List[str]: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_A ) class lowercase ( unittest.TestCase ): __lowercase : Optional[int] = True @classmethod def __UpperCamelCase ( cls ) -> str: """simple docstring""" UpperCamelCase = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls ) -> Union[str, Any]: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__lowercase ) class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Dict: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" UpperCamelCase = mocks if isinstance(__lowercase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def A ( lowercase ) -> Any: '''simple docstring''' UpperCamelCase = AcceleratorState() UpperCamelCase = tensor[None].clone().to(state.device ) UpperCamelCase = gather(_A ).cpu() UpperCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _A ): return False return True class lowercase : def __init__( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' while True: UpperCamelCase = await stream.readline() if line: callback(_A ) else: break async def A ( lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=False , lowercase=False ) -> int: '''simple docstring''' if echo: print('\nRunning: ' , ' '.join(_A ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(lowercase , lowercase , lowercase , lowercase="" ): UpperCamelCase = line.decode('utf-8' ).rstrip() sink.append(_A ) if not quiet: print(_A , _A , file=_A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowercase : tee(_A , _A , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowercase : tee(_A , _A , sys.stderr , label='stderr:' ) ) ), ] , timeout=_A , ) return _RunOutput(await p.wait() , _A , _A ) def A ( lowercase , lowercase=None , lowercase=None , lowercase=180 , lowercase=False , lowercase=True ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) ) UpperCamelCase = ' '.join(_A ) if result.returncode > 0: UpperCamelCase = '\n'.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class lowercase ( UpperCAmelCase__ ): pass def A ( lowercase , lowercase=False ) -> Any: '''simple docstring''' try: UpperCamelCase = subprocess.check_output(_A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_A , 'decode' ): UpperCamelCase = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{' '.join(_A )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
222
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_A ) snake_case_ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_A ) env_command_parser(subparsers=_A ) launch_command_parser(subparsers=_A ) tpu_command_parser(subparsers=_A ) test_command_parser(subparsers=_A ) # Let's go snake_case_ = parser.parse_args() if not hasattr(_A , "func" ): parser.print_help() exit(1 ) # Run args.func(_A ) if __name__ == "__main__": main()
187
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } __lowerCAmelCase = { '''b0''': { '''hidden_dim''': 12_80, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_24, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 12_80, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_40, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 14_08, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_60, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 15_36, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_00, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 17_92, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_80, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 20_48, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_56, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 23_04, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_28, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 25_60, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_00, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def snake_case_ ( snake_case ) -> Any: lowercase__: Optional[int] = EfficientNetConfig() lowercase__: Union[str, Any] = CONFIG_MAP[model_name]['hidden_dim'] lowercase__: Dict = CONFIG_MAP[model_name]['width_coef'] lowercase__: Any = CONFIG_MAP[model_name]['depth_coef'] lowercase__: Optional[Any] = CONFIG_MAP[model_name]['image_size'] lowercase__: List[Any] = CONFIG_MAP[model_name]['dropout_rate'] lowercase__: Optional[Any] = CONFIG_MAP[model_name]['dw_padding'] lowercase__: Any = 'huggingface/label-files' lowercase__: Tuple = 'imagenet-1k-id2label.json' lowercase__: str = 10_00 lowercase__: List[str] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) lowercase__: Optional[Any] = {int(snake_case ): v for k, v in idalabel.items()} lowercase__: Tuple = idalabel lowercase__: List[str] = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ) -> Union[str, Any]: lowercase__: int = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__: Union[str, Any] = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im def snake_case_ ( snake_case ) -> List[str]: lowercase__: Any = CONFIG_MAP[model_name]['image_size'] lowercase__: Any = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=snake_case , ) return preprocessor def snake_case_ ( snake_case ) -> List[str]: lowercase__: Any = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase__: Optional[Any] = sorted(set(snake_case ) ) lowercase__: int = len(snake_case ) lowercase__: str = {b: str(snake_case ) for b, i in zip(snake_case , range(snake_case ) )} lowercase__: List[str] = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase__: Optional[Any] = block_name_mapping[b] rename_keys.append((f'block{b}_expand_conv/kernel:0', f'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((f'block{b}_expand_bn/gamma:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((f'block{b}_expand_bn/beta:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (f'block{b}_expand_bn/moving_mean:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (f'block{b}_expand_bn/moving_variance:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (f'block{b}_dwconv/depthwise_kernel:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((f'block{b}_bn/gamma:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((f'block{b}_bn/beta:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (f'block{b}_bn/moving_mean:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (f'block{b}_bn/moving_variance:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((f'block{b}_se_reduce/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((f'block{b}_se_reduce/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((f'block{b}_se_expand/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((f'block{b}_se_expand/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (f'block{b}_project_conv/kernel:0', f'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((f'block{b}_project_bn/gamma:0', f'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((f'block{b}_project_bn/beta:0', f'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (f'block{b}_project_bn/moving_mean:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (f'block{b}_project_bn/moving_variance:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase__: Dict = {} for item in rename_keys: if item[0] in original_param_names: lowercase__: Dict = 'efficientnet.' + item[1] lowercase__: Any = 'classifier.weight' lowercase__: Any = 'classifier.bias' return key_mapping def snake_case_ ( snake_case , snake_case , snake_case ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue lowercase__: Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__: Optional[Any] = torch.from_numpy(snake_case ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__: Any = torch.from_numpy(snake_case ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__: List[str] = torch.from_numpy(np.transpose(snake_case ) ) else: lowercase__: Any = torch.from_numpy(snake_case ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(snake_case ) @torch.no_grad() def snake_case_ ( snake_case , snake_case , snake_case , snake_case ) -> int: lowercase__: int = model_classes[model_name]( include_top=snake_case , weights='imagenet' , input_tensor=snake_case , input_shape=snake_case , pooling=snake_case , classes=10_00 , classifier_activation='softmax' , ) lowercase__: Dict = original_model.trainable_variables lowercase__: List[str] = original_model.non_trainable_variables lowercase__: str = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__: Any = param.numpy() lowercase__: Dict = list(tf_params.keys() ) # Load HuggingFace model lowercase__: Optional[Any] = get_efficientnet_config(snake_case ) lowercase__: str = EfficientNetForImageClassification(snake_case ).eval() lowercase__: Optional[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase__: Tuple = rename_keys(snake_case ) replace_params(snake_case , snake_case , snake_case ) # Initialize preprocessor and preprocess input image lowercase__: int = convert_image_processor(snake_case ) lowercase__: List[str] = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__: str = hf_model(**snake_case ) lowercase__: List[Any] = outputs.logits.detach().numpy() # Original model inference lowercase__: Tuple = False lowercase__: Tuple = CONFIG_MAP[model_name]['image_size'] lowercase__: str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__: Union[str, Any] = image.img_to_array(snake_case ) lowercase__: Tuple = np.expand_dims(snake_case , axis=0 ) lowercase__: Optional[int] = original_model.predict(snake_case ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(snake_case , snake_case , atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(snake_case ): os.mkdir(snake_case ) # Save converted model and image processor hf_model.save_pretrained(snake_case ) preprocessor.save_pretrained(snake_case ) if push_to_hub: # Push model and image processor to hub print(f'Pushing converted {model_name} to the hub...' ) lowercase__: Optional[Any] = f'efficientnet-{model_name}' preprocessor.push_to_hub(snake_case ) hf_model.push_to_hub(snake_case ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __lowerCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
362
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( __UpperCamelCase , unittest.TestCase ): __lowercase : Optional[int] = CLIPTokenizer __lowercase : str = CLIPTokenizerFast __lowercase : Tuple = True __lowercase : str = {} __lowercase : Dict = False def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' super().setUp() # fmt: off lowercase__: str = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase__: List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) lowercase__: int = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] lowercase__: Optional[int] = {'unk_token': '<unk>'} lowercase__: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase__: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = 'lower newer' lowercase__: Dict = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__: Dict = 'lower newer' lowercase__: Union[str, Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] lowercase__: Any = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Tuple = tokens + [tokenizer.unk_token] lowercase__: Tuple = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) @require_ftfy def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase__: List[str] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Optional[int] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' lowercase__: Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Dict = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowercase__: Dict = 'xa\u0303y' + ' ' + 'x\xe3y' lowercase__: Tuple = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: int = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on unicode of space type lowercase__: str = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowercase__: Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Tuple = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Test that the tokenization is identical on unicode of line break type lowercase__: str = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowercase__: Optional[int] = tokenizer_s.tokenize(lowerCAmelCase__ ) lowercase__: Optional[int] = tokenizer_r.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase__: Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowercase__: Optional[int] = F'{text_of_1_token} {text_of_1_token}' lowercase__: int = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , ) lowercase__: Dict = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) lowercase__: Any = F' {text}' lowercase__: Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , ) lowercase__: int = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ) + 1, 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' super().test_tokenization_python_rust_equals() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' # CLIP always lower cases letters pass
288
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "xmod" def __init__( self , _a=3_0_5_2_2 , _a=7_6_8 , _a=1_2 , _a=1_2 , _a=3_0_7_2 , _a="gelu" , _a=0.1 , _a=0.1 , _a=5_1_2 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> Optional[Any]: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _a : Union[str, Any] = vocab_size _a : Tuple = hidden_size _a : List[str] = num_hidden_layers _a : Union[str, Any] = num_attention_heads _a : Any = hidden_act _a : Optional[Any] = intermediate_size _a : str = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Any = type_vocab_size _a : Dict = initializer_range _a : List[str] = layer_norm_eps _a : int = position_embedding_type _a : str = use_cache _a : List[str] = classifier_dropout _a : Optional[int] = pre_norm _a : List[Any] = adapter_reduction_factor _a : Any = adapter_layer_norm _a : Any = adapter_reuse_layer_norm _a : List[Any] = ln_before_adapter _a : Dict = list(_a ) _a : Optional[Any] = default_language class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
235
import operator as op a__ = '''scaler.pt''' a__ = '''pytorch_model''' a__ = '''random_states''' a__ = '''optimizer''' a__ = '''scheduler''' a__ = '''pytorch_model.bin''' a__ = '''pytorch_model.bin.index.json''' a__ = '''model.safetensors''' a__ = '''model.safetensors.index.json''' a__ = '''1.10.2''' a__ = '''py38''' a__ = '''4.17.0''' a__ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] a__ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] a__ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] a__ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] a__ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] a__ = '''2.0.1''' a__ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] a__ = ['''default''', '''reduce-overhead''', '''max-autotune'''] a__ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 a__ = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] a__ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] a__ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
235
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class lowercase ( unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ViTImageProcessor if is_vision_available() else None @property def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = (3, 32, 128) UpperCAmelCase = tempfile.mkdtemp() # fmt: off UpperCAmelCase = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on UpperCAmelCase = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) UpperCAmelCase = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } UpperCAmelCase = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_snake_case , _snake_case ) def snake_case_ ( self , **_snake_case ) -> int: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def snake_case_ ( self , **_snake_case ) -> int: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def snake_case_ ( self ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) UpperCAmelCase = Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) return image_input def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_image_processor() UpperCAmelCase = MgpstrProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_snake_case ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_image_processor() UpperCAmelCase = MgpstrProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) UpperCAmelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = MgpstrProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(_snake_case , return_tensors='''np''' ) UpperCAmelCase = processor(images=_snake_case , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = MgpstrProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCAmelCase = '''test''' UpperCAmelCase = processor(text=_snake_case ) UpperCAmelCase = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = MgpstrProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCAmelCase = '''test''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = MgpstrProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase = processor.char_decode(_snake_case ) UpperCAmelCase = tokenizer.batch_decode(_snake_case ) UpperCAmelCase = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_snake_case , _snake_case ) def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = MgpstrProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCAmelCase = None UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = MgpstrProcessor(tokenizer=_snake_case , image_processor=_snake_case ) UpperCAmelCase = torch.randn(1 , 27 , 38 ) UpperCAmelCase = torch.randn(1 , 27 , 5_0257 ) UpperCAmelCase = torch.randn(1 , 27 , 3_0522 ) UpperCAmelCase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
358
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} __magic_name__ = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } __magic_name__ = { "abeja/gpt-neox-japanese-2.7b": 2048, } def _lowerCAmelCase ( A__: List[Any] , A__: int ): '''simple docstring''' with open(A__ , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = json.loads(f.read() ) UpperCAmelCase = collections.OrderedDict() UpperCAmelCase = collections.OrderedDict() UpperCAmelCase = collections.OrderedDict() with open(A__ , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(A__ ): UpperCAmelCase = b UpperCAmelCase = idx for wd in b: UpperCAmelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case , _snake_case="<|endoftext|>" , _snake_case="<|endoftext|>" , _snake_case="<|startoftext|>" , _snake_case="<|endoftext|>" , _snake_case=False , **_snake_case , ) -> Tuple: """simple docstring""" super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(_snake_case ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) UpperCAmelCase = do_clean_text UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = load_vocab_and_emoji(_snake_case , _snake_case ) UpperCAmelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def snake_case_ ( self ) -> Any: """simple docstring""" # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def snake_case_ ( self , _snake_case ) -> List[Any]: """simple docstring""" return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text ) def snake_case_ ( self , _snake_case ) -> Dict: """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_snake_case ) def snake_case_ ( self , _snake_case ) -> List[str]: """simple docstring""" UpperCAmelCase = ''''''.join(_snake_case ).strip() return out_string def snake_case_ ( self , _snake_case ) -> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase = 0 if os.path.isdir(_snake_case ): UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: UpperCAmelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase = token_index writer.write(''','''.join(_snake_case ) + '''\n''' ) index += 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , _snake_case ) return vocab_file, emoji_file class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = vocab # same as swe UpperCAmelCase = ids_to_tokens # same as bpe UpperCAmelCase = emoji UpperCAmelCase = np.max([len(_snake_case ) for w in self.vocab.keys()] ) UpperCAmelCase = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) UpperCAmelCase = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) UpperCAmelCase = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) UpperCAmelCase = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) UpperCAmelCase = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) UpperCAmelCase = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) UpperCAmelCase = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' UpperCAmelCase = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' UpperCAmelCase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ) -> Dict: """simple docstring""" return len(self.ids_to_tokens ) def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = self.content_repattera.sub('''<URL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<EMAIL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<TEL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<DATE>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<DATE>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<PRICE>''' , _snake_case ) UpperCAmelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def snake_case_ ( self , _snake_case , _snake_case=False ) -> str: """simple docstring""" UpperCAmelCase = text.replace(''' ''' , '''<SP>''' ) UpperCAmelCase = text.replace(''' ''' , '''<SP>''' ) UpperCAmelCase = text.replace('''\r\n''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\n''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\r''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\t''' , '''<TAB>''' ) UpperCAmelCase = text.replace('''—''' , '''ー''' ) UpperCAmelCase = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase = text.replace(_snake_case , _snake_case ) if clean: UpperCAmelCase = self.clean_text(_snake_case ) def check_simbol(_snake_case ): UpperCAmelCase = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 2: UpperCAmelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(_snake_case ): UpperCAmelCase = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 3: UpperCAmelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28080 and c <= 0XE2B07F: return True return False UpperCAmelCase = 0 UpperCAmelCase = [] while pos < len(_snake_case ): UpperCAmelCase = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 UpperCAmelCase = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1 ): UpperCAmelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case ) > 2: UpperCAmelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_snake_case ) > 0: # the smallest token_id is adopted UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = sorted(_snake_case , key=lambda _snake_case : x[0] )[0] result.append(_snake_case ) UpperCAmelCase = e else: UpperCAmelCase = pos + 1 UpperCAmelCase = text[pos:end] if check_simbol(_snake_case ): result.append('''<KIGOU>''' ) elif checkuae(_snake_case ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) UpperCAmelCase = end return result def snake_case_ ( self , _snake_case , _snake_case="\n" ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode('''utf-8''' , errors='''replace''' ) ) UpperCAmelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(_snake_case ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(_snake_case ) if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode('''utf-8''' , errors='''replace''' ) ) UpperCAmelCase = ''''''.join(_snake_case ) return text
152
0
from manim import * class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[str]: lowerCamelCase__ : List[Any] = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase__ : Optional[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowerCamelCase__ : Optional[int] = [mem.copy() for i in range(6 )] lowerCamelCase__ : Union[str, Any] = [mem.copy() for i in range(6 )] lowerCamelCase__ : Any = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase__ : Any = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase__ : int = VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase__ : List[Any] = Text('CPU' , font_size=24 ) lowerCamelCase__ : Union[str, Any] = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase ) lowerCamelCase__ : List[Any] = [mem.copy() for i in range(1 )] lowerCamelCase__ : str = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase__ : int = Text('GPU' , font_size=24 ) lowerCamelCase__ : Optional[Any] = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) gpu.align_to(UpperCAmelCase , UpperCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = [mem.copy() for i in range(6 )] lowerCamelCase__ : Tuple = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) lowerCamelCase__ : Dict = Text('Model' , font_size=24 ) lowerCamelCase__ : Dict = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCAmelCase , run_time=1 ) , Create(UpperCAmelCase , run_time=1 ) , Create(UpperCAmelCase , run_time=1 ) , ) lowerCamelCase__ : Dict = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) lowerCamelCase__ : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase , run_time=2.5 ) , Write(UpperCAmelCase ) , Write(UpperCAmelCase ) ) self.add(UpperCAmelCase ) lowerCamelCase__ : int = [] lowerCamelCase__ : str = [] lowerCamelCase__ : Dict = [] for i, rect in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase , opacity=0.7 ) cpu_target.move_to(UpperCAmelCase ) cpu_target.generate_target() lowerCamelCase__ : Dict = 0.4_6 / 4 lowerCamelCase__ : List[str] = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=UpperCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCAmelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCAmelCase , buff=0.0 ) cpu_targs.append(UpperCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCAmelCase ) ) second_animations.append(MoveToTarget(UpperCAmelCase , run_time=1.5 ) ) self.play(*UpperCAmelCase ) self.play(*UpperCAmelCase ) self.wait()
50
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
1
class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ = "" , lowerCAmelCase__ = False ) -> None: '''simple docstring''' a__ : dict[str, RadixNode] ={} # A node will be a leaf if the tree contains its word a__ : Optional[int] =is_leaf a__ : str =prefix def _lowercase ( self , lowerCAmelCase__ ) -> tuple[str, str, str]: '''simple docstring''' a__ : Optional[int] =0 for q, w in zip(self.prefix , snake_case__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _lowercase ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' for word in words: self.insert(snake_case__ ) def _lowercase ( self , lowerCAmelCase__ ) -> None: '''simple docstring''' if self.prefix == word: a__ : List[Any] =True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: a__ : Tuple =RadixNode(prefix=snake_case__ , is_leaf=snake_case__ ) else: a__ : str =self.nodes[word[0]] a__ : Optional[Any] =incoming_node.match( snake_case__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: a__ : Optional[Any] =remaining_prefix a__ : Optional[Any] =self.nodes[matching_string[0]] a__ : str =RadixNode(snake_case__ , snake_case__ ) a__ : List[str] =aux_node if remaining_word == "": a__ : int =True else: self.nodes[matching_string[0]].insert(snake_case__ ) def _lowercase ( self , lowerCAmelCase__ ) -> bool: '''simple docstring''' a__ : Optional[int] =self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: a__ : Dict =incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case__ ) def _lowercase ( self , lowerCAmelCase__ ) -> bool: '''simple docstring''' a__ : Tuple =self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: a__ : str =incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: a__ : List[str] =list(self.nodes.values() )[0] a__ : int =merging_node.is_leaf self.prefix += merging_node.prefix a__ : Tuple =merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: a__ : Tuple =False # If there is 1 edge, we merge it with its child else: a__ : List[str] =list(incoming_node.nodes.values() )[0] a__ : Any =merging_node.is_leaf incoming_node.prefix += merging_node.prefix a__ : Any =merging_node.nodes return True def _lowercase ( self , lowerCAmelCase__ = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _A ( ): """simple docstring""" a__ : Tuple ="banana bananas bandana band apple all beast".split() a__ : Union[str, Any] =RadixNode() root.insert_many(__lowerCamelCase ) assert all(root.find(__lowerCamelCase ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def _A ( ): """simple docstring""" assert test_trie() def _A ( ): """simple docstring""" a__ : List[str] =RadixNode() a__ : List[Any] ="banana bananas bandanas bandana band apple all beast".split() root.insert_many(__lowerCamelCase ) print("Words:" , __lowerCamelCase ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
360
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Dict = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[Any] = """mvp""" _lowercase : Tuple = ["""past_key_values"""] _lowercase : Dict = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase__=5_0_2_6_7 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=1_2 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=1_6 , lowerCAmelCase__=1_2 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=1_6 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__="gelu" , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=0.0 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=1_0_0 , lowerCAmelCase__=8_0_0 , **lowerCAmelCase__ , ) -> str: '''simple docstring''' a__ : Dict =vocab_size a__ : List[str] =max_position_embeddings a__ : List[str] =d_model a__ : Optional[Any] =encoder_ffn_dim a__ : Dict =encoder_layers a__ : List[str] =encoder_attention_heads a__ : List[str] =decoder_ffn_dim a__ : Tuple =decoder_layers a__ : Tuple =decoder_attention_heads a__ : Any =dropout a__ : str =attention_dropout a__ : str =activation_dropout a__ : Optional[int] =activation_function a__ : Union[str, Any] =init_std a__ : Dict =encoder_layerdrop a__ : List[str] =decoder_layerdrop a__ : Union[str, Any] =classifier_dropout a__ : Union[str, Any] =use_cache a__ : Optional[Any] =encoder_layers a__ : List[str] =scale_embedding # scale factor will be sqrt(d_model) if True a__ : int =use_prompt a__ : Union[str, Any] =prompt_length a__ : Dict =prompt_mid_dim super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , lowerCAmelCase__ ): a__ : Tuple =self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' "The config can simply be saved and uploaded again to be fixed." )
148
0
'''simple docstring''' import requests from bsa import BeautifulSoup def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : dict ): """simple docstring""" lowercase_ : Union[str, Any] = BeautifulSoup(requests.get(__SCREAMING_SNAKE_CASE , params=__SCREAMING_SNAKE_CASE ).content , '''html.parser''' ) lowercase_ : List[Any] = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) lowercase_ : List[str] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowercase : Optional[int] = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 3_0, "pages": "3979-3990", "year": 2_0_1_8, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
93
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[str] ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : Any , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : int ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[str] ) -> str: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : int , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : Any ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : int , *__UpperCamelCase : Dict , **__UpperCamelCase : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[Any] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Tuple ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : str , *__UpperCamelCase : Dict , **__UpperCamelCase : List[Any] ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[str] , *__UpperCamelCase : Any , **__UpperCamelCase : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[str] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Tuple ) -> List[str]: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : List[Any] , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : int ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[Any] , *__UpperCamelCase : List[str] , **__UpperCamelCase : Dict ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : Any , *__UpperCamelCase : int , **__UpperCamelCase : int ) -> Any: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : List[Any] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Any ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[Any] , *__UpperCamelCase : Dict , **__UpperCamelCase : Optional[int] ) -> List[str]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[Any] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : int ) -> Tuple: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : Tuple , *__UpperCamelCase : Any , **__UpperCamelCase : List[Any] ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : int , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Dict ) -> int: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : str , *__UpperCamelCase : int , **__UpperCamelCase : Optional[int] ) -> Any: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : Tuple , *__UpperCamelCase : str , **__UpperCamelCase : Any ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[str] , *__UpperCamelCase : Tuple , **__UpperCamelCase : List[str] ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : Tuple , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : str ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : Union[str, Any] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Any ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : str , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[str] , *__UpperCamelCase : str , **__UpperCamelCase : str ) -> Tuple: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : List[str] , *__UpperCamelCase : List[str] , **__UpperCamelCase : Optional[Any] ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[Any] , *__UpperCamelCase : int , **__UpperCamelCase : Optional[Any] ) -> int: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : Optional[int] , *__UpperCamelCase : List[str] , **__UpperCamelCase : str ) -> List[str]: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : Optional[int] , *__UpperCamelCase : Tuple , **__UpperCamelCase : Tuple ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : Optional[int] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : Any , *__UpperCamelCase : Any , **__UpperCamelCase : Union[str, Any] ) -> Any: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : Union[str, Any] , *__UpperCamelCase : Any , **__UpperCamelCase : Optional[Any] ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : Union[str, Any] , *__UpperCamelCase : Tuple , **__UpperCamelCase : str ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[str] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Dict ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : str , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Union[str, Any] ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : Optional[Any] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Any ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : Optional[Any] , *__UpperCamelCase : str , **__UpperCamelCase : Tuple ) -> List[str]: requires_backends(cls , ['''flax'''] ) class UpperCAmelCase_ ( metaclass=_lowercase): snake_case__ = ['''flax'''] def __init__( self : Dict , *__UpperCamelCase : int , **__UpperCamelCase : Tuple ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : List[str] , *__UpperCamelCase : Dict , **__UpperCamelCase : List[str] ) -> Dict: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCamelCase ( cls : Any , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Union[str, Any] ) -> Tuple: requires_backends(cls , ['''flax'''] )
256
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , __a : Union[str, Any] , __a : Dict=13 , __a : Tuple=32 , __a : List[Any]=3 , __a : str=4 , __a : Optional[int]=[10, 20, 30, 40] , __a : str=[2, 2, 3, 2] , __a : Optional[Any]=True , __a : Optional[int]=True , __a : Optional[int]=37 , __a : Dict="gelu" , __a : Union[str, Any]=10 , __a : Tuple=0.02 , __a : int=["stage2", "stage3", "stage4"] , __a : List[Any]=3 , __a : Dict=None , ): _a = parent _a = batch_size _a = image_size _a = num_channels _a = num_stages _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = intermediate_size _a = hidden_act _a = type_sequence_label_size _a = initializer_range _a = out_features _a = num_labels _a = scope _a = num_stages def UpperCamelCase__ ( self : Any ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self : List[Any] ): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCamelCase__ ( self : List[str] ): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__a , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCamelCase__ ( self : str , __a : Dict , __a : List[str] , __a : Optional[Any] ): _a = UperNetForSemanticSegmentation(config=__a ) model.to(__a ) model.eval() _a = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =(UperNetForSemanticSegmentation,) if is_torch_available() else () __a ={'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __a =False __a =False __a =False __a =False __a =False __a =False def UpperCamelCase__ ( self : int ): _a = UperNetModelTester(self ) _a = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def UpperCamelCase__ ( self : int ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self : List[str] ): return def UpperCamelCase__ ( self : Tuple ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ ( self : Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def UpperCamelCase__ ( self : Tuple ): pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def UpperCamelCase__ ( self : str ): pass @unittest.skip(reason="UperNet does not have a base model" ) def UpperCamelCase__ ( self : str ): pass @unittest.skip(reason="UperNet does not have a base model" ) def UpperCamelCase__ ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def UpperCamelCase__ ( self : Optional[int] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase__ ( self : Any ): pass def UpperCamelCase__ ( self : Optional[Any] ): def check_hidden_states_output(__a : Dict , __a : Optional[Any] , __a : Dict ): _a = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__a , __a ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(__a , __a , __a ) def UpperCamelCase__ ( self : List[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = _config_zero_init(__a ) _a = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _a = model_class(config=__a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def UpperCamelCase__ ( self : int ): pass @slow def UpperCamelCase__ ( self : List[str] ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = UperNetForSemanticSegmentation.from_pretrained(__a ) self.assertIsNotNone(__a ) def _lowerCamelCase ( ) -> Dict: _a = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) _a = Image.open(lowercase ).convert("RGB" ) return image @require_torch @require_vision @slow class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : int ): _a = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) _a = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(__a ) _a = prepare_img() _a = processor(images=__a , return_tensors="pt" ).to(__a ) with torch.no_grad(): _a = model(**__a ) _a = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __a ) _a = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4 ) ) def UpperCamelCase__ ( self : Optional[int] ): _a = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) _a = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(__a ) _a = prepare_img() _a = processor(images=__a , return_tensors="pt" ).to(__a ) with torch.no_grad(): _a = model(**__a ) _a = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __a ) _a = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4 ) )
346
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 # [batch_size x 3] __a =42 # [batch_size x 3] __a =42 # [batch_size x 3] __a =42 # [batch_size x 3] __a =42 __a =42 __a =42 __a =42 __a =42 def UpperCamelCase__ ( self : str ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase__ ( self : List[str] ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase__ ( self : Union[str, Any] ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = torch.arange(self.height * self.width ) _a = torch.stack( [ pixel_indices % self.width, torch.div(__a , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def UpperCamelCase__ ( self : List[Any] ): _a , *_a = self.shape _a = int(np.prod(__a ) ) _a = self.get_image_coords() _a = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _a = self.get_camera_rays(__a ) _a = rays.view(__a , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase__ ( self : Dict , __a : torch.Tensor ): _a , *_a , _a = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _a = coords.view(__a , -1 , 2 ) _a = self.resolution() _a = self.fov() _a = (flat.float() / (res - 1)) * 2 - 1 _a = fracs * torch.tan(fov / 2 ) _a = fracs.view(__a , -1 , 2 ) _a = ( self.z.view(__a , 1 , 3 ) + self.x.view(__a , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__a , 1 , 3 ) * fracs[:, :, 1:] ) _a = directions / directions.norm(dim=-1 , keepdim=__a ) _a = torch.stack( [ torch.broadcast_to(self.origin.view(__a , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__a , *__a , 2 , 3 ) def UpperCamelCase__ ( self : Dict , __a : int , __a : int ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__a , height=__a , x_fov=self.x_fov , y_fov=self.y_fov , ) def _lowerCamelCase ( lowercase : int ) -> DifferentiableProjectiveCamera: _a = [] _a = [] _a = [] _a = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): _a = np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _a = -z * 4 _a = np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] ) _a = np.cross(lowercase , lowercase ) origins.append(lowercase ) xs.append(lowercase ) ys.append(lowercase ) zs.append(lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
346
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
47
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Any: stooge(__lowerCamelCase , 0 , len(__lowerCamelCase ) - 1 ) return arr def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : str ) -> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _snake_case , _snake_case = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _snake_case = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__lowerCamelCase , __lowerCamelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(__lowerCamelCase , i + t , (__lowerCamelCase) ) # Recursively sort first 2/3 elements stooge(__lowerCamelCase , __lowerCamelCase , (h - t) ) if __name__ == "__main__": UpperCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
288
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'markuplm' def __init__( self : Dict , _A : Union[str, Any]=30_522 , _A : Any=768 , _A : Optional[int]=12 , _A : str=12 , _A : Any=3_072 , _A : int="gelu" , _A : int=0.1 , _A : Optional[int]=0.1 , _A : Dict=512 , _A : Dict=2 , _A : Union[str, Any]=0.0_2 , _A : Dict=1e-12 , _A : Optional[Any]=0 , _A : Tuple=0 , _A : Dict=2 , _A : Any=256 , _A : Tuple=1_024 , _A : Union[str, Any]=216 , _A : str=1_001 , _A : str=32 , _A : Optional[Any]=50 , _A : Tuple="absolute" , _A : str=True , _A : Tuple=None , **_A : Tuple , ): '''simple docstring''' super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A , ) UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : List[str] = hidden_dropout_prob UpperCAmelCase__ : Any = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : int = type_vocab_size UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Optional[int] = position_embedding_type UpperCAmelCase__ : int = use_cache UpperCAmelCase__ : int = classifier_dropout # additional properties UpperCAmelCase__ : Union[str, Any] = max_depth UpperCAmelCase__ : Tuple = max_xpath_tag_unit_embeddings UpperCAmelCase__ : List[Any] = max_xpath_subs_unit_embeddings UpperCAmelCase__ : List[str] = tag_pad_id UpperCAmelCase__ : Union[str, Any] = subs_pad_id UpperCAmelCase__ : List[Any] = xpath_unit_hidden_size
299
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : str = DatasetDict( { '''train''': dataset['''train'''].select(lowerCAmelCase__ ), '''validation''': dataset['''train'''].select(lowerCAmelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Dict = 8 else: UpperCAmelCase__ : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # New Code # UpperCAmelCase__ : List[str] = [] # Download the dataset UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Any = config['''lr'''] UpperCAmelCase__ : Any = int(config['''num_epochs'''] ) UpperCAmelCase__ : Any = int(config['''seed'''] ) UpperCAmelCase__ : Dict = int(config['''batch_size'''] ) UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) # New Code # # Create our folds: UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase__ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = outputs.loss UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase__ : int = [] for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = outputs.logits UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 ) UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
1
"""simple docstring""" from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''dandelin/vilt-b32-finetuned-vqa''' __lowerCAmelCase = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) __lowerCAmelCase = '''image_qa''' __lowerCAmelCase = AutoProcessor __lowerCAmelCase = AutoModelForVisualQuestionAnswering __lowerCAmelCase = ['''image''', '''text'''] __lowerCAmelCase = ['''text'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''vision'''] ) super().__init__(*__lowercase , **__lowercase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): return self.pre_processor(__lowercase , __lowercase , return_tensors='''pt''' ) def _lowerCamelCase ( self , _UpperCAmelCase ): with torch.no_grad(): return self.model(**__lowercase ).logits def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Optional[int] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
160
'''simple docstring''' import socket def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =socket.socket(socket.AF_INET, socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE__ : str =socket.gethostname() SCREAMING_SNAKE_CASE__ : List[Any] =1_2_3_1_2 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''', '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: SCREAMING_SNAKE_CASE__ : List[str] =sock.recv(1_0_2_4 ) if not data: break out_file.write(UpperCamelCase__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
152
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowerCAmelCase__ = 8 def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): """simple docstring""" UpperCamelCase = x.device UpperCamelCase = (x * 255).int().clamp(0 , 255 ) UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE ) UpperCamelCase = rearrange(_SCREAMING_SNAKE_CASE , "d -> d 1 1" ) UpperCamelCase = rearrange(_SCREAMING_SNAKE_CASE , "b c h w -> b c 1 h w" ) UpperCamelCase = ((x & mask) != 0).float() UpperCamelCase = rearrange(_SCREAMING_SNAKE_CASE , "b c d h w -> b (c d) h w" ) UpperCamelCase = bits * 2 - 1 return bits def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): """simple docstring""" UpperCamelCase = x.device UpperCamelCase = (x > 0).int() UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa ) UpperCamelCase = rearrange(_SCREAMING_SNAKE_CASE , "d -> d 1 1" ) UpperCamelCase = rearrange(_SCREAMING_SNAKE_CASE , "b (c d) h w -> b c d h w" , d=8 ) UpperCamelCase = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 255).clamp(0.0 , 1.0 ) def a__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) UpperCamelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas UpperCamelCase = self.alphas_cumprod[timestep] UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod UpperCamelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" UpperCamelCase = self.bit_scale if self.config.clip_sample: UpperCamelCase = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) UpperCamelCase = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide UpperCamelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 UpperCamelCase = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else "cpu" UpperCamelCase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise UpperCamelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def a__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): """simple docstring""" UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: UpperCamelCase , UpperCamelCase = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: UpperCamelCase = None # 1. compute alphas, betas UpperCamelCase = self.alphas_cumprod[t] UpperCamelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": UpperCamelCase = model_output else: raise ValueError(F"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" UpperCamelCase = self.bit_scale if self.config.clip_sample: UpperCamelCase = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t UpperCamelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCamelCase = 0 if t > 0: UpperCamelCase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device ) UpperCamelCase = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a , __a = 1.0 , ) -> Tuple: super().__init__() UpperCamelCase = bit_scale UpperCamelCase = ( ddim_bit_scheduler_step if isinstance(__a , __a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__(self , __a = 2_56 , __a = 2_56 , __a = 50 , __a = None , __a = 1 , __a = "pil" , __a = True , **__a , ) -> Union[Tuple, ImagePipelineOutput]: UpperCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__a , ) UpperCamelCase = decimal_to_bits(__a ) * self.bit_scale UpperCamelCase = latents.to(self.device ) self.scheduler.set_timesteps(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual UpperCamelCase = self.unet(__a , __a ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(__a , __a , __a ).prev_sample UpperCamelCase = bits_to_decimal(__a ) if output_type == "pil": UpperCamelCase = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
244
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = "falcon" UpperCAmelCase_ = ["past_key_values"] def __init__(self , __a=6_50_24 , __a=45_44 , __a=32 , __a=71 , __a=1e-5 , __a=0.02 , __a=True , __a=0.0 , __a=0.0 , __a=None , __a=False , __a=False , __a=True , __a=True , __a=False , __a=11 , __a=11 , **__a , ) -> Union[str, Any]: UpperCamelCase = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase = kwargs.pop("n_embed" , __a ) UpperCamelCase = hidden_size if n_embed is None else n_embed UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = use_cache UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCamelCase = alibi UpperCamelCase = new_decoder_architecture UpperCamelCase = multi_query # Ignored when new_decoder_architecture is True UpperCamelCase = parallel_attn UpperCamelCase = bias super().__init__(bos_token_id=__a , eos_token_id=__a , **__a ) @property def snake_case_ (self ) -> Optional[int]: return self.hidden_size // self.num_attention_heads @property def snake_case_ (self ) -> Dict: return not self.alibi
244
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowercase_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowercase_ = logging.WARNING def _snake_case( ) -> List[Any]: '''simple docstring''' A__ = os.getenv('DATASETS_VERBOSITY' , SCREAMING_SNAKE_CASE__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'Unknown option DATASETS_VERBOSITY={env_level_str}, ' f'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def _snake_case( ) -> str: '''simple docstring''' return __name__.split('.' )[0] def _snake_case( ) -> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def _snake_case( ) -> None: '''simple docstring''' A__ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _snake_case( ) -> None: '''simple docstring''' A__ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> logging.Logger: '''simple docstring''' if name is None: A__ = _get_library_name() return logging.getLogger(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> int: '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> None: '''simple docstring''' _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> List[str]: '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Any: '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> int: '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Any: '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> None: '''simple docstring''' A__ = False def _snake_case( ) -> None: '''simple docstring''' A__ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class A : """simple docstring""" def __init__( self : int,*lowercase_ : List[str],**lowercase_ : Optional[int] )-> int: # pylint: disable=unused-argument '''simple docstring''' A__ = args[0] if args else None def __iter__( self : Optional[Any] )-> int: '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Any,lowercase_ : Tuple )-> Union[str, Any]: '''simple docstring''' def empty_fn(*lowercase_ : Any,**lowercase_ : Dict ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : int )-> Tuple: '''simple docstring''' return self def __exit__( self : str,lowercase_ : Optional[int],lowercase_ : Dict,lowercase_ : Union[str, Any] )-> Optional[int]: '''simple docstring''' return lowercase_ = True class A : """simple docstring""" def __call__( self : str,*lowercase_ : Dict,lowercase_ : List[str]=False,**lowercase_ : List[Any] )-> Any: '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowercase_,**lowercase_ ) else: return EmptyTqdm(*lowercase_,**lowercase_ ) def snake_case__ ( self : Optional[int],*lowercase_ : str,**lowercase_ : Any )-> str: '''simple docstring''' A__ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowercase_,**lowercase_ ) def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase_ = _tqdm_cls() def _snake_case( ) -> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def _snake_case( ) -> int: '''simple docstring''' global _tqdm_active A__ = True def _snake_case( ) -> Tuple: '''simple docstring''' global _tqdm_active A__ = False
7
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowercase__ : int , lowercase__ : List[str] , lowercase__ : List[str] ): # Initialise PyTorch model snake_case : Optional[Any] = TaConfig.from_json_file(lowercase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case : Tuple = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
148
0
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCAmelCase : Optional[List[str]] =None __lowerCAmelCase : List[Any] ="<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCAmelCase : Tuple =[ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class _A : snake_case__ : bool = True snake_case__ : Optional[str] = None # Automatically constructed snake_case__ : ClassVar[str] = "PIL.Image.Image" snake_case__ : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) snake_case__ : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__ ) def __call__( self ): """simple docstring""" return self.pa_type def A__ ( self , __lowerCAmelCase ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(a_ , a_ ): lowercase = np.array(a_ ) if isinstance(a_ , a_ ): return {"path": value, "bytes": None} elif isinstance(a_ , a_ ): return {"path": None, "bytes": value} elif isinstance(a_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase = {} lowercase , lowercase = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): lowercase = PIL.Image.open(a_ ) else: lowercase = path.split("""::""" )[-1] try: lowercase = string_to_dict(a_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase = token_per_repo_id.get(a_ ) except ValueError: lowercase = None with xopen(a_ , """rb""" , use_auth_token=a_ ) as f: lowercase = BytesIO(f.read() ) lowercase = PIL.Image.open(bytes_ ) else: lowercase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def A__ ( self ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if pa.types.is_string(storage.type ): lowercase = pa.array([None] * len(a_ ) , type=pa.binary() ) lowercase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase = pa.array([None] * len(a_ ) , type=pa.string() ) lowercase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase = storage.field("""bytes""" ) else: lowercase = pa.array([None] * len(a_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase = storage.field("""path""" ) else: lowercase = pa.array([None] * len(a_ ) , type=pa.string() ) lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase = pa.array( [encode_np_array(np.array(a_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase = pa.array([None] * len(a_ ) , type=pa.string() ) lowercase = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(__lowerCAmelCase ): with xopen(a_ , """rb""" ) as f: lowercase = f.read() return bytes_ lowercase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type ) def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCAmelCase__ ( lowerCAmelCase__ :"PIL.Image.Image" ) -> bytes: '''simple docstring''' lowercase = BytesIO() if image.format in list_image_compression_formats(): lowercase = image.format else: lowercase = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def UpperCAmelCase__ ( lowerCAmelCase__ :"PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def UpperCAmelCase__ ( lowerCAmelCase__ :np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase = array.dtype lowercase = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase = dtype.kind lowercase = dtype.itemsize lowercase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) lowercase = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) lowercase = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def UpperCAmelCase__ ( lowerCAmelCase__ :Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase , lowercase = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): lowercase = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): lowercase = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Any=13 , _UpperCAmelCase : str=32 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[Any]=[10, 20, 30, 40] , _UpperCAmelCase : Any=[2, 2, 3, 2] , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=37 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Dict=["stage2", "stage3", "stage4"] , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Any=None , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = num_stages UpperCAmelCase__ = hidden_sizes UpperCAmelCase__ = depths UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = out_features UpperCAmelCase__ = num_labels UpperCAmelCase__ = scope UpperCAmelCase__ = num_stages def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=_UpperCAmelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = UperNetForSemanticSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ : str = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Any = False lowerCAmelCase_ : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = UperNetModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ): UpperCAmelCase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(_UpperCAmelCase ) UpperCAmelCase__ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = UperNetForSemanticSegmentation.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) UpperCAmelCase__ = Image.open(SCREAMING_SNAKE_CASE__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) UpperCAmelCase__ = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(_UpperCAmelCase ) UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) with torch.no_grad(): UpperCAmelCase__ = model(**_UpperCAmelCase ) UpperCAmelCase__ = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) UpperCAmelCase__ = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(_UpperCAmelCase ) UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) with torch.no_grad(): UpperCAmelCase__ = model(**_UpperCAmelCase ) UpperCAmelCase__ = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
346
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = MgpstrTokenizer lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : Any = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = """tester""" UpperCAmelCase__ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" pass
346
1
from __future__ import annotations _lowercase : str =tuple[int, int, int] _lowercase : List[str] =tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _lowercase : Optional[int] ="ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- _lowercase : Union[str, Any] ="EGZWVONAHDCLFQMSIPJBYUKXTR" _lowercase : Optional[int] ="FOBHMDKEXQNRAULPGSJVTYICZW" _lowercase : Optional[int] ="ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- _lowercase : List[Any] ={ "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- _lowercase : str ="RMDJXFUWGISLHVTCQNKYPBEZOA" _lowercase : int ="SGLCPQWZHKXAREONTFBVIYJUDM" _lowercase : Any ="HVSICLTYKQUBXDWAJZOMFGPREN" _lowercase : Union[str, Any] ="RZWQHFMVDBKICJLNTUXAGYPSOE" _lowercase : int ="LFKIJODBEGAMQPXVUHYSTCZRWN" _lowercase : int ="KOAEGVDHXPQZMLFTYWJNBRCIUS" def lowerCAmelCase_ ( _lowercase : RotorPositionT , _lowercase : RotorSelectionT , _lowercase : str) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """simple docstring""" # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_lowercase))) < 3: a__ : Dict = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_lowercase) # Checks if rotor positions are valid a__ , a__ , a__ : Optional[int] = rotpos if not 0 < rotorposa <= len(_lowercase): a__ : Tuple = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_lowercase) if not 0 < rotorposa <= len(_lowercase): a__ : Union[str, Any] = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase) if not 0 < rotorposa <= len(_lowercase): a__ : Any = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase) # Validates string and returns dict a__ : List[Any] = _plugboard(_lowercase) return rotpos, rotsel, pbdict def lowerCAmelCase_ ( _lowercase : str) -> dict[str, str]: """simple docstring""" # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_lowercase , _lowercase): a__ : str = F'''Plugboard setting isn\'t type string ({type(_lowercase)})''' raise TypeError(_lowercase) elif len(_lowercase) % 2 != 0: a__ : Any = F'''Odd number of symbols ({len(_lowercase)})''' raise Exception(_lowercase) elif pbstring == "": return {} pbstring.replace(""" """ , """""") # Checks if all characters are unique a__ : Union[str, Any] = set() for i in pbstring: if i not in abc: a__ : str = F'''\'{i}\' not in list of symbols''' raise Exception(_lowercase) elif i in tmppbl: a__ : Optional[Any] = F'''Duplicate symbol ({i})''' raise Exception(_lowercase) else: tmppbl.add(_lowercase) del tmppbl # Created the dictionary a__ : Dict = {} for j in range(0 , len(_lowercase) - 1 , 2): a__ : Optional[Any] = pbstring[j + 1] a__ : Optional[Any] = pbstring[j] return pb def lowerCAmelCase_ ( _lowercase : str , _lowercase : RotorPositionT , _lowercase : RotorSelectionT = (rotora, rotora, rotora) , _lowercase : str = "" , ) -> str: """simple docstring""" a__ : str = text.upper() a__ , a__ , a__ : str = _validator( _lowercase , _lowercase , plugb.upper()) a__ , a__ , a__ : List[str] = rotor_position a__ , a__ , a__ : Tuple = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 a__ : Union[str, Any] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: a__ : List[str] = plugboard[symbol] # rotor ra -------------------------- a__ : Union[str, Any] = abc.index(_lowercase) + rotorposa a__ : List[str] = rotora[index % len(_lowercase)] # rotor rb -------------------------- a__ : Dict = abc.index(_lowercase) + rotorposa a__ : Union[str, Any] = rotora[index % len(_lowercase)] # rotor rc -------------------------- a__ : Optional[int] = abc.index(_lowercase) + rotorposa a__ : List[str] = rotora[index % len(_lowercase)] # reflector -------------------------- # this is the reason you don't need another machine to decipher a__ : int = reflector[symbol] # 2nd rotors a__ : Optional[Any] = abc[rotora.index(_lowercase) - rotorposa] a__ : List[str] = abc[rotora.index(_lowercase) - rotorposa] a__ : str = abc[rotora.index(_lowercase) - rotorposa] # 2nd plugboard if symbol in plugboard: a__ : Any = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowercase): a__ : Dict = 0 rotorposa += 1 if rotorposa >= len(_lowercase): a__ : Union[str, Any] = 0 rotorposa += 1 if rotorposa >= len(_lowercase): a__ : Union[str, Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowercase) return "".join(_lowercase) if __name__ == "__main__": _lowercase : Optional[int] ="This is my Python script that emulates the Enigma machine from WWII." _lowercase : Optional[int] =(1, 1, 1) _lowercase : Union[str, Any] ="pictures" _lowercase : str =(rotora, rotora, rotora) _lowercase : Any =enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
266
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowercase : Union[str, Any] =data_utils.TransfoXLTokenizer _lowercase : Tuple =data_utils.TransfoXLCorpus _lowercase : Optional[int] =data_utils _lowercase : int =data_utils def lowerCAmelCase_ ( _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Optional[Any]) -> List[Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowercase , """rb""") as fp: a__ : Optional[Any] = pickle.load(_lowercase , encoding="""latin1""") # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) a__ : Dict = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''') a__ : List[str] = corpus.vocab.__dict__ torch.save(_lowercase , _lowercase) a__ : Optional[int] = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , _lowercase) a__ : Tuple = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''') torch.save(_lowercase , _lowercase) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model a__ : Optional[Any] = os.path.abspath(_lowercase) a__ : str = os.path.abspath(_lowercase) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''') # Initialise PyTorch model if transfo_xl_config_file == "": a__ : List[str] = TransfoXLConfig() else: a__ : Any = TransfoXLConfig.from_json_file(_lowercase) print(F'''Building PyTorch model from configuration: {config}''') a__ : Any = TransfoXLLMHeadModel(_lowercase) a__ : Optional[Any] = load_tf_weights_in_transfo_xl(_lowercase , _lowercase , _lowercase) # Save pytorch-model a__ : Tuple = os.path.join(_lowercase , _lowercase) a__ : Optional[int] = os.path.join(_lowercase , _lowercase) print(F'''Save PyTorch model to {os.path.abspath(_lowercase)}''') torch.save(model.state_dict() , _lowercase) print(F'''Save configuration file to {os.path.abspath(_lowercase)}''') with open(_lowercase , """w""" , encoding="""utf-8""") as f: f.write(config.to_json_string()) if __name__ == "__main__": _lowercase : Tuple =argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) _lowercase : Dict =parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
266
1
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1, 1 SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = fa + fa SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = fa, f index += 1 for _ in str(__lowerCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
1
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ ): if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("""\'float\' object cannot be interpreted as an integer""" ) if isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("""\'str\' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" UpperCAmelCase__ : Tuple = False if num < 0: UpperCAmelCase__ : str = True UpperCAmelCase__ : str = -num UpperCAmelCase__ : str = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__lowerCamelCase ) for e in binary ) return "0b" + "".join(str(__lowerCamelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _snake_case ( a__ ): lowerCAmelCase :torch.FloatTensor class _snake_case ( a__ , a__ ): @register_to_config def __init__( self , _lowerCamelCase = 3 , _lowerCamelCase = 3 , _lowerCamelCase = ("DownEncoderBlock2D",) , _lowerCamelCase = ("UpDecoderBlock2D",) , _lowerCamelCase = (64,) , _lowerCamelCase = 1 , _lowerCamelCase = "silu" , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 256 , _lowerCamelCase = 32 , _lowerCamelCase = None , _lowerCamelCase = 0.18215 , _lowerCamelCase = "group" , ): super().__init__() # pass init params to Encoder UpperCAmelCase__ : str = Encoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , down_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , double_z=_lowerCamelCase , ) UpperCAmelCase__ : Optional[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase__ : Any = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1) UpperCAmelCase__ : Optional[int] = VectorQuantizer(_lowerCamelCase , _lowerCamelCase , beta=0.25 , remap=_lowerCamelCase , sane_index_shape=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1) # pass init params to Decoder UpperCAmelCase__ : str = Decoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , up_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , norm_type=_lowerCamelCase , ) @apply_forward_hook def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = True): UpperCAmelCase__ : Union[str, Any] = self.encoder(_lowerCamelCase) UpperCAmelCase__ : str = self.quant_conv(_lowerCamelCase) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCamelCase) @apply_forward_hook def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True): # also go through quantization layer if not force_not_quantize: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.quantize(_lowerCamelCase) else: UpperCAmelCase__ : Union[str, Any] = h UpperCAmelCase__ : Any = self.post_quant_conv(_lowerCamelCase) UpperCAmelCase__ : Any = self.decoder(_lowerCamelCase , quant if self.config.norm_type == """spatial""" else None) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = True): UpperCAmelCase__ : Dict = sample UpperCAmelCase__ : Dict = self.encode(_lowerCamelCase).latents UpperCAmelCase__ : List[str] = self.decode(_lowerCamelCase).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase)
283
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig lowerCamelCase_ = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring lowerCamelCase_ = '''UperNetConfig''' class __A( nn.Module ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , ): super().__init__() UpperCamelCase__ = nn.Convad( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ , dilation=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = nn.ReLU() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.conv(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.batch_norm(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.activation(SCREAMING_SNAKE_CASE_ ) return output class __A( nn.Module ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): super().__init__() UpperCamelCase__ = [ nn.AdaptiveAvgPoolad(SCREAMING_SNAKE_CASE_ ), UperNetConvModule(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = input for layer in self.layers: UpperCamelCase__ = layer(SCREAMING_SNAKE_CASE_ ) return hidden_state class __A( nn.Module ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): super().__init__() UpperCamelCase__ = pool_scales UpperCamelCase__ = align_corners UpperCamelCase__ = in_channels UpperCamelCase__ = channels UpperCamelCase__ = [] for i, pool_scale in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = UperNetPyramidPoolingBlock(pool_scale=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , channels=SCREAMING_SNAKE_CASE_ ) self.blocks.append(SCREAMING_SNAKE_CASE_ ) self.add_module(str(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for ppm in self.blocks: UpperCamelCase__ = ppm(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = nn.functional.interpolate( SCREAMING_SNAKE_CASE_ , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(SCREAMING_SNAKE_CASE_ ) return ppm_outs class __A( nn.Module ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): super().__init__() UpperCamelCase__ = config UpperCamelCase__ = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase__ = in_channels UpperCamelCase__ = config.hidden_size UpperCamelCase__ = False UpperCamelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase__ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase__ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase__ = nn.ModuleList() UpperCamelCase__ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase__ = UperNetConvModule(SCREAMING_SNAKE_CASE_ , self.channels , kernel_size=1 ) UpperCamelCase__ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(SCREAMING_SNAKE_CASE_ ) self.fpn_convs.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase_ (self ): self.apply(self._init_weights ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = inputs[-1] UpperCamelCase__ = [x] psp_outs.extend(self.psp_modules(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=1 ) UpperCamelCase__ = self.bottleneck(SCREAMING_SNAKE_CASE_ ) return output def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # build laterals UpperCamelCase__ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(SCREAMING_SNAKE_CASE_ ) ) # build top-down path UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase__ = laterals[i - 1].shape[2:] UpperCamelCase__ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=SCREAMING_SNAKE_CASE_ , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs UpperCamelCase__ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase__ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=1 ) UpperCamelCase__ = self.fpn_bottleneck(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.classifier(SCREAMING_SNAKE_CASE_ ) return output class __A( nn.Module ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 1 ): super().__init__() UpperCamelCase__ = config UpperCamelCase__ = config.auxiliary_in_channels UpperCamelCase__ = config.auxiliary_channels UpperCamelCase__ = config.auxiliary_num_convs UpperCamelCase__ = config.auxiliary_concat_input UpperCamelCase__ = in_index UpperCamelCase__ = (kernel_size // 2) * dilation UpperCamelCase__ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , dilation=SCREAMING_SNAKE_CASE_ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , dilation=SCREAMING_SNAKE_CASE_ ) ) if self.num_convs == 0: UpperCamelCase__ = nn.Identity() else: UpperCamelCase__ = nn.Sequential(*SCREAMING_SNAKE_CASE_ ) if self.concat_input: UpperCamelCase__ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE_ , padding=kernel_size // 2 ) UpperCamelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCAmelCase_ (self ): self.apply(self._init_weights ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): # just take the relevant feature maps UpperCamelCase__ = encoder_hidden_states[self.in_index] UpperCamelCase__ = self.convs(SCREAMING_SNAKE_CASE_ ) if self.concat_input: UpperCamelCase__ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase__ = self.classifier(SCREAMING_SNAKE_CASE_ ) return output class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = UperNetConfig SCREAMING_SNAKE_CASE__ = """pixel_values""" SCREAMING_SNAKE_CASE__ = True def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase_ (self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = value lowerCamelCase_ = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCamelCase_ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , __lowerCamelCase , ) class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): super().__init__(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase__ = UperNetHead(SCREAMING_SNAKE_CASE_ , in_channels=self.backbone.channels ) UpperCamelCase__ = UperNetFCNHead(SCREAMING_SNAKE_CASE_ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ): UpperCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase__ = self.backbone.forward_with_filtered_kwargs( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.feature_maps UpperCamelCase__ = self.decode_head(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = nn.functional.interpolate(SCREAMING_SNAKE_CASE_ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = None if self.auxiliary_head is not None: UpperCamelCase__ = self.auxiliary_head(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = nn.functional.interpolate( SCREAMING_SNAKE_CASE_ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss UpperCamelCase__ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase__ = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase__ = (logits,) + outputs[1:] else: UpperCamelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
244
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCamelCase_ = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def __magic_name__ ( __a : Union[str, Any] , __a : Any , __a : Union[str, Any]=None ): '''simple docstring''' if rng is None: UpperCamelCase__ = random.Random() UpperCamelCase__ = 1 for dim in shape: total_dims *= dim UpperCamelCase__ = [] for _ in range(__a ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCamelCase__ = np.array(__a , dtype=jnp.intaa ).reshape(__a ) return output def __magic_name__ ( __a : Dict , __a : Tuple=None ): '''simple docstring''' UpperCamelCase__ = ids_tensor(__a , vocab_size=2 , rng=__a ) # make sure that at least one token is attended to for each batch UpperCamelCase__ = 1 return attn_mask @require_flax class __A: """simple docstring""" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = () def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCamelCase__ = 2 UpperCamelCase__ = inputs["""input_ids"""].shape[-1] // 2 UpperCamelCase__ = inputs["""input_ids"""][:max_batch_size, :sequence_length] UpperCamelCase__ = jnp.ones_like(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCamelCase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCamelCase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = False UpperCamelCase__ = max_length UpperCamelCase__ = 0 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = pt_model_class(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase__ = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , flax_model.params ) UpperCamelCase__ = flax_model.generate(SCREAMING_SNAKE_CASE_ ).sequences UpperCamelCase__ = pt_model.generate(torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCamelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = False UpperCamelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = True UpperCamelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = False UpperCamelCase__ = max_length UpperCamelCase__ = 2 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = False UpperCamelCase__ = max_length UpperCamelCase__ = 2 UpperCamelCase__ = 2 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = True UpperCamelCase__ = max_length UpperCamelCase__ = 0.8 UpperCamelCase__ = 10 UpperCamelCase__ = 0.3 UpperCamelCase__ = 1 UpperCamelCase__ = 8 UpperCamelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = max_length UpperCamelCase__ = 1 UpperCamelCase__ = 8 UpperCamelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() UpperCamelCase__ = max_length UpperCamelCase__ = 2 UpperCamelCase__ = 1 UpperCamelCase__ = 8 UpperCamelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase__ = False UpperCamelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase__ = True UpperCamelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCamelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCamelCase__ = 2 UpperCamelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jit(model.generate ) UpperCamelCase__ = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): UpperCamelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) UpperCamelCase__ = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCamelCase__ = """Hello world""" UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , """do_samples""" ): model.generate(SCREAMING_SNAKE_CASE_ , do_samples=SCREAMING_SNAKE_CASE_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , """foo""" ): UpperCamelCase__ = {"""foo""": """bar"""} model.generate(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
244
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Tuple = torch.load(__a , map_location='cpu' ) if "model" in sd.keys(): snake_case_ : List[Any] = torch.load(__a , map_location='cpu' )['model'] # pop unnecessary weights snake_case_ : Any = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__a ) snake_case_ : List[str] = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case_ : Optional[int] = sd.pop(__a ) snake_case_ : int = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case_ : Optional[int] = sd[key] # We split QKV in separate Q,K,V snake_case_ : Dict = key.replace('.qkv_proj.' , '.q_proj.' ) snake_case_ : Dict = key.replace('.qkv_proj.' , '.k_proj.' ) snake_case_ : Union[str, Any] = key.replace('.qkv_proj.' , '.v_proj.' ) snake_case_ : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case_ ,snake_case_ ,snake_case_ : Optional[Any] = torch.split(__a , depth // 3 , dim=0 ) snake_case_ : Union[str, Any] = q snake_case_ : List[str] = k snake_case_ : Optional[int] = v del sd[key] return sd @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __a , __a , __a=None ): snake_case_ : Any = load_checkpoint(__a ) if config is not None: snake_case_ : Any = OPTConfig.from_pretrained(__a ) else: snake_case_ : Optional[int] = OPTConfig() snake_case_ : List[Any] = OPTModel(__a ).half().eval() model.load_state_dict(__a ) # Check results Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
88
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["image_processor", "tokenizer"] __magic_name__: Optional[Any] = "LayoutLMv3ImageProcessor" __magic_name__: str = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : int , _A : List[str]=None , _A : Dict=None , **_A : int ) -> List[str]: """simple docstring""" snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _A , ) snake_case_ : Any = kwargs.pop('feature_extractor' ) snake_case_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_A , _A ) def __call__( self : List[str] , _A : Optional[Any] , _A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _A : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _A : Union[List[List[int]], List[List[List[int]]]] = None , _A : Optional[Union[List[int], List[List[int]]]] = None , _A : bool = True , _A : Union[bool, str, PaddingStrategy] = False , _A : Union[bool, str, TruncationStrategy] = None , _A : Optional[int] = None , _A : int = 0 , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[bool] = None , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = True , _A : Optional[Union[str, TensorType]] = None , **_A : str , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor snake_case_ : str = self.image_processor(images=_A , return_tensors=_A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_A , _A ): snake_case_ : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case_ : str = features['words'] snake_case_ : Optional[int] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_token_type_ids=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) # add pixel values snake_case_ : List[str] = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case_ : Dict = self.get_overflowing_images(_A , encoded_inputs['overflow_to_sample_mapping'] ) snake_case_ : Optional[Any] = images return encoded_inputs def UpperCAmelCase_ ( self : Dict , _A : Tuple , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_A ) != len(_A ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F""" {len(_A )} and {len(_A )}""" ) return images_with_overflow def UpperCAmelCase_ ( self : Optional[Any] , *_A : Optional[Any] , **_A : List[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*_A , **_A ) def UpperCAmelCase_ ( self : Union[str, Any] , *_A : Dict , **_A : str ) -> Any: """simple docstring""" return self.tokenizer.decode(*_A , **_A ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _A , ) return self.image_processor_class @property def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _A , ) return self.image_processor
88
1