code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def a( A : list ) -> list: """simple docstring""" if len(lowerCamelCase__ ) <= 1: return [tuple(lowerCamelCase__ )] a = [] def generate(A : int , A : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even a = arr[k - 1], arr[i] else: # k is odd a = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase__ ) generate(len(lowerCamelCase__ ) , lowerCamelCase__ ) return res if __name__ == "__main__": _lowercase: List[str] = input("Enter numbers separated by a comma:\n").strip() _lowercase: Optional[Any] = [int(item) for item in user_input.split(",")] print(heaps(arr))
227
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : int = logging.get_logger(__name__) A__ : List[str] = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[Any] = "pix2struct_text_model" _UpperCAmelCase :str = ["past_key_values"] _UpperCAmelCase :str = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , snake_case__ : Any=5_0244 , snake_case__ : Optional[int]=768 , snake_case__ : Dict=64 , snake_case__ : List[str]=2048 , snake_case__ : Dict=12 , snake_case__ : Any=12 , snake_case__ : Dict=32 , snake_case__ : int=128 , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=1E-6 , snake_case__ : Any=1.0 , snake_case__ : int="gelu_new" , snake_case__ : Optional[Any]=0 , snake_case__ : Any=False , snake_case__ : Any=0 , snake_case__ : Any=1 , snake_case__ : Optional[int]=False , snake_case__ : Tuple=True , **snake_case__ : Any , ): lowerCamelCase_ : List[str] =vocab_size lowerCamelCase_ : Tuple =hidden_size lowerCamelCase_ : Optional[int] =d_kv lowerCamelCase_ : List[Any] =d_ff lowerCamelCase_ : Tuple =num_layers lowerCamelCase_ : Optional[int] =num_heads lowerCamelCase_ : Any =relative_attention_num_buckets lowerCamelCase_ : Optional[int] =relative_attention_max_distance lowerCamelCase_ : List[Any] =dropout_rate lowerCamelCase_ : str =layer_norm_epsilon lowerCamelCase_ : int =initializer_factor lowerCamelCase_ : str =use_cache lowerCamelCase_ : int =eos_token_id lowerCamelCase_ : Optional[Any] =decoder_start_token_id # for backwards compatibility lowerCamelCase_ : Optional[Any] =dense_act_fn super().__init__( pad_token_id=snake_case__ , eos_token_id=snake_case__ , decoder_start_token_id=snake_case__ , tie_word_embeddings=snake_case__ , is_decoder=snake_case__ , **snake_case__ , ) @classmethod def UpperCAmelCase__ ( cls : Tuple , snake_case__ : Union[str, os.PathLike] , **snake_case__ : str ): cls._set_token_in_kwargs(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : Any =cls.get_config_dict(snake_case__ , **snake_case__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": lowerCamelCase_ : List[Any] =config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[Any] = "pix2struct_vision_model" def __init__( self : Optional[int] , snake_case__ : Tuple=768 , snake_case__ : str=768 , snake_case__ : Union[str, Any]=2048 , snake_case__ : Tuple=64 , snake_case__ : List[Any]=12 , snake_case__ : Dict=12 , snake_case__ : int="gelu_new" , snake_case__ : str=1E-6 , snake_case__ : int=0.0 , snake_case__ : int=0.0 , snake_case__ : Dict=1E-10 , snake_case__ : Tuple=1.0 , snake_case__ : int=4096 , snake_case__ : Tuple=32 , snake_case__ : List[str]=128 , **snake_case__ : List[Any] , ): super().__init__(**snake_case__ ) lowerCamelCase_ : int =hidden_size lowerCamelCase_ : List[Any] =patch_embed_hidden_size lowerCamelCase_ : Tuple =d_ff lowerCamelCase_ : List[Any] =dropout_rate lowerCamelCase_ : Dict =num_hidden_layers lowerCamelCase_ : List[str] =num_attention_heads lowerCamelCase_ : Optional[Any] =initializer_range lowerCamelCase_ : int =initializer_factor lowerCamelCase_ : Any =attention_dropout lowerCamelCase_ : List[str] =layer_norm_eps lowerCamelCase_ : int =dense_act_fn lowerCamelCase_ : Optional[Any] =seq_len lowerCamelCase_ : Optional[int] =relative_attention_num_buckets lowerCamelCase_ : Optional[int] =relative_attention_max_distance lowerCamelCase_ : Dict =d_kv @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Dict ): cls._set_token_in_kwargs(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : Dict =cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": lowerCamelCase_ : List[Any] =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class lowercase__ ( snake_case__ ): _UpperCAmelCase :str = "pix2struct" _UpperCAmelCase :List[str] = True def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : Optional[Any]=None , snake_case__ : List[str]=1.0 , snake_case__ : List[Any]=0.02 , snake_case__ : List[Any]=False , snake_case__ : int=False , snake_case__ : Any=True , **snake_case__ : List[Any] , ): super().__init__(tie_word_embeddings=snake_case__ , is_encoder_decoder=snake_case__ , **snake_case__ ) if text_config is None: lowerCamelCase_ : Dict ={} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: lowerCamelCase_ : int ={} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) lowerCamelCase_ : Any =PixaStructTextConfig(**snake_case__ ) lowerCamelCase_ : Optional[Any] =PixaStructVisionConfig(**snake_case__ ) lowerCamelCase_ : str =self.text_config.decoder_start_token_id lowerCamelCase_ : Optional[int] =self.text_config.pad_token_id lowerCamelCase_ : List[Any] =self.text_config.eos_token_id lowerCamelCase_ : int =initializer_factor lowerCamelCase_ : Optional[Any] =initializer_range lowerCamelCase_ : Any =self.initializer_range lowerCamelCase_ : List[Any] =self.initializer_range lowerCamelCase_ : List[str] =is_vqa @classmethod def UpperCAmelCase__ ( cls : List[str] , snake_case__ : PixaStructTextConfig , snake_case__ : PixaStructVisionConfig , **snake_case__ : Optional[int] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case__ ) def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Tuple =copy.deepcopy(self.__dict__ ) lowerCamelCase_ : Dict =self.text_config.to_dict() lowerCamelCase_ : Union[str, Any] =self.vision_config.to_dict() lowerCamelCase_ : Dict =self.__class__.model_type return output
144
0
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : Optional[Any] = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''autoformer''' A__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Union[str, Any] , __a : Optional[int] = None , __a : Optional[int] = None , __a : str = "student_t" , __a : str = "nll" , __a : int = 1 , __a : List[int] = [1, 2, 3, 4, 5, 6, 7] , __a : bool = True , __a : int = 0 , __a : int = 0 , __a : int = 0 , __a : int = 0 , __a : Optional[List[int]] = None , __a : Optional[List[int]] = None , __a : int = 64 , __a : int = 2 , __a : int = 2 , __a : int = 2 , __a : int = 2 , __a : int = 32 , __a : int = 32 , __a : str = "gelu" , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : int = 100 , __a : float = 0.0_2 , __a : bool = True , __a : int=True , __a : int = 10 , __a : int = 25 , __a : int = 3 , **__a : int , ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[int] = prediction_length __snake_case : int = context_length if context_length is not None else prediction_length __snake_case : Any = distribution_output __snake_case : List[str] = loss __snake_case : List[Any] = input_size __snake_case : List[str] = num_time_features __snake_case : int = lags_sequence __snake_case : List[str] = scaling __snake_case : Optional[int] = num_dynamic_real_features __snake_case : Tuple = num_static_real_features __snake_case : str = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __snake_case : List[Any] = cardinality else: __snake_case : List[Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __snake_case : int = embedding_dimension else: __snake_case : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __snake_case : Any = num_parallel_samples # Transformer architecture configuration __snake_case : List[str] = input_size * len(self.lags_sequence ) + self._number_of_features __snake_case : Optional[int] = d_model __snake_case : List[Any] = encoder_attention_heads __snake_case : List[Any] = decoder_attention_heads __snake_case : Any = encoder_ffn_dim __snake_case : Optional[int] = decoder_ffn_dim __snake_case : Tuple = encoder_layers __snake_case : Any = decoder_layers __snake_case : List[str] = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[Any] = activation_dropout __snake_case : Optional[Any] = encoder_layerdrop __snake_case : List[Any] = decoder_layerdrop __snake_case : Optional[Any] = activation_function __snake_case : Tuple = init_std __snake_case : Optional[int] = use_cache # Autoformer __snake_case : List[str] = label_length __snake_case : Optional[int] = moving_average __snake_case : List[str] = autocorrelation_factor super().__init__(is_encoder_decoder=__a , **__a ) @property def A_ ( self : Optional[Any] ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
358
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class snake_case__ ( unittest.TestCase ): def A_ ( self : int ) -> List[Any]: '''simple docstring''' __snake_case : Any = tempfile.mkdtemp() # fmt: off __snake_case : List[str] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __snake_case : List[str] = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } __snake_case : Optional[Any] = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__a , __a ) def A_ ( self : Optional[int] , **__a : Dict ) -> int: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__a ) def A_ ( self : int , **__a : Dict ) -> Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a ) def A_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A_ ( self : str ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : List[str] = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Dict = self.get_image_processor() __snake_case : Any = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) processor.save_pretrained(self.tmpdirname ) __snake_case : Any = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def A_ ( self : str ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __snake_case : Tuple = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __snake_case : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def A_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = self.get_image_processor() __snake_case : int = self.get_tokenizer() __snake_case : str = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) __snake_case : int = self.prepare_image_inputs() __snake_case : List[str] = image_processor(__a , return_tensors='np' ) __snake_case : List[str] = processor(images=__a , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : int = self.get_tokenizer() __snake_case : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) __snake_case : Optional[int] = 'lower newer' __snake_case : Dict = processor(text=__a ) __snake_case : List[Any] = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = self.get_image_processor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) __snake_case : List[Any] = 'lower newer' __snake_case : Optional[Any] = self.prepare_image_inputs() __snake_case : Union[str, Any] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(__a ): processor() def A_ ( self : Tuple ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : Any = self.get_tokenizer() __snake_case : Dict = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) __snake_case : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : int = processor.batch_decode(__a ) __snake_case : Optional[Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def A_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' __snake_case : List[str] = self.get_image_processor() __snake_case : Dict = self.get_tokenizer() __snake_case : Dict = VisionTextDualEncoderProcessor(tokenizer=__a , image_processor=__a ) __snake_case : Union[str, Any] = 'lower newer' __snake_case : Tuple = self.prepare_image_inputs() __snake_case : Union[str, Any] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
0
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) lowercase__ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def A_ ( snake_case : str ) -> Union[str, Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __UpperCamelCase = model_type_to_module_name(snake_case ) __UpperCamelCase = importlib.import_module(f".{module_name}" , '''transformers.models''' ) try: return getattr(snake_case , snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case , '''__name__''' , snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __UpperCamelCase = importlib.import_module('''transformers''' ) if hasattr(snake_case , snake_case ): return getattr(snake_case , snake_case ) return None def A_ ( snake_case : Union[str, os.PathLike] , snake_case : Optional[Union[str, os.PathLike]] = None , snake_case : bool = False , snake_case : bool = False , snake_case : Optional[Dict[str, str]] = None , snake_case : Optional[Union[bool, str]] = None , snake_case : Optional[str] = None , snake_case : bool = False , **snake_case : List[Any] , ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = get_file_from_repo( snake_case , snake_case , cache_dir=snake_case , force_download=snake_case , resume_download=snake_case , proxies=snake_case , use_auth_token=snake_case , revision=snake_case , local_files_only=snake_case , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(snake_case , encoding='''utf-8''' ) as reader: return json.load(snake_case ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> Dict: '''simple docstring''' raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(SCREAMING_SNAKE_CASE_ ) def A__ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase = kwargs.pop('''config''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = kwargs.pop('''trust_remote_code''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = True __UpperCamelCase , __UpperCamelCase = FeatureExtractionMixin.get_feature_extractor_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = config_dict.get('''feature_extractor_type''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): __UpperCamelCase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # It could be in `config.feature_extractor_type`` __UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , '''feature_extractor_type''' , SCREAMING_SNAKE_CASE_ ) if hasattr(SCREAMING_SNAKE_CASE_ , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: __UpperCamelCase = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: __UpperCamelCase = feature_extractor_class_from_name(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = feature_extractor_auto_map is not None __UpperCamelCase = feature_extractor_class is not None or type(SCREAMING_SNAKE_CASE_ ) in FEATURE_EXTRACTOR_MAPPING __UpperCamelCase = resolve_trust_remote_code( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if has_remote_code and trust_remote_code: __UpperCamelCase = get_class_from_dynamic_module( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = kwargs.pop('''code_revision''' , SCREAMING_SNAKE_CASE_ ) if os.path.isdir(SCREAMING_SNAKE_CASE_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(SCREAMING_SNAKE_CASE_ ) in FEATURE_EXTRACTOR_MAPPING: __UpperCamelCase = FEATURE_EXTRACTOR_MAPPING[type(SCREAMING_SNAKE_CASE_ )] return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) raise ValueError( F"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " F"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}" ) @staticmethod def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
328
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = GPTaTokenizer A_ = GPTaTokenizerFast A_ = True A_ = {'add_prefix_space': True} A_ = False def UpperCAmelCase__ ( self : List[Any] )->Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] __lowerCAmelCase : List[Any] = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __lowerCAmelCase : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCAmelCase : str = {"""unk_token""": """<unk>"""} __lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_snake_case ) ) def UpperCAmelCase__ ( self : Optional[int] , **_snake_case : int )->Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : int , **_snake_case : List[Any] )->Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : int )->List[Any]: '''simple docstring''' __lowerCAmelCase : str = """lower newer""" __lowerCAmelCase : Optional[int] = """lower newer""" return input_text, output_text def UpperCAmelCase__ ( self : Optional[int] )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase : Dict = """lower newer""" __lowerCAmelCase : Union[str, Any] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowerCAmelCase : Optional[Any] = tokenizer.tokenize(_snake_case , add_prefix_space=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) __lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token] __lowerCAmelCase : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : Optional[Any] )->str: '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCAmelCase : List[str] = self.get_tokenizer() __lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=_snake_case ) __lowerCAmelCase : str = """lower newer""" # Testing tokenization __lowerCAmelCase : Optional[int] = tokenizer.tokenize(_snake_case , add_prefix_space=_snake_case ) __lowerCAmelCase : Dict = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # Testing conversion to ids without special tokens __lowerCAmelCase : Dict = tokenizer.encode(_snake_case , add_special_tokens=_snake_case , add_prefix_space=_snake_case ) __lowerCAmelCase : int = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # Testing conversion to ids with special tokens __lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=_snake_case ) __lowerCAmelCase : Any = tokenizer.encode(_snake_case , add_prefix_space=_snake_case ) __lowerCAmelCase : List[Any] = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # Testing the unknown token __lowerCAmelCase : str = tokens + [rust_tokenizer.unk_token] __lowerCAmelCase : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : int , *_snake_case : Any , **_snake_case : Tuple )->Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[Any]=15 )->Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) # Simple input __lowerCAmelCase : int = """This is a simple input""" __lowerCAmelCase : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] __lowerCAmelCase : int = ("""This is a simple input""", """This is a pair""") __lowerCAmelCase : Union[str, Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding="""max_length""" ) # Simple input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding="""max_length""" ) # Simple input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding="""max_length""" , ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding="""max_length""" ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding="""max_length""" ) # Pair input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding="""max_length""" , ) def UpperCAmelCase__ ( self : Tuple )->Dict: '''simple docstring''' __lowerCAmelCase : Optional[int] = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input __lowerCAmelCase : str = """This is a simple input""" __lowerCAmelCase : str = ["""This is a simple input looooooooong""", """This is a simple input"""] __lowerCAmelCase : Optional[Any] = ("""This is a simple input""", """This is a pair""") __lowerCAmelCase : Any = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] __lowerCAmelCase : Optional[int] = tokenizer.pad_token_id __lowerCAmelCase : str = tokenizer(_snake_case , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) __lowerCAmelCase : str = tokenizer(_snake_case , padding=_snake_case , truncate=_snake_case , return_tensors="""np""" ) __lowerCAmelCase : Dict = tokenizer(*_snake_case , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) __lowerCAmelCase : List[str] = tokenizer(_snake_case , padding=_snake_case , truncate=_snake_case , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def UpperCAmelCase__ ( self : str )->Optional[int]: '''simple docstring''' __lowerCAmelCase : str = """$$$""" __lowerCAmelCase : Tuple = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=_snake_case , add_bos_token=_snake_case ) __lowerCAmelCase : Tuple = """This is a simple input""" __lowerCAmelCase : Dict = ["""This is a simple input 1""", """This is a simple input 2"""] __lowerCAmelCase : List[Any] = tokenizer.bos_token_id __lowerCAmelCase : Union[str, Any] = tokenizer(_snake_case ) __lowerCAmelCase : int = tokenizer(_snake_case ) self.assertEqual(out_s.input_ids[0] , _snake_case ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowerCAmelCase : Tuple = tokenizer.decode(out_s.input_ids ) __lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _snake_case ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def UpperCAmelCase__ ( self : List[str] )->Dict: '''simple docstring''' pass def UpperCAmelCase__ ( self : int )->Dict: '''simple docstring''' __lowerCAmelCase : Dict = [self.get_tokenizer(do_lower_case=_snake_case , add_bos_token=_snake_case )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __lowerCAmelCase : int = """Encode this.""" __lowerCAmelCase : List[Any] = """This one too please.""" __lowerCAmelCase : Union[str, Any] = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) encoded_sequence += tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) __lowerCAmelCase : int = tokenizer.encode_plus( _snake_case , _snake_case , add_special_tokens=_snake_case , return_special_tokens_mask=_snake_case , ) __lowerCAmelCase : str = encoded_sequence_dict["""input_ids"""] __lowerCAmelCase : List[str] = encoded_sequence_dict["""special_tokens_mask"""] self.assertEqual(len(_snake_case ) , len(_snake_case ) ) __lowerCAmelCase : Tuple = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_snake_case ) ] __lowerCAmelCase : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(_snake_case , _snake_case ) @require_tokenizers class snake_case_ ( unittest.TestCase ): def UpperCAmelCase__ ( self : int )->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=_snake_case ) __lowerCAmelCase : List[Any] = """A photo of a cat""" __lowerCAmelCase : List[str] = tokenizer.encode( _snake_case , ) self.assertEqual(_snake_case , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""test_opt""" ) __lowerCAmelCase : int = AutoTokenizer.from_pretrained("""./test_opt""" ) __lowerCAmelCase : Any = tokenizer.encode( _snake_case , ) self.assertEqual(_snake_case , [2, 250, 1345, 9, 10, 4758] ) def UpperCAmelCase__ ( self : int )->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=_snake_case ) __lowerCAmelCase : Optional[int] = """A photo of a cat""" __lowerCAmelCase : List[Any] = tokenizer.encode( _snake_case , ) # Same as above self.assertEqual(_snake_case , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("""This test is failing because of a bug in the fast tokenizer""" ) def UpperCAmelCase__ ( self : Union[str, Any] )->str: '''simple docstring''' __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=_snake_case ) __lowerCAmelCase : str = """bos""" __lowerCAmelCase : Tuple = tokenizer.get_vocab()["""bos"""] __lowerCAmelCase : Any = """A photo of a cat""" __lowerCAmelCase : Optional[int] = tokenizer.encode( _snake_case , ) # We changed the bos token self.assertEqual(_snake_case , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""./tok""" ) __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""./tok""" ) self.assertTrue(tokenizer.is_fast ) __lowerCAmelCase : List[str] = tokenizer.encode( _snake_case , ) self.assertEqual(_snake_case , [31957, 250, 1345, 9, 10, 4758] )
367
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : List[str] )->Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Optional[int] = PegasusTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : str )->Dict: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def UpperCAmelCase__ ( self : Optional[Any] , **_snake_case : Tuple )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : Dict , _snake_case : List[Any] )->Tuple: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : Union[str, Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Dict = """</s>""" __lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : int )->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_snake_case ) , 1103 ) def UpperCAmelCase__ ( self : Optional[int] )->Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def UpperCAmelCase__ ( self : Dict )->str: '''simple docstring''' __lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : str = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Optional[int] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __lowerCAmelCase : Tuple = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" __lowerCAmelCase : List[str] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : str = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : List[str] )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __lowerCAmelCase : Tuple = """To ensure a smooth flow of bank resolutions.""" __lowerCAmelCase : Optional[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : int = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ ( self : Any )->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = ["""This is going to be way too long.""" * 150, """short example"""] __lowerCAmelCase : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : Dict = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : Tuple = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : Tuple )->Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Any = PegasusTokenizer(_snake_case , offset=0 , mask_token_sent=_snake_case , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : Any )->str: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def UpperCAmelCase__ ( self : Union[str, Any] , **_snake_case : Optional[Any] )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[int] )->Union[str, Any]: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : List[Any] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : int = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) @require_torch def UpperCAmelCase__ ( self : str )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = ["""This is going to be way too long.""" * 1000, """short example"""] __lowerCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : str = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : List[Any] = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Tuple = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) __lowerCAmelCase : Optional[Any] = self._large_tokenizer(_snake_case ).input_ids self.assertListEqual( _snake_case , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
232
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm snake_case_ = logging.get_logger(__name__) @dataclass class A_ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self :Union[str, Any] , **lowercase_ :int ) -> List[str]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase = deprecated_arg[3:] setattr(self , snake_case__ , not kwargs.pop(snake_case__ ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) UpperCAmelCase = kwargs.pop('torchscript' , self.torchscript ) UpperCAmelCase = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) UpperCAmelCase = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**snake_case__ ) __UpperCamelCase = field(default=lowerCamelCase__ , metadata={"""help""": """Trace the models using torchscript"""} ) __UpperCamelCase = field(default=lowerCamelCase__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) __UpperCamelCase = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def UpperCAmelCase__ ( self :Union[str, Any] ) -> Tuple["torch.device", int]: requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: UpperCAmelCase = torch.device('cpu' ) UpperCAmelCase = 0 elif is_torch_tpu_available(): UpperCAmelCase = xm.xla_device() UpperCAmelCase = 0 else: UpperCAmelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCAmelCase = torch.cuda.device_count() return device, n_gpu @property def UpperCAmelCase__ ( self :str ) -> int: return is_torch_tpu_available() and self.tpu @property def UpperCAmelCase__ ( self :int ) -> int: requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCAmelCase__ ( self :Dict ) -> "torch.device": requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def UpperCAmelCase__ ( self :Any ) -> List[Any]: requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[int]: return self.n_gpu > 0
362
"""simple docstring""" from math import factorial, radians def _lowerCAmelCase ( lowercase_ , lowercase_ = 18 , lowercase_ = 10 ): UpperCAmelCase = angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians UpperCAmelCase = radians(lowercase_ ) UpperCAmelCase = angle_in_radians UpperCAmelCase = 3 UpperCAmelCase = -1 for _ in range(lowercase_ ): result += (b * (angle_in_radians**a)) / factorial(lowercase_ ) UpperCAmelCase = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase_ , lowercase_ ) if __name__ == "__main__": __import__("""doctest""").testmod()
181
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : int = ['''image_processor''', '''tokenizer'''] __lowercase : List[Any] = '''BlipImageProcessor''' __lowercase : Dict = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = False super().__init__(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""") # Get only text if images is None: __SCREAMING_SNAKE_CASE = self.tokenizer __SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) return text_encoding # add pixel_values __SCREAMING_SNAKE_CASE = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) else: __SCREAMING_SNAKE_CASE = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__) return encoding_image_processor def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__) @property def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
100
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return "".join([hex(snake_case__ )[2:].zfill(2 ).upper() for byte in list(snake_case__ )] ) def __lowerCAmelCase ( snake_case__ ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(snake_case__ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case__ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(snake_case__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
298
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase__( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray )->Dict: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ) def UpperCamelCase__( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray )->Union[str, Any]: if dataset.ndim != value_array.ndim: A__ = ( '''Wrong input data\'s dimensions... ''' f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(UpperCamelCase__ ) try: if dataset.shape[1] != value_array.shape[1]: A__ = ( '''Wrong input data\'s shape... ''' f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(UpperCamelCase__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: A__ = ( '''Input data have different datatype... ''' f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(UpperCamelCase__ ) A__ = [] for value in value_array: A__ = euclidean(UpperCamelCase__ , dataset[0] ) A__ = dataset[0].tolist() for dataset_value in dataset[1:]: A__ = euclidean(UpperCamelCase__ , UpperCamelCase__ ) if dist > temp_dist: A__ = temp_dist A__ = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase__( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray )->int: return np.dot(UpperCamelCase__ , UpperCamelCase__ ) / (norm(UpperCamelCase__ ) * norm(UpperCamelCase__ )) if __name__ == "__main__": import doctest doctest.testmod()
363
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE = '''Pix2StructImageProcessor''' __SCREAMING_SNAKE_CASE = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self,__lowerCamelCase,__lowerCamelCase ): A__ = False super().__init__(__lowerCamelCase,__lowerCamelCase ) def __call__( self,__lowerCamelCase=None,__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = 2048,__lowerCamelCase = 0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = True,__lowerCamelCase = None,**__lowerCamelCase,): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: A__ = self.tokenizer A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,**__lowerCamelCase ) else: # add pixel_values and bbox A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,header_text=__lowerCamelCase,**__lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) if "attention_mask" in text_encoding: A__ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: A__ = text_encoding.pop('''input_ids''' ) else: A__ = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase ) @property def UpperCamelCase ( self ): A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
0
def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowercase__ = f'''The input value of [n={number}] has to be > 0''' raise ValueError(__magic_name__ ) else: lowercase__ = sylvester(number - 1 ) lowercase__ = num - 1 lowercase__ = num return lower * upper + 1 if __name__ == "__main__": print(F'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
305
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" a = tempfile.mkdtemp() # fmt: off a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) a = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } a = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] , **__UpperCAmelCase : List[Any] ) ->int: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , **__UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" a = self.get_tokenizer() a = self.get_image_processor() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) a = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = self.prepare_image_inputs() a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = '''lower newer''' a = processor(text=__UpperCAmelCase ) a = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__UpperCAmelCase ): processor() def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__UpperCAmelCase ) a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
0
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = '▁' _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = BigBirdTokenizer _SCREAMING_SNAKE_CASE : Optional[int] = BigBirdTokenizerFast _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : int = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowercase : int = self.tokenizer_class(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = "<s>" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(_UpperCamelCase ) , 1004 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : Optional[int] = self.get_rust_tokenizer() _lowercase : Any = "I was born in 92000, and this is falsé." _lowercase : Any = tokenizer.tokenize(_UpperCamelCase ) _lowercase : List[str] = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : List[Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Optional[Any] = self.get_rust_tokenizer() _lowercase : Any = tokenizer.encode(_UpperCamelCase ) _lowercase : Optional[int] = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = BigBirdTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _lowercase : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _lowercase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowercase : str = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowercase : str = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = "Hello World!" _lowercase : str = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off _lowercase : List[str] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _lowercase : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowercase : Optional[int] = " ".join(_UpperCamelCase ) _lowercase : List[str] = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors="pt" , return_token_type_ids=_UpperCamelCase ) _lowercase : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_UpperCamelCase ) _lowercase : List[str] = BigBirdConfig(attention_type="original_full" ) _lowercase : Optional[int] = BigBirdModel(_UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) _lowercase : Optional[Any] = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = {"input_ids": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
351
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[Any] = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE : str = 'OwlViTImageProcessor' _SCREAMING_SNAKE_CASE : List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" _lowercase : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCamelCase , ) _lowercase : Optional[int] = kwargs.pop("feature_extractor" ) _lowercase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="max_length" , _UpperCamelCase="np" , **_UpperCamelCase ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(_UpperCamelCase , _UpperCamelCase ) or (isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(text[0] , _UpperCamelCase )): _lowercase : int = [self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase )] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(text[0] , _UpperCamelCase ): _lowercase : str = [] # Maximum number of queries across batch _lowercase : str = max([len(_UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCamelCase ) != max_num_queries: _lowercase : List[Any] = t + [" "] * (max_num_queries - len(_UpperCamelCase )) _lowercase : Tuple = self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) encodings.append(_UpperCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _lowercase : List[Any] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _lowercase : Union[str, Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : int = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _lowercase : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _lowercase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _lowercase : Optional[int] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : List[str] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _lowercase : Optional[int] = BatchEncoding() _lowercase : List[Any] = input_ids _lowercase : Dict = attention_mask if query_images is not None: _lowercase : int = BatchEncoding() _lowercase : Any = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ).pixel_values _lowercase : Any = query_pixel_values if images is not None: _lowercase : str = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if text is not None and images is not None: _lowercase : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _lowercase : Optional[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCamelCase ) , tensor_type=_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_object_detection(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCamelCase , ) return self.image_processor
199
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase__ : Optional[Any] = random.Random() if is_torch_available(): import torch def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: Union[str, Any]=1.0 , _lowerCamelCase: Any=None , _lowerCamelCase: Any=None ): if rng is None: __SCREAMING_SNAKE_CASE : Tuple = global_rng __SCREAMING_SNAKE_CASE : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int=7 , lowerCAmelCase__ : Tuple=4_0_0 , lowerCAmelCase__ : Optional[int]=2_0_0_0 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : Dict=1_6_0_0_0 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : List[str]=True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = parent __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size __SCREAMING_SNAKE_CASE : Optional[int] = min_seq_length __SCREAMING_SNAKE_CASE : List[str] = max_seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __SCREAMING_SNAKE_CASE : List[Any] = feature_size __SCREAMING_SNAKE_CASE : Tuple = padding_value __SCREAMING_SNAKE_CASE : List[str] = sampling_rate __SCREAMING_SNAKE_CASE : Dict = return_attention_mask __SCREAMING_SNAKE_CASE : List[str] = do_normalize def UpperCamelCase__ ( self : Dict ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self : int , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : str=False ): """simple docstring""" def _flatten(lowerCAmelCase__ : Dict ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: __SCREAMING_SNAKE_CASE : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __SCREAMING_SNAKE_CASE : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __SCREAMING_SNAKE_CASE : Any = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ASTFeatureExtractor def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = ASTFeatureExtractionTester(self ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __SCREAMING_SNAKE_CASE : Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __SCREAMING_SNAKE_CASE : Optional[int] = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values __SCREAMING_SNAKE_CASE : int = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test batched __SCREAMING_SNAKE_CASE : List[str] = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""np""" ).input_values __SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __SCREAMING_SNAKE_CASE : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __SCREAMING_SNAKE_CASE : int = np.asarray(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = feat_extract(lowerCAmelCase__ , return_tensors="""np""" ).input_values __SCREAMING_SNAKE_CASE : Any = feat_extract(lowerCAmelCase__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) @require_torch def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" import torch __SCREAMING_SNAKE_CASE : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE : Any = np.random.rand(1_0_0 ).astype(np.floataa ) __SCREAMING_SNAKE_CASE : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __SCREAMING_SNAKE_CASE : List[str] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __SCREAMING_SNAKE_CASE : List[str] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : Optional[int] ): """simple docstring""" from datasets import load_dataset __SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __SCREAMING_SNAKE_CASE : str = ds.sort("""id""" ).select(range(lowerCAmelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on __SCREAMING_SNAKE_CASE : Optional[int] = self._load_datasamples(1 ) __SCREAMING_SNAKE_CASE : int = ASTFeatureExtractor() __SCREAMING_SNAKE_CASE : Optional[Any] = feature_extractor(lowerCAmelCase__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , lowerCAmelCase__ , atol=1E-4 ) )
112
from __future__ import annotations import math lowercase : Any = '2020.9.26' lowercase : Union[str, Any] = 'xcodz-dot, cclaus, dhruvmanila' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float) -> tuple[float, float]: '''simple docstring''' if not all(isinstance(_lowerCamelCase , (float, int)) for val in locals().values()): __UpperCamelCase : str = F'Input values must either be float or int: {list(locals().values())}' raise TypeError(_lowerCamelCase) __UpperCamelCase : List[str] = ((x * distance) / (z + distance)) * scale __UpperCamelCase : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : str , _lowerCamelCase : float) -> tuple[float, float, float]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase): raise TypeError("Axis must be a str") __UpperCamelCase : str = locals() del input_variables["axis"] if not all(isinstance(_lowerCamelCase , (float, int)) for val in input_variables.values()): __UpperCamelCase : Dict = ( "Input values except axis must either be float or int: " F'{list(input_variables.values())}' ) raise TypeError(_lowerCamelCase) __UpperCamelCase : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": __UpperCamelCase : Tuple = x * math.cos(_lowerCamelCase) - y * math.sin(_lowerCamelCase) __UpperCamelCase : Union[str, Any] = y * math.cos(_lowerCamelCase) + x * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z elif axis == "x": __UpperCamelCase : Dict = y * math.cos(_lowerCamelCase) - z * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z * math.cos(_lowerCamelCase) + y * math.sin(_lowerCamelCase) __UpperCamelCase : List[str] = x elif axis == "y": __UpperCamelCase : Any = x * math.cos(_lowerCamelCase) - z * math.sin(_lowerCamelCase) __UpperCamelCase : Any = z * math.cos(_lowerCamelCase) + x * math.sin(_lowerCamelCase) __UpperCamelCase : Dict = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'") return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }") print(f"{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }")
232
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __A : str = get_logger(__name__) def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any]=0 ): '''simple docstring''' os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : str = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' snake_case_ : Dict = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Union[str, Any] = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case_ : str = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : List[str] = os.path.join(lowerCamelCase_ , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) logger.info(F'''Saving model to {ckpt_dir}''' ) snake_case_ : Optional[Any] = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=lowerCamelCase_ , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase_ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowerCamelCase_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return snake_case_ : Optional[int] = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' snake_case_ : int = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'''Loading model from {input_model_file}''' ) snake_case_ : List[str] = torch.load(lowerCamelCase_ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case_ : List[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'''Loading model from {input_model_file}''' ) snake_case_ : int = torch.load(lowerCamelCase_ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Union[str, Any] = ( os.path.join(lowerCamelCase_ , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) snake_case_ : Optional[int] = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=lowerCamelCase_ , storage_reader=dist_cp.FileSystemReader(lowerCamelCase_ ) , planner=DefaultLoadPlanner() , ) snake_case_ : str = state_dict["""model"""] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any]=0 ): '''simple docstring''' os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(lowerCamelCase_ , lowerCamelCase_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : int = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case_ : str = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: snake_case_ : Dict = os.path.join(lowerCamelCase_ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase_ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str , lowerCamelCase_ :Dict=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Optional[Any] = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case_ : Any = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) snake_case_ : Union[str, Any] = torch.load(lowerCamelCase_ ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: snake_case_ : Dict = ( os.path.join(lowerCamelCase_ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) snake_case_ : List[str] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(lowerCamelCase_ ) , ) snake_case_ : str = optim_state["""optimizer"""] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) snake_case_ : str = FSDP.optim_state_dict_to_load(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) optimizer.load_state_dict(lowerCamelCase_ )
8
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __A : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
8
1
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : list ) -> None: A = set_counts A = max(A_ ) A = len(A_ ) A = [1] * num_sets A = list(range(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int ,A_ : int ) -> bool: A = self.get_parent(A_ ) A = self.get_parent(A_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] A = 0 A = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 A = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] A = 0 A = src_parent A = self.set_counts[src_parent] A = max(self.max_set ,A_ ) return True def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int ) -> int: if self.parents[disj_set] == disj_set: return disj_set A = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
74
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
181
0
import argparse import struct import unittest class UpperCamelCase__ : def __init__(self : int , snake_case_ : bytes ): __a : Dict = data # Initialize hash values __a : Dict = [ 0X6a09_e667, 0Xbb67_ae85, 0X3c6e_f372, 0Xa54f_f53a, 0X510e_527f, 0X9b05_688c, 0X1f83_d9ab, 0X5be0_cd19, ] # Initialize round constants __a : Union[str, Any] = [ 0X428a_2f98, 0X7137_4491, 0Xb5c0_fbcf, 0Xe9b5_dba5, 0X3956_c25b, 0X59f1_11f1, 0X923f_82a4, 0Xab1c_5ed5, 0Xd807_aa98, 0X1283_5b01, 0X2431_85be, 0X550c_7dc3, 0X72be_5d74, 0X80de_b1fe, 0X9bdc_06a7, 0Xc19b_f174, 0Xe49b_69c1, 0Xefbe_4786, 0X0fc1_9dc6, 0X240c_a1cc, 0X2de9_2c6f, 0X4a74_84aa, 0X5cb0_a9dc, 0X76f9_88da, 0X983e_5152, 0Xa831_c66d, 0Xb003_27c8, 0Xbf59_7fc7, 0Xc6e0_0bf3, 0Xd5a7_9147, 0X06ca_6351, 0X1429_2967, 0X27b7_0a85, 0X2e1b_2138, 0X4d2c_6dfc, 0X5338_0d13, 0X650a_7354, 0X766a_0abb, 0X81c2_c92e, 0X9272_2c85, 0Xa2bf_e8a1, 0Xa81a_664b, 0Xc24b_8b70, 0Xc76c_51a3, 0Xd192_e819, 0Xd699_0624, 0Xf40e_3585, 0X106a_a070, 0X19a4_c116, 0X1e37_6c08, 0X2748_774c, 0X34b0_bcb5, 0X391c_0cb3, 0X4ed8_aa4a, 0X5b9c_ca4f, 0X682e_6ff3, 0X748f_82ee, 0X78a5_636f, 0X84c8_7814, 0X8cc7_0208, 0X90be_fffa, 0Xa450_6ceb, 0Xbef9_a3f7, 0Xc671_78f2, ] __a : List[str] = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCAmelCase (snake_case_ : bytes ): __a : Optional[Any] = B'''\x80''' + (B'''\x00''' * (6_3 - (len(snake_case_ ) + 8) % 6_4)) __a : Dict = struct.pack('''>Q''' , (len(snake_case_ ) * 8) ) return data + padding + big_endian_integer def lowerCAmelCase (self : Union[str, Any] ): # Convert into blocks of 64 bytes __a : Tuple = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data ) , 6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __a : Optional[Any] = list(struct.unpack('''>16L''' , snake_case_ ) ) # add 48 0-ed integers words += [0] * 4_8 __a , __a , __a , __a , __a , __a , __a , __a : Optional[Any] = self.hashes for index in range(0 , 6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array __a : List[Any] = ( self.ror(words[index - 1_5] , 7 ) ^ self.ror(words[index - 1_5] , 1_8 ) ^ (words[index - 1_5] >> 3) ) __a : str = ( self.ror(words[index - 2] , 1_7 ) ^ self.ror(words[index - 2] , 1_9 ) ^ (words[index - 2] >> 1_0) ) __a : List[Any] = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression __a : int = self.ror(snake_case_ , 6 ) ^ self.ror(snake_case_ , 1_1 ) ^ self.ror(snake_case_ , 2_5 ) __a : Tuple = (e & f) ^ ((~e & 0Xffff_ffff) & g) __a : Any = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 __a : Tuple = self.ror(snake_case_ , 2 ) ^ self.ror(snake_case_ , 1_3 ) ^ self.ror(snake_case_ , 2_2 ) __a : int = (a & b) ^ (a & c) ^ (b & c) __a : Optional[Any] = (sa + maj) % 0X1_0000_0000 __a , __a , __a , __a , __a , __a , __a , __a : Any = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) __a : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values __a : Union[str, Any] = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] __a : Optional[int] = ''''''.join([hex(snake_case_ )[2:].zfill(8 ) for value in self.hashes] ) def lowerCAmelCase (self : List[Any] , snake_case_ : int , snake_case_ : int ): return 0Xffff_ffff & (value << (3_2 - rotations)) | (value >> rotations) class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : List[str] ): import hashlib __a : List[Any] = bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(snake_case_ ).hash , hashlib.shaaaa(snake_case_ ).hexdigest() ) def __UpperCamelCase ( ): import doctest doctest.testmod() __a : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) __a : Tuple = parser.parse_args() __a : int = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: __a : List[str] = f.read() else: __a : str = bytes(lowerCAmelCase__ , '''utf-8''' ) print(SHAaaa(lowerCAmelCase__ ).hash ) if __name__ == "__main__": main()
90
def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ): __a : Any = len(lowerCAmelCase__ ) __a : Union[str, Any] = [] for i in range(len(lowerCAmelCase__ ) - pat_len + 1 ): __a : List[Any] = True for j in range(lowerCAmelCase__ ): if s[i + j] != pattern[j]: __a : Union[str, Any] = False break if match_found: position.append(lowerCAmelCase__ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
90
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = TransfoXLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = '<unk> UNwanted , running' _UpperCAmelCase = '<unk> unwanted, running' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(UpperCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [0, 4, 8, 7] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) _UpperCAmelCase = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' _UpperCAmelCase = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = len(UpperCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
39
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" return x + 2 class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = '''x = 3''' snake_case_ : str = {} snake_case_ : Optional[int] = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {'''x''': 3} ) snake_case_ : Union[str, Any] = '''x = y''' snake_case_ : Any = {'''y''': 5} snake_case_ : str = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {'''x''': 5, '''y''': 5} ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = '''y = add_two(x)''' snake_case_ : str = {'''x''': 3} snake_case_ : Tuple = evaluate(__magic_name__ , {'''add_two''': add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ : Dict = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result is None assert "tried to execute add_two" in out.out def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = '''x = 3''' snake_case_ : List[str] = {} snake_case_ : Optional[Any] = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {'''x''': 3} ) def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : str = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ : int = {'''x''': 3} snake_case_ : Any = evaluate(__magic_name__ , {'''add_two''': add_two} , state=__magic_name__ ) self.assertDictEqual(__magic_name__ , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(__magic_name__ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Tuple = '''x = 3\ny = 5''' snake_case_ : str = {} snake_case_ : List[Any] = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {'''x''': 3, '''y''': 5} ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[int] = '''text = f\'This is x: {x}.\'''' snake_case_ : int = {'''x''': 3} snake_case_ : Tuple = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__magic_name__ , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ : str = {'''x''': 3} snake_case_ : Optional[int] = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__magic_name__ , {'''x''': 3, '''y''': 2} ) snake_case_ : Tuple = {'''x''': 8} snake_case_ : str = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {'''x''': 8, '''y''': 5} ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = '''test_list = [x, add_two(x)]''' snake_case_ : Dict = {'''x''': 3} snake_case_ : List[Any] = evaluate(__magic_name__ , {'''add_two''': add_two} , state=__magic_name__ ) self.assertListEqual(__magic_name__ , [3, 5] ) self.assertDictEqual(__magic_name__ , {'''x''': 3, '''test_list''': [3, 5]} ) def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : List[Any] = '''y = x''' snake_case_ : List[Any] = {'''x''': 3} snake_case_ : int = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {'''x''': 3, '''y''': 3} ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ : Optional[int] = {'''x''': 3} snake_case_ : List[Any] = evaluate(__magic_name__ , {'''add_two''': add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ : Any = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ : Tuple = {'''x''': 3} snake_case_ : List[str] = evaluate(__magic_name__ , {'''add_two''': add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : List[Any] = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ : int = {} snake_case_ : Optional[Any] = evaluate(__magic_name__ , {'''range''': range} , state=__magic_name__ ) assert result == 2 self.assertDictEqual(__magic_name__ , {'''x''': 2, '''i''': 2} )
360
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1_000 ) -> str: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case_ : int = n - 1 snake_case_ : Union[str, Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case_ : List[Any] = 0 while count < prec: snake_case_ : Tuple = random.randint(2 , n - 1 ) snake_case_ : List[Any] = bin_exp_mod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if b != 1: snake_case_ : Any = True for _ in range(_UpperCamelCase ): if b == n - 1: snake_case_ : Tuple = False break snake_case_ : List[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase_ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
279
0
"""simple docstring""" # using dfs for finding eulerian path traversal def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): """simple docstring""" A__ = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: A__ = True, True A__ = dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return path def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = 0 A__ = -1 for i in range(SCREAMING_SNAKE_CASE__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 A__ = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] A__ = check_circuit_or_path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return A__ = 1 if check == 2: A__ = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) A__ = dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase ( ): """simple docstring""" A__ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} A__ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} A__ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} A__ = {1: [2, 3], 2: [1, 3], 3: [1, 2]} A__ = { 1: [], 2: [] # all degree is zero } A__ = 10 check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
221
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCamelCase : str =[] _lowerCamelCase : Dict =[] for i in range(self.num_layers ): _lowerCamelCase : Union[str, Any] =self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Any =FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Dict =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : Optional[int] =resnets _lowerCamelCase : Dict =attentions if self.add_downsample: _lowerCamelCase : Union[str, Any] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=True ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple =() for resnet, attn in zip(self.resnets , self.attentions ): _lowerCamelCase : Union[str, Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : Union[str, Any] =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : Optional[int] =self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _lowerCamelCase : str =[] for i in range(self.num_layers ): _lowerCamelCase : Tuple =self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Any =FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Union[str, Any] =resnets if self.add_downsample: _lowerCamelCase : List[str] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=True ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[int] =() for resnet in self.resnets: _lowerCamelCase : Tuple =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : Tuple =self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _lowerCamelCase : str =[] _lowerCamelCase : List[str] =[] for i in range(self.num_layers ): _lowerCamelCase : List[str] =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : Tuple =self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : List[str] =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Tuple =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : int =resnets _lowerCamelCase : Dict =attentions if self.add_upsample: _lowerCamelCase : str =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any]=True ) -> Optional[int]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _lowerCamelCase : Optional[int] =res_hidden_states_tuple[-1] _lowerCamelCase : Union[str, Any] =res_hidden_states_tuple[:-1] _lowerCamelCase : Any =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCamelCase : Optional[Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : List[Any] =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: _lowerCamelCase : Optional[Any] =self.upsamplers_a(lowercase_ ) return hidden_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : List[str] =[] for i in range(self.num_layers ): _lowerCamelCase : Tuple =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : int =self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : str =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : str =resnets if self.add_upsample: _lowerCamelCase : List[str] =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , lowercase_ : str , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Any=True ) -> int: """simple docstring""" for resnet in self.resnets: # pop res hidden states _lowerCamelCase : List[str] =res_hidden_states_tuple[-1] _lowerCamelCase : str =res_hidden_states_tuple[:-1] _lowerCamelCase : List[str] =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCamelCase : Optional[Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: _lowerCamelCase : Union[str, Any] =self.upsamplers_a(lowercase_ ) return hidden_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowerCamelCase : Any =[] for _ in range(self.num_layers ): _lowerCamelCase : Optional[int] =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : Tuple =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : List[Any] =resnets _lowerCamelCase : List[str] =attentions def __call__( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : List[str]=True ) -> int: """simple docstring""" _lowerCamelCase : Dict =self.resnets[0](lowercase_ , lowercase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _lowerCamelCase : Tuple =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : List[str] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) return hidden_states
199
0
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _lowerCAmelCase : def __init__(self , lowercase , lowercase=99 , lowercase=13 , lowercase=16 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=2 , lowercase=32 , lowercase=4 , lowercase=4 , lowercase=30 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=None , ): A_ : Tuple = parent A_ : str = batch_size A_ : int = decoder_seq_length # For common tests A_ : int = self.decoder_seq_length A_ : List[str] = is_training A_ : str = use_attention_mask A_ : Union[str, Any] = use_labels A_ : List[Any] = vocab_size A_ : List[Any] = d_model A_ : int = d_model A_ : str = decoder_layers A_ : Optional[Any] = decoder_layers A_ : List[Any] = decoder_ffn_dim A_ : Union[str, Any] = decoder_attention_heads A_ : List[str] = decoder_attention_heads A_ : Optional[Any] = eos_token_id A_ : int = bos_token_id A_ : Dict = pad_token_id A_ : Dict = decoder_start_token_id A_ : Optional[int] = use_cache A_ : Any = max_position_embeddings A_ : str = None A_ : Union[str, Any] = decoder_seq_length A_ : str = 2 A_ : Dict = 1 def _a (self ): A_ : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A_ : Dict = None if self.use_attention_mask: A_ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) A_ : str = None if self.use_labels: A_ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A_ : Any = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _a (self , lowercase , lowercase , lowercase , lowercase , ): A_ : List[str] = True A_ : Optional[int] = TrOCRDecoder(config=lowercase ).to(lowercase ).eval() A_ : Union[str, Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass A_ : Any = model(lowercase , use_cache=lowercase ) A_ : Any = model(lowercase ) A_ : Dict = model(lowercase , use_cache=lowercase ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) + 1 ) A_ : Union[str, Any] = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids A_ : Union[str, Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and A_ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : Optional[Any] = model(lowercase )["""last_hidden_state"""] A_ : str = model(lowercase , past_key_values=lowercase )["""last_hidden_state"""] # select random slice A_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() A_ : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowercase , lowercase , atol=1E-3 ) def _a (self ): A_ : Optional[Any] = self.prepare_config_and_inputs() A_ : Tuple = config_and_inputs A_ : Dict = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Tuple = (TrOCRForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[int] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Tuple = False def _a (self ): A_ : List[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=lowercase ) A_ : int = ConfigTester(self , config_class=lowercase ) def _a (self ): pass def _a (self ): pass def _a (self ): pass def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowercase ) def _a (self ): return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _a (self ): pass
354
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :List[Any] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = 'camembert' def __init__(self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A_ : List[Any] = vocab_size A_ : int = hidden_size A_ : Dict = num_hidden_layers A_ : Dict = num_attention_heads A_ : Optional[Any] = hidden_act A_ : str = intermediate_size A_ : int = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Optional[int] = type_vocab_size A_ : int = initializer_range A_ : str = layer_norm_eps A_ : int = position_embedding_type A_ : Dict = use_cache A_ : Any = classifier_dropout class _lowerCAmelCase ( __UpperCAmelCase ): @property def _a (self ): if self.task == "multiple-choice": A_ : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
135
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCAmelCase_ = get_logger(__name__) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) logger.info(F'''Saving model to {ckpt_dir}''' ) snake_case_ = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=SCREAMING_SNAKE_CASE__ , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE__ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(SCREAMING_SNAKE_CASE__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return snake_case_ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) logger.info(F'''Loading model from {input_model_file}''' ) snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) logger.info(F'''Loading model from {input_model_file}''' ) snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = ( os.path.join(SCREAMING_SNAKE_CASE__ , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) snake_case_ = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=SCREAMING_SNAKE_CASE__ , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE__ ) , planner=DefaultLoadPlanner() , ) snake_case_ = state_dict['''model'''] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = FSDP.optim_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE__ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: snake_case_ = ( os.path.join(SCREAMING_SNAKE_CASE__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) snake_case_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE__ ) , ) snake_case_ = optim_state['''optimizer'''] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) snake_case_ = FSDP.optim_state_dict_to_load(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) optimizer.load_state_dict(SCREAMING_SNAKE_CASE__ )
8
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
1
def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> float: '''simple docstring''' if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(SCREAMING_SNAKE_CASE__ ) * abs(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
365
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A : """simple docstring""" def __init__( self : Any,lowercase_ : Optional[int],lowercase_ : Optional[int]=1_3,lowercase_ : int=7,lowercase_ : List[str]=True,lowercase_ : str=True,lowercase_ : List[str]=True,lowercase_ : Optional[Any]=True,lowercase_ : Dict=9_9,lowercase_ : Dict=2_4,lowercase_ : Union[str, Any]=2,lowercase_ : str=6,lowercase_ : Dict=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : Any=0.1,lowercase_ : Any=0.1,lowercase_ : Any=5_1_2,lowercase_ : Dict=1_6,lowercase_ : List[str]=2,lowercase_ : Dict=0.02,lowercase_ : Any=3,lowercase_ : Dict=None,lowercase_ : List[str]=1_0_0_0,)-> Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = scope A__ = range_bbox def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = ids_tensor([self.batch_size, self.seq_length, 4],self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = t A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self : Dict )-> int: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,) def snake_case__ ( self : Optional[Any],lowercase_ : Tuple,lowercase_ : str,lowercase_ : Optional[int],lowercase_ : Optional[Any],lowercase_ : str,lowercase_ : List[str],lowercase_ : Tuple,)-> Optional[Any]: '''simple docstring''' A__ = LiltModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.hidden_size) ) def snake_case__ ( self : Any,lowercase_ : Dict,lowercase_ : List[Any],lowercase_ : List[str],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : List[Any],)-> List[str]: '''simple docstring''' A__ = self.num_labels A__ = LiltForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : int,lowercase_ : Union[str, Any],lowercase_ : int,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : Optional[int],lowercase_ : Tuple,lowercase_ : List[str],)-> Any: '''simple docstring''' A__ = LiltForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,start_positions=lowercase_,end_positions=lowercase_,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : List[str],lowercase_ : str,lowercase_ : Optional[Any],lowercase_ : Optional[Any] )-> Any: '''simple docstring''' return True def snake_case__ ( self : int )-> Tuple: '''simple docstring''' A__ = LiltModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def snake_case__ ( self : List[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = LiltModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @slow class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(lowercase_ ) A__ = torch.tensor([[1, 2]],device=lowercase_ ) A__ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]],device=lowercase_ ) # forward pass with torch.no_grad(): A__ = model(input_ids=lowercase_,bbox=lowercase_ ) A__ = torch.Size([1, 2, 7_6_8] ) A__ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]],device=lowercase_,) self.assertTrue(outputs.last_hidden_state.shape,lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3],lowercase_,atol=1E-3 ) )
282
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 20_48, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> int: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCamelCase = add_prefix_space def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
90
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''EncodecFeatureExtractor''' snake_case_ = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = self.feature_extractor __lowerCamelCase = False def lowercase_ ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ) -> List[Any]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase__ , language=lowerCamelCase__ , no_timestamps=lowerCamelCase__ ) def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = kwargs.pop('audio' , lowerCamelCase__ ) __lowerCamelCase = kwargs.pop('sampling_rate' , lowerCamelCase__ ) __lowerCamelCase = kwargs.pop('text' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __lowerCamelCase = args[0] __lowerCamelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: __lowerCamelCase = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if audio is not None: __lowerCamelCase = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if audio is None: return inputs elif text is None: return audio_inputs else: __lowerCamelCase = audio_inputs['input_values'] if "padding_mask" in audio_inputs: __lowerCamelCase = audio_inputs['padding_mask'] return inputs def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = kwargs.pop('audio' , lowerCamelCase__ ) __lowerCamelCase = kwargs.pop('padding_mask' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __lowerCamelCase = args[0] __lowerCamelCase = args[1:] if audio_values is not None: return self._decode_audio(lowerCamelCase__ , padding_mask=lowerCamelCase__ ) else: return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[np.ndarray]: '''simple docstring''' __lowerCamelCase = to_numpy(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = audio_values.shape if padding_mask is None: return list(lowerCamelCase__ ) __lowerCamelCase = to_numpy(lowerCamelCase__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowerCamelCase = seq_len - padding_mask.shape[-1] __lowerCamelCase = 1 - self.feature_extractor.padding_value __lowerCamelCase = np.pad(lowerCamelCase__ , ((0, 0), (0, difference)) , 'constant' , constant_values=lowerCamelCase__ ) __lowerCamelCase = audio_values.tolist() for i in range(lowerCamelCase__ ): __lowerCamelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowerCamelCase = sliced_audio.reshape(lowerCamelCase__ , -1 ) return audio_values
90
1
'''simple docstring''' def _snake_case ( A = 10 , A = 22 ) -> int: lowerCAmelCase__ = range(1 , A ) lowerCAmelCase__ = range(1 , A ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(10, 22) = }""")
228
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __UpperCAmelCase = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __UpperCAmelCase = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __UpperCAmelCase = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _snake_case ( A , A ) -> List[Any]: return float((preds == labels).mean() ) def _snake_case ( A , A , A="binary" ) -> int: lowerCAmelCase__ = simple_accuracy(A , A ) lowerCAmelCase__ = float(fa_score(y_true=A , y_pred=A , average=A ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( A , A ) -> List[Any]: lowerCAmelCase__ = {} for id_pred, label in zip(A , A ): lowerCAmelCase__ = F"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" lowerCAmelCase__ = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase__ = [(pred, label)] lowerCAmelCase__ , lowerCAmelCase__ = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase__ , lowerCAmelCase__ = zip(*A ) lowerCAmelCase__ = fa_score(y_true=A , y_pred=A , average='''macro''' ) fas.append(A ) lowerCAmelCase__ = int(sum(pred == label for pred, label in preds_labels ) == len(A ) ) ems.append(A ) lowerCAmelCase__ = float(sum(A ) / len(A ) ) lowerCAmelCase__ = sum(A ) / len(A ) lowerCAmelCase__ = float(fa_score(y_true=A , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Dict: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ )} elif self.config_name == "cb": return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ , fa_avg='''macro''' ) elif self.config_name == "record": lowerCAmelCase__ = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] lowerCAmelCase__ = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(lowerCamelCase_ , lowerCamelCase_ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowerCamelCase_ , lowerCamelCase_ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
228
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = """▁""" lowerCamelCase__ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} lowerCamelCase__ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } lowerCamelCase__ = {"""vinai/bartpho-syllable""": 1024} class SCREAMING_SNAKE_CASE ( _a ): __lowerCamelCase : Any =VOCAB_FILES_NAMES __lowerCamelCase : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Any =['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , __lowercase : Tuple , __lowercase : Tuple , __lowercase : Union[str, Any]="<s>" , __lowercase : str="</s>" , __lowercase : Optional[int]="</s>" , __lowercase : Optional[Any]="<s>" , __lowercase : List[str]="<unk>" , __lowercase : Optional[Any]="<pad>" , __lowercase : Dict="<mask>" , __lowercase : List[Any] = None , **__lowercase : List[str] , ): '''simple docstring''' __a = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __a = vocab_file __a = monolingual_vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowercase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility __a = {} __a = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowercase ) not in self.fairseq_tokens_to_ids: __a = cnt cnt += 1 with open(__lowercase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): __a = line.strip().split()[0] __a = len(self.fairseq_tokens_to_ids ) if str(__lowercase ) not in self.fairseq_tokens_to_ids: __a = len(self.fairseq_tokens_to_ids ) __a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[int] ): '''simple docstring''' __a = self.__dict__.copy() __a = None __a = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , __lowercase : List[str] ): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Dict , __lowercase : List[str] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a = [self.cls_token_id] __a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Dict , __lowercase : Dict , __lowercase : str = None , __lowercase : str = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def UpperCamelCase_ ( self : int , __lowercase : int , __lowercase : int = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Optional[Any] ): '''simple docstring''' return self.sp_model.encode(__lowercase , out_type=__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : Dict ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCamelCase_ ( self : List[str] , __lowercase : Any ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def UpperCamelCase_ ( self : Optional[int] , __lowercase : int ): '''simple docstring''' __a = ''''''.join(__lowercase ).replace(__lowercase , """ """ ).strip() return out_string def UpperCamelCase_ ( self : List[str] , __lowercase : Dict , __lowercase : Union[str, Any] = None ): '''simple docstring''' if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __a = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , """wb""" ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(__lowercase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowercase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowercase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowercase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"{str(__lowercase )} \n" ) return out_vocab_file, out_monolingual_vocab_file
302
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=32 , __magic_name__=True , ) -> Dict: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[Any] = image_size snake_case_ : int = min_resolution snake_case_ : Any = max_resolution snake_case_ : Tuple = do_resize snake_case_ : str = size_divisor snake_case_ : Optional[Any] = do_rescale def lowerCamelCase (self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Optional[Any] = GLPNImageProcessor if is_vision_available() else None def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = GLPNImageProcessingTester(self ) @property def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''size_divisor''' ) ) self.assertTrue(hasattr(__magic_name__ , '''resample''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_rescale''' ) ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
279
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset UpperCAmelCase = 'bert-base-cased' UpperCAmelCase = 'google/pegasus-xsum' UpperCAmelCase = [' Sam ate lunch today.', 'Sams lunch ingredients.'] UpperCAmelCase = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] UpperCAmelCase = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase = 'sshleifer/bart-tiny-random' UpperCAmelCase = 'sshleifer/tiny-mbart' UpperCAmelCase = 'sshleifer/tiny-marian-en-de' def _snake_case ( _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : list ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = """\n""".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("""w""" ).writelines(_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(_SCREAMING_SNAKE_CASE , f'{split}.source' ) , _SCREAMING_SNAKE_CASE ) _dump_articles(os.path.join(_SCREAMING_SNAKE_CASE , f'{split}.target' ) , _SCREAMING_SNAKE_CASE ) return tmp_dir class __snake_case( _lowerCAmelCase ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __snake_case ( self , A_ ) -> int: lowerCAmelCase = AutoTokenizer.from_pretrained(A_ ) lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase = max(len(tokenizer.encode(A_ ) ) for a in ARTICLES ) lowerCAmelCase = max(len(tokenizer.encode(A_ ) ) for a in SUMMARIES ) lowerCAmelCase = 4 lowerCAmelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase, lowerCAmelCase = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. lowerCAmelCase = SeqaSeqDataset( A_ , data_dir=A_ , type_path="""train""" , max_source_length=A_ , max_target_length=A_ , src_lang=A_ , tgt_lang=A_ , ) lowerCAmelCase = DataLoader(A_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(A_ , A_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __snake_case ( self , A_ ) -> Optional[int]: lowerCAmelCase = AutoTokenizer.from_pretrained(A_ ) lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase = max(len(tokenizer.encode(A_ ) ) for a in ARTICLES ) lowerCAmelCase = max(len(tokenizer.encode(A_ ) ) for a in SUMMARIES ) lowerCAmelCase = 4 lowerCAmelCase = LegacySeqaSeqDataset( A_ , data_dir=A_ , type_path="""train""" , max_source_length=20 , max_target_length=A_ , ) lowerCAmelCase = DataLoader(A_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __snake_case ( self ) -> List[str]: lowerCAmelCase = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase = tmp_dir.joinpath("""train.source""" ).open().readlines() lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(A_ , A_ , 128 , A_ ) lowerCAmelCase = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase = {x.name for x in save_dir.iterdir()} lowerCAmelCase = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(A_ ) < len(A_ ) assert len(A_ ) == 1 assert len(packed_examples[0] ) == sum(len(A_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def __snake_case ( self ) -> Optional[Any]: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = self._get_dataset(max_len=64 ) lowerCAmelCase = 64 lowerCAmelCase = ds.make_dynamic_sampler(A_ , required_batch_size_multiple=A_ ) lowerCAmelCase = [len(A_ ) for x in batch_sampler] assert len(set(A_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(A_ ) == len(A_ ) # no dropped or added examples lowerCAmelCase = DataLoader(A_ , batch_sampler=A_ , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase = [] lowerCAmelCase = [] for batch in data_loader: lowerCAmelCase = batch["""input_ids"""].shape lowerCAmelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(A_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(A_ ) assert num_src_per_batch[0] == max(A_ ) if failures: raise AssertionError(f'too many tokens in {len(A_ )} batches' ) def __snake_case ( self ) -> Dict: lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = self._get_dataset(max_len=512 ) lowerCAmelCase = 2 lowerCAmelCase = ds.make_sortish_sampler(A_ , shuffle=A_ ) lowerCAmelCase = DataLoader(A_ , batch_size=A_ , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase = DataLoader(A_ , batch_size=A_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=A_ ) lowerCAmelCase = tokenizer.pad_token_id def count_pad_tokens(A_ , A_="input_ids" ): return [batch[k].eq(A_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(A_ , k="""labels""" ) ) < sum(count_pad_tokens(A_ , k="""labels""" ) ) assert sum(count_pad_tokens(A_ ) ) < sum(count_pad_tokens(A_ ) ) assert len(A_ ) == len(A_ ) def __snake_case ( self , A_=1000 , A_=128 ) -> Any: if os.getenv("""USE_REAL_DATA""" , A_ ): lowerCAmelCase = """examples/seq2seq/wmt_en_ro""" lowerCAmelCase = max_len * 2 * 64 if not Path(A_ ).joinpath("""train.len""" ).exists(): save_len_file(A_ , A_ ) else: lowerCAmelCase = """examples/seq2seq/test_data/wmt_en_ro""" lowerCAmelCase = max_len * 4 save_len_file(A_ , A_ ) lowerCAmelCase = AutoTokenizer.from_pretrained(A_ ) lowerCAmelCase = SeqaSeqDataset( A_ , data_dir=A_ , type_path="""train""" , max_source_length=A_ , max_target_length=A_ , n_obs=A_ , ) return ds, max_tokens, tokenizer def __snake_case ( self ) -> Optional[int]: lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = self._get_dataset() lowerCAmelCase = set(DistributedSortishSampler(A_ , 256 , num_replicas=2 , rank=0 , add_extra_examples=A_ ) ) lowerCAmelCase = set(DistributedSortishSampler(A_ , 256 , num_replicas=2 , rank=1 , add_extra_examples=A_ ) ) assert idsa.intersection(A_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __snake_case ( self , A_ ) -> str: lowerCAmelCase = AutoTokenizer.from_pretrained(A_ , use_fast=A_ ) if tok_name == MBART_TINY: lowerCAmelCase = SeqaSeqDataset( A_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) lowerCAmelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase = SeqaSeqDataset( A_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(A_ ) == 1 if tok_name == BART_TINY else len(A_ ) == 0
187
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : list ) -> list: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(_SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> bool: lowerCAmelCase = False if low == high: return swapped lowerCAmelCase = low lowerCAmelCase = high while left < right: if collection[left] > collection[right]: lowerCAmelCase, lowerCAmelCase = ( collection[right], collection[left], ) lowerCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowerCAmelCase, lowerCAmelCase = ( collection[right + 1], collection[left], ) lowerCAmelCase = True lowerCAmelCase = low + int((high - low) / 2 ) lowerCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , mid + 1 , _SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap lowerCAmelCase = True while is_not_sorted is True: lowerCAmelCase = circle_sort_util(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
187
1
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _UpperCAmelCase = getLogger(__name__) _UpperCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" def __magic_name__ ( lowercase , lowercase , lowercase , lowercase = 8 , lowercase = DEFAULT_DEVICE , lowercase=False , lowercase="summarization" , lowercase=None , **lowercase , ): SCREAMING_SNAKE_CASE_: Optional[Any] =Path(_lowerCamelCase ).open("""w""" , encoding="""utf-8""" ) SCREAMING_SNAKE_CASE_: Optional[int] =str(_lowerCamelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) if fpaa: SCREAMING_SNAKE_CASE_: Any =model.half() SCREAMING_SNAKE_CASE_: str =AutoTokenizer.from_pretrained(_lowerCamelCase ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. SCREAMING_SNAKE_CASE_: List[str] =time.time() # update config with task specific params use_task_specific_params(_lowerCamelCase , _lowerCamelCase ) if prefix is None: SCREAMING_SNAKE_CASE_: Dict =prefix or getattr(model.config , """prefix""" , """""" ) or "" for examples_chunk in tqdm(list(chunks(_lowerCamelCase , _lowerCamelCase ) ) ): SCREAMING_SNAKE_CASE_: Optional[Any] =[prefix + text for text in examples_chunk] SCREAMING_SNAKE_CASE_: Any =tokenizer(_lowerCamelCase , return_tensors="""pt""" , truncation=_lowerCamelCase , padding="""longest""" ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE_: Dict =model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE_: Dict =tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() SCREAMING_SNAKE_CASE_: Tuple =int(time.time() - start_time ) # seconds SCREAMING_SNAKE_CASE_: Any =len(_lowerCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __magic_name__ ( ): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def __magic_name__ ( lowercase=True ): SCREAMING_SNAKE_CASE_: str =argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCamelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCamelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCamelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCamelCase , required=_lowerCamelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCamelCase , required=_lowerCamelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCamelCase , required=_lowerCamelCase , default=_lowerCamelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCamelCase , required=_lowerCamelCase , default=_lowerCamelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCamelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCamelCase , default=8 , required=_lowerCamelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCamelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate SCREAMING_SNAKE_CASE_: str =parser.parse_known_args() SCREAMING_SNAKE_CASE_: List[str] =parse_numeric_n_bool_cl_kwargs(_lowerCamelCase ) if parsed_args and verbose: print(f'''parsed the following generate kwargs: {parsed_args}''' ) SCREAMING_SNAKE_CASE_: Optional[Any] =[" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: SCREAMING_SNAKE_CASE_: List[Any] =examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) SCREAMING_SNAKE_CASE_: Optional[int] =generate_summaries_or_translations( _lowerCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCamelCase , ) if args.reference_path is None: return {} # Compute scores SCREAMING_SNAKE_CASE_: Union[str, Any] =calculate_bleu if "translation" in args.task else calculate_rouge SCREAMING_SNAKE_CASE_: int =[x.rstrip() for x in open(args.save_path ).readlines()] SCREAMING_SNAKE_CASE_: Tuple =[x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCamelCase )] SCREAMING_SNAKE_CASE_: dict =score_fn(_lowerCamelCase , _lowerCamelCase ) scores.update(_lowerCamelCase ) if args.dump_args: scores.update(_lowerCamelCase ) if args.info: SCREAMING_SNAKE_CASE_: Dict =args.info if verbose: print(_lowerCamelCase ) if args.score_path is not None: json.dump(_lowerCamelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
173
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: PreTrainedTokenizer , _lowerCamelCase: int , _lowerCamelCase: Optional[int] = None , ) -> Tuple: '''simple docstring''' __lowerCamelCase : Optional[int] = {} if train_file is not None: __lowerCamelCase : List[Any] = [train_file] if eval_file is not None: __lowerCamelCase : List[Any] = [eval_file] if test_file is not None: __lowerCamelCase : Optional[int] = [test_file] __lowerCamelCase : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = list(ds[list(files.keys() )[0]].features.keys() ) __lowerCamelCase : Optional[Any] = features_name.pop(_lowerCamelCase ) __lowerCamelCase : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowerCamelCase : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )} __lowerCamelCase : Dict = tokenizer.model_input_names __lowerCamelCase : int = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): __lowerCamelCase : Optional[int] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): __lowerCamelCase : Optional[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowerCamelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowerCamelCase : str = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : Dict = labelaid[ex[label_name]] yield (d, label) __lowerCamelCase : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowerCamelCase : int = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowerCamelCase : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowerCamelCase : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowerCamelCase : int = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowerCamelCase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __A = logging.getLogger(__name__) @dataclass class _snake_case : snake_case__ = field(metadata={"help": "Which column contains the label"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the training file"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the development file"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the test file"} ) snake_case__ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _snake_case : snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default=a__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field(default=a__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowercase_ ( ) -> str: '''simple docstring''' __lowerCamelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowerCamelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowerCamelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase: EvalPrediction ) -> Dict: __lowerCamelCase : List[str] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowerCamelCase : Dict = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCamelCase : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowerCamelCase : Any = trainer.evaluate() __lowerCamelCase : List[str] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
135
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase ={ "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Any ="facebook/nllb-200-distilled-600M" lowerCamelCase : Optional[Any] =( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) lowerCamelCase : Tuple ="translator" lowerCamelCase : Any =AutoTokenizer lowerCamelCase : Dict =AutoModelForSeqaSeqLM lowerCamelCase : Union[str, Any] =LANGUAGE_CODES lowerCamelCase : Any =["text", "text", "text"] lowerCamelCase : Union[str, Any] =["text"] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Any , a : List[str] , a : Any ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) __lowerCamelCase = self.lang_to_code[src_lang] __lowerCamelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( a , return_tensors='''pt''' , src_lang=a , tgt_lang=a ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Optional[Any] ): """simple docstring""" return self.model.generate(**a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : str ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=a )
237
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class a__ ( UpperCAmelCase__ ): lowerCamelCase : List[Any] ="unispeech-sat" def __init__( self : Dict , a : str=32 , a : Any=7_68 , a : Optional[Any]=12 , a : Optional[int]=12 , a : int=30_72 , a : int="gelu" , a : Dict=0.1 , a : Dict=0.1 , a : List[Any]=0.1 , a : Tuple=0.0 , a : Optional[Any]=0.0 , a : Tuple=0.1 , a : List[Any]=0.1 , a : str=0.02 , a : List[Any]=1e-5 , a : int="group" , a : Union[str, Any]="gelu" , a : Optional[int]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , a : List[Any]=(5, 2, 2, 2, 2, 2, 2) , a : int=(10, 3, 3, 3, 3, 2, 2) , a : Optional[Any]=False , a : Any=1_28 , a : Tuple=16 , a : str=False , a : Optional[Any]=True , a : Dict=0.05 , a : List[Any]=10 , a : Any=2 , a : Optional[Any]=0.0 , a : Optional[Any]=10 , a : Any=0 , a : Any=3_20 , a : str=2 , a : List[str]=0.1 , a : List[str]=1_00 , a : List[str]=2_56 , a : str=2_56 , a : Dict=0.1 , a : Optional[Any]="mean" , a : str=False , a : Tuple=False , a : Optional[Any]=2_56 , a : int=(5_12, 5_12, 5_12, 5_12, 15_00) , a : int=(5, 3, 3, 1, 1) , a : Any=(1, 2, 3, 1, 1) , a : Union[str, Any]=5_12 , a : Optional[int]=0 , a : Optional[int]=1 , a : Optional[int]=2 , a : int=5_04 , **a : Dict , ): """simple docstring""" super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layerdrop __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size __lowerCamelCase = num_clusters __lowerCamelCase = do_stable_layer_norm __lowerCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowerCamelCase = num_codevectors_per_group __lowerCamelCase = num_codevector_groups __lowerCamelCase = contrastive_logits_temperature __lowerCamelCase = feat_quantizer_dropout __lowerCamelCase = num_negatives __lowerCamelCase = codevector_dim __lowerCamelCase = proj_codevector_dim __lowerCamelCase = diversity_loss_weight # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
237
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : int = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = "distilbert" __UpperCamelCase = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self :Union[str, Any] , snake_case :List[Any]=30_522 , snake_case :Dict=512 , snake_case :int=False , snake_case :int=6 , snake_case :Union[str, Any]=12 , snake_case :Union[str, Any]=768 , snake_case :Union[str, Any]=4 * 768 , snake_case :Dict=0.1 , snake_case :List[Any]=0.1 , snake_case :Dict="gelu" , snake_case :Tuple=0.02 , snake_case :str=0.1 , snake_case :str=0.2 , snake_case :List[str]=0 , **snake_case :Tuple , ): '''simple docstring''' A_ : str = vocab_size A_ : Optional[Any] = max_position_embeddings A_ : Any = sinusoidal_pos_embds A_ : List[str] = n_layers A_ : Dict = n_heads A_ : Any = dim A_ : Union[str, Any] = hidden_dim A_ : Union[str, Any] = dropout A_ : Tuple = attention_dropout A_ : Optional[Any] = activation A_ : List[Any] = initializer_range A_ : List[str] = qa_dropout A_ : Union[str, Any] = seq_classif_dropout super().__init__(**snake_case , pad_token_id=snake_case ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' if self.task == "multiple-choice": A_ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: A_ : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
300
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , lowercase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList(lowercase ) def A ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : Union[torch.Tensor, float, int] , lowercase : torch.Tensor , lowercase : List[torch.tensor] , lowercase : List[float] , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[Dict[str, Any]] = None , lowercase : bool = False , lowercase : bool = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowercase , lowercase , self.nets ) ): _snake_case , _snake_case = controlnet( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) # merge samples if i == 0: _snake_case , _snake_case = down_samples, mid_sample else: _snake_case = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase , lowercase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A ( self : Dict , lowercase : Union[str, os.PathLike] , lowercase : bool = True , lowercase : Callable = None , lowercase : bool = False , lowercase : Optional[str] = None , ): '''simple docstring''' _snake_case = 0 _snake_case = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase , is_main_process=lowercase , save_function=lowercase , safe_serialization=lowercase , variant=lowercase , ) idx += 1 _snake_case = model_path_to_save + f'''_{idx}''' @classmethod def A ( cls : Any , lowercase : Optional[Union[str, os.PathLike]] , **lowercase : List[str] ): '''simple docstring''' _snake_case = 0 _snake_case = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _snake_case = pretrained_model_path while os.path.isdir(lowercase ): _snake_case = ControlNetModel.from_pretrained(lowercase , **lowercase ) controlnets.append(lowercase ) idx += 1 _snake_case = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(lowercase )} controlnets loaded from {pretrained_model_path}.''' ) if len(lowercase ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(lowercase )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(lowercase )
282
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCAmelCase_ : Dict = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' UpperCAmelCase_ : str = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' UpperCAmelCase_ : List[Any] = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def UpperCamelCase ( _A : Dict , _A : Tuple )-> List[str]: """simple docstring""" return float((preds == labels).mean() ) def UpperCamelCase ( _A : Optional[int] , _A : Union[str, Any] )-> Dict: """simple docstring""" A__ = simple_accuracy(lowercase_ , lowercase_ ) A__ = float(fa_score(y_true=lowercase_ , y_pred=lowercase_ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase ( _A : Optional[int] , _A : Any )-> Optional[int]: """simple docstring""" A__ = np.array(lowercase_ ) A__ = np.array(lowercase_ ) A__ = en_sentvecs.shape[0] # mean centering A__ = en_sentvecs - np.mean(lowercase_ , axis=0 ) A__ = in_sentvecs - np.mean(lowercase_ , axis=0 ) A__ = cdist(lowercase_ , lowercase_ , "cosine" ) A__ = np.array(range(lowercase_ ) ) A__ = sim.argsort(axis=1 )[:, :10] A__ = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def __A ( self ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCamelCase__ , lowerCamelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
357
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCAmelCase_ : Dict = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } UpperCAmelCase_ : Any = { "169M": 768, "430M": 1_024, "1B5": 2_048, "3B": 2_560, "7B": 4_096, "14B": 5_120, } def UpperCamelCase ( _A : Dict )-> Optional[int]: """simple docstring""" A__ = list(state_dict.keys() ) for name in state_dict_keys: A__ = state_dict.pop(_A ) # emb -> embedding if name.startswith("emb." ): A__ = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): A__ = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention A__ = re.sub(R"blocks\.(\d+)\.att" , R"blocks.\1.attention" , _A ) # ffn -> feed_forward A__ = re.sub(R"blocks\.(\d+)\.ffn" , R"blocks.\1.feed_forward" , _A ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): A__ = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): A__ = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): A__ = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": A__ = "rwkv." + name A__ = weight return state_dict def UpperCamelCase ( _A : str , _A : List[Any] , _A : List[Any] , _A : int=None , _A : List[str]=None , _A : Dict=False , _A : List[Any]=None )-> str: """simple docstring""" if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) A__ = 50277 A__ = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: A__ = PreTrainedTokenizerFast(tokenizer_file=_A ) A__ = len(_A ) tokenizer.save_pretrained(_A ) # 2. Build the config A__ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: A__ = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) A__ = RwkvConfig( vocab_size=_A , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_A ) # 3. Download model file then convert state_dict A__ = hf_hub_download(_A , _A ) A__ = torch.load(_A , map_location="cpu" ) A__ = convert_state_dict(_A ) # 4. Split in shards and save A__ , A__ = shard_checkpoint(_A ) for shard_file, shard in shards.items(): torch.save(_A , os.path.join(_A , _A ) ) if index is not None: A__ = os.path.join(_A , _A ) # Save the index as well with open(_A , "w" , encoding="utf-8" ) as f: A__ = json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" f.write(_A ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) A__ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: A__ = torch.load(os.path.join(_A , _A ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_A , _A ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) A__ = AutoModelForCausalLM.from_pretrained(_A ) model.push_to_hub(_A , max_shard_size="2GB" ) tokenizer.push_to_hub(_A ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
198
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __lowerCAmelCase : def __init__( self :List[str] , __magic_name__ :Collection[float] | None = None ): '''simple docstring''' if components is None: a = [] a = list(__magic_name__ ) def __len__( self :str ): '''simple docstring''' return len(self.__components ) def __str__( self :Union[str, Any] ): '''simple docstring''' return "(" + ",".join(map(__magic_name__ , self.__components ) ) + ")" def __add__( self :int , __magic_name__ :Vector ): '''simple docstring''' a = len(self ) if size == len(__magic_name__ ): a = [self.__components[i] + other.component(__magic_name__ ) for i in range(__magic_name__ )] return Vector(__magic_name__ ) else: raise Exception("""must have the same size""" ) def __sub__( self :Dict , __magic_name__ :Vector ): '''simple docstring''' a = len(self ) if size == len(__magic_name__ ): a = [self.__components[i] - other.component(__magic_name__ ) for i in range(__magic_name__ )] return Vector(__magic_name__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self :Optional[int] , __magic_name__ :float ): '''simple docstring''' ... @overload def __mul__( self :Optional[Any] , __magic_name__ :Vector ): '''simple docstring''' ... def __mul__( self :int , __magic_name__ :float | Vector ): '''simple docstring''' if isinstance(__magic_name__ , (float, int) ): a = [c * other for c in self.__components] return Vector(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ) and len(self ) == len(__magic_name__ ): a = len(self ) a = [self.__components[i] * other.component(__magic_name__ ) for i in range(__magic_name__ )] return sum(__magic_name__ ) else: # error case raise Exception("""invalid operand!""" ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' return Vector(self.__components ) def lowerCamelCase__ ( self :Tuple , __magic_name__ :int ): '''simple docstring''' if isinstance(__magic_name__ , __magic_name__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def lowerCamelCase__ ( self :str , __magic_name__ :int , __magic_name__ :float ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) a = value def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) a = [c**2 for c in self.__components] return math.sqrt(sum(__magic_name__ ) ) def lowerCamelCase__ ( self :int , __magic_name__ :Vector , __magic_name__ :bool = False ): '''simple docstring''' a = self * other a = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __A ( __lowerCamelCase ) -> Vector: assert isinstance(__lowerCamelCase , __lowerCamelCase ) return Vector([0] * dimension ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> Vector: assert isinstance(__lowerCamelCase , __lowerCamelCase ) and (isinstance(__lowerCamelCase , __lowerCamelCase )) a = [0] * dimension a = 1 return Vector(__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Vector: assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and (isinstance(__lowerCamelCase , (int, float) )) ) return x * scalar + y def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Vector: random.seed(__lowerCamelCase ) a = [random.randint(__lowerCamelCase , __lowerCamelCase ) for _ in range(__lowerCamelCase )] return Vector(__lowerCamelCase ) class __lowerCAmelCase : def __init__( self :Dict , __magic_name__ :list[list[float]] , __magic_name__ :int , __magic_name__ :int ): '''simple docstring''' a = matrix a = w a = h def __str__( self :Dict ): '''simple docstring''' a = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self :Optional[Any] , __magic_name__ :Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): a = [] for i in range(self.__height ): a = [ self.__matrix[i][j] + other.component(__magic_name__ , __magic_name__ ) for j in range(self.__width ) ] matrix.append(__magic_name__ ) return Matrix(__magic_name__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self :List[str] , __magic_name__ :Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): a = [] for i in range(self.__height ): a = [ self.__matrix[i][j] - other.component(__magic_name__ , __magic_name__ ) for j in range(self.__width ) ] matrix.append(__magic_name__ ) return Matrix(__magic_name__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self :List[str] , __magic_name__ :float ): '''simple docstring''' ... @overload def __mul__( self :Union[str, Any] , __magic_name__ :Vector ): '''simple docstring''' ... def __mul__( self :Any , __magic_name__ :float | Vector ): '''simple docstring''' if isinstance(__magic_name__ , __magic_name__ ): # matrix-vector if len(__magic_name__ ) == self.__width: a = zero_vector(self.__height ) for i in range(self.__height ): a = [ self.__matrix[i][j] * other.component(__magic_name__ ) for j in range(self.__width ) ] ans.change_component(__magic_name__ , sum(__magic_name__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(__magic_name__ , (int, float) ): # matrix-scalar a = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__magic_name__ , self.__width , self.__height ) return None def lowerCamelCase__ ( self :str ): '''simple docstring''' return self.__height def lowerCamelCase__ ( self :int ): '''simple docstring''' return self.__width def lowerCamelCase__ ( self :int , __magic_name__ :int , __magic_name__ :int ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def lowerCamelCase__ ( self :Dict , __magic_name__ :int , __magic_name__ :int , __magic_name__ :float ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: a = value else: raise Exception("""change_component: indices out of bounds""" ) def lowerCamelCase__ ( self :Tuple , __magic_name__ :int , __magic_name__ :int ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) a = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__magic_name__ ) ): a = minor[i][:y] + minor[i][y + 1 :] return Matrix(__magic_name__ , self.__width - 1 , self.__height - 1 ).determinant() def lowerCamelCase__ ( self :Tuple , __magic_name__ :int , __magic_name__ :int ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__magic_name__ , __magic_name__ ) else: raise Exception("""Indices out of bounds""" ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: a = [ self.__matrix[0][y] * self.cofactor(0 , __magic_name__ ) for y in range(self.__width ) ] return sum(__magic_name__ ) def __A ( __lowerCamelCase ) -> Matrix: a = [[0] * n for _ in range(__lowerCamelCase )] return Matrix(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Matrix: random.seed(__lowerCamelCase ) a = [ [random.randint(__lowerCamelCase , __lowerCamelCase ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase ) ] return Matrix(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
228
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) a = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
228
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : Optional[int] = [[1, 2, 4], [1, 2, 3, 4]] UpperCamelCase__ : str = DisjunctiveConstraint(__magic_name__ ) self.assertTrue(isinstance(dc.token_ids, __magic_name__ ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : str = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(__magic_name__ ) # fails here def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : str = [[1, 2, 3], [1, 2, 4]] UpperCamelCase__ : Union[str, Any] = DisjunctiveConstraint(__magic_name__ ) UpperCamelCase__ : Tuple = dc.update(1 ) UpperCamelCase__ : Any = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase__ : Union[str, Any] = dc.update(2 ) UpperCamelCase__ : Dict = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase__ : List[Any] = dc.update(3 ) UpperCamelCase__ : Dict = stepped is True and completed is True and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCamelCase__ : Union[str, Any] = DisjunctiveConstraint(__magic_name__ ) UpperCamelCase__ : Tuple = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase__ : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase__ : Union[str, Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCamelCase__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCamelCase__ : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase__ : str = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
366
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Optional[Any]: UpperCamelCase__ : Any = test_results.split(''' ''' ) UpperCamelCase__ : Dict = 0 UpperCamelCase__ : int = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCamelCase__ : List[Any] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__UpperCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCAmelCase_ ( __UpperCAmelCase: List[str] ) -> Tuple: UpperCamelCase__ : List[Any] = {} UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : int = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , __UpperCAmelCase ): UpperCamelCase__ : Any = True UpperCamelCase__ : Optional[Any] = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): UpperCamelCase__ : List[Any] = line UpperCamelCase__ : List[Any] = False return failures class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = title UpperCamelCase__ : Tuple = doc_test_results['''time_spent'''].split(''',''' )[0] UpperCamelCase__ : Optional[Any] = doc_test_results['''success'''] UpperCamelCase__ : str = doc_test_results['''failures'''] UpperCamelCase__ : str = self.n_success + self.n_failures # Failures and success of the modeling tests UpperCamelCase__ : List[Any] = doc_test_results @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[Any] = [self._time_spent] UpperCamelCase__ : str = 0 for time in time_spent: UpperCamelCase__ : List[Any] = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__magic_name__ ) == 1: UpperCamelCase__ : List[Any] = [0, 0, time_parts[0]] UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : int = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[str] = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(__magic_name__ )}h{int(__magic_name__ )}m{int(__magic_name__ )}s" @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : List[Any] = 40 UpperCamelCase__ : Tuple = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(__magic_name__, __magic_name__ )} UpperCamelCase__ : List[str] = '''''' for category, failures in category_failures.items(): if len(__magic_name__ ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__magic_name__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : str = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__magic_name__ ) @staticmethod def UpperCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(__magic_name__ )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], text='''There was an issue running the tests.''', blocks=__magic_name__, ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) UpperCamelCase__ : List[str] = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' UpperCamelCase__ : Optional[Any] = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], blocks=self.payload, text=__magic_name__, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = '''''' for key, value in failures.items(): UpperCamelCase__ : List[Any] = value[:200] + ''' [Truncated]''' if len(__magic_name__ ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" UpperCamelCase__ : Union[str, Any] = job_name UpperCamelCase__ : Any = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: UpperCamelCase__ : Union[str, Any] = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) UpperCamelCase__ : Optional[int] = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) UpperCamelCase__ : Optional[int] = sorted(self.doc_test_results.items(), key=lambda __magic_name__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): UpperCamelCase__ : Any = f"*Num failures* :{len(job_result['failed'] )} \n" UpperCamelCase__ : Optional[Any] = job_result['''failures'''] UpperCamelCase__ : Optional[Any] = self.get_reply_blocks(__magic_name__, __magic_name__, __magic_name__, text=__magic_name__ ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], text=f"Results for {job}", blocks=__magic_name__, thread_ts=self.thread_ts['''ts'''], ) time.sleep(1 ) def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase__ : Any = os.environ['''GITHUB_RUN_ID'''] UpperCamelCase__ : Tuple = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" UpperCamelCase__ : Optional[int] = requests.get(__UpperCAmelCase ).json() UpperCamelCase__ : List[Any] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) UpperCamelCase__ : List[Any] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__UpperCAmelCase ): UpperCamelCase__ : Any = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , __UpperCAmelCase ) return {} def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> List[Any]: UpperCamelCase__ : Optional[int] = {} if os.path.exists(__UpperCAmelCase ): UpperCamelCase__ : Dict = os.listdir(__UpperCAmelCase ) for file in files: try: with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , encoding='''utf-8''' ) as f: UpperCamelCase__ : int = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(__UpperCAmelCase , __UpperCAmelCase )}." ) from e return _artifact def lowerCAmelCase_ ( ) -> str: class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ ) -> Tuple: """simple docstring""" UpperCamelCase__ : Any = name UpperCamelCase__ : int = [] def __str__( self ) -> Tuple: """simple docstring""" return self.name def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" self.paths.append({'''name''': self.name, '''path''': path} ) UpperCamelCase__ : Dict[str, Artifact] = {} UpperCamelCase__ : Union[str, Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCamelCase__ : Optional[int] = directory if artifact_name not in _available_artifacts: UpperCamelCase__ : Union[str, Any] = Artifact(__UpperCAmelCase ) _available_artifacts[artifact_name].add_path(__UpperCAmelCase ) return _available_artifacts if __name__ == "__main__": UpperCAmelCase_ = get_job_links() UpperCAmelCase_ = retrieve_available_artifacts() UpperCAmelCase_ = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' UpperCAmelCase_ = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job UpperCAmelCase_ = github_actions_job_links.get('run_doctests') UpperCAmelCase_ = available_artifacts['doc_tests_gpu_test_reports'].paths[0] UpperCAmelCase_ = retrieve_artifact(artifact_path['name']) if "stats" in artifact: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = handle_test_results(artifact['stats']) UpperCAmelCase_ = failed UpperCAmelCase_ = success UpperCAmelCase_ = time_spent[1:-1] + ', ' UpperCAmelCase_ = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): UpperCAmelCase_ = line.replace('FAILED ', '') UpperCAmelCase_ = line.split()[0].replace('\n', '') if "::" in line: UpperCAmelCase_ , UpperCAmelCase_ = line.split('::') else: UpperCAmelCase_ , UpperCAmelCase_ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): UpperCAmelCase_ = docs[file_regex] doc_test_results[category]["failed"].append(test) UpperCAmelCase_ = all_failures[test] if test in all_failures else 'N/A' UpperCAmelCase_ = failure break UpperCAmelCase_ = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
247
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase__ : int = None lowercase__ : str = logging.get_logger(__name__) lowercase__ : Optional[int] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase__ : Dict = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } lowercase__ : List[Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off lowercase__ : List[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = MBartTokenizer lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self : List[Any] , __lowercase : str=None , __lowercase : Optional[int]=None , __lowercase : int="<s>" , __lowercase : List[str]="</s>" , __lowercase : Union[str, Any]="</s>" , __lowercase : List[Any]="<s>" , __lowercase : Optional[Any]="<unk>" , __lowercase : List[str]="<pad>" , __lowercase : Optional[int]="<mask>" , __lowercase : List[Any]=None , __lowercase : List[str]=None , __lowercase : Optional[Any]=None , **__lowercase : Any , ): """simple docstring""" snake_case_ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( vocab_file=__lowercase , tokenizer_file=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase , additional_special_tokens=__lowercase , **__lowercase , ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True snake_case_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) snake_case_ = { lang_code: self.convert_tokens_to_ids(__lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ = src_lang if src_lang is not None else "en_XX" snake_case_ = self.convert_tokens_to_ids(self._src_lang ) snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case__ ( self : Tuple ): """simple docstring""" return self._src_lang @src_lang.setter def snake_case__ ( self : List[Any] , __lowercase : str ): """simple docstring""" snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case__ ( self : Any , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case__ ( self : int , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : int , __lowercase : str , __lowercase : str , __lowercase : Optional[str] , __lowercase : Optional[str] , **__lowercase : Optional[Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) snake_case_ = src_lang snake_case_ = self(__lowercase , add_special_tokens=__lowercase , return_tensors=__lowercase , **__lowercase ) snake_case_ = self.convert_tokens_to_ids(__lowercase ) snake_case_ = tgt_lang_id return inputs def snake_case__ ( self : Optional[int] , __lowercase : List[str] , __lowercase : str = "en_XX" , __lowercase : Optional[List[str]] = None , __lowercase : str = "ro_RO" , **__lowercase : List[Any] , ): """simple docstring""" snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(__lowercase , __lowercase , **__lowercase ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case__ ( self : int , __lowercase : str ): """simple docstring""" snake_case_ = self.convert_tokens_to_ids(__lowercase ) snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case__ ( self : str , __lowercase : str ): """simple docstring""" snake_case_ = self.convert_tokens_to_ids(__lowercase ) snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case__ ( self : Dict , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return snake_case_ = os.path.join( __lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
187
from __future__ import annotations lowercase__ : str = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCamelCase__ ( _A , _A , _A , _A , _A , ): '''simple docstring''' snake_case_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_A ) ) ] # the reference grid snake_case_ = 1 snake_case_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_A ) ) ] # the action grid snake_case_ = init[0] snake_case_ = init[1] snake_case_ = 0 snake_case_ = g + heuristic[x][y] # cost from starting cell to destination cell snake_case_ = [[f, g, x, y]] snake_case_ = False # flag that is set when search is complete snake_case_ = False # flag set if we can't find expand while not found and not resign: if len(_A ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case_ = cell.pop() snake_case_ = next_cell[2] snake_case_ = next_cell[3] snake_case_ = next_cell[1] if x == goal[0] and y == goal[1]: snake_case_ = True else: for i in range(len(_A ) ): # to try out different valid actions snake_case_ = x + DIRECTIONS[i][0] snake_case_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_A ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case_ = g + cost snake_case_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case_ = 1 snake_case_ = i snake_case_ = [] snake_case_ = goal[0] snake_case_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case_ = x - DIRECTIONS[action[x][y]][0] snake_case_ = y - DIRECTIONS[action[x][y]][1] snake_case_ = xa snake_case_ = ya invpath.append([x, y] ) snake_case_ = [] for i in range(len(_A ) ): path.append(invpath[len(_A ) - 1 - i] ) return path, action if __name__ == "__main__": lowercase__ : Union[str, Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowercase__ : Optional[Any] = [0, 0] # all coordinates are given in format [y,x] lowercase__ : Tuple = [len(grid) - 1, len(grid[0]) - 1] lowercase__ : Dict = 1 # the cost map which pushes the path closer to the goal lowercase__ : Any = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowercase__ : Union[str, Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowercase__ : int = 99 lowercase__ , lowercase__ : Tuple = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
187
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str, _UpperCamelCase : str, _UpperCamelCase : Path, _UpperCamelCase : str = None, _UpperCamelCase : str = None, _UpperCamelCase : str = None, ) -> List[Any]: if config_name_or_path is None: A_ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: A_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: A_ = question_encoder_name_or_path A_ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. A_ = RagConfig.from_pretrained(_UpperCamelCase ) A_ = AutoConfig.from_pretrained(_UpperCamelCase ) A_ = AutoConfig.from_pretrained(_UpperCamelCase ) A_ = gen_config A_ = question_encoder_config A_ = model_class.from_pretrained_question_encoder_generator( _UpperCamelCase, _UpperCamelCase, config=_UpperCamelCase ) rag_model.save_pretrained(_UpperCamelCase ) # Sanity check. model_class.from_pretrained(_UpperCamelCase ) # Save tokenizers. A_ = AutoTokenizer.from_pretrained(_UpperCamelCase ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) A_ = AutoTokenizer.from_pretrained(_UpperCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) __snake_case : Optional[int] = parser.parse_args() __snake_case : List[Any] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
350
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' __lowerCAmelCase : Dict =[ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
237
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=UpperCamelCase__ ): __lowercase = ["""note_seq"""] def __init__( self :Optional[Any] , *lowercase_ :List[Any] , **lowercase_ :List[str] )-> int: requires_backends(self , ["note_seq"] ) @classmethod def UpperCAmelCase_ ( cls :str , *lowercase_ :Union[str, Any] , **lowercase_ :Any )-> Optional[int]: requires_backends(cls , ["note_seq"] ) @classmethod def UpperCAmelCase_ ( cls :Dict , *lowercase_ :Tuple , **lowercase_ :List[Any] )-> Optional[Any]: requires_backends(cls , ["note_seq"] )
237
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = MobileBertTokenizer a = MobileBertTokenizerFast a = True a = True a = filter_non_english a = "google/mobilebert-uncased" def A ( self : Union[str, Any]): super().setUp() _A : Optional[int] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _A : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) _A : Optional[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def A ( self : Tuple , SCREAMING_SNAKE_CASE : Tuple): _A : Any = 'UNwant\u00E9d,running' _A : Optional[Any] = 'unwanted, running' return input_text, output_text def A ( self : List[str]): _A : Dict = self.tokenizer_class(self.vocab_file) _A : Optional[int] = tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(SCREAMING_SNAKE_CASE , ['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) , [9, 6, 7, 12, 10, 11]) def A ( self : Tuple): if not self.test_rust_tokenizer: return _A : str = self.get_tokenizer() _A : List[str] = self.get_rust_tokenizer() _A : Optional[int] = 'UNwant\u00E9d,running' _A : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE) _A : Optional[Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : int = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) _A : Dict = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : str = self.get_rust_tokenizer() _A : Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) # With lower casing _A : List[str] = self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE) _A : Tuple = self.get_rust_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE) _A : List[str] = 'UNwant\u00E9d,running' _A : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE) _A : str = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : int = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) _A : Tuple = rust_tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : Tuple = self.get_rust_tokenizer() _A : Any = tokenizer.encode(SCREAMING_SNAKE_CASE) _A : str = rust_tokenizer.encode(SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def A ( self : Any): _A : int = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz']) def A ( self : List[Any]): _A : Tuple = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def A ( self : int): _A : Any = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo']) def A ( self : Optional[int]): _A : Optional[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def A ( self : Optional[int]): _A : Dict = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def A ( self : Optional[int]): _A : str = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def A ( self : Optional[Any]): _A : Tuple = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?']) def A ( self : Union[str, Any]): _A : List[Any] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?']) def A ( self : Tuple): _A : List[str] = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE , never_split=['[UNK]']) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]']) def A ( self : Optional[int]): _A : Tuple = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _A : int = {} for i, token in enumerate(SCREAMING_SNAKE_CASE): _A : Any = i _A : List[str] = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing']) self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing']) def A ( self : Any): self.assertTrue(_is_whitespace(' ')) self.assertTrue(_is_whitespace('\t')) self.assertTrue(_is_whitespace('\r')) self.assertTrue(_is_whitespace('\n')) self.assertTrue(_is_whitespace('\u00A0')) self.assertFalse(_is_whitespace('A')) self.assertFalse(_is_whitespace('-')) def A ( self : Optional[int]): self.assertTrue(_is_control('\u0005')) self.assertFalse(_is_control('A')) self.assertFalse(_is_control(' ')) self.assertFalse(_is_control('\t')) self.assertFalse(_is_control('\r')) def A ( self : Optional[int]): self.assertTrue(_is_punctuation('-')) self.assertTrue(_is_punctuation('$')) self.assertTrue(_is_punctuation('`')) self.assertTrue(_is_punctuation('.')) self.assertFalse(_is_punctuation('A')) self.assertFalse(_is_punctuation(' ')) def A ( self : int): _A : str = self.get_tokenizer() _A : Optional[Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) @slow def A ( self : int): _A : Optional[int] = self.tokenizer_class.from_pretrained('google/mobilebert-uncased') _A : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE) _A : Dict = tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE) _A : Optional[int] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE) _A : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def A ( self : Optional[int]): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): _A : Optional[int] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : int = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' _A : Optional[int] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , ) _A : int = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE , 'do_lower_case') else False _A : List[str] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'])) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping']) def A ( self : str): _A : Dict = ['的', '人', '有'] _A : Union[str, Any] = ''.join(SCREAMING_SNAKE_CASE) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): _A : Optional[int] = True _A : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : str = tokenizer_p.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) _A : List[Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) _A : Dict = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE) _A : List[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : List[str] = False _A : int = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : int = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : List[Any] = tokenizer_r.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) _A : Dict = tokenizer_p.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE) _A : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE) _A : int = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE) # it is expected that only the first Chinese character is not preceded by "##". _A : Optional[Any] = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE) ] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
362
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
227
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def UpperCAmelCase ( UpperCAmelCase="ro" , UpperCAmelCase="en" , UpperCAmelCase="wmt16" , UpperCAmelCase=None ) -> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) snake_case_ = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) snake_case_ = datasets.load_dataset(UpperCAmelCase , UpperCAmelCase ) if save_dir is None: snake_case_ = f'{dataset}-{pair}' snake_case_ = Path(UpperCAmelCase ) save_dir.mkdir(exist_ok=UpperCAmelCase ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets snake_case_ = 'val' if split == 'validation' else split snake_case_ = save_dir.joinpath(f'{fn}.source' ) snake_case_ = save_dir.joinpath(f'{fn}.target' ) snake_case_ = src_path.open('w+' ) snake_case_ = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case_ = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
69
'''simple docstring''' import unittest from knapsack import knapsack as k class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[Any] = 0 lowercase__ : Any = [0] lowercase__ : List[Any] = [0] lowercase__ : Optional[Any] = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 0 ) lowercase__ : List[str] = [60] lowercase__ : List[str] = [10] lowercase__ : List[str] = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 0 ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Optional[Any] = 3 lowercase__ : List[Any] = [1, 2, 3] lowercase__ : Union[str, Any] = [3, 2, 1] lowercase__ : List[Any] = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 5 ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : int = 50 lowercase__ : Any = [60, 100, 120] lowercase__ : int = [10, 20, 30] lowercase__ : Optional[Any] = len(__lowerCAmelCase ) self.assertEqual(k.knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , 220 ) if __name__ == "__main__": unittest.main()
198
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= k_size // 2 __lowercase, __lowercase= mgrid[0 - center : k_size - center, 0 - center : k_size - center] __lowercase= 1 / (2 * pi * sigma) * exp(-(square(lowercase__ ) + square(lowercase__ )) / (2 * square(lowercase__ )) ) return g def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase, __lowercase= image.shape[0], image.shape[1] # dst image height and width __lowercase= height - k_size + 1 __lowercase= width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __lowercase= zeros((dst_height * dst_width, k_size * k_size) ) __lowercase= 0 for i, j in product(range(lowercase__ ) , range(lowercase__ ) ): __lowercase= ravel(image[i : i + k_size, j : j + k_size] ) __lowercase= window row += 1 # turn the kernel into shape(k*k, 1) __lowercase= gen_gaussian_kernel(lowercase__ , lowercase__ ) __lowercase= ravel(lowercase__ ) # reshape and get the dst image __lowercase= dot(lowercase__ , lowercase__ ).reshape(lowercase__ , lowercase__ ).astype(lowercase__ ) return dst if __name__ == "__main__": # read original image lowerCAmelCase = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowerCAmelCase = gaussian_filter(gray, 3, sigma=1) lowerCAmelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
304
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( A_ ): """simple docstring""" UpperCamelCase_ : Dict ='Speech2TextFeatureExtractor' UpperCamelCase_ : Dict ='Speech2TextTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: super().__init__(snake_case_ , snake_case_ ) UpperCamelCase :Optional[int] = self.feature_extractor UpperCamelCase :Dict = False def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Any: if self._in_target_context_manager: return self.current_processor(*snake_case_ , **snake_case_ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCamelCase :Union[str, Any] = kwargs.pop('''raw_speech''' ) else: UpperCamelCase :Union[str, Any] = kwargs.pop('''audio''' , snake_case_ ) UpperCamelCase :str = kwargs.pop('''sampling_rate''' , snake_case_ ) UpperCamelCase :int = kwargs.pop('''text''' , snake_case_ ) if len(snake_case_ ) > 0: UpperCamelCase :Tuple = args[0] UpperCamelCase :int = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCamelCase :str = self.feature_extractor(snake_case_ , *snake_case_ , sampling_rate=snake_case_ , **snake_case_ ) if text is not None: UpperCamelCase :Optional[Any] = self.tokenizer(snake_case_ , **snake_case_ ) if text is None: return inputs elif audio is None: return encodings else: UpperCamelCase :Optional[Any] = encodings['''input_ids'''] return inputs def UpperCAmelCase ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Any: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def UpperCAmelCase ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Any: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @contextmanager def UpperCAmelCase ( self ) -> List[Any]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCamelCase :Union[str, Any] = True UpperCamelCase :Any = self.tokenizer yield UpperCamelCase :Dict = self.feature_extractor UpperCamelCase :str = False
259
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): SCREAMING_SNAKE_CASE = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowercase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) lowercase__ = field( default=A_, metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''Whether to log verbose messages or not.'''}, ) lowercase__ = field( default=2.0, metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) lowercase__ = field( default=0.5, metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) lowercase__ = field( default=0.99_99_95, metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) A__ = logging.WARNING if model_args.verbose_logging: A__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): A__ = logging.INFO logger.setLevel(lowercase_ ) @dataclass class UpperCAmelCase_ : lowercase__ = field( default=A_, metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowercase__ = field( default='''train''', metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' }, ) lowercase__ = field( default='''validation''', metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) }, ) lowercase__ = field( default='''file''', metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''}, ) lowercase__ = field( default=A_, metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowercase__ = field( default=1, metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' }, ) lowercase__ = field( default=A_, metadata={'''help''': '''The number of processes to use for the preprocessing.'''}, ) lowercase__ = field( default=20.0, metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCAmelCase_ : lowercase__ = 42 lowercase__ = 42 lowercase__ = "longest" lowercase__ = None lowercase__ = None def __call__( self : Tuple , snake_case_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' A__ = self.feature_extractor.pad( snake_case_ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) A__ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) A__ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula A__ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) A__ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to A__ = 1 A__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices A__ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=snake_case_ , min_masks=2 , ) return batch class UpperCAmelCase_ ( A_ ): def __init__( self : Any , *snake_case_ : Dict , snake_case_ : Optional[int]=1 , snake_case_ : str=0 , snake_case_ : str=1.0 , **snake_case_ : List[str] ) -> List[str]: '''simple docstring''' super().__init__(*snake_case_ , **snake_case_ ) A__ = 0 A__ = max_gumbel_temp A__ = min_gumbel_temp A__ = gumbel_temp_decay def __magic_name__ ( self : Tuple , snake_case_ : nn.Module , snake_case_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() A__ = self._prepare_inputs(snake_case_ ) if self.use_amp: with autocast(): A__ = self.compute_loss(snake_case_ , snake_case_ ) else: A__ = self.compute_loss(snake_case_ , snake_case_ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": A__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": A__ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: A__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case_ ).backward() elif self.use_apex: with amp.scale_loss(snake_case_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case_ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _SCREAMING_SNAKE_CASE ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__, A__, A__ = parser.parse_args_into_dataclasses() configure_logger(lowercase_ , lowercase_ ) # Downloading and loading a dataset from the hub. A__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" A__ = DatasetDict() A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" A__ = DatasetDict() A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported A__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowercase_ ) def prepare_dataset(lowercase_ ): # check that all files have the correct sampling rate A__, A__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays A__ = datasets.map( lowercase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long A__ = vectorized_datasets.filter( lambda lowercase_ : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowercase_ ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` A__ = vectorized_datasets.map( lowercase_ , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 A__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) A__ = WavaVecaForPreTraining(lowercase_ ) A__ = DataCollatorForWavaVecaPretraining(model=lowercase_ , feature_extractor=lowercase_ ) A__ = WavaVecaPreTrainer( model=lowercase_ , data_collator=lowercase_ , args=lowercase_ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=lowercase_ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
247
0
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase__ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , *snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) lowerCAmelCase : List[Any] = eval_examples lowerCAmelCase : str = post_process_function lowerCAmelCase : List[Any] = quant_trainer_args lowerCAmelCase : int = 128 # default number of calibration samples def lowercase__ ( self , snake_case__=None ): """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) lowerCAmelCase : Dict = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCAmelCase : Tuple = self._remove_unused_columns(snake_case__ , description="Calibration" ) return DataLoader( snake_case__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=snake_case__ , ) def lowercase__ ( self , snake_case__=None ): """simple docstring""" lowerCAmelCase : str = self.train_dataset if calib_dataset is None else calib_dataset lowerCAmelCase : Any = self.get_calib_dataloader(snake_case__ ) lowerCAmelCase : Any = self.model quant_trainer.configure_model(snake_case__ , self.quant_trainer_args , calib=snake_case__ ) model.eval() quant_trainer.enable_calibration(snake_case__ ) logger.info("***** Running calibration *****" ) logger.info(f""" Num examples = {self.calib_num}""" ) logger.info(f""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(snake_case__ ): # Prediction step lowerCAmelCase : Dict = self.prediction_step(snake_case__ , snake_case__ , prediction_loss_only=snake_case__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(snake_case__ , self.quant_trainer_args ) lowerCAmelCase : Union[str, Any] = model def lowercase__ ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = "eval" ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase : str = self.get_eval_dataloader(snake_case__ ) lowerCAmelCase : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase : Optional[Any] = self.compute_metrics lowerCAmelCase : int = None lowerCAmelCase : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase : Tuple = eval_loop( snake_case__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , ) finally: lowerCAmelCase : List[str] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCAmelCase : Optional[int] = self.post_process_function(snake_case__ , snake_case__ , output.predictions ) lowerCAmelCase : str = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowerCAmelCase : Optional[int] = metrics.pop(snake_case__ ) self.log(snake_case__ ) else: lowerCAmelCase : Tuple = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case__ ) return metrics def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__ = "test" ): """simple docstring""" lowerCAmelCase : List[str] = self.get_test_dataloader(snake_case__ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase : List[Any] = self.compute_metrics lowerCAmelCase : int = None lowerCAmelCase : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase : str = eval_loop( snake_case__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , ) finally: lowerCAmelCase : str = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase : Any = self.post_process_function(snake_case__ , snake_case__ , output.predictions , "predict" ) lowerCAmelCase : Any = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowerCAmelCase : str = metrics.pop(snake_case__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case__ ) def lowercase__ ( self , snake_case__="./" ): """simple docstring""" lowerCAmelCase : List[str] = self.eval_dataset lowerCAmelCase : Tuple = self.get_eval_dataloader(snake_case__ ) lowerCAmelCase : Union[str, Any] = next(iter(snake_case__ ) ) # saving device - to make it consistent lowerCAmelCase : Optional[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple lowerCAmelCase : Dict = tuple(v.to(snake_case__ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer lowerCAmelCase : Tuple = True lowerCAmelCase : Optional[int] = self.model.to(snake_case__ ) model.eval() model.float() lowerCAmelCase : Union[str, Any] = model.module if hasattr(snake_case__ , "module" ) else model quant_trainer.configure_model(snake_case__ , self.quant_trainer_args ) lowerCAmelCase : str = os.path.join(snake_case__ , "model.onnx" ) logger.info(f"""exporting model to {output_model_file}""" ) lowerCAmelCase : Optional[Any] = {0: "batch_size", 1: "seq_len"} torch.onnx.export( snake_case__ , snake_case__ , snake_case__ , export_params=snake_case__ , opset_version=13 , do_constant_folding=snake_case__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=snake_case__ , ) logger.info("onnx export finished" )
350
"""simple docstring""" import re from filelock import FileLock try: import nltk lowerCAmelCase__ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' re.sub("<n>" , "" , SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE ) )
133
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __A = logging.get_logger(__name__) enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UNetaDModel lowercase_ = "sample" @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =4 lowerCamelCase__: Optional[Any] =3 lowerCamelCase__: Any =(32, 32) lowerCamelCase__: str =floats_tensor((batch_size, num_channels) + sizes).to(UpperCAmelCase_) lowerCamelCase__: Optional[int] =torch.tensor([10]).to(UpperCAmelCase_) return {"sample": noise, "timestep": time_step} @property def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] ={ "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } lowerCamelCase__: Dict =self.dummy_input return init_dict, inputs_dict class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UNetaDModel lowercase_ = "sample" @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] =4 lowerCamelCase__: Optional[Any] =4 lowerCamelCase__: Union[str, Any] =(32, 32) lowerCamelCase__: int =floats_tensor((batch_size, num_channels) + sizes).to(UpperCAmelCase_) lowerCamelCase__: List[str] =torch.tensor([10]).to(UpperCAmelCase_) return {"sample": noise, "timestep": time_step} @property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return (4, 32, 32) @property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' return (4, 32, 32) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Tuple ={ "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } lowerCamelCase__: int =self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(UpperCAmelCase_) lowerCamelCase__: int =model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU") def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any: '''simple docstring''' lowerCamelCase__: List[Any] =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_) model.to(UpperCAmelCase_) lowerCamelCase__: Tuple =model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Tuple =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_) model_accelerate.to(UpperCAmelCase_) model_accelerate.eval() lowerCamelCase__: List[Any] =torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0) , ) lowerCamelCase__: List[str] =noise.to(UpperCAmelCase_) lowerCamelCase__: Dict =torch.tensor([10] * noise.shape[0]).to(UpperCAmelCase_) lowerCamelCase__: List[str] =model_accelerate(UpperCAmelCase_ , UpperCAmelCase_)["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCamelCase__: Optional[int] =UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ , low_cpu_mem_usage=UpperCAmelCase_) model_normal_load.to(UpperCAmelCase_) model_normal_load.eval() lowerCamelCase__: Union[str, Any] =model_normal_load(UpperCAmelCase_ , UpperCAmelCase_)["sample"] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update") model.eval() model.to(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0) , ) lowerCamelCase__: int =noise.to(UpperCAmelCase_) lowerCamelCase__: Dict =torch.tensor([10] * noise.shape[0]).to(UpperCAmelCase_) with torch.no_grad(): lowerCamelCase__: int =model(UpperCAmelCase_ , UpperCAmelCase_).sample lowerCamelCase__: List[str] =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase__: List[str] =torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3)) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UNetaDModel lowercase_ = "sample" @property def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Any=(32, 32)) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: int =4 lowerCamelCase__: str =3 lowerCamelCase__: Dict =floats_tensor((batch_size, num_channels) + sizes).to(UpperCAmelCase_) lowerCamelCase__: Tuple =torch.tensor(batch_size * [10]).to(dtype=torch.intaa , device=UpperCAmelCase_) return {"sample": noise, "timestep": time_step} @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple ={ "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1E-6, "mid_block_scale_factor": math.sqrt(2.0), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } lowerCamelCase__: str =self.dummy_input return init_dict, inputs_dict @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Dict =UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(UpperCAmelCase_) lowerCamelCase__: Tuple =self.dummy_input lowerCamelCase__: Union[str, Any] =floats_tensor((4, 3) + (256, 256)).to(UpperCAmelCase_) lowerCamelCase__: List[Any] =noise lowerCamelCase__: Dict =model(**UpperCAmelCase_) assert image is not None, "Make sure output is not None" @slow def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256") model.to(UpperCAmelCase_) lowerCamelCase__: Dict =4 lowerCamelCase__: Optional[Any] =3 lowerCamelCase__: str =(256, 256) lowerCamelCase__: Dict =torch.ones((batch_size, num_channels) + sizes).to(UpperCAmelCase_) lowerCamelCase__: List[Any] =torch.tensor(batch_size * [1E-4]).to(UpperCAmelCase_) with torch.no_grad(): lowerCamelCase__: List[Any] =model(UpperCAmelCase_ , UpperCAmelCase_).sample lowerCamelCase__: str =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase__: Dict =torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10_980.7_129, -20_028.8_535, 8148.2822, 2342.2905, 567.7608]) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") model.to(UpperCAmelCase_) lowerCamelCase__: Optional[int] =4 lowerCamelCase__: Optional[int] =3 lowerCamelCase__: Optional[Any] =(32, 32) lowerCamelCase__: int =torch.ones((batch_size, num_channels) + sizes).to(UpperCAmelCase_) lowerCamelCase__: Optional[int] =torch.tensor(batch_size * [1E-4]).to(UpperCAmelCase_) with torch.no_grad(): lowerCamelCase__: int =model(UpperCAmelCase_ , UpperCAmelCase_).sample lowerCamelCase__: Optional[int] =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase__: Dict =torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256]) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2)) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' pass
366
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __A = ["text", "image", "audio"] def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Tuple =[] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__a , __a ): inputs.append(create_inputs(__a ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Union[str, Any] =[] for output in outputs: if isinstance(__a , (str, AgentText) ): output_types.append("text" ) elif isinstance(__a , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__a , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _SCREAMING_SNAKE_CASE : '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs")) self.assertTrue(hasattr(self.tool , "outputs")) lowerCamelCase__: Tuple =self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) lowerCamelCase__: Optional[Any] =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: List[str] =create_inputs(self.tool.inputs) lowerCamelCase__: str =self.tool(*UpperCAmelCase_) # There is a single output if len(self.tool.outputs) == 1: lowerCamelCase__: Optional[Any] =[outputs] self.assertListEqual(output_types(UpperCAmelCase_) , self.tool.outputs) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description")) self.assertTrue(hasattr(self.tool , "default_checkpoint")) self.assertTrue(self.tool.description.startswith("This is a tool that")) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =create_inputs(self.tool.inputs) lowerCamelCase__: Dict =self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Tuple =[outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs)) for output, output_type in zip(UpperCAmelCase_ , self.tool.outputs): lowerCamelCase__: Any =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Any =create_inputs(self.tool.inputs) lowerCamelCase__: int =[] for _input, input_type in zip(UpperCAmelCase_ , self.tool.inputs): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error lowerCamelCase__: Union[str, Any] =self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: str =[outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs))
273
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Union[str, Any] = SwinConfig(image_size=1_9_2) if "base" in model_name: a_ : Dict = 6 a_ : Union[str, Any] = 1_2_8 a_ : Optional[Any] = (2, 2, 1_8, 2) a_ : Optional[Any] = (4, 8, 1_6, 3_2) elif "large" in model_name: a_ : Union[str, Any] = 1_2 a_ : Dict = 1_9_2 a_ : Tuple = (2, 2, 1_8, 2) a_ : int = (6, 1_2, 2_4, 4_8) else: raise ValueError("""Model not supported, only supports base and large variants""") a_ : Dict = window_size a_ : Any = embed_dim a_ : Union[str, Any] = depths a_ : List[str] = num_heads return config def _UpperCAmelCase ( a__): '''simple docstring''' if "encoder.mask_token" in name: a_ : Dict = name.replace("""encoder.mask_token""" , """embeddings.mask_token""") if "encoder.patch_embed.proj" in name: a_ : Optional[int] = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""") if "encoder.patch_embed.norm" in name: a_ : Optional[int] = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""") if "attn.proj" in name: a_ : Union[str, Any] = name.replace("""attn.proj""" , """attention.output.dense""") if "attn" in name: a_ : Any = name.replace("""attn""" , """attention.self""") if "norm1" in name: a_ : int = name.replace("""norm1""" , """layernorm_before""") if "norm2" in name: a_ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""") if "mlp.fc1" in name: a_ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""") if "mlp.fc2" in name: a_ : Tuple = name.replace("""mlp.fc2""" , """output.dense""") if name == "encoder.norm.weight": a_ : Tuple = """layernorm.weight""" if name == "encoder.norm.bias": a_ : Tuple = """layernorm.bias""" if "decoder" in name: pass else: a_ : Any = """swin.""" + name return name def _UpperCAmelCase ( a__ , a__): '''simple docstring''' for key in orig_state_dict.copy().keys(): a_ : List[str] = orig_state_dict.pop(a__) if "attn_mask" in key: pass elif "qkv" in key: a_ : Union[str, Any] = key.split(""".""") a_ : str = int(key_split[2]) a_ : Dict = int(key_split[4]) a_ : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a_ : Tuple = val[:dim, :] a_ : Tuple = val[ dim : dim * 2, : ] a_ : Any = val[-dim:, :] else: a_ : str = val[ :dim ] a_ : Optional[Any] = val[ dim : dim * 2 ] a_ : Dict = val[ -dim: ] else: a_ : Optional[int] = val return orig_state_dict def _UpperCAmelCase ( a__ , a__ , a__ , a__): '''simple docstring''' a_ : Optional[Any] = torch.load(a__ , map_location="""cpu""")["""model"""] a_ : List[str] = get_swin_config(a__) a_ : Optional[int] = SwinForMaskedImageModeling(a__) model.eval() a_ : Any = convert_state_dict(a__ , a__) model.load_state_dict(a__) a_ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" a_ : List[Any] = ViTImageProcessor(size={"""height""": 1_9_2, """width""": 1_9_2}) a_ : Tuple = Image.open(requests.get(a__ , stream=a__).raw) a_ : Optional[Any] = image_processor(images=a__ , return_tensors="""pt""") with torch.no_grad(): a_ : List[Any] = model(**a__).logits print(outputs.keys()) print("""Looks ok!""") if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''') model.save_pretrained(a__) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(a__) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''') model.push_to_hub(f'''microsoft/{model_name}''') image_processor.push_to_hub(f'''microsoft/{model_name}''') if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __snake_case : Optional[int] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
248
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase: Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCamelCase_ (self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None ): """simple docstring""" a = {} a = {} if prompt is not None: a = prompt if generate_kwargs is not None: a = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: a = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) a = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__(self , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" a = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) a = self.model.config.model_type if model_type == "git": a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) a = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids a = [self.tokenizer.cls_token_id] + input_ids a = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": a = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) a = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: a = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: a = None return model_inputs def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCamelCase_ ) and all(x is None for x in model_inputs["input_ids"] ) ): a = None if generate_kwargs is None: a = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. a = model_inputs.pop(self.model.main_input_name ) a = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [] for output_ids in model_outputs: a = { "generated_text": self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
227
0
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowerCamelCase_ : @staticmethod def lowercase_ ( *_A : Any , **_A : Optional[int] ): '''simple docstring''' pass def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : List[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase_ ( unittest.TestCase ): lowerCAmelCase__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase_ ( self : Dict , _A : Optional[int] , _A : Optional[int] , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = DepthEstimationPipeline(model=_A , image_processor=_A ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase_ ( self : Tuple , _A : int , _A : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _A ) import datasets UpperCAmelCase__ : List[Any] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) UpperCAmelCase__ : str = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _A , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase_ ( self : Any ): '''simple docstring''' pass @slow @require_torch def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = '''Intel/dpt-large''' UpperCAmelCase__ : List[Any] = pipeline('''depth-estimation''' , model=_A ) UpperCAmelCase__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) UpperCAmelCase__ : Optional[Any] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.6_6_2 ) @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
299
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _UpperCamelCase : Any = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1_000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } _UpperCamelCase : List[str] = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1_000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } _UpperCamelCase : Dict = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } _UpperCamelCase : str = { 'num_train_timesteps': 40, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } _UpperCamelCase : Any = { 'num_train_timesteps': 201, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } _UpperCamelCase : int = { 'num_train_timesteps': 151, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } def __UpperCAmelCase ( A : Dict ) -> int: if isinstance(A , A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def __UpperCAmelCase ( A : Optional[int] , A : int , A : int , A : Dict , A : List[Any]=False ) -> Optional[int]: UpperCAmelCase_ : List[str] = checkpoint[F"{old_prefix}.in_layers.0.weight"] UpperCAmelCase_ : Optional[Any] = checkpoint[F"{old_prefix}.in_layers.0.bias"] UpperCAmelCase_ : List[str] = checkpoint[F"{old_prefix}.in_layers.2.weight"] UpperCAmelCase_ : Optional[int] = checkpoint[F"{old_prefix}.in_layers.2.bias"] UpperCAmelCase_ : Tuple = checkpoint[F"{old_prefix}.emb_layers.1.weight"] UpperCAmelCase_ : List[str] = checkpoint[F"{old_prefix}.emb_layers.1.bias"] UpperCAmelCase_ : Optional[Any] = checkpoint[F"{old_prefix}.out_layers.0.weight"] UpperCAmelCase_ : List[Any] = checkpoint[F"{old_prefix}.out_layers.0.bias"] UpperCAmelCase_ : str = checkpoint[F"{old_prefix}.out_layers.3.weight"] UpperCAmelCase_ : str = checkpoint[F"{old_prefix}.out_layers.3.bias"] if has_skip: UpperCAmelCase_ : int = checkpoint[F"{old_prefix}.skip_connection.weight"] UpperCAmelCase_ : List[str] = checkpoint[F"{old_prefix}.skip_connection.bias"] return new_checkpoint def __UpperCAmelCase ( A : str , A : List[Any] , A : int , A : List[str] , A : int=None ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) UpperCAmelCase_ : List[Any] = checkpoint[F"{old_prefix}.norm.weight"] UpperCAmelCase_ : List[Any] = checkpoint[F"{old_prefix}.norm.bias"] UpperCAmelCase_ : Dict = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : int = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : int = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : List[str] = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : List[str] = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : Any = ( checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase_ : str = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __UpperCAmelCase ( A : str , A : Tuple ) -> Any: UpperCAmelCase_ : Tuple = torch.load(A , map_location='''cpu''' ) UpperCAmelCase_ : str = {} UpperCAmelCase_ : Optional[Any] = checkpoint['''time_embed.0.weight'''] UpperCAmelCase_ : Any = checkpoint['''time_embed.0.bias'''] UpperCAmelCase_ : Optional[int] = checkpoint['''time_embed.2.weight'''] UpperCAmelCase_ : List[Any] = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: UpperCAmelCase_ : Optional[int] = checkpoint['''label_emb.weight'''] UpperCAmelCase_ : Any = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase_ : int = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase_ : List[str] = unet_config['''down_block_types'''] UpperCAmelCase_ : Dict = unet_config['''layers_per_block'''] UpperCAmelCase_ : str = unet_config['''attention_head_dim'''] UpperCAmelCase_ : Union[str, Any] = unet_config['''block_out_channels'''] UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : List[str] = channels_list[0] for i, layer_type in enumerate(A ): UpperCAmelCase_ : List[Any] = channels_list[i] UpperCAmelCase_ : Union[str, Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(A ): UpperCAmelCase_ : int = F"down_blocks.{i}.resnets.{j}" UpperCAmelCase_ : List[Any] = F"input_blocks.{current_layer}.0" UpperCAmelCase_ : List[str] = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ : Optional[Any] = convert_resnet(A , A , A , A , has_skip=A ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(A ): UpperCAmelCase_ : List[str] = F"down_blocks.{i}.resnets.{j}" UpperCAmelCase_ : List[str] = F"input_blocks.{current_layer}.0" UpperCAmelCase_ : List[Any] = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ : Any = convert_resnet(A , A , A , A , has_skip=A ) UpperCAmelCase_ : Union[str, Any] = F"down_blocks.{i}.attentions.{j}" UpperCAmelCase_ : Union[str, Any] = F"input_blocks.{current_layer}.1" UpperCAmelCase_ : Union[str, Any] = convert_attention( A , A , A , A , A ) current_layer += 1 if i != len(A ) - 1: UpperCAmelCase_ : Optional[Any] = F"down_blocks.{i}.downsamplers.0" UpperCAmelCase_ : Any = F"input_blocks.{current_layer}.0" UpperCAmelCase_ : str = convert_resnet(A , A , A , A ) current_layer += 1 UpperCAmelCase_ : List[str] = current_channels # hardcoded the mid-block for now UpperCAmelCase_ : Union[str, Any] = '''mid_block.resnets.0''' UpperCAmelCase_ : str = '''middle_block.0''' UpperCAmelCase_ : str = convert_resnet(A , A , A , A ) UpperCAmelCase_ : str = '''mid_block.attentions.0''' UpperCAmelCase_ : Tuple = '''middle_block.1''' UpperCAmelCase_ : Any = convert_attention(A , A , A , A , A ) UpperCAmelCase_ : Optional[int] = '''mid_block.resnets.1''' UpperCAmelCase_ : Union[str, Any] = '''middle_block.2''' UpperCAmelCase_ : List[str] = convert_resnet(A , A , A , A ) UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Tuple = unet_config['''up_block_types'''] for i, layer_type in enumerate(A ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ : Tuple = F"up_blocks.{i}.resnets.{j}" UpperCAmelCase_ : Optional[int] = F"output_blocks.{current_layer}.0" UpperCAmelCase_ : str = convert_resnet(A , A , A , A , has_skip=A ) current_layer += 1 if i != len(A ) - 1: UpperCAmelCase_ : int = F"up_blocks.{i}.upsamplers.0" UpperCAmelCase_ : Dict = F"output_blocks.{current_layer-1}.1" UpperCAmelCase_ : int = convert_resnet(A , A , A , A ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ : Any = F"up_blocks.{i}.resnets.{j}" UpperCAmelCase_ : int = F"output_blocks.{current_layer}.0" UpperCAmelCase_ : Optional[int] = convert_resnet(A , A , A , A , has_skip=A ) UpperCAmelCase_ : int = F"up_blocks.{i}.attentions.{j}" UpperCAmelCase_ : Any = F"output_blocks.{current_layer}.1" UpperCAmelCase_ : Any = convert_attention( A , A , A , A , A ) current_layer += 1 if i != len(A ) - 1: UpperCAmelCase_ : Optional[Any] = F"up_blocks.{i}.upsamplers.0" UpperCAmelCase_ : Dict = F"output_blocks.{current_layer-1}.2" UpperCAmelCase_ : Union[str, Any] = convert_resnet(A , A , A , A ) UpperCAmelCase_ : Optional[int] = checkpoint['''out.0.weight'''] UpperCAmelCase_ : Optional[Any] = checkpoint['''out.0.bias'''] UpperCAmelCase_ : Tuple = checkpoint['''out.2.weight'''] UpperCAmelCase_ : str = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') _UpperCamelCase : Union[str, Any] = parser.parse_args() _UpperCamelCase : Dict = strabool(args.class_cond) _UpperCamelCase : str = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: _UpperCamelCase : int = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _UpperCamelCase : Any = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _UpperCamelCase : str = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: _UpperCamelCase : List[Any] = None _UpperCamelCase : Dict = con_pt_to_diffuser(args.unet_path, unet_config) _UpperCamelCase : Tuple = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _UpperCamelCase : List[str] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _UpperCamelCase : Optional[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _UpperCamelCase : Optional[int] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') _UpperCamelCase : Optional[Any] = CMStochasticIterativeScheduler(**scheduler_config) _UpperCamelCase : List[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
304
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : str ) -> list[int]: return [ord(A ) - 9_6 for elem in plain] def __UpperCAmelCase ( A : list[int] ) -> str: return "".join(chr(elem + 9_6 ) for elem in encoded ) def __UpperCAmelCase ( ) -> None: UpperCAmelCase_ : Tuple = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , A ) print('''Decoded:''' , decode(A ) ) if __name__ == "__main__": main()
304
1
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: super().__init__() self.register_modules(vqvae=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> Union[Tuple, ImagePipelineOutput]: __magic_name__ : Dict = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCAmelCase__ , ) __magic_name__ : Any = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __magic_name__ : Tuple = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCAmelCase__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature __magic_name__ : Dict = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __magic_name__ : List[Any] = {} if accepts_eta: __magic_name__ : Tuple = eta for t in self.progress_bar(self.scheduler.timesteps ): __magic_name__ : Union[str, Any] = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual __magic_name__ : Union[str, Any] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : List[Any] = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # decode the image latents with the VAE __magic_name__ : int = self.vqvae.decode(lowerCAmelCase__ ).sample __magic_name__ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ : Optional[Any] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
363
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) __magic_name__ : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __magic_name__ : Tuple = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids __magic_name__ : List[Any] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids __magic_name__ : Any = shift_tokens_right(lowerCAmelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) __magic_name__ : List[Any] = model(lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ).logits __magic_name__ : Tuple = optax.softmax_cross_entropy(lowerCAmelCase__ , onehot(lowerCAmelCase__ , logits.shape[-1] ) ).mean() __magic_name__ : List[Any] = -(labels.shape[-1] * loss.item()) __magic_name__ : List[Any] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
138
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowercase_ = logging.get_logger(__name__) lowercase_ = r'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class __UpperCamelCase ( UpperCAmelCase__ ): """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self : Tuple , _A : torch.LongTensor , _A : torch.FloatTensor , **_A : str ): """simple docstring""" raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class __UpperCamelCase ( UpperCAmelCase__ ): """simple docstring""" def __init__( self : Optional[int] , _A : int , _A : Optional[int] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = max_length __SCREAMING_SNAKE_CASE : str = max_position_embeddings @add_start_docstrings(snake_case__ ) def __call__( self : Optional[int] , _A : torch.LongTensor , _A : torch.FloatTensor , **_A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.shape[-1] __SCREAMING_SNAKE_CASE : List[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' '''exceptions, performance degradation, or nothing at all.''' ) return is_done class __UpperCamelCase ( UpperCAmelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , _A : int , _A : int ): """simple docstring""" warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' '''with `max_length = start_length + max_new_tokens` instead.''' , snake_case__ , ) __SCREAMING_SNAKE_CASE : Dict = start_length __SCREAMING_SNAKE_CASE : List[Any] = max_new_tokens __SCREAMING_SNAKE_CASE : Dict = start_length + max_new_tokens @add_start_docstrings(snake_case__ ) def __call__( self : Optional[int] , _A : torch.LongTensor , _A : torch.FloatTensor , **_A : List[Any] ): """simple docstring""" return input_ids.shape[-1] >= self.max_length class __UpperCamelCase ( UpperCAmelCase__ ): """simple docstring""" def __init__( self : Optional[int] , _A : float , _A : Optional[float] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = max_time __SCREAMING_SNAKE_CASE : List[str] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(snake_case__ ) def __call__( self : Tuple , _A : torch.LongTensor , _A : torch.FloatTensor , **_A : Optional[int] ): """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class __UpperCamelCase ( UpperCAmelCase__ ): """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self : List[Any] , _A : torch.LongTensor , _A : torch.FloatTensor , **_A : Any ): """simple docstring""" return any(criteria(snake_case__ , snake_case__ ) for criteria in self ) @property def UpperCAmelCase__ ( self : Any ): """simple docstring""" for stopping_criterium in self: if isinstance(snake_case__ , snake_case__ ): return stopping_criterium.max_length elif isinstance(snake_case__ , snake_case__ ): return stopping_criterium.max_length return None def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = stopping_criteria.max_length __SCREAMING_SNAKE_CASE : Any = deepcopy(snake_case_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , snake_case_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=snake_case_ ) ) return new_stopping_criteria
303
def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = len(snake_case_ ) for i in range(snake_case_ ): for j in range(i + 1 , snake_case_ ): if numbers[j] < numbers[i]: _UpperCAmelCase , _UpperCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase_ : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() lowercase_ : Dict = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
133
0
'''simple docstring''' from scipy.stats import pearsonr import datasets a_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __magic_name__ ( self : List[Any] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any] , __lowercase : str=False ) -> int: if return_pvalue: SCREAMING_SNAKE_CASE__ : List[str] =pearsonr(__lowercase , __lowercase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__lowercase , __lowercase )[0] )}
356
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""pixel_values"""] def __init__( self : List[str] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 2_55 , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : List[Any] , ) -> None: super().__init__(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any =size if size is not None else {'''shortest_edge''': 2_56} SCREAMING_SNAKE_CASE__ : str =get_size_dict(__lowercase , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} SCREAMING_SNAKE_CASE__ : Tuple =get_size_dict(__lowercase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE__ : int =do_resize SCREAMING_SNAKE_CASE__ : Dict =size SCREAMING_SNAKE_CASE__ : List[str] =resample SCREAMING_SNAKE_CASE__ : List[Any] =do_center_crop SCREAMING_SNAKE_CASE__ : str =crop_size SCREAMING_SNAKE_CASE__ : List[str] =do_rescale SCREAMING_SNAKE_CASE__ : Optional[Any] =rescale_factor SCREAMING_SNAKE_CASE__ : List[str] =do_normalize SCREAMING_SNAKE_CASE__ : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : Optional[Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : str =get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_resize_output_image_size(__lowercase , size=size['''shortest_edge'''] , default_to_square=__lowercase ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : int , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] =get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(__lowercase , size=(size['''height'''], size['''width''']) , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Optional[Any] , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Tuple ) -> np.ndarray: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : Dict , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def __magic_name__ ( self : List[Any] , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : int , ) -> Dict: SCREAMING_SNAKE_CASE__ : List[Any] =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : int =size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Optional[int] =get_size_dict(__lowercase , default_to_square=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : Optional[Any] =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : List[str] =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : int =get_size_dict(__lowercase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : int =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : List[str] =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : Optional[Any] =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : Any =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : str =make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : Dict =[to_numpy_array(__lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : Union[str, Any] =[self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : List[Any] =[self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : List[Any] =[self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Tuple =[self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : str =[to_channel_dimension_format(__lowercase , __lowercase ) for image in images] SCREAMING_SNAKE_CASE__ : Any ={'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : Tuple , __lowercase : List[Tuple] = None ) -> Any: SCREAMING_SNAKE_CASE__ : Optional[int] =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowercase ) != len(__lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__lowercase ): SCREAMING_SNAKE_CASE__ : int =target_sizes.numpy() SCREAMING_SNAKE_CASE__ : List[Any] =[] for idx in range(len(__lowercase ) ): SCREAMING_SNAKE_CASE__ : Any =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Any =logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : Optional[int] =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
222
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : int = tempfile.mkdtemp() __snake_case : Dict = BlipImageProcessor() __snake_case : Optional[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) __snake_case : Union[str, Any] = BlipProcessor(_A , _A ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).tokenizer def UpperCAmelCase ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_A ).image_processor def UpperCAmelCase ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : int = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : str = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Tuple = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __snake_case : Optional[int] = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) __snake_case : Union[str, Any] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : List[str] = self.get_image_processor() __snake_case : int = self.get_tokenizer() __snake_case : Tuple = BlipProcessor(tokenizer=_A , image_processor=_A ) __snake_case : Optional[Any] = self.prepare_image_inputs() __snake_case : int = image_processor(_A , return_tensors="np" ) __snake_case : List[Any] = processor(images=_A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Any = BlipProcessor(tokenizer=_A , image_processor=_A ) __snake_case : Optional[int] = "lower newer" __snake_case : Tuple = processor(text=_A ) __snake_case : Optional[Any] = tokenizer(_A , return_token_type_ids=_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Tuple = self.get_image_processor() __snake_case : str = self.get_tokenizer() __snake_case : Any = BlipProcessor(tokenizer=_A , image_processor=_A ) __snake_case : Tuple = "lower newer" __snake_case : Union[str, Any] = self.prepare_image_inputs() __snake_case : Union[str, Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = self.get_image_processor() __snake_case : Tuple = self.get_tokenizer() __snake_case : str = BlipProcessor(tokenizer=_A , image_processor=_A ) __snake_case : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : Union[str, Any] = processor.batch_decode(_A ) __snake_case : Any = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : Optional[int] = self.get_tokenizer() __snake_case : Tuple = BlipProcessor(tokenizer=_A , image_processor=_A ) __snake_case : str = "lower newer" __snake_case : Any = self.prepare_image_inputs() __snake_case : int = processor(text=_A , images=_A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
326
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __A : int = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' UpperCAmelCase = list(s_dict.keys() ) for key in keys: UpperCAmelCase = R'''.*/layers_(\d+)''' UpperCAmelCase = key if re.match(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , UpperCamelCase__ ) UpperCAmelCase = R'''(encoder|decoder)\/''' if re.match(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase = re.match(UpperCamelCase__ , UpperCamelCase__ ).groups() if groups[0] == "encoder": UpperCAmelCase = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , UpperCamelCase__ ) UpperCAmelCase = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , UpperCamelCase__ ) elif groups[0] == "decoder": UpperCAmelCase = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , UpperCamelCase__ ) UpperCAmelCase = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , UpperCamelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase = new_key.replace(UpperCamelCase__ , UpperCamelCase__ ) print(F"""{key} -> {new_key}""" ) UpperCAmelCase = s_dict.pop(UpperCamelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase = s_dict[key].shape[0] UpperCAmelCase = s_dict[key] for idx in range(UpperCamelCase__ ): UpperCAmelCase = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCamelCase__ ) return s_dict __A : Optional[int] = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' import regex as re with open(UpperCamelCase__ , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = re.findall(R'''(.*) = ([0-9.]*)''' , UpperCamelCase__ ) UpperCAmelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase = float(UpperCamelCase__ ) if '''.''' in value else int(UpperCamelCase__ ) UpperCAmelCase = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , UpperCamelCase__ )[0] UpperCAmelCase = str(activation[1] ) UpperCAmelCase = num_experts UpperCAmelCase = SwitchTransformersConfig(**UpperCamelCase__ ) return config def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="./" , UpperCamelCase__=8 ) -> List[Any]: '''simple docstring''' print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase = checkpoints.load_tax_checkpoint(UpperCamelCase__ ) if gin_file is not None: UpperCAmelCase = convert_gin_to_config(UpperCamelCase__ , UpperCamelCase__ ) else: UpperCAmelCase = SwitchTransformersConfig.from_pretrained(UpperCamelCase__ ) UpperCAmelCase = SwitchTransformersForConditionalGeneration(UpperCamelCase__ ) UpperCAmelCase = flax_params['''target'''] UpperCAmelCase = flatten_dict(UpperCamelCase__ , sep='''/''' ) UpperCAmelCase = rename_keys(UpperCamelCase__ ) UpperCAmelCase = unflatten_dict(UpperCamelCase__ , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCamelCase__ , UpperCamelCase__ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") __A : Tuple = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
273
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCAmelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict=1_0_0 , SCREAMING_SNAKE_CASE : Dict=" " ): '''simple docstring''' lowerCAmelCase : Optional[Any] = text.split(SCREAMING_SNAKE_CASE ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )] def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Union[str, Any] = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(SCREAMING_SNAKE_CASE ): titles.append(title if title is not None else "" ) texts.append(SCREAMING_SNAKE_CASE ) return {"title": titles, "text": texts} def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : List[Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" )["input_ids"] lowerCAmelCase : int = ctx_encoder(input_ids.to(device=SCREAMING_SNAKE_CASE ) , return_dict=SCREAMING_SNAKE_CASE ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase : Any = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase : Union[str, Any] = dataset.map(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase : List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase : int = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase : List[str] = dataset.map( partial(SCREAMING_SNAKE_CASE , ctx_encoder=SCREAMING_SNAKE_CASE , ctx_tokenizer=SCREAMING_SNAKE_CASE ) , batched=SCREAMING_SNAKE_CASE , batch_size=processing_args.batch_size , features=SCREAMING_SNAKE_CASE , ) # And finally save your dataset lowerCAmelCase : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(SCREAMING_SNAKE_CASE ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase : List[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=SCREAMING_SNAKE_CASE ) # And save the index lowerCAmelCase : Optional[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(SCREAMING_SNAKE_CASE ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : str =field( default=str(Path(lowerCAmelCase_ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) a : Optional[str] =field( default=lowerCAmelCase_ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) a : str =field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) a : str =field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) a : Optional[str] =field( default=str(Path(lowerCAmelCase_ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Optional[int] =field( default=lowerCAmelCase_ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) a : int =field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : int =field( default=7_68 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) a : int =field( default=1_28 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCAmelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCAmelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
352
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
133
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _A , _A , _A = None , _A = None ) -> List[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = vocab SCREAMING_SNAKE_CASE_ = merges SCREAMING_SNAKE_CASE_ = BytePairTokenizer(_A , _A , sequence_length=_A ) @classmethod def _UpperCamelCase ( cls , _A , *_A , **_A ) -> Any: SCREAMING_SNAKE_CASE_ = [''' '''.join(_A ) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ = tokenizer.get_vocab() return cls(_A , _A , *_A , **_A ) @classmethod def _UpperCamelCase ( cls , _A , *_A , **_A ) -> Tuple: SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(_A , *_A , **_A ) return cls.from_tokenizer(_A , *_A , **_A ) @classmethod def _UpperCamelCase ( cls , _A ) -> Tuple: return cls(**_A ) def _UpperCamelCase ( self ) -> Optional[int]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _UpperCamelCase ( self , _A , _A = None ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.tf_tokenizer(_A ) SCREAMING_SNAKE_CASE_ = tf.ones_like(_A ) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pad_model_inputs( _A , max_seq_length=_A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
299
from __future__ import annotations __UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCamelCase ) ) ] # the action grid SCREAMING_SNAKE_CASE_ = init[0] SCREAMING_SNAKE_CASE_ = init[1] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCamelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ = cell.pop() SCREAMING_SNAKE_CASE_ = next_cell[2] SCREAMING_SNAKE_CASE_ = next_cell[3] SCREAMING_SNAKE_CASE_ = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ = True else: for i in range(len(__lowerCamelCase ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ = g + cost SCREAMING_SNAKE_CASE_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = goal[0] SCREAMING_SNAKE_CASE_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(__lowerCamelCase ) ): path.append(invpath[len(__lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal __UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCAmelCase = 99 __UpperCAmelCase , __UpperCAmelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
299
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( a_ , a_ , a_ ) -> tuple[float, list[float]]: """simple docstring""" A_ : Any = list(range(len(a_ ) ) ) A_ : int = [v / w for v, w in zip(a_ , a_ )] index.sort(key=lambda a_ : ratio[i] , reverse=a_ ) A_ : float = 0 A_ : list[float] = [0] * len(a_ ) for i in index: if weight[i] <= capacity: A_ : Any = 1 max_value += value[i] capacity -= weight[i] else: A_ : List[str] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
164
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
164
1
"""simple docstring""" import torch from transformers import AutoModel class a ( torch.nn.Module ): """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: Union[str, Any]="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(UpperCAmelCase_ , self ).__init__() A__ = AutoModel.from_pretrained(UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) A__ = torch.nn.CosineSimilarity(3 , 1e-0_8 ) A__ = torch.nn.Softmax(dim=1 ) def UpperCamelCase ( self: List[Any] , **UpperCamelCase: List[str] ): """simple docstring""" return self.bert(**UpperCAmelCase_ ).last_hidden_state def UpperCamelCase ( self: str , UpperCamelCase: Optional[int] ): """simple docstring""" return token_embeddings.sum(2 , keepdim=UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] , UpperCamelCase: str , UpperCamelCase: Tuple , UpperCamelCase: Dict=1 ): """simple docstring""" return self.softmax(T * self.cos(UpperCAmelCase_ , UpperCAmelCase_ ) ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[int] ): """simple docstring""" A__ = W_supports['sizes'].tolist() A__ = W_supports['start_token_id'].item() A__ = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] A__ = self.BERT(**UpperCAmelCase_ ) A__ = self.BERT(**UpperCAmelCase_ ) A__ = None A__ = None A__ = W_supports['input_ids'] == start_token_id A__ = W_supports['input_ids'] == end_token_id for i, size in enumerate(UpperCAmelCase_ ): if i == 0: A__ = 0 else: A__ = support_sizes[i - 1] A__ = S[s : s + size][start_token_masks[s : s + size]] A__ = S[s : s + size][end_token_masks[s : s + size]] A__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) A__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: A__ = torch.vstack((p_starts, p_start) ) A__ = torch.vstack((p_ends, p_end) ) else: A__ = p_start A__ = p_end return p_starts, p_ends
335
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __A : int = imread(R'''digital_image_processing/image_data/lena_small.jpg''') __A : Tuple = cvtColor(img, COLOR_BGR2GRAY) def SCREAMING_SNAKE_CASE__ ( ) -> str: '''simple docstring''' lowerCAmelCase : List[Any] = cn.convert_to_negative(_UpperCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCAmelCase, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : List[Any] = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Any = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase : Dict = canny.canny(_UpperCAmelCase ) # assert canny array for at least one True assert canny_array.any() def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' assert gg.gaussian_filter(_UpperCAmelCase, 5, sigma=0.9 ).all() def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: '''simple docstring''' lowerCAmelCase : Any = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) lowerCAmelCase : List[Any] = conv.img_convolve(_UpperCAmelCase, _UpperCAmelCase ).astype(_UpperCAmelCase ) assert res.any() def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' assert med.median_filter(_UpperCAmelCase, 3 ).any() def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Any = sob.sobel_filter(_UpperCAmelCase ) assert grad.any() and theta.any() def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase : List[Any] = sp.make_sepia(_UpperCAmelCase, 20 ) assert sepia.all() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = bs.Burkes(imread(_UpperCAmelCase, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg", ) -> str: '''simple docstring''' lowerCAmelCase : int = rs.NearestNeighbour(imread(_UpperCAmelCase, 1 ), 400, 200 ) nn.process() assert nn.output.any() def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Dict = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase : Dict = imread(_UpperCAmelCase, 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase : Any = 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = image[x_coordinate][y_coordinate] lowerCAmelCase : List[Any] = lbp.get_neighbors_pixel( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase : str = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): lowerCAmelCase : Tuple = lbp.local_binary_value(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) assert lbp_image.any()
138
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class A_ ( _snake_case ): '''simple docstring''' def __init__( self : Any , lowercase_ : Tuple , lowercase_ : List[Any] ) -> Optional[Any]: super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def __call__( self : str ) -> Optional[Any]: UpperCAmelCase : int = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCAmelCase : Any = 1 UpperCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample UpperCAmelCase : Any = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample UpperCAmelCase : str = scheduler_output - scheduler_output + torch.ones_like(lowercase_ ) return result
280
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : VQModel , lowercase_ : UNetaDModel , lowercase_ : DDIMScheduler ) -> int: super().__init__() self.register_modules(vqvae=lowercase_ , unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : str , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : float = 0.0 , lowercase_ : int = 50 , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , **lowercase_ : Optional[Any] , ) -> Union[Tuple, ImagePipelineOutput]: UpperCAmelCase : str = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowercase_ , ) UpperCAmelCase : Any = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : Optional[Any] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowercase_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCAmelCase : Optional[int] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Tuple = {} if accepts_eta: UpperCAmelCase : List[str] = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCAmelCase : Dict = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual UpperCAmelCase : Dict = self.unet(lowercase_ , lowercase_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Dict = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # decode the image latents with the VAE UpperCAmelCase : Any = self.vqvae.decode(lowercase_ ).sample UpperCAmelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Tuple = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
280
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ :List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ :Optional[Any] = 256 class snake_case__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["melgan"] def __init__( self : List[Any], _snake_case : Optional[int], _snake_case : Dict, _snake_case : Any, _snake_case : str, _snake_case : List[str], ) ->None: super().__init__() # From MELGAN snake_case__ : int = math.log(1e-5 ) # Matches MelGAN training. snake_case__ : List[str] = 4.0 # Largest value for most examples snake_case__ : Dict = 1_2_8 self.register_modules( notes_encoder=A_, continuous_encoder=A_, decoder=A_, scheduler=A_, melgan=A_, ) def lowercase_ ( self : List[Any], _snake_case : Any, _snake_case : Optional[int]=(-1.0, 1.0), _snake_case : Optional[int]=False ) ->List[str]: snake_case__ , snake_case__ : Any = output_range if clip: snake_case__ : List[Any] = torch.clip(A_, self.min_value, self.max_value ) # Scale to [0, 1]. snake_case__ : int = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowercase_ ( self : List[str], _snake_case : Any, _snake_case : str=(-1.0, 1.0), _snake_case : int=False ) ->Optional[Any]: snake_case__ , snake_case__ : List[str] = input_range snake_case__ : Optional[int] = torch.clip(A_, A_, A_ ) if clip else outputs # Scale to [0, 1]. snake_case__ : Optional[int] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowercase_ ( self : Union[str, Any], _snake_case : Optional[int], _snake_case : str, _snake_case : Optional[int] ) ->List[Any]: snake_case__ : Optional[int] = input_tokens > 0 snake_case__ , snake_case__ : Dict = self.notes_encoder( encoder_input_tokens=A_, encoder_inputs_mask=A_ ) snake_case__ , snake_case__ : Any = self.continuous_encoder( encoder_inputs=A_, encoder_inputs_mask=A_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowercase_ ( self : Optional[int], _snake_case : str, _snake_case : List[str], _snake_case : str ) ->Union[str, Any]: snake_case__ : str = noise_time if not torch.is_tensor(A_ ): snake_case__ : List[str] = torch.tensor([timesteps], dtype=torch.long, device=input_tokens.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: snake_case__ : Union[str, Any] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case__ : List[Any] = timesteps * torch.ones(input_tokens.shape[0], dtype=timesteps.dtype, device=timesteps.device ) snake_case__ : Union[str, Any] = self.decoder( encodings_and_masks=A_, decoder_input_tokens=A_, decoder_noise_time=A_ ) return logits @torch.no_grad() def __call__( self : Optional[Any], _snake_case : Any, _snake_case : str = None, _snake_case : Optional[Any] = 1_0_0, _snake_case : str = True, _snake_case : Tuple = "numpy", _snake_case : Dict = None, _snake_case : Tuple = 1, ) ->Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_, A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) snake_case__ : Optional[Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims], dtype=np.floataa ) snake_case__ : List[str] = np.zeros([1, 0, self.n_dims], np.floataa ) snake_case__ : Tuple = torch.ones((1, TARGET_FEATURE_LENGTH), dtype=A_, device=self.device ) for i, encoder_input_tokens in enumerate(A_ ): if i == 0: snake_case__ : Any = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device, dtype=self.decoder.dtype ) # The first chunk has no previous context. snake_case__ : Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH), dtype=A_, device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. snake_case__ : str = ones snake_case__ : Dict = self.scale_features( A_, output_range=[-1.0, 1.0], clip=A_ ) snake_case__ : Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ), continuous_inputs=A_, continuous_mask=A_, ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop snake_case__ : List[str] = randn_tensor( shape=encoder_continuous_inputs.shape, generator=A_, device=self.device, dtype=self.decoder.dtype, ) # set step values self.scheduler.set_timesteps(A_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case__ : Dict = self.decode( encodings_and_masks=A_, input_tokens=A_, noise_time=t / self.scheduler.config.num_train_timesteps, ) # Compute previous output: x_t -> x_t-1 snake_case__ : List[str] = self.scheduler.step(A_, A_, A_, generator=A_ ).prev_sample snake_case__ : Dict = self.scale_to_features(A_, input_range=[-1.0, 1.0] ) snake_case__ : Optional[int] = mel[:1] snake_case__ : Optional[int] = mel.cpu().float().numpy() snake_case__ : List[Any] = np.concatenate([full_pred_mel, pred_mel[:1]], axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_, A_ ) logger.info('Generated segment', A_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": snake_case__ : int = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: snake_case__ : Optional[Any] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A_ )
277
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'embed_dim' ) ) self.parent.assertTrue(hasattr(A_ , 'num_heads' ) ) class lowercase : def __init__( self , A_ , A_=13 , A_=64 , A_=3 , A_=[16, 48, 96] , A_=[1, 3, 6] , A_=[1, 2, 10] , A_=[7, 3, 3] , A_=[4, 2, 2] , A_=[2, 1, 1] , A_=[2, 2, 2] , A_=[False, False, True] , A_=[0.0, 0.0, 0.0] , A_=0.02 , A_=1e-12 , A_=True , A_=True , A_=2 , ) -> int: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_sizes UpperCamelCase = patch_stride UpperCamelCase = patch_padding UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = num_labels UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = num_heads UpperCamelCase = stride_kv UpperCamelCase = depth UpperCamelCase = cls_token UpperCamelCase = attention_drop_rate UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase = CvtModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase , UpperCamelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCamelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCamelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = CvtForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else () __lowercase : Tuple = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Union[str, Any] = False __lowercase : Optional[Any] = False __lowercase : List[str] = False __lowercase : Dict = False def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = CvtModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self ) -> Any: """simple docstring""" return @unittest.skip(reason='Cvt does not output attentions' ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = len(self.model_tester.depth ) self.assertEqual(len(A_ ) , A_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @slow def __UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = CvtModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> Tuple: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
222
0
def lowerCamelCase__ ( snake_case_ : bytes ) -> str: return "".join([hex(snake_case_ )[2:].zfill(2 ).upper() for byte in list(snake_case_ )] ) def lowerCamelCase__ ( snake_case_ : str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(snake_case_ ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case_ ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(snake_case_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
364
from __future__ import annotations import collections import pprint from pathlib import Path def lowerCamelCase__ ( snake_case_ : str ) -> str: return "".join(sorted(snake_case_ ) ) def lowerCamelCase__ ( snake_case_ : str ) -> list[str]: return word_by_signature[signature(snake_case_ )] snake_case_ = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') snake_case_ = sorted({word.strip().lower() for word in data.splitlines()}) snake_case_ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": snake_case_ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
238
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[str] = tempfile.mkdtemp() # fmt: off __UpperCamelCase :Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on __UpperCamelCase :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) __UpperCamelCase :List[Any] = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } __UpperCamelCase :List[str] = os.path.join(self.tmpdirname , __lowercase) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(__lowercase , __lowercase) def UpperCamelCase__ ( self , **__lowercase) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , **__lowercase) -> Any: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self) -> Dict: shutil.rmtree(self.tmpdirname) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __UpperCamelCase :Any = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1)) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :str = self.get_tokenizer() __UpperCamelCase :List[str] = self.get_image_processor() __UpperCamelCase :List[Any] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) processor.save_pretrained(self.tmpdirname) __UpperCamelCase :Any = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , __lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __UpperCamelCase :List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') __UpperCamelCase :Any = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0) __UpperCamelCase :List[Any] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __lowercase) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Optional[Any] = self.get_image_processor() __UpperCamelCase :Optional[Any] = self.get_tokenizer() __UpperCamelCase :str = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :str = self.prepare_image_inputs() __UpperCamelCase :Optional[int] = image_processor(__lowercase , return_tensors='''np''') __UpperCamelCase :str = processor(images=__lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :List[Any] = self.get_image_processor() __UpperCamelCase :List[Any] = self.get_tokenizer() __UpperCamelCase :Any = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Optional[Any] = '''lower newer''' __UpperCamelCase :Optional[int] = processor(text=__lowercase) __UpperCamelCase :Any = tokenizer(__lowercase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :str = self.get_image_processor() __UpperCamelCase :int = self.get_tokenizer() __UpperCamelCase :Any = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Tuple = '''lower newer''' __UpperCamelCase :Tuple = self.prepare_image_inputs() __UpperCamelCase :Dict = processor(text=__lowercase , images=__lowercase) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with self.assertRaises(__lowercase): processor() def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Dict = self.get_image_processor() __UpperCamelCase :Dict = self.get_tokenizer() __UpperCamelCase :Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase :Union[str, Any] = processor.batch_decode(__lowercase) __UpperCamelCase :str = tokenizer.batch_decode(__lowercase) self.assertListEqual(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :int = self.get_image_processor() __UpperCamelCase :Tuple = self.get_tokenizer() __UpperCamelCase :Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Tuple = '''lower newer''' __UpperCamelCase :Optional[int] = self.prepare_image_inputs() __UpperCamelCase :Tuple = processor(text=__lowercase , images=__lowercase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
43
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase_ : Optional[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) lowercase_ : str = [] lowercase_ : int = [] lowercase_ : Dict = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} lowercase_ : int = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] lowercase_ : int = 0 for log in Path().glob('*.log'): lowercase_ : int = 0 with open(log, 'r') as f: for line in f: lowercase_ : List[str] = json.loads(line) if line.get('nodeid', '') != "": lowercase_ : List[str] = line['nodeid'] if line.get('duration', None) is not None: lowercase_ : Tuple = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase_ : List[Any] = [] log.unlink() lowercase_ : int = '' lowercase_ : int = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowercase_ : Optional[Any] = [] lowercase_ : Any = {} for test in failed_tests: lowercase_ : List[str] = test[0].split('::') lowercase_ : int = data[0].split('/')[-1] if data[0] not in filesafailed: lowercase_ : Dict = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase_ : Any = [test[0] for test in failed_table] lowercase_ : Optional[Any] = list(set(files)) # Count number of instances in failed_tests lowercase_ : Optional[Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase_ : Optional[Any] = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: lowercase_ : List[Any] = 'Too many failed tests, please see the full report in the Action results.' lowercase_ : Union[str, Any] = len(err) + 10 lowercase_ : Tuple = message[: 30_00 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: lowercase_ : int = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient lowercase_ : Union[str, Any] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": lowercase_ : List[Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) lowercase_ : List[Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowercase_ : List[str] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowercase_ : Any = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) lowercase_ : Any = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase_ : Optional[int] = '' for i, row in enumerate(test_failures): if row[0] != test_class: lowercase_ : Tuple = row[0] else: lowercase_ : Tuple = '' lowercase_ : int = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
133
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __UpperCAmelCase : def __init__( self : int, __A : Dict, __A : Any=1_3, __A : List[str]=3_0, __A : int=2, __A : Union[str, Any]=3, __A : List[str]=True, __A : List[Any]=True, __A : List[str]=3_2, __A : int=5, __A : List[str]=4, __A : Tuple=3_7, __A : Tuple="gelu", __A : List[str]=0.1, __A : Dict=0.1, __A : Tuple=1_0, __A : str=0.0_2, __A : Dict=3, __A : Any=None, __A : Union[str, Any]=2, ): UpperCAmelCase : Tuple = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : Any = patch_size UpperCAmelCase : Any = num_channels UpperCAmelCase : Dict = is_training UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : int = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase : str = (image_size // patch_size) ** 2 UpperCAmelCase : str = num_patches + 2 def __magic_name__ ( self : Any ): UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def __magic_name__ ( self : Dict, __A : Union[str, Any], __A : Union[str, Any], __A : List[Any] ): UpperCAmelCase : Union[str, Any] = DeiTModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[str], __A : List[Any], __A : List[Any], __A : Optional[Any] ): UpperCAmelCase : Optional[int] = DeiTForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = model(__A ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase : str = 1 UpperCAmelCase : Union[str, Any] = DeiTForMaskedImageModeling(__A ) model.to(__A ) model.eval() UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : str = model(__A ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self : Union[str, Any], __A : Dict, __A : int, __A : Optional[int] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : Tuple = DeiTForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Any = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase : Optional[Any] = 1 UpperCAmelCase : int = DeiTForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : Union[str, Any] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : int = config_and_inputs UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Dict ): UpperCAmelCase : Dict = DeiTModelTester(self ) UpperCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __magic_name__ ( self : List[str] ): pass def __magic_name__ ( self : List[Any] ): UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__A ) UpperCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str], __A : List[Any], __A : int, __A : Optional[Any]=False ): UpperCAmelCase : Optional[Any] = super()._prepare_for_class(__A, __A, return_labels=__A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __magic_name__ ( self : List[Any] ): if not self.model_tester.is_training: return UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase : Tuple = model_class(__A ) model.to(__A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A, return_labels=__A ) UpperCAmelCase : Union[str, Any] = model(**__A ).loss loss.backward() def __magic_name__ ( self : Dict ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase : List[str] = False UpperCAmelCase : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase : Any = model_class(__A ) model.gradient_checkpointing_enable() model.to(__A ) model.train() UpperCAmelCase : Dict = self._prepare_for_class(__A, __A, return_labels=__A ) UpperCAmelCase : Tuple = model(**__A ).loss loss.backward() def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__A ), *get_values(__A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): UpperCAmelCase : Optional[int] = problem_type['''title'''] UpperCAmelCase : Union[str, Any] = problem_type['''num_labels'''] UpperCAmelCase : Optional[Any] = model_class(__A ) model.to(__A ) model.train() UpperCAmelCase : List[Any] = self._prepare_for_class(__A, __A, return_labels=__A ) if problem_type["num_labels"] > 1: UpperCAmelCase : int = inputs['''labels'''].unsqueeze(1 ).repeat(1, problem_type['''num_labels'''] ) UpperCAmelCase : Optional[int] = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__A ) as warning_list: UpperCAmelCase : List[Any] = model(**__A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __magic_name__ ( self : int ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = DeiTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> List[str]: UpperCAmelCase : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Optional[Any] ): return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[Any] = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( __A ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Any = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : List[Any] = model(**__A ) # verify the logits UpperCAmelCase : Union[str, Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : List[str] = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __magic_name__ ( self : str ): UpperCAmelCase : Dict = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''', torch_dtype=torch.floataa, device_map='''auto''' ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : int = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = inputs.pixel_values.to(__A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase : List[Any] = model(__A )
99
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _lowerCamelCase : List[str] = True from torch.cuda.amp import autocast _lowerCamelCase : Any = logging.getLogger(__name__) @dataclass class __UpperCAmelCase : UpperCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to log verbose messages or not."""} , ) UpperCamelCase = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) UpperCamelCase = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) UpperCamelCase = field( default=0.9_9_9_9_9_5 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def a__ ( UpperCAmelCase : ModelArguments , UpperCAmelCase : TrainingArguments ) -> Any: logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase : Any = logging.WARNING if model_args.verbose_logging: UpperCAmelCase : Any = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): UpperCAmelCase : Any = logging.INFO logger.setLevel(UpperCAmelCase ) @dataclass class __UpperCAmelCase : UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) UpperCamelCase = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) UpperCamelCase = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) UpperCamelCase = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase = field( default=lowerCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase = field( default=2_0.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class __UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = "longest" UpperCamelCase = None UpperCamelCase = None def __call__( self : int, __A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format UpperCAmelCase : List[Any] = self.feature_extractor.pad( __A, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='''pt''', ) UpperCAmelCase : int = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) UpperCAmelCase : Tuple = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula UpperCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) UpperCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to UpperCAmelCase : Tuple = 1 UpperCAmelCase : int = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices UpperCAmelCase : Dict = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__A, min_masks=2, ) return batch class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Union[str, Any], *__A : int, __A : Dict=1, __A : Any=0, __A : Optional[Any]=1.0, **__A : Any ): super().__init__(*__A, **__A ) UpperCAmelCase : Any = 0 UpperCAmelCase : Any = max_gumbel_temp UpperCAmelCase : Optional[Any] = min_gumbel_temp UpperCAmelCase : str = gumbel_temp_decay def __magic_name__ ( self : Dict, __A : nn.Module, __A : Dict[str, Union[torch.Tensor, Any]] ): model.train() UpperCAmelCase : List[Any] = self._prepare_inputs(__A ) if self.use_amp: with autocast(): UpperCAmelCase : Optional[Any] = self.compute_loss(__A, __A ) else: UpperCAmelCase : Optional[int] = self.compute_loss(__A, __A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase : str = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__A ).backward() elif self.use_apex: with amp.scale_loss(__A, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) return loss.detach() def a__ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses() configure_logger(UpperCAmelCase , UpperCAmelCase ) # Downloading and loading a dataset from the hub. UpperCAmelCase : int = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" UpperCAmelCase : Union[str, Any] = DatasetDict() UpperCAmelCase : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) UpperCAmelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" UpperCAmelCase : Optional[Any] = DatasetDict() UpperCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) UpperCAmelCase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=UpperCAmelCase ) def prepare_dataset(UpperCAmelCase : Dict ): # check that all files have the correct sampling rate UpperCAmelCase , UpperCAmelCase : Optional[Any] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays UpperCAmelCase : str = datasets.map( UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long UpperCAmelCase : int = vectorized_datasets.filter( lambda UpperCAmelCase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(UpperCAmelCase : Dict ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` UpperCAmelCase : Any = vectorized_datasets.map( UpperCAmelCase , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 UpperCAmelCase : Optional[int] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) UpperCAmelCase : Any = WavaVecaForPreTraining(UpperCAmelCase ) UpperCAmelCase : int = DataCollatorForWavaVecaPretraining(model=UpperCAmelCase , feature_extractor=UpperCAmelCase ) UpperCAmelCase : Any = WavaVecaPreTrainer( model=UpperCAmelCase , data_collator=UpperCAmelCase , args=UpperCAmelCase , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=UpperCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
99
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class A ( unittest.TestCase ): def A__ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): lowercase__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(lowerCamelCase__ ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = """sshleifer/tiny-gpt2""" lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowerCamelCase__ , multi_process=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ ) lowercase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self ) -> str: '''simple docstring''' lowercase__ = """sgugger/tiny-distilbert-classification""" lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , only_pretrain_model=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ ) lowercase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = """sshleifer/tiny-gpt2""" lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ ) lowercase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self ) -> str: '''simple docstring''' lowercase__ = """sshleifer/tiny-gpt2""" lowercase__ = AutoConfig.from_pretrained(lowerCamelCase__ ) lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowerCamelCase__ , multi_process=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ , [config] ) lowercase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = """sshleifer/tiny-gpt2""" lowercase__ = AutoConfig.from_pretrained(lowerCamelCase__ ) lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ , [config] ) lowercase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self ) -> int: '''simple docstring''' lowercase__ = """sshleifer/tiny-gpt2""" lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ ) lowercase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = """sshleifer/tiny-gpt2""" lowercase__ = AutoConfig.from_pretrained(lowerCamelCase__ ) lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ , [config] ) lowercase__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = """patrickvonplaten/t5-tiny-random""" lowercase__ = AutoConfig.from_pretrained(lowerCamelCase__ ) lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ , configs=[config] ) lowercase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = """sshleifer/tiny-gpt2""" lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=lowerCamelCase__ , multi_process=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ ) lowercase__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowerCamelCase__ , save_to_csv=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCamelCase__ , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(lowerCamelCase__ , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(lowerCamelCase__ , """env.csv""" ) , multi_process=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCamelCase__ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , """env.csv""" ) ).exists() ) def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(lowerCamelCase__ ): self.assertTrue(hasattr(lowerCamelCase__ , """sequential""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """cumulative""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """current""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCamelCase__ , """log.txt""" ) , log_print=lowerCamelCase__ , trace_memory_line_by_line=lowerCamelCase__ , eager_mode=lowerCamelCase__ , multi_process=lowerCamelCase__ , ) lowercase__ = TensorFlowBenchmark(lowerCamelCase__ ) lowercase__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , """log.txt""" ) ).exists() )
164
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline lowerCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowerCamelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def A__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(lowerCamelCase__ ) lowercase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[Any]: '''simple docstring''' lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ) if str(lowerCamelCase__ ).startswith("""mps""" ): lowercase__ = torch.manual_seed(lowerCamelCase__ ) else: lowercase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def A__ ( self ) -> str: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = sd_pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = """french fries""" lowercase__ = sd_pipe(**lowerCamelCase__ , negative_prompt=lowerCamelCase__ ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = [inputs["""prompt"""]] * 2 lowercase__ = np.array(inputs["""image"""] ).astype(np.floataa ) / 2_55.0 lowercase__ = torch.from_numpy(lowerCamelCase__ ).unsqueeze(0 ).to(lowerCamelCase__ ) lowercase__ = image / 2 + 0.5 lowercase__ = image.permute(0 , 3 , 1 , 2 ) lowercase__ = image.repeat(2 , 1 , 1 , 1 ) lowercase__ = sd_pipe(**lowerCamelCase__ ).images lowercase__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowercase__ = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" ) lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ = sd_pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1] lowercase__ = [round(lowerCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) lowercase__ = VaeImageProcessor(do_resize=lowerCamelCase__ , do_normalize=lowerCamelCase__ ) lowercase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = pipe(**self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type="""pt""" ) )[0] lowercase__ = components["""vae"""] lowercase__ = self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowercase__ = vae.encode(inputs[image_param] ).latent_dist.mode() lowercase__ = pipe(**lowerCamelCase__ )[0] lowercase__ = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCamelCase__ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class A ( unittest.TestCase ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , lowerCamelCase__=0 ) -> int: '''simple docstring''' lowercase__ = torch.manual_seed(lowerCamelCase__ ) lowercase__ = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) lowercase__ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def A__ ( self ) -> str: '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) lowercase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A__ ( self ) -> str: '''simple docstring''' lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ ) lowercase__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase__ = 0 def callback_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: lowercase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowercase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowercase__ = False lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) lowercase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = self.get_inputs() pipe(**lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A__ ( self ) -> Tuple: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) lowercase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__ = self.get_inputs() lowercase__ = pipe(**lowerCamelCase__ ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowercase__ = inputs["""image"""].resize((504, 504) ) lowercase__ = """timbrooks/instruct-pix2pix""" lowercase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCamelCase__ , safety_checker=lowerCamelCase__ , ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() lowercase__ = pipe(**lowerCamelCase__ ) lowercase__ = output.images[0] lowercase__ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowercase__ = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
164
1
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ ={ 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } lowercase__ ='ETAOINSHRDLCUMWFGYPBVKJXQZ' lowercase__ ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __UpperCamelCase ( lowerCAmelCase__ : tuple ): return x[0] def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = get_letter_count(lowerCAmelCase__ ) __a : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase__ ) __a : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase__ ) __a : Dict = ''''''.join(freq_to_letter[freq] ) __a : List[str] = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) __a : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : Any = get_frequency_order(lowerCAmelCase__ ) __a : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
90
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED lowercase__ ={ 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowercase__ ={ 'allenai/led-base-16384': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __UpperCamelCase ( ): __a : Tuple = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __a : List[str] = bs[:] __a : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase__ ) cs.append(2**8 + n ) n += 1 __a : Union[str, Any] = [chr(lowerCAmelCase__ ) for n in cs] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __UpperCamelCase ( lowerCAmelCase__ : List[Any] ): __a : Any = set() __a : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __a : Tuple = char return pairs class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Union[str, Any] = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case_ : int , snake_case_ : Dict , snake_case_ : Union[str, Any]="replace" , snake_case_ : Any="<s>" , snake_case_ : Any="</s>" , snake_case_ : Tuple="</s>" , snake_case_ : Dict="<s>" , snake_case_ : Any="<unk>" , snake_case_ : List[Any]="<pad>" , snake_case_ : Dict="<mask>" , snake_case_ : Dict=False , **snake_case_ : Tuple , ): __a : List[str] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token __a : Tuple = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token __a : Union[str, Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token __a : Dict = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token __a : List[str] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token __a : str = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __a : int = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding='''utf-8''' ) as vocab_handle: __a : Union[str, Any] = json.load(snake_case_ ) __a : Union[str, Any] = {v: k for k, v in self.encoder.items()} __a : List[Any] = errors # how to handle errors in decoding __a : Union[str, Any] = bytes_to_unicode() __a : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding='''utf-8''' ) as merges_handle: __a : List[Any] = merges_handle.read().split('''\n''' )[1:-1] __a : int = [tuple(merge.split() ) for merge in bpe_merges] __a : Tuple = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __a : Optional[int] = {} __a : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __a : str = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase (self : int ): return len(self.encoder ) def lowerCAmelCase (self : str ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase (self : Dict , snake_case_ : Optional[Any] ): if token in self.cache: return self.cache[token] __a : str = tuple(snake_case_ ) __a : Optional[Any] = get_pairs(snake_case_ ) if not pairs: return token while True: __a : Optional[int] = min(snake_case_ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __a , __a : Any = bigram __a : Union[str, Any] = [] __a : List[Any] = 0 while i < len(snake_case_ ): try: __a : int = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __a : Optional[int] = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __a : Tuple = tuple(snake_case_ ) __a : List[Any] = new_word if len(snake_case_ ) == 1: break else: __a : Tuple = get_pairs(snake_case_ ) __a : Optional[int] = ''' '''.join(snake_case_ ) __a : Union[str, Any] = word return word def lowerCAmelCase (self : Dict , snake_case_ : str ): __a : Optional[Any] = [] for token in re.findall(self.pat , snake_case_ ): __a : str = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(''' ''' ) ) return bpe_tokens def lowerCAmelCase (self : Optional[Any] , snake_case_ : int ): return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : List[str] ): return self.decoder.get(snake_case_ ) def lowerCAmelCase (self : Optional[int] , snake_case_ : str ): __a : Any = ''''''.join(snake_case_ ) __a : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCAmelCase (self : List[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __a : Any = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __a : str = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + '''\n''' ) __a : Optional[int] = 0 with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) __a : Union[str, Any] = token_index writer.write(''' '''.join(snake_case_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCAmelCase (self : int , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a : Union[str, Any] = [self.cls_token_id] __a : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase (self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase (self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : Union[str, Any] = [self.sep_token_id] __a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase (self : str , snake_case_ : int , snake_case_ : Union[str, Any]=False , **snake_case_ : str ): __a : List[str] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): __a : str = ''' ''' + text return (text, kwargs) def lowerCAmelCase (self : Optional[int] , snake_case_ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case_ : Optional[int] = None , snake_case_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , ): __a : int = super()._pad( encoded_inputs=snake_case_ , max_length=snake_case_ , padding_strategy=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , ) # Load from model defaults if return_attention_mask is None: __a : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __a : List[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __a : List[Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(snake_case_ ) if needs_to_be_padded: __a : int = len(snake_case_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __a : List[str] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __a : List[str] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
90
1
from __future__ import annotations class _A: """simple docstring""" def __init__( self , _A ): __A : Optional[int] = data __A : Node | None = None __A : Node | None = None def _SCREAMING_SNAKE_CASE ( a ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _SCREAMING_SNAKE_CASE ( a ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _SCREAMING_SNAKE_CASE ( a ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. __A : Optional[int] = Node(1 ) __A : Optional[Any] = Node(2 ) __A : str = Node(3 ) __A : Union[str, Any] = Node(4 ) __A : Optional[int] = Node(5 ) __A : List[str] = Node(6 ) __A : List[str] = Node(7 ) __A : Union[str, Any] = Node(8 ) __A : Optional[Any] = Node(9 ) print(is_full_binary_tree(a ) ) print(depth_of_tree(a ) ) print('Tree is: ' ) display(a ) if __name__ == "__main__": main()
280
def _SCREAMING_SNAKE_CASE ( a ) -> bool: return str(a ) == str(a )[::-1] def _SCREAMING_SNAKE_CASE ( a ) -> int: return int(a ) + int(str(a )[::-1] ) def _SCREAMING_SNAKE_CASE ( a = 1_00_00 ) -> int: __A : int = [] for num in range(1 , a ): __A : List[str] = 0 __A : List[Any] = num while iterations < 50: __A : str = sum_reverse(a ) iterations += 1 if is_palindrome(a ): break else: lychrel_nums.append(a ) return len(a ) if __name__ == "__main__": print(F"""{solution() = }""")
280
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() A : int = logging.get_logger("transformers.models.speecht5") A : Any = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } A : List[str] = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } A : Dict = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } A : int = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } A : Tuple = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } A : Optional[Any] = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } A : Optional[Any] = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } A : List[Any] = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } A : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } A : Dict = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A : str = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A : str = [] A : Any = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] A : str = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] A : int = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] A : List[str] = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): for attribute in key.split("." ): SCREAMING_SNAKE_CASE_ = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE_ = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: SCREAMING_SNAKE_CASE_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ = value elif weight_type == "running_mean": SCREAMING_SNAKE_CASE_ = value elif weight_type == "running_var": SCREAMING_SNAKE_CASE_ = value elif weight_type == "num_batches_tracked": SCREAMING_SNAKE_CASE_ = value else: SCREAMING_SNAKE_CASE_ = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def a__ ( __UpperCamelCase , __UpperCamelCase ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] if task == "s2t": SCREAMING_SNAKE_CASE_ = hf_model.speechta.encoder.prenet.feature_encoder SCREAMING_SNAKE_CASE_ = MAPPING_S2T SCREAMING_SNAKE_CASE_ = IGNORE_KEYS_S2T elif task == "t2s": SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = MAPPING_T2S SCREAMING_SNAKE_CASE_ = IGNORE_KEYS_T2S elif task == "s2s": SCREAMING_SNAKE_CASE_ = hf_model.speechta.encoder.prenet.feature_encoder SCREAMING_SNAKE_CASE_ = MAPPING_S2S SCREAMING_SNAKE_CASE_ = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(__UpperCamelCase , __UpperCamelCase ): logger.info(F'''{name} was ignored''' ) continue SCREAMING_SNAKE_CASE_ = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE_ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = key.split(".*." ) if prefix in name and suffix in name: SCREAMING_SNAKE_CASE_ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: SCREAMING_SNAKE_CASE_ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ = name.split(__UpperCamelCase )[0].split("." )[-2] SCREAMING_SNAKE_CASE_ = mapped_key.replace("*" , __UpperCamelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE_ = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE_ = "bias" elif "weight" in name: SCREAMING_SNAKE_CASE_ = "weight" elif "running_mean" in name: SCREAMING_SNAKE_CASE_ = "running_mean" elif "running_var" in name: SCREAMING_SNAKE_CASE_ = "running_var" elif "num_batches_tracked" in name: SCREAMING_SNAKE_CASE_ = "num_batches_tracked" else: SCREAMING_SNAKE_CASE_ = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE_ = name.split("." ) SCREAMING_SNAKE_CASE_ = int(items[0] ) SCREAMING_SNAKE_CASE_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__UpperCamelCase ) @torch.no_grad() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ): if config_path is not None: SCREAMING_SNAKE_CASE_ = SpeechTaConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = SpeechTaConfig() if task == "s2t": SCREAMING_SNAKE_CASE_ = config.max_text_positions SCREAMING_SNAKE_CASE_ = SpeechTaForSpeechToText(__UpperCamelCase ) elif task == "t2s": SCREAMING_SNAKE_CASE_ = 1_8_7_6 SCREAMING_SNAKE_CASE_ = 6_0_0 SCREAMING_SNAKE_CASE_ = config.max_speech_positions SCREAMING_SNAKE_CASE_ = SpeechTaForTextToSpeech(__UpperCamelCase ) elif task == "s2s": SCREAMING_SNAKE_CASE_ = 1_8_7_6 SCREAMING_SNAKE_CASE_ = config.max_speech_positions SCREAMING_SNAKE_CASE_ = SpeechTaForSpeechToSpeech(__UpperCamelCase ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: SCREAMING_SNAKE_CASE_ = SpeechTaTokenizer(__UpperCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ = AddedToken("<mask>" , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = SpeechTaProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = torch.load(__UpperCamelCase ) recursively_load_weights(fairseq_checkpoint["model"] , __UpperCamelCase , __UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(__UpperCamelCase ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) A : int = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
350
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
0
from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase__ : Tuple = np.shape(__lowerCamelCase ) if rows != columns: UpperCamelCase__ : str = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(__lowerCamelCase ) UpperCamelCase__ : Union[str, Any] = np.zeros((rows, columns) ) UpperCamelCase__ : Optional[int] = np.zeros((rows, columns) ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): UpperCamelCase__ : List[Any] = sum(lower[i][k] * upper[k][j] for k in range(__lowerCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) UpperCamelCase__ : Optional[int] = (table[i][j] - total) / upper[j][j] UpperCamelCase__ : Any = 1 for j in range(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__ : str = sum(lower[i][k] * upper[k][j] for k in range(__lowerCamelCase ) ) UpperCamelCase__ : Union[str, Any] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
189
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = DDIMPipeline _a = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _a = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } _a = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _a = False def snake_case ( self : str )-> Optional[Any]: torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] =UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) lowerCamelCase__ : Optional[Any] =DDIMScheduler() lowerCamelCase__ : List[Any] ={'''unet''': unet, '''scheduler''': scheduler} return components def snake_case ( self : Optional[Any], lowerCamelCase : Dict, lowerCamelCase : Optional[Any]=0 )-> Optional[int]: if str(lowerCamelCase ).startswith('''mps''' ): lowerCamelCase__ : Dict =torch.manual_seed(lowerCamelCase ) else: lowerCamelCase__ : Optional[int] =torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCamelCase__ : Tuple ={ '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case ( self : Dict )-> str: lowerCamelCase__ : Optional[Any] ='''cpu''' lowerCamelCase__ : int =self.get_dummy_components() lowerCamelCase__ : Optional[int] =self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : List[str] =self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase__ : Any =pipe(**lowerCamelCase ).images lowerCamelCase__ : Optional[Any] =image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 32, 32, 3) ) lowerCamelCase__ : Tuple =np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowerCamelCase__ : str =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase, 1E-3 ) def snake_case ( self : Union[str, Any] )-> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def snake_case ( self : Union[str, Any] )-> int: super().test_save_load_local(expected_max_difference=3E-3 ) def snake_case ( self : List[Any] )-> List[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def snake_case ( self : Optional[Any] )-> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : Optional[Any] )-> List[str]: lowerCamelCase__ : Optional[Any] ='''google/ddpm-cifar10-32''' lowerCamelCase__ : Union[str, Any] =UNetaDModel.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Optional[int] =DDIMScheduler() lowerCamelCase__ : int =DDIMPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase ) ddim.to(lowerCamelCase ) ddim.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : Tuple =torch.manual_seed(0 ) lowerCamelCase__ : int =ddim(generator=lowerCamelCase, eta=0.0, output_type='''numpy''' ).images lowerCamelCase__ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ : Any =np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self : Optional[int] )-> Any: lowerCamelCase__ : str ='''google/ddpm-ema-bedroom-256''' lowerCamelCase__ : Optional[int] =UNetaDModel.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Any =DDIMScheduler.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =DDIMPipeline(unet=lowerCamelCase, scheduler=lowerCamelCase ) ddpm.to(lowerCamelCase ) ddpm.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : List[str] =torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] =ddpm(generator=lowerCamelCase, output_type='''numpy''' ).images lowerCamelCase__ : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCamelCase__ : Any =np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
238
0
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase__ = logging.get_logger(__name__) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None ): UpperCAmelCase : Optional[Any] = tesseract_config if tesseract_config is not None else '' # apply OCR UpperCAmelCase : List[Any] = to_pil_image(UpperCAmelCase_ ) UpperCAmelCase , UpperCAmelCase : Dict = pil_image.size UpperCAmelCase : List[Any] = pytesseract.image_to_data(UpperCAmelCase_ , lang=UpperCAmelCase_ , output_type='dict' , config=UpperCAmelCase_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates UpperCAmelCase : str = [idx for idx, word in enumerate(UpperCAmelCase_ ) if not word.strip()] UpperCAmelCase : Tuple = [word for idx, word in enumerate(UpperCAmelCase_ ) if idx not in irrelevant_indices] UpperCAmelCase : int = [coord for idx, coord in enumerate(UpperCAmelCase_ ) if idx not in irrelevant_indices] UpperCAmelCase : List[Any] = [coord for idx, coord in enumerate(UpperCAmelCase_ ) if idx not in irrelevant_indices] UpperCAmelCase : str = [coord for idx, coord in enumerate(UpperCAmelCase_ ) if idx not in irrelevant_indices] UpperCAmelCase : Optional[Any] = [coord for idx, coord in enumerate(UpperCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase : List[str] = [] for x, y, w, h in zip(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = [x, y, x + w, y + h] actual_boxes.append(UpperCAmelCase_ ) # finally, normalize the bounding boxes UpperCAmelCase : int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ["""pixel_values"""] def __init__( self : str , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = "" , **lowercase_ : str , ) -> None: super().__init__(**lowercase_ ) UpperCAmelCase : Tuple = size if size is not None else {'height': 224, 'width': 224} UpperCAmelCase : Optional[Any] = get_size_dict(lowercase_ ) UpperCAmelCase : Union[str, Any] = do_resize UpperCAmelCase : Optional[int] = size UpperCAmelCase : List[Any] = resample UpperCAmelCase : Dict = apply_ocr UpperCAmelCase : Any = ocr_lang UpperCAmelCase : int = tesseract_config def UpperCAmelCase_ ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ) -> np.ndarray: UpperCAmelCase : List[Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCAmelCase : Tuple = (size['height'], size['width']) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Any , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : str , ) -> PIL.Image.Image: UpperCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Dict = size if size is not None else self.size UpperCAmelCase : str = get_size_dict(lowercase_ ) UpperCAmelCase : str = resample if resample is not None else self.resample UpperCAmelCase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase : str = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase : int = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase : List[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. UpperCAmelCase : List[str] = [to_numpy_array(lowercase_ ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) UpperCAmelCase : List[str] = [] UpperCAmelCase : Optional[Any] = [] for image in images: UpperCAmelCase , UpperCAmelCase : Tuple = apply_tesseract(lowercase_ , lowercase_ , lowercase_ ) words_batch.append(lowercase_ ) boxes_batch.append(lowercase_ ) if do_resize: UpperCAmelCase : List[str] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCAmelCase : Optional[Any] = [flip_channel_order(lowercase_ ) for image in images] UpperCAmelCase : Dict = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase : Any = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase_ ) if apply_ocr: UpperCAmelCase : Dict = words_batch UpperCAmelCase : str = boxes_batch return data
280
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """perceiver""" def __init__( self : str , lowercase_ : List[str]=256 , lowercase_ : List[str]=1_280 , lowercase_ : str=768 , lowercase_ : Tuple=1 , lowercase_ : str=26 , lowercase_ : List[Any]=8 , lowercase_ : int=8 , lowercase_ : List[str]=None , lowercase_ : Dict=None , lowercase_ : int="kv" , lowercase_ : Union[str, Any]=1 , lowercase_ : List[str]=1 , lowercase_ : Any="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : str=0.02 , lowercase_ : Optional[Any]=1E-12 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=262 , lowercase_ : Union[str, Any]=2_048 , lowercase_ : Optional[int]=56 , lowercase_ : int=[368, 496] , lowercase_ : str=16 , lowercase_ : Optional[int]=1_920 , lowercase_ : Tuple=16 , lowercase_ : int=[1, 16, 224, 224] , **lowercase_ : Union[str, Any] , ) -> List[str]: super().__init__(**lowercase_ ) UpperCAmelCase : Union[str, Any] = num_latents UpperCAmelCase : List[Any] = d_latents UpperCAmelCase : Dict = d_model UpperCAmelCase : Dict = num_blocks UpperCAmelCase : Optional[int] = num_self_attends_per_block UpperCAmelCase : Optional[Any] = num_self_attention_heads UpperCAmelCase : Optional[Any] = num_cross_attention_heads UpperCAmelCase : Tuple = qk_channels UpperCAmelCase : Optional[int] = v_channels UpperCAmelCase : str = cross_attention_shape_for_attention UpperCAmelCase : Union[str, Any] = self_attention_widening_factor UpperCAmelCase : List[Any] = cross_attention_widening_factor UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : Any = use_query_residual # masked language modeling attributes UpperCAmelCase : Any = vocab_size UpperCAmelCase : List[Any] = max_position_embeddings # image classification attributes UpperCAmelCase : str = image_size # flow attributes UpperCAmelCase : Any = train_size # multimodal autoencoding attributes UpperCAmelCase : Any = num_frames UpperCAmelCase : List[Any] = audio_samples_per_frame UpperCAmelCase : Tuple = samples_per_patch UpperCAmelCase : Union[str, Any] = output_shape class A_ ( _snake_case ): '''simple docstring''' @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self : str ) -> float: return 1E-4 def UpperCAmelCase_ ( self : str , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , lowercase_ : int = 3 , lowercase_ : int = 40 , lowercase_ : int = 40 , ) -> Mapping[str, Any]: # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(lowercase_ , lowercase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : Tuple = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase : int = preprocessor.num_special_tokens_to_add(lowercase_ ) UpperCAmelCase : Union[str, Any] = compute_effective_axis_dimension( lowercase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase : List[Any] = [' '.join(['a'] ) * seq_length] * batch_size UpperCAmelCase : Union[str, Any] = dict(preprocessor(lowercase_ , return_tensors=lowercase_ ) ) UpperCAmelCase : Union[str, Any] = inputs.pop('input_ids' ) return inputs elif isinstance(lowercase_ , lowercase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : Tuple = compute_effective_axis_dimension(lowercase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase : Any = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_ ) ) UpperCAmelCase : Dict = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
280
1
import functools def A_ ( A__ , A__ ) -> int: # Validation if not isinstance(A__ , A__ ) or not all(isinstance(A__ , A__ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(A__ ) != 3 or not all(isinstance(A__ , A__ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(A__ ) == 0: return 0 if min(A__ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(A__ ) >= 366: raise ValueError('All days elements should be less than 366' ) a__ : Tuple = set(A__ ) @functools.cache def dynamic_programming(A__ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
99
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss']): a__ : int = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Tuple = 'sshleifer/tiny-gpt2' a__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase , multi_process=lowercase , ) a__ : List[Any] = TensorFlowBenchmark(lowercase) a__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = 'sgugger/tiny-distilbert-classification' a__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , only_pretrain_model=lowercase , ) a__ : str = TensorFlowBenchmark(lowercase) a__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Union[str, Any] = 'sshleifer/tiny-gpt2' a__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) a__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : str = 'sshleifer/tiny-gpt2' a__ : str = AutoConfig.from_pretrained(lowercase) a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=lowercase , multi_process=lowercase , ) a__ : Optional[Any] = TensorFlowBenchmark(lowercase , [config]) a__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = 'sshleifer/tiny-gpt2' a__ : Union[str, Any] = AutoConfig.from_pretrained(lowercase) a__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : str = TensorFlowBenchmark(lowercase , [config]) a__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Optional[int] = 'sshleifer/tiny-gpt2' a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : Tuple = TensorFlowBenchmark(lowercase) a__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[Any] = 'sshleifer/tiny-gpt2' a__ : List[Any] = AutoConfig.from_pretrained(lowercase) a__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : Optional[Any] = TensorFlowBenchmark(lowercase , [config]) a__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[int] = 'patrickvonplaten/t5-tiny-random' a__ : Optional[int] = AutoConfig.from_pretrained(lowercase) a__ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , ) a__ : List[Any] = TensorFlowBenchmark(lowercase , configs=[config]) a__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU')) == 0 , 'Cannot do xla on CPU.') def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Optional[int] = 'sshleifer/tiny-gpt2' a__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=lowercase , multi_process=lowercase , ) a__ : int = TensorFlowBenchmark(lowercase) a__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : str = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: a__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase , save_to_csv=lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase , 'inf_time.csv') , inference_memory_csv_file=os.path.join(lowercase , 'inf_mem.csv') , env_info_csv_file=os.path.join(lowercase , 'env.csv') , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) benchmark.run() self.assertTrue(Path(os.path.join(lowercase , 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(lowercase , 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(lowercase , 'env.csv')).exists()) def __lowercase ( self) -> str: '''simple docstring''' a__ : Union[str, Any] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase): self.assertTrue(hasattr(lowercase , 'sequential')) self.assertTrue(hasattr(lowercase , 'cumulative')) self.assertTrue(hasattr(lowercase , 'current')) self.assertTrue(hasattr(lowercase , 'total')) with tempfile.TemporaryDirectory() as tmp_dir: a__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase , 'log.txt') , log_print=lowercase , trace_memory_line_by_line=lowercase , eager_mode=lowercase , multi_process=lowercase , ) a__ : List[str] = TensorFlowBenchmark(lowercase) a__ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(lowercase , 'log.txt')).exists())
99
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __A( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=10 , _snake_case=18 , _snake_case=30 , _snake_case=400 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=[0.5, 0.5, 0.5] , _snake_case=[0.5, 0.5, 0.5] , _snake_case=None , ) -> Tuple: '''simple docstring''' __a = size if size is not None else {'''shortest_edge''': 18} __a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __a = parent __a = batch_size __a = num_channels __a = num_frames __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_normalize __a = image_mean __a = image_std __a = crop_size def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __A( a , unittest.TestCase ): snake_case_ = VivitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = VivitImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(_snake_case , '''image_std''' ) ) self.assertTrue(hasattr(_snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(_snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(_snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(_snake_case , '''size''' ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __a = prepare_video_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for video in video_inputs: self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __a = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_video_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for video in video_inputs: self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __a = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_video_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for video in video_inputs: self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __a = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
33
A : Optional[Any] = tuple[float, float, float] A : Union[str, Any] = tuple[float, float, float] def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = end_pointa[0] - end_pointa[0] __a = end_pointa[1] - end_pointa[1] __a = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = ab[1] * ac[2] - ab[2] * ac[1] # *i __a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> bool: return tuple(round(a__ , a__ ) for x in vector ) == (0, 0, 0) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 10 ) -> bool: __a = create_vector(a__ , a__ ) __a = create_vector(a__ , a__ ) return is_zero_vector(get_ad_vectors_cross(a__ , a__ ) , a__ )
33
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=sys.maxsize ) -> List[str]: '''simple docstring''' __lowerCamelCase = 'bilinear' __lowerCamelCase = max_size __lowerCamelCase = short_edge_length def __call__( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = [] for img in imgs: __lowerCamelCase , __lowerCamelCase = img.shape[:2] # later: provide list and randomly choose index for resize __lowerCamelCase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __lowerCamelCase = size * 1.0 / min(lowerCamelCase__ , lowerCamelCase__ ) if h < w: __lowerCamelCase , __lowerCamelCase = size, scale * w else: __lowerCamelCase , __lowerCamelCase = scale * h, size if max(lowerCamelCase__ , lowerCamelCase__ ) > self.max_size: __lowerCamelCase = self.max_size * 1.0 / max(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = newh * scale __lowerCamelCase = neww * scale __lowerCamelCase = int(neww + 0.5 ) __lowerCamelCase = int(newh + 0.5 ) if img.dtype == np.uinta: __lowerCamelCase = Image.fromarray(lowerCamelCase__ ) __lowerCamelCase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __lowerCamelCase = np.asarray(lowerCamelCase__ ) else: __lowerCamelCase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __lowerCamelCase = nn.functional.interpolate( lowerCamelCase__ , (newh, neww) , mode=self.interp_method , align_corners=lowerCamelCase__ ).squeeze(0 ) img_augs.append(lowerCamelCase__ ) return img_augs class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __lowerCamelCase = cfg.INPUT.FORMAT __lowerCamelCase = cfg.SIZE_DIVISIBILITY __lowerCamelCase = cfg.PAD_VALUE __lowerCamelCase = cfg.INPUT.MAX_SIZE_TEST __lowerCamelCase = cfg.MODEL.DEVICE __lowerCamelCase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __lowerCamelCase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __lowerCamelCase = lambda lowerCamelCase__ : (x - self.pixel_mean) / self.pixel_std def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = tuple(max(lowerCamelCase__ ) for s in zip(*[img.shape for img in images] ) ) __lowerCamelCase = [im.shape[-2:] for im in images] __lowerCamelCase = [ nn.functional.pad( lowerCamelCase__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return torch.stack(lowerCamelCase__ ), torch.tensor(lowerCamelCase__ ) def __call__( self , lowerCamelCase__ , lowerCamelCase__=False ) -> List[Any]: '''simple docstring''' with torch.no_grad(): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = [images] if single_image: assert len(lowerCamelCase__ ) == 1 for i in range(len(lowerCamelCase__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(lowerCamelCase__ , images.pop(lowerCamelCase__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( lowerCamelCase__ , torch.as_tensor(img_tensorize(images.pop(lowerCamelCase__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __lowerCamelCase = torch.tensor([im.shape[:2] for im in images] ) __lowerCamelCase = self.aug(lowerCamelCase__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __lowerCamelCase = [self.normalizer(lowerCamelCase__ ) for x in images] # now pad them to do the following operations __lowerCamelCase , __lowerCamelCase = self.pad(lowerCamelCase__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __lowerCamelCase = torch.true_divide(lowerCamelCase__ , lowerCamelCase__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : str ) -> List[Any]: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple[int, int] ) -> Dict: """simple docstring""" assert torch.isfinite(UpperCamelCase__ ).all(), "Box tensor contains infinite or NaN!" __lowerCamelCase , __lowerCamelCase = box_size tensor[:, 0].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 1].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 2].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 3].clamp_(min=0 , max=UpperCamelCase__ )
90
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __A = 10 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" for i in range(UpperCamelCase__ , UpperCamelCase__ ): if array[i] == target: return i return -1 def lowerCamelCase_ ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = len(UpperCamelCase__ ) while left <= right: if right - left < precision: return lin_search(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowerCamelCase = one_third - 1 elif array[two_third] < target: __lowerCamelCase = two_third + 1 else: __lowerCamelCase = one_third + 1 __lowerCamelCase = two_third - 1 else: return -1 def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> int: """simple docstring""" if left < right: if right - left < precision: return lin_search(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = (left + right) // 3 + 1 __lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCamelCase__ , one_third - 1 , UpperCamelCase__ , UpperCamelCase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , UpperCamelCase__ , UpperCamelCase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __A = input("Enter numbers separated by comma:\n").strip() __A = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __A = int(input("Enter the number to be found in the list:\n").strip()) __A = ite_ternary_search(collection, target) __A = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
90
1
from math import factorial def lowerCAmelCase_ ( _snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case__ ) for x in str(factorial(snake_case__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
364
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) class _snake_case : UpperCamelCase__ = 42 UpperCamelCase__ = None @staticmethod def SCREAMING_SNAKE_CASE ( ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self , _a ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self ): if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def SCREAMING_SNAKE_CASE ( cls ): return f'''`pip install {cls.pip_package or cls.name}`''' class _snake_case ( snake_case ): UpperCamelCase__ = 'optuna' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_optuna_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_optuna(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_optuna(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'ray' UpperCamelCase__ = '\'ray[tune]\'' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_ray_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_ray(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_ray(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'sigopt' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_sigopt_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_sigopt(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_sigopt(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'wandb' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_wandb_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_wandb(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_wandb(_a ) snake_case : int = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_snake_case ) > 0: __magic_name__ : Dict = available_backends[0].name if len(_snake_case ) > 1: logger.info( F'''{len(_snake_case )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
41
0
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings a__ : List[str] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowercase_ ( UpperCAmelCase__ ): __UpperCAmelCase = field(default=UpperCAmelCase__ , metadata={'help': 'Whether to use SortishSampler or not.'} ) __UpperCAmelCase = field( default=UpperCAmelCase__ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) __UpperCAmelCase = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) __UpperCAmelCase = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) __UpperCAmelCase = field( default=UpperCAmelCase__ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def __a ( self ): UpperCamelCase__ = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase__ = v.to_dict() return d
80
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
0
'''simple docstring''' def _A ( snake_case , snake_case ) -> int: return x if y == 0 else greatest_common_divisor(UpperCAmelCase__ , x % y ) def _A ( snake_case , snake_case ) -> int: return (x * y) // greatest_common_divisor(UpperCAmelCase__ , UpperCAmelCase__ ) def _A ( snake_case = 20 ) -> int: _lowercase : Dict = 1 for i in range(1 , n + 1 ): _lowercase : Optional[int] = lcm(UpperCAmelCase__ , UpperCAmelCase__ ) return g if __name__ == "__main__": print(F'''{solution() = }''')
371
'''simple docstring''' from timeit import timeit def _A ( snake_case ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) _lowercase : Union[str, Any] = 0 while number: number &= number - 1 result += 1 return result def _A ( snake_case ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) _lowercase : int = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _A ( ) -> None: def do_benchmark(snake_case ) -> None: _lowercase : Optional[int] = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(snake_case ) = }''' ) _lowercase : int = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=snake_case ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(snake_case ) = }''' ) _lowercase : Optional[int] = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=snake_case , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
199
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE ( a ) -> Tuple: __A : Dict = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __A : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __A : Optional[int] = 4 __A : List[Any] = 48 __A : Optional[Any] = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __A : Any = [6, 6, 6, 6] __A : List[Any] = 60 __A : Union[str, Any] = [6, 6, 6, 6] __A : str = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __A : List[str] = 4 __A : Union[str, Any] = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __A : Any = 1 __A : List[str] = 1 __A : Optional[Any] = 1_26 __A : Dict = 7 __A : int = 255.0 __A : Dict = '' return config def _SCREAMING_SNAKE_CASE ( a , a ) -> Dict: if "patch_embed.proj" in name and "layers" not in name: __A : Optional[int] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __A : Any = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __A : Any = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: __A : Optional[int] = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: __A : Tuple = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __A : Optional[int] = name.replace('attn' , 'attention.self' ) if "norm1" in name: __A : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __A : Optional[int] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __A : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __A : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __A : Optional[int] = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __A : List[Any] = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __A : Any = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __A : List[str] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __A : Union[str, Any] = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": __A : Optional[int] = 'layernorm.weight' if name == "norm.bias": __A : Optional[Any] = 'layernorm.bias' if "conv_first" in name: __A : int = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __A : Union[str, Any] = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __A : Any = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: __A : Optional[int] = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: __A : Any = name.replace('upsample.2' , 'upsample.convolution_1' ) __A : List[str] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": __A : Optional[int] = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) __A : List[Any] = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: __A : Optional[Any] = 'swin2sr.' + name return name def _SCREAMING_SNAKE_CASE ( a , a ) -> int: for key in orig_state_dict.copy().keys(): __A : List[str] = orig_state_dict.pop(a ) if "qkv" in key: __A : List[Any] = key.split('.' ) __A : Optional[Any] = int(key_split[1] ) __A : Union[str, Any] = int(key_split[4] ) __A : Union[str, Any] = config.embed_dim if "weight" in key: __A : List[str] = val[:dim, :] __A : Tuple = val[dim : dim * 2, :] __A : Optional[Any] = val[-dim:, :] else: __A : Union[str, Any] = val[:dim] __A : Optional[int] = val[dim : dim * 2] __A : str = val[-dim:] pass else: __A : List[str] = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Any: __A : Optional[int] = get_config(a ) __A : str = SwinaSRForImageSuperResolution(a ) model.eval() __A : Optional[Any] = torch.hub.load_state_dict_from_url(a , map_location='cpu' ) __A : Any = convert_state_dict(a , a ) __A , __A : List[Any] = model.load_state_dict(a , strict=a ) if len(a ) > 0: raise ValueError('Missing keys when converting: {}'.format(a ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values __A : Union[str, Any] = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' __A : Dict = Image.open(requests.get(a , stream=a ).raw ).convert('RGB' ) __A : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __A : Any = 1_26 if 'Jpeg' in checkpoint_url else 2_56 __A : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __A : Tuple = transforms(a ).unsqueeze(0 ) if config.num_channels == 1: __A : Union[str, Any] = pixel_values[:, 0, :, :].unsqueeze(1 ) __A : str = model(a ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __A : List[Any] = torch.Size([1, 3, 5_12, 5_12] ) __A : Optional[int] = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __A : List[str] = torch.Size([1, 3, 10_24, 10_24] ) __A : Optional[int] = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __A : Union[str, Any] = torch.Size([1, 3, 10_24, 10_24] ) __A : Optional[int] = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __A : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) __A : Dict = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __A : Optional[int] = torch.Size([1, 3, 10_24, 10_24] ) __A : Any = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , a , atol=1e-3 ) print('Looks ok!' ) __A : Optional[Any] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } __A : List[Any] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(a ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') UpperCAmelCase : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
280
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _A: """simple docstring""" def __init__( self , _A = None ): if components is None: __A : int = [] __A : Tuple = list(_A ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(_A , self.__components ) ) + ")" def __add__( self , _A ): __A : Optional[int] = len(self ) if size == len(_A ): __A : Any = [self.__components[i] + other.component(_A ) for i in range(_A )] return Vector(_A ) else: raise Exception('must have the same size' ) def __sub__( self , _A ): __A : Tuple = len(self ) if size == len(_A ): __A : Union[str, Any] = [self.__components[i] - other.component(_A ) for i in range(_A )] return Vector(_A ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , _A ): ... @overload def __mul__( self , _A ): ... def __mul__( self , _A ): if isinstance(_A , (float, int) ): __A : str = [c * other for c in self.__components] return Vector(_A ) elif isinstance(_A , _A ) and len(self ) == len(_A ): __A : Union[str, Any] = len(self ) __A : Dict = [self.__components[i] * other.component(_A ) for i in range(_A )] return sum(_A ) else: # error case raise Exception('invalid operand!' ) def UpperCAmelCase_ ( self ): return Vector(self.__components ) def UpperCAmelCase_ ( self , _A ): if isinstance(_A , _A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCAmelCase_ ( self , _A , _A ): assert -len(self.__components ) <= pos < len(self.__components ) __A : Optional[int] = value def UpperCAmelCase_ ( self ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) __A : Optional[Any] = [c**2 for c in self.__components] return math.sqrt(sum(_A ) ) def UpperCAmelCase_ ( self , _A , _A = False ): __A : Optional[Any] = self * other __A : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _SCREAMING_SNAKE_CASE ( a ) -> Vector: assert isinstance(a , a ) return Vector([0] * dimension ) def _SCREAMING_SNAKE_CASE ( a , a ) -> Vector: assert isinstance(a , a ) and (isinstance(a , a )) __A : Optional[Any] = [0] * dimension __A : Tuple = 1 return Vector(a ) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Vector: assert ( isinstance(a , a ) and isinstance(a , a ) and (isinstance(a , (int, float) )) ) return x * scalar + y def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Vector: random.seed(a ) __A : str = [random.randint(a , a ) for _ in range(a )] return Vector(a ) class _A: """simple docstring""" def __init__( self , _A , _A , _A ): __A : Optional[Any] = matrix __A : Dict = w __A : Optional[int] = h def __str__( self ): __A : Tuple = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , _A ): if self.__width == other.width() and self.__height == other.height(): __A : Optional[Any] = [] for i in range(self.__height ): __A : Optional[Any] = [ self.__matrix[i][j] + other.component(_A , _A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , _A ): if self.__width == other.width() and self.__height == other.height(): __A : Tuple = [] for i in range(self.__height ): __A : str = [ self.__matrix[i][j] - other.component(_A , _A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , _A ): ... @overload def __mul__( self , _A ): ... def __mul__( self , _A ): if isinstance(_A , _A ): # matrix-vector if len(_A ) == self.__width: __A : List[Any] = zero_vector(self.__height ) for i in range(self.__height ): __A : List[str] = [ self.__matrix[i][j] * other.component(_A ) for j in range(self.__width ) ] ans.change_component(_A , sum(_A ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(_A , (int, float) ): # matrix-scalar __A : List[str] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_A , self.__width , self.__height ) return None def UpperCAmelCase_ ( self ): return self.__height def UpperCAmelCase_ ( self ): return self.__width def UpperCAmelCase_ ( self , _A , _A ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCAmelCase_ ( self , _A , _A , _A ): if 0 <= x < self.__height and 0 <= y < self.__width: __A : int = value else: raise Exception('change_component: indices out of bounds' ) def UpperCAmelCase_ ( self , _A , _A ): if self.__height != self.__width: raise Exception('Matrix is not square' ) __A : List[str] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_A ) ): __A : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(_A , self.__width - 1 , self.__height - 1 ).determinant() def UpperCAmelCase_ ( self , _A , _A ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_A , _A ) else: raise Exception('Indices out of bounds' ) def UpperCAmelCase_ ( self ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __A : List[str] = [ self.__matrix[0][y] * self.cofactor(0 , _A ) for y in range(self.__width ) ] return sum(_A ) def _SCREAMING_SNAKE_CASE ( a ) -> Matrix: __A : list[list[float]] = [[0] * n for _ in range(a )] return Matrix(a , a , a ) def _SCREAMING_SNAKE_CASE ( a , a , a , a ) -> Matrix: random.seed(a ) __A : list[list[float]] = [ [random.randint(a , a ) for _ in range(a )] for _ in range(a ) ] return Matrix(a , a , a )
280
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __snake_case = 3 def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' print('Generating primitive root of p' ) while True: SCREAMING_SNAKE_CASE__ = random.randrange(3 , UpperCamelCase_ ) if pow(UpperCamelCase_ , 2 , UpperCamelCase_ ) == 1: continue if pow(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) == 1: continue return g def _lowercase ( UpperCamelCase_ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: '''simple docstring''' print('Generating prime p...' ) SCREAMING_SNAKE_CASE__ = rabin_miller.generate_large_prime(UpperCamelCase_ ) # select large prime number. SCREAMING_SNAKE_CASE__ = primitive_root(UpperCamelCase_ ) # one primitive root on modulo p. SCREAMING_SNAKE_CASE__ = random.randrange(3 , UpperCamelCase_ ) # private_key -> have to be greater than 2 for safety. SCREAMING_SNAKE_CASE__ = cryptomath.find_mod_inverse(pow(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = (key_size, e_a, e_a, p) SCREAMING_SNAKE_CASE__ = (key_size, d) return public_key, private_key def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> None: '''simple docstring''' if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = generate_key(UpperCamelCase_ ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as fo: fo.write(F'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as fo: fo.write(F'{private_key[0]},{private_key[1]}' ) def _lowercase ( ) -> None: '''simple docstring''' print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
362
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __snake_case = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): def __init__( self : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
169
0
"""simple docstring""" import math class _UpperCAmelCase : def __init__( self : Union[str, Any] , A : Optional[int]=0 ) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 lowercase_ : Any = n lowercase_ : Any = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # adjacency matrix for weight lowercase_ : List[Any] = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # dp[i][j] stores minimum distance from i to j def A ( self : List[str] , A : Dict , A : str , A : Optional[Any] ) -> Any: lowercase_ : Any = w def A ( self : Optional[Any] ) -> Tuple: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase_ : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A ( self : Any , A : Tuple , A : Dict ) -> str: return self.dp[u][v] if __name__ == "__main__": __A : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
33
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __A : Dict = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class _UpperCAmelCase ( unittest.TestCase , _A ): def A ( self : List[Any] ) -> Dict: lowercase_ : Optional[int] = load_tool('''text-question-answering''' ) self.tool.setup() lowercase_ : Union[str, Any] = load_tool('''text-question-answering''' , remote=A ) def A ( self : Any ) -> List[str]: lowercase_ : Union[str, Any] = self.tool(A , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : str ) -> List[str]: lowercase_ : int = self.remote_tool(A , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : List[Any] ) -> int: lowercase_ : Optional[Any] = self.tool(text=A , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : List[str] ) -> Optional[int]: lowercase_ : int = self.remote_tool(text=A , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' )
33
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _UpperCamelCase: int = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> Dict: '''simple docstring''' if attention_mask is None: lowercase : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase : List[str] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase : Dict = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class a__ : def __init__( self : Tuple, lowerCAmelCase : Optional[Any], lowerCAmelCase : Optional[Any]=13, lowerCAmelCase : Optional[int]=7, lowerCAmelCase : List[Any]=True, lowerCAmelCase : str=False, lowerCAmelCase : str=99, lowerCAmelCase : Union[str, Any]=16, lowerCAmelCase : Tuple=2, lowerCAmelCase : List[str]=4, lowerCAmelCase : Union[str, Any]=4, lowerCAmelCase : Optional[Any]="gelu", lowerCAmelCase : str=0.1, lowerCAmelCase : Optional[Any]=0.1, lowerCAmelCase : Dict=32, lowerCAmelCase : int=2, lowerCAmelCase : int=1, lowerCAmelCase : Tuple=0, lowerCAmelCase : int=0.02, ) -> Optional[int]: lowercase : Optional[Any] = parent lowercase : List[str] = batch_size lowercase : Optional[int] = seq_length lowercase : List[Any] = is_training lowercase : Optional[int] = use_labels lowercase : Union[str, Any] = vocab_size lowercase : Dict = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : Tuple = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : Any = hidden_act lowercase : Optional[Any] = hidden_dropout_prob lowercase : int = attention_probs_dropout_prob lowercase : List[str] = max_position_embeddings lowercase : Dict = eos_token_id lowercase : Any = pad_token_id lowercase : Dict = bos_token_id lowercase : str = initializer_range def lowercase ( self : Optional[int] ) -> Optional[int]: lowercase : Union[str, Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size ) lowercase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 ) lowercase : int = shift_tokens_right(lowerCAmelCase, 1, 2 ) lowercase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=lowerCAmelCase, ) lowercase : Dict = prepare_blenderbot_inputs_dict(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) return config, inputs_dict def lowercase ( self : Tuple ) -> Tuple: lowercase , lowercase : Any = self.prepare_config_and_inputs() return config, inputs_dict def lowercase ( self : Any, lowerCAmelCase : List[str], lowerCAmelCase : Dict, lowerCAmelCase : int ) -> str: lowercase : Optional[int] = 20 lowercase : Union[str, Any] = model_class_name(lowerCAmelCase ) lowercase : List[str] = model.encode(inputs_dict['input_ids'] ) lowercase , lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowercase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0], lowerCAmelCase, lowerCAmelCase ) lowercase : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='i4' ) lowercase : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowercase : List[str] = model.decode( decoder_input_ids[:, :-1], lowerCAmelCase, decoder_attention_mask=lowerCAmelCase, past_key_values=lowerCAmelCase, decoder_position_ids=lowerCAmelCase, ) lowercase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4' ) lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:], lowerCAmelCase, decoder_attention_mask=lowerCAmelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=lowerCAmelCase, ) lowercase : Any = model.decode(lowerCAmelCase, lowerCAmelCase ) lowercase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=f'''Max diff is {diff}''' ) def lowercase ( self : Dict, lowerCAmelCase : Tuple, lowerCAmelCase : Tuple, lowerCAmelCase : Optional[int] ) -> List[Any]: lowercase : Dict = 20 lowercase : Optional[int] = model_class_name(lowerCAmelCase ) lowercase : List[Any] = model.encode(inputs_dict['input_ids'] ) lowercase , lowercase : Optional[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) lowercase : Any = model.init_cache(decoder_input_ids.shape[0], lowerCAmelCase, lowerCAmelCase ) lowercase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1], lowerCAmelCase, decoder_attention_mask=lowerCAmelCase, past_key_values=lowerCAmelCase, decoder_position_ids=lowerCAmelCase, ) lowercase : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4' ) lowercase : str = model.decode( decoder_input_ids[:, -1:], lowerCAmelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=lowerCAmelCase, decoder_position_ids=lowerCAmelCase, ) lowercase : List[Any] = model.decode(lowerCAmelCase, lowerCAmelCase, decoder_attention_mask=lowerCAmelCase ) lowercase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=f'''Max diff is {diff}''' ) @require_flax class a__ ( unittest.TestCase ): _lowerCamelCase = 99 def lowercase ( self : Tuple ) -> Union[str, Any]: lowercase : int = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) lowercase : List[Any] = input_ids.shape[0] lowercase : str = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def lowercase ( self : Any ) -> List[str]: lowercase , lowercase , lowercase : Optional[Any] = self._get_config_and_data() lowercase : Any = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase ) lowercase : Dict = lm_model(input_ids=lowerCAmelCase ) lowercase : Dict = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape, lowerCAmelCase ) def lowercase ( self : Tuple ) -> int: lowercase : str = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) lowercase : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase ) lowercase : Tuple = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa ) lowercase : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa ) lowercase : Dict = lm_model(input_ids=lowerCAmelCase, decoder_input_ids=lowerCAmelCase ) lowercase : List[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape, lowerCAmelCase ) def lowercase ( self : Dict ) -> Dict: lowercase : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa ) lowercase : List[Any] = shift_tokens_right(lowerCAmelCase, 1, 2 ) lowercase : int = np.equal(lowerCAmelCase, 1 ).astype(np.floataa ).sum() lowercase : Dict = np.equal(lowerCAmelCase, 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape, input_ids.shape ) self.assertEqual(lowerCAmelCase, n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0], 2 ).all() ) @require_flax class a__ ( SCREAMING_SNAKE_CASE__, unittest.TestCase, SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = True _lowerCamelCase = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _lowerCamelCase = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowercase ( self : List[str] ) -> Tuple: lowercase : str = FlaxBlenderbotSmallModelTester(self ) def lowercase ( self : List[str] ) -> Dict: lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Dict ) -> Tuple: lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : Any = self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) lowercase : str = model_class(lowerCAmelCase ) @jax.jit def encode_jitted(lowerCAmelCase : Optional[int], lowerCAmelCase : Dict=None, **lowerCAmelCase : Tuple ): return model.encode(input_ids=lowerCAmelCase, attention_mask=lowerCAmelCase ) with self.subTest('JIT Enabled' ): lowercase : Any = encode_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase : List[Any] = encode_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ), len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase, lowerCAmelCase ): self.assertEqual(jitted_output.shape, output.shape ) def lowercase ( self : Optional[int] ) -> Dict: lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : List[str] = model_class(lowerCAmelCase ) lowercase : Optional[int] = model.encode(inputs_dict['input_ids'], inputs_dict['attention_mask'] ) lowercase : Union[str, Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase : Optional[Any], lowerCAmelCase : Dict, lowerCAmelCase : str ): return model.decode( decoder_input_ids=lowerCAmelCase, decoder_attention_mask=lowerCAmelCase, encoder_outputs=lowerCAmelCase, ) with self.subTest('JIT Enabled' ): lowercase : Optional[Any] = decode_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase : List[str] = decode_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ), len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase, lowerCAmelCase ): self.assertEqual(jitted_output.shape, output.shape ) @slow def lowercase ( self : Tuple ) -> List[str]: for model_class_name in self.all_model_classes: lowercase : Union[str, Any] = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase : str = np.ones((1, 1) ) * model.config.eos_token_id lowercase : List[Any] = model(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase )
53
"""simple docstring""" import unittest from transformers import DonutProcessor _UpperCamelCase: Any = 'naver-clova-ix/donut-base' class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Tuple: lowercase : Any = DonutProcessor.from_pretrained(lowerCAmelCase ) def lowercase ( self : Dict ) -> Union[str, Any]: lowercase : Tuple = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } lowercase : Tuple = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) lowercase : Any = self.processor.tokenajson(lowerCAmelCase ) self.assertDictEqual(lowerCAmelCase, lowerCAmelCase )
53
1
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : List[str] = logging.get_logger(__name__) a__ : Optional[int] = {'vocab_file': 'vocab.txt'} a__ : Optional[Any] = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } a__ : Optional[int] = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def _UpperCamelCase ( __A ) -> str: '''simple docstring''' with open(__A , "r" ) as f: UpperCamelCase__ = f.read().splitlines() return [l.strip() for l in lines] class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , a , a="<unk>" , a="<cls>" , a="<pad>" , a="<mask>" , a="<eos>" , **a , ): super().__init__(**a ) UpperCamelCase__ = load_vocab_file(a ) UpperCamelCase__ = dict(enumerate(self.all_tokens ) ) UpperCamelCase__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCamelCase__ = unk_token UpperCamelCase__ = cls_token UpperCamelCase__ = pad_token UpperCamelCase__ = mask_token UpperCamelCase__ = eos_token UpperCamelCase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __a ( self , a ): return self._id_to_token.get(a , self.unk_token ) def __a ( self , a ): return self._token_to_id.get(a , self._token_to_id.get(self.unk_token ) ) def __a ( self , a , **a ): return text.split() def __a ( self , a=False ): return len(self._id_to_token ) def __a ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def __a ( self , a ): return self._token_to_id.get(a , self._token_to_id.get(self.unk_token ) ) def __a ( self , a ): return self._id_to_token.get(a , self.unk_token ) def __a ( self , a , a = None ): UpperCamelCase__ = [self.cls_token_id] UpperCamelCase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __a ( self , a , a = None , a = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCamelCase__ = [1] + ([0] * len(a )) + [1] if token_ids_a is not None: mask += [0] * len(a ) + [1] return mask def __a ( self , a , a ): UpperCamelCase__ = os.path.join(a , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(a , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def __a ( self ): return self.get_vocab_size(with_added_tokens=a ) def __a ( self , a , a = False ): return super()._add_tokens(a , special_tokens=a )
80
'''simple docstring''' from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float: return sum(c * (x**i) for i, c in enumerate(UpperCamelCase ) ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float: lowerCamelCase__ : str = 0.0 for coeff in reversed(UpperCamelCase ): lowerCamelCase__ : Optional[int] = result * x + coeff return result if __name__ == "__main__": _A : Any =(0.0, 0.0, 5.0, 9.3, 7.0) _A : Optional[Any] =10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
41
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _lowerCAmelCase :int = logging.get_logger(__name__) class _UpperCAmelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *A , **A ) -> Optional[Any]: warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
358
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase :Optional[Any] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
68
0
"""simple docstring""" from __future__ import annotations import math _a = '2020.9.26' _a = 'xcodz-dot, cclaus, dhruvmanila' def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float) -> tuple[float, float]: '''simple docstring''' if not all(isinstance(UpperCamelCase_, (float, int)) for val in locals().values()): __lowercase = F"""Input values must either be float or int: {list(locals().values())}""" raise TypeError(UpperCamelCase_) __lowercase = ((x * distance) / (z + distance)) * scale __lowercase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _A ( UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : float, UpperCamelCase_ : str, UpperCamelCase_ : float) -> tuple[float, float, float]: '''simple docstring''' if not isinstance(UpperCamelCase_, UpperCamelCase_): raise TypeError("Axis must be a str") __lowercase = locals() del input_variables["axis"] if not all(isinstance(UpperCamelCase_, (float, int)) for val in input_variables.values()): __lowercase = ( "Input values except axis must either be float or int: " F"""{list(input_variables.values())}""" ) raise TypeError(UpperCamelCase_) __lowercase = (angle % 360) / 450 * 180 / math.pi if axis == "z": __lowercase = x * math.cos(UpperCamelCase_) - y * math.sin(UpperCamelCase_) __lowercase = y * math.cos(UpperCamelCase_) + x * math.sin(UpperCamelCase_) __lowercase = z elif axis == "x": __lowercase = y * math.cos(UpperCamelCase_) - z * math.sin(UpperCamelCase_) __lowercase = z * math.cos(UpperCamelCase_) + y * math.sin(UpperCamelCase_) __lowercase = x elif axis == "y": __lowercase = x * math.cos(UpperCamelCase_) - z * math.sin(UpperCamelCase_) __lowercase = z * math.cos(UpperCamelCase_) + x * math.sin(UpperCamelCase_) __lowercase = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'") return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }") print(F"{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }")
17
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 5_00_03 lowerCamelCase = 5_00_02 @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : int =PLBartTokenizer UpperCamelCase__ : Dict =None UpperCamelCase__ : Optional[Any] =False def lowerCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Any =PLBartTokenizer(lowercase_ , language_codes='base' , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _lowerCamelCase : List[str] =PLBartTokenizer(lowercase_ , language_codes='base' , keep_accents=lowercase_ ) _lowerCamelCase : Optional[int] =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : str =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : List[Any] =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCamelCase : str =tokenizer.vocab_size _lowerCamelCase : List[str] =[tokenizer.convert_ids_to_tokens(lowercase_ ) for x in range(end - 4 , lowercase_ )] self.assertListEqual(lowercase_ , ['__java__', '__python__', '__en_XX__', '<mask>'] ) _lowerCamelCase : Optional[Any] ='java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCamelCase : Dict =tokenizer(lowercase_ ).input_ids self.assertEqual( tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) , lowercase_ , ) def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCamelCase : Tuple =PLBartTokenizer(lowercase_ , language_codes='multi' , keep_accents=lowercase_ ) _lowerCamelCase : Any =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : Optional[Any] =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Dict =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCamelCase : Dict =tokenizer.vocab_size _lowerCamelCase : Optional[int] =[tokenizer.convert_ids_to_tokens(lowercase_ ) for x in range(end - 7 , lowercase_ )] self.assertListEqual( lowercase_ , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) _lowerCamelCase : int ='java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCamelCase : Any =tokenizer(lowercase_ ).input_ids self.assertEqual( tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) , lowercase_ , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): UpperCamelCase__ : List[Any] ='uclanlp/plbart-python-en_XX' UpperCamelCase__ : List[str] =[ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] UpperCamelCase__ : Optional[int] =[ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] UpperCamelCase__ : str =[ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCamelCase ( cls : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' ) _lowerCamelCase : Any =1 return cls def lowerCamelCase ( self : List[str] ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_0002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_0003 ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def lowerCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) _lowerCamelCase : Dict =[EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] _lowerCamelCase : Optional[int] =self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) _lowerCamelCase : int =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , lowercase_ ) _lowerCamelCase : Tuple =10 _lowerCamelCase : Optional[int] =self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase_ ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [5_0004, 5_0001] ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[str] =tempfile.mkdtemp() _lowerCamelCase : Dict =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) _lowerCamelCase : Any =PLBartTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[Any] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors='pt' ) _lowerCamelCase : List[Any] =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowercase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _lowerCamelCase : int =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCamelCase : List[Any] =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) _lowerCamelCase : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple =self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors='pt' ) _lowerCamelCase : Dict =self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors='pt' ) _lowerCamelCase : List[str] =targets['input_ids'] _lowerCamelCase : Optional[Any] =shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCamelCase : Any =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' ) self.assertEqual( nested_simplify(lowercase_ ) , { # A, test, EOS, en_XX 'input_ids': [[150, 242, 2, 5_0003]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_0001, } , )
199
0
'''simple docstring''' class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase = "" , __lowerCAmelCase = False ) -> None: # Mapping from the first character of the prefix of the node lowercase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowercase__ : Optional[Any] = is_leaf lowercase__ : Optional[int] = prefix def _lowerCAmelCase( self , __lowerCAmelCase ) -> tuple[str, str, str]: lowercase__ : Union[str, Any] = 0 for q, w in zip(self.prefix , __lowerCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _lowerCAmelCase( self , __lowerCAmelCase ) -> None: for word in words: self.insert(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase__ : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ : Dict = RadixNode(prefix=__lowerCAmelCase , is_leaf=__lowerCAmelCase ) else: lowercase__ : Tuple = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ : Dict = incoming_node.match( __lowerCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__lowerCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ : List[Any] = remaining_prefix lowercase__ : List[Any] = self.nodes[matching_string[0]] lowercase__ : Dict = RadixNode(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = aux_node if remaining_word == "": lowercase__ : Optional[Any] = True else: self.nodes[matching_string[0]].insert(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> bool: lowercase__ : Union[str, Any] = self.nodes.get(word[0] , __lowerCAmelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ : int = incoming_node.match( __lowerCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> bool: lowercase__ : Optional[int] = self.nodes.get(word[0] , __lowerCAmelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ : Dict = incoming_node.match( __lowerCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__lowerCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ : Tuple = list(self.nodes.values() )[0] lowercase__ : List[str] = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ : str = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ : int = False # If there is 1 edge, we merge it with its child else: lowercase__ : Any = list(incoming_node.nodes.values() )[0] lowercase__ : Tuple = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ : List[str] = merging_node.nodes return True def _lowerCAmelCase( self , __lowerCAmelCase = 0 ) -> None: if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __UpperCamelCase ( ): lowercase__ : Optional[Any] = '''banana bananas bandana band apple all beast'''.split() lowercase__ : List[Any] = RadixNode() root.insert_many(UpperCAmelCase ) assert all(root.find(UpperCAmelCase ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __UpperCamelCase ( ): assert test_trie() def __UpperCamelCase ( ): lowercase__ : Union[str, Any] = RadixNode() lowercase__ : Dict = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(UpperCAmelCase ) print('''Words:''' , UpperCAmelCase ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
214
'''simple docstring''' class UpperCAmelCase : '''simple docstring''' def __init__( self ) -> List[str]: lowercase__ : Dict = {} def _lowerCAmelCase( self ) -> None: print(self.vertex ) for i in self.vertex: print(__lowerCAmelCase , ''' -> ''' , ''' -> '''.join([str(__lowerCAmelCase ) for j in self.vertex[i]] ) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCAmelCase ) else: # else make a new vertex lowercase__ : Union[str, Any] = [to_vertex] def _lowerCAmelCase( self ) -> None: # visited array for storing already visited nodes lowercase__ : str = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: # mark start vertex as visited lowercase__ : List[str] = True print(__lowerCAmelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": __a: Optional[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
214
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase: '''simple docstring''' def __init__( self: List[str], a_: Dict, a_: Optional[Any]=2, a_: Optional[int]=8, a_: Union[str, Any]=True, a_: Dict=True, a_: Optional[int]=True, a_: Any=True, a_: List[Any]=99, a_: str=16, a_: List[str]=5, a_: Tuple=2, a_: Optional[Any]=36, a_: Dict="gelu", a_: str=0.0, a_: Tuple=0.0, a_: Dict=512, a_: str=16, a_: str=2, a_: List[Any]=0.02, a_: Dict=3, a_: Union[str, Any]=4, a_: List[str]=None, ): '''simple docstring''' _snake_case : Tuple = parent _snake_case : Tuple = batch_size _snake_case : Tuple = seq_length _snake_case : Optional[Any] = is_training _snake_case : List[Any] = use_input_mask _snake_case : List[Any] = use_token_type_ids _snake_case : int = use_labels _snake_case : str = vocab_size _snake_case : List[Any] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Any = hidden_act _snake_case : Optional[int] = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : int = type_vocab_size _snake_case : Any = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : Optional[int] = num_labels _snake_case : Optional[Any] = num_choices _snake_case : List[Any] = scope def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _snake_case : Optional[int] = None if self.use_input_mask: _snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Any = None if self.use_token_type_ids: _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _snake_case : List[str] = None _snake_case : List[Any] = None _snake_case : List[Any] = None if self.use_labels: _snake_case : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _snake_case : Any = ids_tensor([self.batch_size], self.num_choices ) _snake_case : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=a_, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : int = self.get_config() _snake_case : Optional[Any] = 300 return config def UpperCamelCase_ ( self: int ): '''simple docstring''' ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Union[str, Any] = self.prepare_config_and_inputs() _snake_case : Tuple = True _snake_case : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[str], a_: Optional[int], a_: List[Any], a_: List[str], a_: List[str], a_: Optional[Any] ): '''simple docstring''' _snake_case : Tuple = MraModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : str = model(a_, attention_mask=a_, token_type_ids=a_ ) _snake_case : List[str] = model(a_, token_type_ids=a_ ) _snake_case : int = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: int, a_: Any, a_: Any, a_: List[Any], a_: List[str], a_: List[str], a_: Union[str, Any], a_: List[str], a_: List[Any], a_: Optional[Any], ): '''simple docstring''' _snake_case : List[str] = True _snake_case : Tuple = MraModel(a_ ) model.to(a_ ) model.eval() _snake_case : str = model( a_, attention_mask=a_, token_type_ids=a_, encoder_hidden_states=a_, encoder_attention_mask=a_, ) _snake_case : Optional[Any] = model( a_, attention_mask=a_, token_type_ids=a_, encoder_hidden_states=a_, ) _snake_case : List[Any] = model(a_, attention_mask=a_, token_type_ids=a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: List[str], a_: Union[str, Any], a_: Union[str, Any], a_: List[str], a_: Union[str, Any], a_: int, a_: int, a_: Tuple ): '''simple docstring''' _snake_case : List[Any] = MraForMaskedLM(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_, attention_mask=a_, token_type_ids=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self: int, a_: Optional[Any], a_: Any, a_: Any, a_: Optional[int], a_: Any, a_: Union[str, Any], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = MraForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() _snake_case : Optional[Any] = model( a_, attention_mask=a_, token_type_ids=a_, start_positions=a_, end_positions=a_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self: Any, a_: Dict, a_: int, a_: int, a_: List[Any], a_: List[str], a_: List[Any], a_: Any ): '''simple docstring''' _snake_case : str = self.num_labels _snake_case : Optional[int] = MraForSequenceClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Optional[Any] = model(a_, attention_mask=a_, token_type_ids=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self: List[str], a_: Dict, a_: Tuple, a_: Union[str, Any], a_: int, a_: Dict, a_: Any, a_: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.num_labels _snake_case : Dict = MraForTokenClassification(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_, attention_mask=a_, token_type_ids=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self: List[str], a_: Any, a_: Dict, a_: List[Any], a_: Optional[Any], a_: List[Any], a_: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : Dict = self.num_choices _snake_case : Dict = MraForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() _snake_case : Any = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : int = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : int = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() _snake_case : Optional[int] = model( a_, attention_mask=a_, token_type_ids=a_, labels=a_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : int = config_and_inputs _snake_case : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = () def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = MraModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self, config_class=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case : str = type self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = MraModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @unittest.skip(reason="""MRA does not output attentions""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return @require_torch class lowercase( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Union[str, Any] = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) _snake_case : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _snake_case : List[str] = model(a_ )[0] _snake_case : List[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape, a_ ) _snake_case : Optional[int] = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[str] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) _snake_case : List[str] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _snake_case : Tuple = model(a_ )[0] _snake_case : str = 50_265 _snake_case : Any = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape, a_ ) _snake_case : Any = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) _snake_case : Optional[Any] = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _snake_case : str = model(a_ )[0] _snake_case : int = 50_265 _snake_case : Any = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape, a_ ) _snake_case : Any = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], a_, atol=1E-4 ) )
64
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = [randint(-1000 , 1000 ) for i in range(10 )] UpperCAmelCase__ = randint(-5000 , 5000 ) return (arr, r) _lowerCAmelCase : Optional[int] = make_dataset() def lowerCAmelCase ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): """simple docstring""" for triplet in permutations(_lowerCAmelCase , 3 ): if sum(_lowerCAmelCase ) == target: return tuple(sorted(_lowerCAmelCase ) ) return (0, 0, 0) def lowerCAmelCase ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): """simple docstring""" arr.sort() UpperCAmelCase__ = len(_lowerCAmelCase ) for i in range(n - 1 ): UpperCAmelCase__ , UpperCAmelCase__ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" UpperCAmelCase__ = "\ntriplet_sum1(*dataset)\n" UpperCAmelCase__ = "\ntriplet_sum2(*dataset)\n" UpperCAmelCase__ = repeat(setup=_lowerCAmelCase , stmt=_lowerCAmelCase , repeat=5 , number=1_0000 ) UpperCAmelCase__ = repeat(setup=_lowerCAmelCase , stmt=_lowerCAmelCase , repeat=5 , number=1_0000 ) return (min(_lowerCAmelCase ), min(_lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : Optional[int] = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
169
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Any = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
272
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase : Tuple = logging.getLogger(__name__) def snake_case__ ( __lowerCamelCase : torch.nn.Module , __lowerCamelCase : BnbQuantizationConfig , __lowerCamelCase : Union[str, os.PathLike] = None , __lowerCamelCase : Optional[Dict[str, Union[int, str, torch.device]]] = None , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : Optional[Dict[Union[int, str], Union[int, str]]] = None , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , ): """simple docstring""" lowerCamelCase__ : str =bnb_quantization_config.load_in_abit lowerCamelCase__ : str =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) lowerCamelCase__ : str =[] # custom device map if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(device_map.keys() ) > 1: lowerCamelCase__ : Union[str, Any] =[key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCamelCase__ : Any =get_keys_to_not_convert(__lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCamelCase ) lowerCamelCase__ : Tuple =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : List[Any] =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCamelCase ) # compatibility with peft lowerCamelCase__ : List[str] =load_in_abit lowerCamelCase__ : List[str] =load_in_abit lowerCamelCase__ : Union[str, Any] =get_parameter_device(__lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) lowerCamelCase__ : str =replace_with_bnb_layers(__lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) # convert param to the right dtype lowerCamelCase__ : Union[str, Any] =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCamelCase__ : Optional[int] =name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) lowerCamelCase__ : Dict =getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCamelCase ): param.to(__lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): lowerCamelCase__ : Dict =replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) lowerCamelCase__ : Optional[int] =get_quantized_model_device_map( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_memory=__lowerCamelCase , no_split_module_classes=__lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCamelCase__ : List[str] =True lowerCamelCase__ : Dict =any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCamelCase , offload_state_dict=__lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCamelCase , device_map=__lowerCamelCase , offload_dir=__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): lowerCamelCase__ : List[Any] ={'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) lowerCamelCase__ : List[Any] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCamelCase__ : int ={} lowerCamelCase__ : Optional[int] =special_dtypes lowerCamelCase__ : List[str] =no_split_module_classes lowerCamelCase__ : Tuple =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCamelCase__ : List[str] =get_balanced_memory( __lowerCamelCase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : str =max_memory lowerCamelCase__ : Any =infer_auto_device_map(__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): # check if don't have any quantized module on the cpu lowerCamelCase__ : List[str] =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCamelCase__ : List[str] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None ): """simple docstring""" if modules_to_not_convert is None: lowerCamelCase__ : Dict =[] lowerCamelCase__ , lowerCamelCase__ : List[Any] =_replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : Tuple =False for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__ : Optional[Any] =[] current_key_name.append(__lowerCamelCase ) if isinstance(__lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCamelCase__ : Optional[Any] ='''.'''.join(__lowerCamelCase ) lowerCamelCase__ : Tuple =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCamelCase__ : Any =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCamelCase__ : List[str] =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCamelCase__ : str =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) lowerCamelCase__ : Any =module.weight.data if module.bias is not None: lowerCamelCase__ : Any =module.bias.data bnb_module.requires_grad_(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : str =True if len(list(module.children() ) ) > 0: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =_replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Any =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" # Create a copy of the model with init_empty_weights(): lowerCamelCase__ : Optional[Any] =deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCamelCase__ : Union[str, Any] =find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : List[str] =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__ : Any =sum(__lowerCamelCase , [] ) lowerCamelCase__ : Any =len(__lowerCamelCase ) > 0 # Check if it is a base model lowerCamelCase__ : Optional[Any] =False if hasattr(__lowerCamelCase , '''base_model_prefix''' ): lowerCamelCase__ : Dict =not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__ : List[str] =list(model.named_children() ) lowerCamelCase__ : Any =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__ : Optional[Any] =set(__lowerCamelCase ) - set(__lowerCamelCase ) lowerCamelCase__ : List[str] =list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowerCamelCase__ : Optional[Any] =['''.weight''', '''.bias'''] lowerCamelCase__ : List[Any] =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__ : Union[str, Any] =name.replace(__lowerCamelCase , '''''' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" for m in model.modules(): if isinstance(__lowerCamelCase , bnb.nn.Linearabit ): return True return False def snake_case__ ( __lowerCamelCase : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] ): """simple docstring""" # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , 0 , dtype=__lowerCamelCase , value=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =param_name lowerCamelCase__ : Dict =model if "." in tensor_name: lowerCamelCase__ : Optional[int] =tensor_name.split('''.''' ) for split in splits[:-1]: lowerCamelCase__ : Union[str, Any] =getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) lowerCamelCase__ : Union[str, Any] =new_module lowerCamelCase__ : List[Any] =splits[-1] # offload weights lowerCamelCase__ : Optional[Any] =False offload_weight(module._parameters[tensor_name] , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase , ) else: offload_weight(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) offload_weight(__lowerCamelCase , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase ) set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , '''meta''' , dtype=__lowerCamelCase , value=torch.empty(*param.size() ) )
272
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor a__ : Optional[Any] =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : str , *__A : Optional[Any] , **__A : List[Any] ): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , __A , ) super().__init__(*__A , **__A )
53
'''simple docstring''' from __future__ import annotations class snake_case : """simple docstring""" def __init__( self : Optional[int] , __A : list[list[int]] ): __UpperCamelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(__A ) != 0: __UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__A ) != cols: raise error for value in row: if not isinstance(__A , (int, float) ): raise error __UpperCamelCase = rows else: __UpperCamelCase = [] def _lowerCamelCase ( self : int ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCamelCase ( self : str ): return len(self.rows ) @property def _lowerCamelCase ( self : Any ): return len(self.rows[0] ) @property def _lowerCamelCase ( self : Optional[Any] ): return (self.num_rows, self.num_columns) @property def _lowerCamelCase ( self : Dict ): return self.order[0] == self.order[1] def _lowerCamelCase ( self : Any ): __UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Any ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCamelCase ( self : List[str] ): return bool(self.determinant() ) def _lowerCamelCase ( self : Dict , __A : int , __A : int ): __UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__A ).determinant() def _lowerCamelCase ( self : Dict , __A : int , __A : int ): if (row + column) % 2 == 0: return self.get_minor(__A , __A ) return -1 * self.get_minor(__A , __A ) def _lowerCamelCase ( self : List[str] ): return Matrix( [ [self.get_minor(__A , __A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCamelCase ( self : Union[str, Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): return str(self.rows ) def __str__( self : Union[str, Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(__A ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _lowerCamelCase ( self : List[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in row: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(__A ) else: __UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCamelCase ( self : Optional[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in column: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: __UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __A : object ): if not isinstance(__A , __A ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , __A : object ): return not self == other def __neg__( self : List[Any] ): return self * -1 def __add__( self : List[str] , __A : Matrix ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : str , __A : Matrix ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , __A : Matrix | int | float ): if isinstance(__A , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__A , __A ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(__A , __A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Union[str, Any] , __A : int ): if not isinstance(__A , __A ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) __UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCamelCase ( cls : Tuple , __A : list[int] , __A : list[int] ): return sum(row[i] * column[i] for i in range(len(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Tuple = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _lowerCamelCase: def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : Optional[int] = UNetaDConditionModel( sample_size=32, layers_per_block=1, block_out_channels=[32, 64], down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ], mid_block_type='UNetMidBlock2DSimpleCrossAttn', up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'], in_channels=3, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='text', addition_embed_type_num_heads=2, cross_attention_norm='group_norm', resnet_time_scale_shift='scale_shift', act_fn='gelu', ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) _lowercase : Dict = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, thresholding=lowerCamelCase, dynamic_thresholding_ratio=0.9_5, sample_max_value=1.0, prediction_type='epsilon', variance_type='learned_range', ) torch.manual_seed(0) _lowercase : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : List[str] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : List[str] = UNetaDConditionModel( sample_size=32, layers_per_block=[1, 2], block_out_channels=[32, 64], down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ], mid_block_type='UNetMidBlock2DSimpleCrossAttn', up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'], in_channels=6, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='text', addition_embed_type_num_heads=2, cross_attention_norm='group_norm', resnet_time_scale_shift='scale_shift', act_fn='gelu', class_embed_type='timestep', mid_block_scale_factor=1.4_1_4, time_embedding_act_fn='gelu', time_embedding_dim=32, ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) _lowercase : Optional[int] = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, thresholding=lowerCamelCase, dynamic_thresholding_ratio=0.9_5, sample_max_value=1.0, prediction_type='epsilon', variance_type='learned_range', ) torch.manual_seed(0) _lowercase : str = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, ) torch.manual_seed(0) _lowercase : Union[str, Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : int = inputs['prompt'] _lowercase : Dict = inputs['generator'] _lowercase : Optional[int] = inputs['num_inference_steps'] _lowercase : str = inputs['output_type'] if "image" in inputs: _lowercase : List[Any] = inputs['image'] else: _lowercase : List[Any] = None if "mask_image" in inputs: _lowercase : Union[str, Any] = inputs['mask_image'] else: _lowercase : Dict = None if "original_image" in inputs: _lowercase : Any = inputs['original_image'] else: _lowercase : Tuple = None _lowercase , _lowercase : str = pipe.encode_prompt(lowerCamelCase) # inputs with prompt converted to embeddings _lowercase : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _lowercase : int = image if mask_image is not None: _lowercase : str = mask_image if original_image is not None: _lowercase : Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : Dict = pipe(**lowerCamelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase) _lowercase : Any = self.pipeline_class.from_pretrained(lowerCamelCase) pipe_loaded.to(lowerCamelCase) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase, lowerCamelCase) is None, F'''`{optional_component}` did not stay set to None after loading.''', ) _lowercase : Dict = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[Any] = inputs['generator'] _lowercase : Any = inputs['num_inference_steps'] _lowercase : List[Any] = inputs['output_type'] # inputs with prompt converted to embeddings _lowercase : Optional[int] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _lowercase : str = image if mask_image is not None: _lowercase : Optional[int] = mask_image if original_image is not None: _lowercase : int = original_image _lowercase : str = pipe_loaded(**lowerCamelCase)[0] _lowercase : List[Any] = np.abs(to_np(lowerCamelCase) - to_np(lowerCamelCase)).max() self.assertLess(lowerCamelCase, 1E-4) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = self.get_dummy_components() _lowercase : Any = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = pipe(**lowerCamelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase) _lowercase : List[str] = self.pipeline_class.from_pretrained(lowerCamelCase) pipe_loaded.to(lowerCamelCase) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = pipe_loaded(**lowerCamelCase)[0] _lowercase : str = np.abs(to_np(lowerCamelCase) - to_np(lowerCamelCase)).max() self.assertLess(lowerCamelCase, 1E-4)
84
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A : str = logging.get_logger(__name__) A : Dict = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __A( a ): snake_case_ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 160, 256] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ) -> List[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = num_channels __a = num_encoder_blocks __a = depths __a = sr_ratios __a = hidden_sizes __a = patch_sizes __a = strides __a = mlp_ratios __a = num_attention_heads __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = drop_path_rate __a = layer_norm_eps __a = decoder_hidden_size __a = max_depth __a = head_in_index
6
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int ) -> int: '''simple docstring''' A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = CLIPConfig __lowerCamelCase = ['CLIPEncoderLayer'] def __init__( self , lowercase ) -> Optional[int]: '''simple docstring''' super().__init__(lowercase ) A__ = CLIPVisionModel(config.vision_config ) A__ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowercase ) A__ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(17 ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 ) , requires_grad=lowercase ) @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = cosine_distance(lowercase , self.special_care_embeds ).cpu().float().numpy() A__ = cosine_distance(lowercase , self.concept_embeds ).cpu().float().numpy() A__ = [] A__ = image_embeds.shape[0] for i in range(lowercase ): A__ = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ = special_cos_dist[i][concept_idx] A__ = self.special_care_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A__ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ = cos_dist[i][concept_idx] A__ = self.concept_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowercase ) result.append(lowercase ) A__ = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) A__ = cosine_distance(lowercase , self.special_care_embeds ) A__ = cosine_distance(lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 A__ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ = torch.any(special_scores > 0 , dim=1 ) A__ = special_care * 0.01 A__ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
68
0
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> List[str]: if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence snake_case__ : Any = gray_code_sequence_string(UpperCamelCase__ ) # # convert them to integers for i in range(len(UpperCamelCase__ ) ): snake_case__ : List[str] = int(sequence[i] , 2 ) return sequence def __snake_case( _lowerCAmelCase ) -> Dict: if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] snake_case__ : Union[str, Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits snake_case__ : int = gray_code_sequence_string(bit_count - 1 ) snake_case__ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): snake_case__ : Union[str, Any] = """0""" + smaller_sequence[i] sequence.append(UpperCamelCase__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): snake_case__ : Any = """1""" + smaller_sequence[i] sequence.append(UpperCamelCase__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = CycleDiffusionPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } lowercase = PipelineTesterMixin.required_optional_params - {"latents"} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self : Dict ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case__ : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1_000 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) snake_case__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case__ : Union[str, Any] = CLIPTextModel(snake_case_ ) snake_case__ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case__ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase ( self : Optional[int] , snake_case_ : Any , snake_case_ : str=0 ): snake_case__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : List[str] = image / 2 + 0.5 if str(snake_case_ ).startswith("""mps""" ): snake_case__ : Tuple = torch.manual_seed(snake_case_ ) else: snake_case__ : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) snake_case__ : str = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCamelCase ( self : Tuple ): snake_case__ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[Any] = self.get_dummy_components() snake_case__ : List[Any] = CycleDiffusionPipeline(**snake_case_ ) snake_case__ : List[str] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs(snake_case_ ) snake_case__ : Any = pipe(**snake_case_ ) snake_case__ : Tuple = output.images snake_case__ : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase ( self : List[str] ): snake_case__ : List[str] = self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case_ , """half""" ): snake_case__ : Optional[int] = module.half() snake_case__ : List[Any] = CycleDiffusionPipeline(**snake_case_ ) snake_case__ : Union[str, Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : int = self.get_dummy_inputs(snake_case_ ) snake_case__ : List[Any] = pipe(**snake_case_ ) snake_case__ : Any = output.images snake_case__ : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCamelCase ( self : List[Any] ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def lowerCamelCase ( self : int ): return super().test_inference_batch_single_identical() @skip_mps def lowerCamelCase ( self : Dict ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCamelCase ( self : int ): return super().test_save_load_optional_components() @skip_mps def lowerCamelCase ( self : Optional[int] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : str ): snake_case__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) snake_case__ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) snake_case__ : Tuple = init_image.resize((512, 512) ) snake_case__ : List[Any] = """CompVis/stable-diffusion-v1-4""" snake_case__ : Tuple = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) snake_case__ : Optional[int] = CycleDiffusionPipeline.from_pretrained( snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() snake_case__ : int = """A black colored car""" snake_case__ : int = """A blue colored car""" snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Dict = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : Union[str, Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowerCamelCase ( self : int ): snake_case__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) snake_case__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) snake_case__ : Dict = init_image.resize((512, 512) ) snake_case__ : Tuple = """CompVis/stable-diffusion-v1-4""" snake_case__ : List[Any] = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) snake_case__ : str = CycleDiffusionPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() snake_case__ : Tuple = """A black colored car""" snake_case__ : List[Any] = """A blue colored car""" snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Any = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : List[Any] = output.images assert np.abs(image - expected_image ).max() < 2E-2
43
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) snake_case_ = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowercase__ : int = k.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if k.startswith('encoder' ): lowercase__ : Tuple = k.replace('.attn' , '.self_attn' ) lowercase__ : List[Any] = k.replace('norm1' , 'self_attn_layer_norm' ) lowercase__ : int = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): lowercase__ : List[Any] = k.replace('norm1' , 'self_attn_layer_norm' ) lowercase__ : List[str] = k.replace('norm2' , 'encoder_attn_layer_norm' ) lowercase__ : int = k.replace('norm3' , 'final_layer_norm' ) return k def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' lowercase__ : Dict = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: lowercase__ : Optional[int] = sd.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd lowercase__ : Optional[Any] = v snake_case_ = ['''START'''] @torch.no_grad() def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' lowercase__ : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) lowercase__ : str = model['model'] lowercase__ : Optional[Any] = BlenderbotConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) lowercase__ : Any = BlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) lowercase__ : Dict = m.model.state_dict().keys() lowercase__ : Optional[Any] = [] lowercase__ : List[str] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowercase__ : int = rename_state_dict_key(SCREAMING_SNAKE_CASE_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowercase__ : Dict = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(SCREAMING_SNAKE_CASE_ ) m.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) m.half() m.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) snake_case_ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
214
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
214
1
"""simple docstring""" from __future__ import annotations def lowercase ( A_ , A_ , A_ )-> float: '''simple docstring''' if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def lowercase ( A_ , A_ , A_ , )-> float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( A_ , A_ , A_ , )-> float: '''simple docstring''' if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( A_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
226
"""simple docstring""" from math import ceil, sqrt def lowercase ( A_ = 1_000_000 )-> int: '''simple docstring''' a : Tuple = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a : str = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a : Tuple = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
226
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowercase = 2_5_6_0_4_7 __lowercase = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = NllbTokenizer UpperCAmelCase_ : Optional[int] = NllbTokenizerFast UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : str = {} def a_ ( self): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = NllbTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = NllbTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) lowerCAmelCase = tokenizer.tokenize("""This is a test""") self.assertListEqual(__lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def a_ ( self): """simple docstring""" lowerCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files)) lowerCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f) self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase)) shutil.rmtree(__lowerCAmelCase) # Save tokenizer rust, legacy_format=True lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase) lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase) # Checks it save with the same files self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase)) shutil.rmtree(__lowerCAmelCase) # Save tokenizer rust, legacy_format=False lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase) lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase)) shutil.rmtree(__lowerCAmelCase) @require_torch def a_ ( self): """simple docstring""" if not self.test_seqaseq: return lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Longer text that will definitely require truncation. lowerCAmelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] lowerCAmelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: lowerCAmelCase = tokenizer.prepare_seqaseq_batch( src_texts=__lowerCAmelCase , tgt_texts=__lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.labels.shape[1] , 10) # max_target_length will default to max_length if not specified lowerCAmelCase = tokenizer.prepare_seqaseq_batch( __lowerCAmelCase , tgt_texts=__lowerCAmelCase , max_length=3 , return_tensors="""pt""") self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.labels.shape[1] , 3) lowerCAmelCase = tokenizer.prepare_seqaseq_batch( src_texts=__lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""") self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3) self.assertNotIn("""decoder_input_ids""" , __lowerCAmelCase) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""") def a_ ( self): """simple docstring""" pass def a_ ( self): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): lowerCAmelCase = [AddedToken("""<special>""" , lstrip=__lowerCAmelCase)] lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = tokenizer_r.encode("""Hey this is a <special> token""") lowerCAmelCase = tokenizer_r.encode("""<special>""" , add_special_tokens=__lowerCAmelCase)[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCAmelCase = self.tokenizer_class.from_pretrained( __lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = tokenizer_p.encode("""Hey this is a <special> token""") lowerCAmelCase = tokenizer_cr.encode("""Hey this is a <special> token""") self.assertEqual(__lowerCAmelCase , __lowerCAmelCase) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) @require_torch @require_sentencepiece @require_tokenizers class a__( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = '''facebook/nllb-200-distilled-600M''' UpperCAmelCase_ : int = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] UpperCAmelCase_ : Optional[int] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] UpperCAmelCase_ : List[Any] = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def a_ ( cls): """simple docstring""" lowerCAmelCase = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""") lowerCAmelCase = 1 return cls def a_ ( self): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 256001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 256002) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 256057) def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase) def a_ ( self): """simple docstring""" self.assertIn(__lowerCAmelCase , self.tokenizer.all_special_ids) # fmt: off lowerCAmelCase = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on lowerCAmelCase = self.tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase) lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCAmelCase) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase) self.assertNotIn(self.tokenizer.eos_token , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , __lowerCAmelCase) lowerCAmelCase = 10 lowerCAmelCase = self.tokenizer(__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase).input_ids[0] self.assertEqual(ids[-1] , 2) self.assertEqual(ids[0] , __lowerCAmelCase) self.assertEqual(len(__lowerCAmelCase) , __lowerCAmelCase) def a_ ( self): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""]) , [256203, 3]) def a_ ( self): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCAmelCase) lowerCAmelCase = NllbTokenizer.from_pretrained(__lowerCAmelCase) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCAmelCase) @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=len(self.expected_src_tokens) , return_tensors="""pt""" , ) lowerCAmelCase = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""]) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase) self.assertEqual((2, 15) , batch.input_ids.shape) self.assertEqual((2, 15) , batch.attention_mask.shape) lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase) self.assertEqual(__lowerCAmelCase , batch.decoder_input_ids[0, 0]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE]) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id]) def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer(self.src_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=3 , return_tensors="""pt""") lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=10 , return_tensors="""pt""") lowerCAmelCase = targets["""input_ids"""] lowerCAmelCase = shift_tokens_right( __lowerCAmelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""") self.assertEqual( nested_simplify(__lowerCAmelCase) , { # A, test, EOS, en_XX """input_ids""": [[256047, 70, 7356, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 256057, } , ) @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""") self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047]) lowerCAmelCase = False lowerCAmelCase = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""") self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2])
272
'''simple docstring''' def snake_case__ ( _A: int , _A: int ) -> int: '''simple docstring''' while a != 0: lowerCAmelCase , lowerCAmelCase = b % a, a return b def snake_case__ ( _A: int , _A: int ) -> int: '''simple docstring''' if gcd(_A , _A ) != 1: lowerCAmelCase = f"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(_A ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 0, a lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 0, 1, m while va != 0: lowerCAmelCase = ua // va lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
272
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class __lowerCAmelCase ( __a , __a ): snake_case : Dict = """swin""" snake_case : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__(self , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=4 , lowerCAmelCase__=3 , lowerCAmelCase__=9_6 , lowerCAmelCase__=[2, 2, 6, 2] , lowerCAmelCase__=[3, 6, 1_2, 2_4] , lowerCAmelCase__=7 , lowerCAmelCase__=4.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=3_2 , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : int = patch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : List[Any] = embed_dim _UpperCAmelCase : Tuple = depths _UpperCAmelCase : Union[str, Any] = len(lowerCAmelCase__ ) _UpperCAmelCase : int = num_heads _UpperCAmelCase : int = window_size _UpperCAmelCase : int = mlp_ratio _UpperCAmelCase : Optional[int] = qkv_bias _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : str = drop_path_rate _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Optional[int] = use_absolute_embeddings _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase : Tuple = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) ) _UpperCAmelCase : List[str] = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(lowerCAmelCase__ ) + 1 )] _UpperCAmelCase : Dict = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names ) class __lowerCAmelCase ( __a ): snake_case : Tuple = version.parse("""1.11""" ) @property def snake_case_ (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case_ (self ): return 1e-4
368
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase_ : Dict = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = '''cpu''' lowerCAmelCase_ : List[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase_ : List[Any] = '''path-to-your-trained-model''' lowerCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase_ : str = pipe.to(device) # to channels last lowerCAmelCase_ : Dict = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase_ : Union[str, Any] = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase_ : Optional[int] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase_ : Any = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase_ : str = torch.randn(2, 4, 64, 64) lowerCAmelCase_ : str = torch.rand(1) * 999 lowerCAmelCase_ : Any = torch.randn(2, 77, 768) lowerCAmelCase_ : Optional[Any] = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase_ : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase_ : Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ : Dict = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ : Optional[int] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase_ : Optional[int] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase_ : str = 666 lowerCAmelCase_ : int = torch.Generator(device).manual_seed(seed) lowerCAmelCase_ : Dict = {'''generator''': generator} if args.steps is not None: lowerCAmelCase_ : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase_ : Tuple = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
170
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a_ : def __init__( self , snake_case_ , ): _lowerCAmelCase : int = parent _lowerCAmelCase : Tuple = 1_3 _lowerCAmelCase : Optional[Any] = 7 _lowerCAmelCase : List[str] = True _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Tuple = True _lowerCAmelCase : int = 9_9 _lowerCAmelCase : Optional[Any] = 3_2 _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : Optional[Any] = 4 _lowerCAmelCase : Any = 3_7 _lowerCAmelCase : List[Any] = """gelu""" _lowerCAmelCase : Optional[Any] = 0.1 _lowerCAmelCase : Dict = 0.1 _lowerCAmelCase : Union[str, Any] = 5_1_2 _lowerCAmelCase : Union[str, Any] = 1_6 _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : str = 0.02 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Union[str, Any] = 4 _lowerCAmelCase : int = None def __UpperCamelCase ( self ): _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Any = None if self.use_input_mask: _lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Tuple = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Optional[Any] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ): ( _lowerCAmelCase ) : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = TFEsmModel(config=__A ) _lowerCAmelCase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase : List[str] = model(__A ) _lowerCAmelCase : Union[str, Any] = [input_ids, input_mask] _lowerCAmelCase : int = model(__A ) _lowerCAmelCase : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Tuple = TFEsmModel(config=__A ) _lowerCAmelCase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _lowerCAmelCase : Dict = model(__A ) _lowerCAmelCase : Optional[int] = [input_ids, input_mask] _lowerCAmelCase : Optional[Any] = model(__A , encoder_hidden_states=__A ) # Also check the case where encoder outputs are not passed _lowerCAmelCase : int = model(__A , attention_mask=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[int] = TFEsmForMaskedLM(config=__A ) _lowerCAmelCase : Tuple = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : List[str] = TFEsmForTokenClassification(config=__A ) _lowerCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : Optional[int] = config_and_inputs _lowerCAmelCase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class a_ (A__ , A__ , unittest.TestCase ): __lowerCAmelCase : Any = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __lowerCAmelCase : int = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase : Any = False __lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): _lowerCAmelCase : str = TFEsmModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__A ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def __UpperCamelCase ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFEsmModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def __UpperCamelCase ( self ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(__A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _lowerCAmelCase : Optional[int] = model.get_bias() assert isinstance(__A , __A ) for k, v in name.items(): assert isinstance(__A , tf.Variable ) else: _lowerCAmelCase : Tuple = model.get_output_embeddings() assert x is None _lowerCAmelCase : Any = model.get_bias() assert name is None @require_tf class a_ (unittest.TestCase ): @slow def __UpperCamelCase ( self ): _lowerCAmelCase : Any = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _lowerCAmelCase : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase : str = model(__A )[0] _lowerCAmelCase : str = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , __A ) # compare the actual values for a slice. _lowerCAmelCase : int = tf.constant( [ [ [8.92_1518, -1_0.5_8_9_8_1_4, -6.467_1307], [-6.396_7156, -1_3.9_1_1_3_7_7, -1.121_1915], [-7.78_1247, -1_3.9_5_1_5_5_7, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _lowerCAmelCase : Dict = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) _lowerCAmelCase : Tuple = model(__A )[0] # compare the actual values for a slice. _lowerCAmelCase : int = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
"""simple docstring""" def _snake_case ( lowercase__ : int = 1_0 ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError("""Invalid input""" ) lowerCAmelCase_ :List[str] = 1_0**n lowerCAmelCase_ :int = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
84
0
import sys from collections import defaultdict class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple ) -> Optional[Any]: a_ : List[Any] = [] def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: a_ : str = pos def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: a_ : List[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: a_ : Dict = 2 * start + 1 else: a_ : List[str] = 2 * start + 2 if heap[smallest_child] < heap[start]: a_ : Tuple = heap[smallest_child], positions[smallest_child] a_ : List[str] = ( heap[start], positions[start], ) a_ : int = temp, tempa a_ : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowercase_ ) self.top_to_bottom(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: a_ : List[Any] = position[index] while index != 0: a_ : str = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: a_ : Any = heap[parent] a_ : Tuple = position[parent] self.set_position(position[parent] , lowercase_ ) else: a_ : Optional[int] = val a_ : Tuple = temp self.set_position(lowercase_ , lowercase_ ) break a_ : Dict = parent else: a_ : Optional[Any] = val a_ : Tuple = temp self.set_position(lowercase_ , 0 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: a_ : Tuple = len(lowercase_ ) // 2 - 1 for i in range(lowercase_ , -1 , -1 ): self.top_to_bottom(lowercase_ , lowercase_ , len(lowercase_ ) , lowercase_ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: a_ : List[str] = positions[0] a_ : Dict = sys.maxsize self.top_to_bottom(lowercase_ , 0 , len(lowercase_ ) , lowercase_ ) return temp def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> Union[str, Any]: """simple docstring""" a_ : Any = Heap() a_ : List[str] = [0] * len(__lowerCamelCase ) a_ : Any = [-1] * len(__lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph a_ : Any = [] # Heap of Distance of vertices from their neighboring vertex a_ : Optional[Any] = [] for vertex in range(len(__lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowerCamelCase ) heap.node_position.append(__lowerCamelCase ) a_ : Tuple = [] a_ : List[str] = 1 a_ : Tuple = sys.maxsize for neighbor, distance in adjacency_list[0]: a_ : Dict = 0 a_ : List[Any] = distance heap.heapify(__lowerCamelCase , __lowerCamelCase ) for _ in range(1 , len(__lowerCamelCase ) ): a_ : List[str] = heap.delete_minimum(__lowerCamelCase , __lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) a_ : Optional[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowerCamelCase )] ): a_ : Any = distance heap.bottom_to_top( __lowerCamelCase , heap.get_position(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase ) a_ : Tuple = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase_ : Union[str, Any] = int(input('Enter number of edges: ').strip()) UpperCAmelCase_ : Union[str, Any] = defaultdict(list) for _ in range(edges_number): UpperCAmelCase_ : Optional[Any] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
351
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCAmelCase_ : Dict = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCAmelCase_ : Dict = 'UperNetConfig' class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int, int]] , SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int, int], str] = 0 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() a_ : Dict = nn.Convad( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , dilation=SCREAMING_SNAKE_CASE__ , ) a_ : List[str] = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = nn.ReLU() def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: a_ : int = self.conv(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.batch_norm(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = self.activation(SCREAMING_SNAKE_CASE__ ) return output class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: super().__init__() a_ : str = [ nn.AdaptiveAvgPoolad(SCREAMING_SNAKE_CASE__ ), UperNetConvModule(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: a_ : Optional[int] = input for layer in self.layers: a_ : int = layer(SCREAMING_SNAKE_CASE__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple[int, ...] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool ) -> None: super().__init__() a_ : Tuple = pool_scales a_ : List[Any] = align_corners a_ : Tuple = in_channels a_ : Optional[Any] = channels a_ : Tuple = [] for i, pool_scale in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : Optional[int] = UperNetPyramidPoolingBlock(pool_scale=SCREAMING_SNAKE_CASE__ , in_channels=SCREAMING_SNAKE_CASE__ , channels=SCREAMING_SNAKE_CASE__ ) self.blocks.append(SCREAMING_SNAKE_CASE__ ) self.add_module(str(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> List[torch.Tensor]: a_ : List[Any] = [] for ppm in self.blocks: a_ : List[Any] = ppm(SCREAMING_SNAKE_CASE__ ) a_ : str = nn.functional.interpolate( SCREAMING_SNAKE_CASE__ , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(SCREAMING_SNAKE_CASE__ ) return ppm_outs class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: super().__init__() a_ : List[str] = config a_ : Optional[int] = config.pool_scales # e.g. (1, 2, 3, 6) a_ : int = in_channels a_ : Dict = config.hidden_size a_ : Optional[Any] = False a_ : Tuple = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module a_ : int = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) a_ : int = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module a_ : str = nn.ModuleList() a_ : Dict = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer a_ : str = UperNetConvModule(SCREAMING_SNAKE_CASE__ , self.channels , kernel_size=1 ) a_ : Union[str, Any] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(SCREAMING_SNAKE_CASE__ ) self.fpn_convs.append(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: if isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: a_ : Dict = inputs[-1] a_ : str = [x] psp_outs.extend(self.psp_modules(SCREAMING_SNAKE_CASE__ ) ) a_ : List[Any] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=1 ) a_ : Dict = self.bottleneck(SCREAMING_SNAKE_CASE__ ) return output def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: # build laterals a_ : List[str] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(SCREAMING_SNAKE_CASE__ ) ) # build top-down path a_ : List[str] = len(SCREAMING_SNAKE_CASE__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a_ : Optional[Any] = laterals[i - 1].shape[2:] a_ : List[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=SCREAMING_SNAKE_CASE__ , mode='bilinear' , align_corners=self.align_corners ) # build outputs a_ : List[Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a_ : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) a_ : Optional[int] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=1 ) a_ : Tuple = self.fpn_bottleneck(SCREAMING_SNAKE_CASE__ ) a_ : Dict = self.classifier(SCREAMING_SNAKE_CASE__ ) return output class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() a_ : Optional[int] = config a_ : str = config.auxiliary_in_channels a_ : Optional[int] = config.auxiliary_channels a_ : List[str] = config.auxiliary_num_convs a_ : Dict = config.auxiliary_concat_input a_ : int = in_index a_ : List[Any] = (kernel_size // 2) * dilation a_ : List[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , dilation=SCREAMING_SNAKE_CASE__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , dilation=SCREAMING_SNAKE_CASE__ ) ) if self.num_convs == 0: a_ : Optional[int] = nn.Identity() else: a_ : int = nn.Sequential(*SCREAMING_SNAKE_CASE__ ) if self.concat_input: a_ : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE__ , padding=kernel_size // 2 ) a_ : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: if isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps a_ : Optional[int] = encoder_hidden_states[self.in_index] a_ : int = self.convs(SCREAMING_SNAKE_CASE__ ) if self.concat_input: a_ : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) a_ : Dict = self.classifier(SCREAMING_SNAKE_CASE__ ) return output class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = UperNetConfig snake_case__ : Optional[int] = '''pixel_values''' snake_case__ : Optional[int] = True def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int=False ) -> Any: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Dict = value UpperCAmelCase_ : int = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCAmelCase_ : Tuple = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , lowercase__ , ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: super().__init__(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) a_ : List[Any] = UperNetHead(SCREAMING_SNAKE_CASE__ , in_channels=self.backbone.channels ) a_ : Dict = UperNetFCNHead(SCREAMING_SNAKE_CASE__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: a_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict a_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ : int = output_attentions if output_attentions is not None else self.config.output_attentions a_ : str = self.backbone.forward_with_filtered_kwargs( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , output_attentions=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = outputs.feature_maps a_ : Tuple = self.decode_head(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = nn.functional.interpolate(SCREAMING_SNAKE_CASE__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = None if self.auxiliary_head is not None: a_ : Any = self.auxiliary_head(SCREAMING_SNAKE_CASE__ ) a_ : int = nn.functional.interpolate( SCREAMING_SNAKE_CASE__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss a_ : List[str] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) a_ : Optional[Any] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : str = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : str = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: a_ : Optional[Any] = (logits,) + outputs[1:] else: a_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
120
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ (): UpperCAmelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=_a , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=_a , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=_a ) return parser.parse_args() def snake_case_ (): UpperCAmelCase = parse_args() # Import training_script as a module. UpperCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase = script_fpath.stem UpperCAmelCase = importlib.import_module(_a ) # Patch sys.argv UpperCAmelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
34
def lowerCamelCase ( SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1_000 ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = 1 __UpperCamelCase :Any = 0 for divide_by_number in range(SCREAMING_SNAKE_CASE , digit + 1 ): __UpperCamelCase :list[int] = [] __UpperCamelCase :Optional[int] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = len(SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
43
0
"""simple docstring""" from pathlib import Path import fire def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str, _lowerCAmelCase : int ): """simple docstring""" _a = Path(_lowerCAmelCase ) _a = Path(_lowerCAmelCase ) dest_dir.mkdir(exist_ok=_lowerCAmelCase ) for path in src_dir.iterdir(): _a = [x.rstrip() for x in list(path.open().readlines() )][:n] _a = dest_dir.joinpath(path.name ) print(_lowerCAmelCase ) dest_path.open('''w''' ).write('''\n'''.join(_lowerCAmelCase ) ) if __name__ == "__main__": fire.Fire(minify)
153
"""simple docstring""" from collections.abc import Callable import numpy as np def A_ ( _lowerCAmelCase : Callable, _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float ): """simple docstring""" _a = int(np.ceil((x_end - xa) / step_size ) ) _a = np.zeros((n + 1,) ) _a = ya _a = xa for k in range(_lowerCAmelCase ): _a = y[k] + step_size * ode_func(_lowerCAmelCase, y[k] ) _a = y[k] + ( (step_size / 2) * (ode_func(_lowerCAmelCase, y[k] ) + ode_func(x + step_size, _lowerCAmelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
153
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A =logging.get_logger(__name__) __A ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A ={ "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A ={ "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A ={ "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __A ={ "facebook/dpr-ctx_encoder-single-nq-base": 5_1_2, "facebook/dpr-ctx_encoder-multiset-base": 5_1_2, } __A ={ "facebook/dpr-question_encoder-single-nq-base": 5_1_2, "facebook/dpr-question_encoder-multiset-base": 5_1_2, } __A ={ "facebook/dpr-reader-single-nq-base": 5_1_2, "facebook/dpr-reader-multiset-base": 5_1_2, } __A ={ "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __A ={ "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __A ={ "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A =collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __A =collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __A =R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__UpperCamelCase ) class UpperCAmelCase__ : '''simple docstring''' def __call__( self : Tuple , a_ : List[str] , a_ : Optional[str] = None , a_ : Optional[str] = None , a_ : Union[bool, str] = False , a_ : Union[bool, str] = False , a_ : Optional[int] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[bool] = None , **a_ : str , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( a_ , padding=a_ , truncation=a_ , max_length=a_ , return_tensors=a_ , return_attention_mask=a_ , **a_ , ) elif titles is None or texts is None: __UpperCAmelCase : str = titles if texts is None else texts return super().__call__( a_ , a_ , padding=a_ , truncation=a_ , max_length=a_ , return_tensors=a_ , return_attention_mask=a_ , **a_ , ) __UpperCAmelCase : Optional[int] = titles if not isinstance(a_ , a_ ) else [titles] __UpperCAmelCase : Optional[int] = texts if not isinstance(a_ , a_ ) else [texts] __UpperCAmelCase : List[Any] = len(a_ ) __UpperCAmelCase : List[str] = questions if not isinstance(a_ , a_ ) else [questions] * n_passages if len(a_ ) != len(a_ ): raise ValueError( F'There should be as many titles than texts but got {len(a_ )} titles and {len(a_ )} texts.' ) __UpperCAmelCase : Tuple = super().__call__(a_ , a_ , padding=a_ , truncation=a_ )['''input_ids'''] __UpperCAmelCase : Union[str, Any] = super().__call__(a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ )['''input_ids'''] __UpperCAmelCase : List[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(a_ , a_ ) ] } if return_attention_mask is not False: __UpperCAmelCase : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __UpperCAmelCase : Tuple = attention_mask return self.pad(a_ , padding=a_ , max_length=a_ , return_tensors=a_ ) def snake_case__ ( self : int , a_ : BatchEncoding , a_ : DPRReaderOutput , a_ : int = 16 , a_ : int = 64 , a_ : int = 4 , ): '''simple docstring''' __UpperCAmelCase : List[Any] = reader_input['''input_ids'''] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = reader_output[:3] __UpperCAmelCase : List[Any] = len(a_ ) __UpperCAmelCase : List[Any] = sorted(range(a_ ) , reverse=a_ , key=relevance_logits.__getitem__ ) __UpperCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __UpperCAmelCase : List[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __UpperCAmelCase : str = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __UpperCAmelCase : Optional[Any] = sequence_ids.index(self.pad_token_id ) else: __UpperCAmelCase : int = len(a_ ) __UpperCAmelCase : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=a_ , top_spans=a_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=a_ , start_index=a_ , end_index=a_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(a_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def snake_case__ ( self : str , a_ : List[int] , a_ : List[int] , a_ : int , a_ : int , ): '''simple docstring''' __UpperCAmelCase : List[str] = [] for start_index, start_score in enumerate(a_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __UpperCAmelCase : int = sorted(a_ , key=lambda a_ : x[1] , reverse=a_ ) __UpperCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) __UpperCAmelCase : str = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(a_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__UpperCamelCase ) class UpperCAmelCase__ ( __UpperCamelCase ,__UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""]
226
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __A =getLogger(__name__) def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 8 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : Any="val" , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Any=False , _UpperCAmelCase : Union[str, Any]="summarization" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Dict = None , _UpperCAmelCase : Dict="" , **_UpperCAmelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Any = str(_UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = Path(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(_UpperCAmelCase ) __UpperCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).cuda() if fpaa: __UpperCAmelCase : Any = model.half() # determine if we need to increase num_beams use_task_specific_params(_UpperCAmelCase , _UpperCAmelCase ) # update config with task specific params __UpperCAmelCase : List[str] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __UpperCAmelCase : Any = num_return_sequences __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: __UpperCAmelCase : Optional[Any] = tokenizer.model_max_length if prefix is None: __UpperCAmelCase : str = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __UpperCAmelCase : Union[str, Any] = SeqaSeqDataset( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , max_target_length=10_24 , type_path=_UpperCAmelCase , n_obs=_UpperCAmelCase , prefix=_UpperCAmelCase , **_UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __UpperCAmelCase : str = ds.make_sortish_sampler(_UpperCAmelCase , distributed=_UpperCAmelCase , add_extra_examples=_UpperCAmelCase , shuffle=_UpperCAmelCase ) __UpperCAmelCase : List[Any] = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn ) __UpperCAmelCase : List[Any] = [] for batch in tqdm(_UpperCAmelCase ): __UpperCAmelCase : str = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=_UpperCAmelCase , num_beams=_UpperCAmelCase , **_UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) __UpperCAmelCase : List[str] = batch['''ids'''] if num_return_sequences > 1: __UpperCAmelCase : Any = chunks(_UpperCAmelCase , _UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_UpperCAmelCase ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return results, sampler.num_replicas def a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=_UpperCAmelCase , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=_UpperCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=_UpperCAmelCase , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=_UpperCAmelCase , default=_UpperCAmelCase ) parser.add_argument( '''--type_path''' , type=_UpperCAmelCase , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=_UpperCAmelCase , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_UpperCAmelCase , default=8 , required=_UpperCAmelCase , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=_UpperCAmelCase , default=1 , required=_UpperCAmelCase , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=_UpperCAmelCase , default=6_00 , required=_UpperCAmelCase , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument('''--tgt_lang''' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument( '''--prefix''' , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __UpperCAmelCase : Any = time.time() __UpperCAmelCase , __UpperCAmelCase : Any = parser.parse_known_args() __UpperCAmelCase : List[Any] = parse_numeric_n_bool_cl_kwargs(_UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) __UpperCAmelCase : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) # this handles locking. __UpperCAmelCase : int = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __UpperCAmelCase : List[Any] = {} if args.src_lang is not None: __UpperCAmelCase : List[str] = args.src_lang if args.tgt_lang is not None: __UpperCAmelCase : List[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_UpperCAmelCase ) __UpperCAmelCase , __UpperCAmelCase : int = eval_data_dir( args.data_dir , _UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_UpperCAmelCase , **_UpperCAmelCase , ) if args.local_rank <= 0: __UpperCAmelCase : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=_UpperCAmelCase ) __UpperCAmelCase : List[str] = gather_results_from_each_node(_UpperCAmelCase , _UpperCAmelCase , args.sync_timeout ) __UpperCAmelCase : List[Any] = combine_partial_results(_UpperCAmelCase ) if args.num_return_sequences > 1: __UpperCAmelCase : int = save_dir.joinpath('''pseudolabel_results.json''' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return __UpperCAmelCase : str = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(_UpperCAmelCase ) as f: __UpperCAmelCase : int = [x.rstrip() for x in f.readlines()][: len(_UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt __UpperCAmelCase : Optional[Any] = '''translation''' in args.task __UpperCAmelCase : Optional[int] = calculate_bleu if calc_bleu else calculate_rouge __UpperCAmelCase : Union[str, Any] = '''bleu''' if calc_bleu else '''rouge''' __UpperCAmelCase : Dict = score_fn(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = len(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = time.time() - start_time __UpperCAmelCase : List[str] = round(runtime / metrics['''n_obs'''] , 4 ) __UpperCAmelCase : List[str] = num_replicas # TODO(@stas00): add whatever metadata to metrics __UpperCAmelCase : List[Any] = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase ) print(_UpperCAmelCase ) write_txt_file(_UpperCAmelCase , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(_UpperCAmelCase , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(_UpperCAmelCase ) def a ( _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] for partial_result in partial_results: records.extend(_UpperCAmelCase ) __UpperCAmelCase : List[str] = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["id"] ) __UpperCAmelCase : Union[str, Any] = [x['''pred'''] for x in records] return preds def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = time.time() logger.info('''waiting for all nodes to finish''' ) __UpperCAmelCase : Any = None while (time.time() - start_wait) < timeout: __UpperCAmelCase : List[Any] = list(save_dir.glob('''rank_*.json''' ) ) if len(_UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved __UpperCAmelCase : Union[str, Any] = lmap(_UpperCAmelCase , _UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
226
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 / sqrt(2 ) ): """simple docstring""" _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(lowerCAmelCase ) _lowerCAmelCase = cos(lowerCAmelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = (1 - _cos) / 2 _lowerCAmelCase = 1 - _cos _lowerCAmelCase = 1 + alpha _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 - alpha _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 / sqrt(2 ) ): """simple docstring""" _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(lowerCAmelCase ) _lowerCAmelCase = cos(lowerCAmelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = (1 + _cos) / 2 _lowerCAmelCase = -1 - _cos _lowerCAmelCase = 1 + alpha _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 - alpha _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 / sqrt(2 ) ): """simple docstring""" _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(lowerCAmelCase ) _lowerCAmelCase = cos(lowerCAmelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = _sin / 2 _lowerCAmelCase = 0 _lowerCAmelCase = -ba _lowerCAmelCase = 1 + alpha _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 - alpha _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 / sqrt(2 ) ): """simple docstring""" _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(lowerCAmelCase ) _lowerCAmelCase = cos(lowerCAmelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = 1 - alpha _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 + alpha _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 / sqrt(2 ) , ): """simple docstring""" _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(lowerCAmelCase ) _lowerCAmelCase = cos(lowerCAmelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = 10 ** (gain_db / 40) _lowerCAmelCase = 1 + alpha * big_a _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 - alpha * big_a _lowerCAmelCase = 1 + alpha / big_a _lowerCAmelCase = -2 * _cos _lowerCAmelCase = 1 - alpha / big_a _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 / sqrt(2 ) , ): """simple docstring""" _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(lowerCAmelCase ) _lowerCAmelCase = cos(lowerCAmelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = 10 ** (gain_db / 40) _lowerCAmelCase = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase = 2 * sqrt(lowerCAmelCase ) * alpha _lowerCAmelCase = big_a * (pmc + aaa) _lowerCAmelCase = 2 * big_a * mpc _lowerCAmelCase = big_a * (pmc - aaa) _lowerCAmelCase = ppmc + aaa _lowerCAmelCase = -2 * pmpc _lowerCAmelCase = ppmc - aaa _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 / sqrt(2 ) , ): """simple docstring""" _lowerCAmelCase = tau * frequency / samplerate _lowerCAmelCase = sin(lowerCAmelCase ) _lowerCAmelCase = cos(lowerCAmelCase ) _lowerCAmelCase = _sin / (2 * q_factor) _lowerCAmelCase = 10 ** (gain_db / 40) _lowerCAmelCase = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase = 2 * sqrt(lowerCAmelCase ) * alpha _lowerCAmelCase = big_a * (ppmc + aaa) _lowerCAmelCase = -2 * big_a * pmpc _lowerCAmelCase = big_a * (ppmc - aaa) _lowerCAmelCase = pmc + aaa _lowerCAmelCase = 2 * mpc _lowerCAmelCase = pmc - aaa _lowerCAmelCase = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
354
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) A__ : Any =logging.getLogger() A__ : int =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : Optional[Any] , __snake_case : Any ) -> int: os.makedirs(__snake_case , exist_ok=__snake_case ) _lowerCAmelCase = {"""source""": """What is love ?""", """target""": """life"""} _lowerCAmelCase = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _lowerCAmelCase = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(__snake_case , f"{split}.{field}" ) , """w""" ) as f: f.write(__snake_case ) def lowercase__ ( self : Tuple , __snake_case : int , __snake_case : str = "pytorch" ) -> int: _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = os.path.join(__snake_case , """output""" ) _lowerCAmelCase = os.path.join(__snake_case , """data""" ) self._create_dummy_data(data_dir=__snake_case ) _lowerCAmelCase = f"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(f"--gpus={gpus}" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) _lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__snake_case , env=self.get_env() ) _lowerCAmelCase = os.path.join(__snake_case , """metrics.json""" ) with open(__snake_case ) as f: _lowerCAmelCase = json.load(__snake_case ) return result @require_torch_gpu def lowercase__ ( self : Dict ) -> Union[str, Any]: _lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowercase__ ( self : int ) -> Dict: _lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: _lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase__ ( self : int ) -> List[str]: _lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
220
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase : Tuple = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def A_ ( _UpperCAmelCase=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_: Tuple = subparsers.add_parser("tpu-config" , description=_description ) else: SCREAMING_SNAKE_CASE_: Optional[int] = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments SCREAMING_SNAKE_CASE_: Optional[int] = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=_lowercase , default=_lowercase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_lowercase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_lowercase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_lowercase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=_lowercase ) return parser def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowercase ): SCREAMING_SNAKE_CASE_: List[Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: SCREAMING_SNAKE_CASE_: Optional[int] = defaults.command_file if not args.command and defaults.commands is not None: SCREAMING_SNAKE_CASE_: List[Any] = defaults.commands if not args.tpu_name: SCREAMING_SNAKE_CASE_: Optional[int] = defaults.tpu_name if not args.tpu_zone: SCREAMING_SNAKE_CASE_: Optional[int] = defaults.tpu_zone if args.accelerate_version == "dev": SCREAMING_SNAKE_CASE_: Any = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": SCREAMING_SNAKE_CASE_: Optional[Any] = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _lowercase ): SCREAMING_SNAKE_CASE_: List[str] = f"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: SCREAMING_SNAKE_CASE_: Tuple = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _lowercase ): SCREAMING_SNAKE_CASE_: List[Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate SCREAMING_SNAKE_CASE_: str = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f"pip install {args.accelerate_version}"] new_cmd += args.command SCREAMING_SNAKE_CASE_: Union[str, Any] = """; """.join(_lowercase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess SCREAMING_SNAKE_CASE_: int = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"Running {' '.join(_lowercase )}" ) return subprocess.run(_lowercase ) print("Successfully setup pod." ) def A_ ( ): SCREAMING_SNAKE_CASE_: Optional[int] = tpu_command_parser() SCREAMING_SNAKE_CASE_: Tuple = parser.parse_args() tpu_command_launcher(_lowercase )
13
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _lowercase : Any =logging.get_logger(__name__) @add_end_docstrings(A__ ) class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , **__lowercase ) -> int: """simple docstring""" super().__init__(*__lowercase , **__lowercase ) requires_backends(self , """vision""" ) self.check_model_type(__lowercase ) def __call__( self , __lowercase , **__lowercase ) -> Union[str, Any]: """simple docstring""" return super().__call__(__lowercase , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> Optional[Any]: """simple docstring""" return {}, {}, {} def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = load_image(__lowercase ) a__ : Optional[int] = image.size a__ : int = self.image_processor(images=__lowercase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : str = self.model(**__lowercase ) return model_outputs def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" a__ : Optional[int] = model_outputs.predicted_depth a__ : Any = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=__lowercase ) a__ : Union[str, Any] = prediction.squeeze().cpu().numpy() a__ : List[str] = (output * 2_5_5 / np.max(__lowercase )).astype("""uint8""" ) a__ : Any = Image.fromarray(__lowercase ) a__ : List[str] = {} a__ : Tuple = predicted_depth a__ : Any = depth return output_dict
170
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = DistilBertTokenizer __SCREAMING_SNAKE_CASE = DistilBertTokenizerFast __SCREAMING_SNAKE_CASE = True @slow def UpperCamelCase ( self ): A__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) A__ = tokenizer.encode('''sequence builders''',add_special_tokens=__lowerCamelCase ) A__ = tokenizer.encode('''multi-sequence build''',add_special_tokens=__lowerCamelCase ) A__ = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) A__ = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase,__lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
39
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt],generator=__lowerCamelCase,guidance_scale=9.0,num_inference_steps=20,output_type='''np''' ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_euler''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe([prompt],generator=__lowerCamelCase,guidance_scale=9.0,num_inference_steps=20,output_type='''np''' ) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def UpperCamelCase ( self ): A__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) A__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0 ) A__ = sd_pipe( [prompt],generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=15,output_type='''np''',use_karras_sigmas=__lowerCamelCase,) A__ = output.images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
39
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowercase : str = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""ViTFeatureExtractor"""] lowercase : str = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
20
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __A : Any = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] __A : Any = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : Dict = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase_ : List[str] = int(re.match(R""".*layer_(\d*).*""" , A__ )[1] ) layer_number -= 3 return f'h.{layer_number}.' + key def UpperCamelCase_ ( A__ : List[str] ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 lowerCAmelCase_ : List[str] = re.search(R"""[^\d](\d+)$""" , str(A__ ) ) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.' ) lowerCAmelCase_ : Dict = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCamelCase_ ( A__ : int , A__ : Tuple , A__ : Any , A__ : Tuple , A__ : List[str] ): '''simple docstring''' if bloom_config_file == "": lowerCAmelCase_ : Any = BloomConfig() else: lowerCAmelCase_ : Any = BloomConfig.from_json_file(A__ ) if shard_model: lowerCAmelCase_ : Any = os.listdir(A__ ) lowerCAmelCase_ : Optional[int] = sorted(filter(lambda A__ : s.startswith("""layer""" ) and "model_00" in s , A__ ) ) lowerCAmelCase_ : Optional[Any] = {"""weight_map""": {}, """metadata""": {}} lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Optional[int] = BloomConfig() for j, file in enumerate(A__ ): print("""Processing file: {}""".format(A__ ) ) lowerCAmelCase_ : List[str] = None for i in range(A__ ): # load all TP files lowerCAmelCase_ : Optional[Any] = file.replace("""model_00""" , f'model_0{i}' ) lowerCAmelCase_ : Optional[int] = torch.load(os.path.join(A__ , A__ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowerCAmelCase_ : str = list(temp.keys() ) for key in keys: lowerCAmelCase_ : Optional[int] = temp.pop(A__ ) if tensors is None: lowerCAmelCase_ : str = temp else: for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase_ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase_ : Optional[int] = tensors[key] / pretraining_tp torch.save( A__ , os.path.join( A__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCAmelCase_ : str = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase_ : Tuple = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) lowerCAmelCase_ : str = BloomConfig() lowerCAmelCase_ : List[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME lowerCAmelCase_ : List[Any] = total_size with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(A__ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ : Optional[int] = json.dumps(A__ , indent=2 , sort_keys=A__ ) + """\n""" f.write(A__ ) else: lowerCAmelCase_ : int = BloomModel(A__ ) lowerCAmelCase_ : Union[str, Any] = os.listdir(A__ ) lowerCAmelCase_ : Tuple = sorted(filter(lambda A__ : s.startswith("""layer""" ) and "model_00" in s , A__ ) ) lowerCAmelCase_ : List[Any] = None for i, file in enumerate(A__ ): lowerCAmelCase_ : List[Any] = None for i in range(A__ ): # load all TP files lowerCAmelCase_ : str = file.replace("""model_00""" , f'model_0{i}' ) lowerCAmelCase_ : Optional[Any] = torch.load(os.path.join(A__ , A__ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowerCAmelCase_ : Union[str, Any] = list(temp.keys() ) for key in keys: lowerCAmelCase_ : str = temp.pop(A__ ) if tensors is None: lowerCAmelCase_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase_ : Optional[Any] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase_ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase_ : Union[str, Any] = tensors[key] / pretraining_tp lowerCAmelCase_ : Optional[int] = model.load_state_dict(A__ , strict=A__ ) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: lowerCAmelCase_ : Any = set(other_keys.missing_keys ) else: lowerCAmelCase_ : List[Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(A__ , exist_ok=A__ ) lowerCAmelCase_ : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCAmelCase_ : Tuple = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: lowerCAmelCase_ : Any = model.to(config.torch_dtype ) torch.save(model.state_dict() , A__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) __A : Dict = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
120
0
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): __SCREAMING_SNAKE_CASE = True from torch.cuda.amp import autocast __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowerCAmelCase_( lowercase_ : int=None , lowercase_ : int=None ) -> Optional[int]: return field(default_factory=lambda: default , metadata=lowercase_ ) @dataclass class lowerCamelCase_: '''simple docstring''' lowercase__ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase__ : Optional[str] = field( default=_a, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) lowercase__ : Optional[bool] = field( default=_a, metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowercase__ : Optional[float] = field( default=0.1, metadata={'help': 'The dropout ratio for the attention probabilities.'} ) lowercase__ : Optional[float] = field( default=0.1, metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) lowercase__ : Optional[float] = field( default=0.1, metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' }, ) lowercase__ : Optional[float] = field( default=0.1, metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'}, ) lowercase__ : Optional[float] = field( default=0.05, metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) }, ) lowercase__ : Optional[float] = field(default=0.0, metadata={'help': 'The LayerDrop probability.'} ) @dataclass class lowerCamelCase_: '''simple docstring''' lowercase__ : Optional[str] = field( default=_a, metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase__ : Optional[str] = field( default='train+validation', metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' }, ) lowercase__ : bool = field( default=_a, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowercase__ : Optional[int] = field( default=_a, metadata={'help': 'The number of processes to use for the preprocessing.'}, ) lowercase__ : Optional[int] = field( default=_a, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) lowercase__ : Optional[int] = field( default=_a, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) }, ) lowercase__ : List[str] = list_field( default=[',', '?', '.', '!', '-', ';', ':', '\"\"', '%', '\'', '\"', '�'], metadata={'help': 'A list of characters to remove from the transcripts.'}, ) @dataclass class lowerCamelCase_: '''simple docstring''' lowercase__ : WavaVecaProcessor lowercase__ : Union[bool, str] = True lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None def __call__( self , lowerCamelCase__ ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _lowerCamelCase = [{"""input_values""": feature["""input_values"""]} for feature in features] _lowerCamelCase = [{"""input_ids""": feature["""labels"""]} for feature in features] _lowerCamelCase = self.processor.pad( __lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _lowerCamelCase = self.processor.pad( labels=__lowerCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _lowerCamelCase = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) _lowerCamelCase = labels return batch class lowerCamelCase_( _a ): '''simple docstring''' def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): model.train() _lowerCamelCase = self._prepare_inputs(__lowerCamelCase ) if self.use_amp: with autocast(): _lowerCamelCase = self.compute_loss(__lowerCamelCase , __lowerCamelCase ) else: _lowerCamelCase = self.compute_loss(__lowerCamelCase , __lowerCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowerCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCamelCase = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _lowerCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(__lowerCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__lowerCamelCase ) else: loss.backward() return loss.detach() def lowerCAmelCase_( ) -> Any: _lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowercase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _lowerCamelCase = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) _lowerCamelCase = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer _lowerCamelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowercase_ : Tuple ): _lowerCamelCase = re.sub(lowercase_ , '''''' , batch['''sentence'''] ).lower() + """ """ return batch _lowerCamelCase = train_dataset.map(lowercase_ , remove_columns=['''sentence'''] ) _lowerCamelCase = eval_dataset.map(lowercase_ , remove_columns=['''sentence'''] ) def extract_all_chars(lowercase_ : List[str] ): _lowerCamelCase = """ """.join(batch['''text'''] ) _lowerCamelCase = list(set(lowercase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} _lowerCamelCase = train_dataset.map( lowercase_ , batched=lowercase_ , batch_size=-1 , keep_in_memory=lowercase_ , remove_columns=train_dataset.column_names , ) _lowerCamelCase = train_dataset.map( lowercase_ , batched=lowercase_ , batch_size=-1 , keep_in_memory=lowercase_ , remove_columns=eval_dataset.column_names , ) _lowerCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _lowerCamelCase = {v: k for k, v in enumerate(lowercase_ )} _lowerCamelCase = vocab_dict[""" """] del vocab_dict[" "] _lowerCamelCase = len(lowercase_ ) _lowerCamelCase = len(lowercase_ ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(lowercase_ , lowercase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ ) _lowerCamelCase = WavaVecaProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ ) _lowerCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _lowerCamelCase = min(len(lowercase_ ) , data_args.max_train_samples ) _lowerCamelCase = train_dataset.select(range(lowercase_ ) ) if data_args.max_val_samples is not None: _lowerCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _lowerCamelCase = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowercase_ : Dict ): _lowerCamelCase = torchaudio.load(batch['''path'''] ) _lowerCamelCase = resampler(lowercase_ ).squeeze().numpy() _lowerCamelCase = 1_60_00 _lowerCamelCase = batch["""text"""] return batch _lowerCamelCase = train_dataset.map( lowercase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase = eval_dataset.map( lowercase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(lowercase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _lowerCamelCase = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(lowercase_ ) return batch _lowerCamelCase = train_dataset.map( lowercase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase = eval_dataset.map( lowercase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowerCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(lowercase_ : Optional[int] ): _lowerCamelCase = pred.predictions _lowerCamelCase = np.argmax(lowercase_ , axis=-1 ) _lowerCamelCase = processor.tokenizer.pad_token_id _lowerCamelCase = processor.batch_decode(lowercase_ ) # we do not want to group tokens when computing the metrics _lowerCamelCase = processor.batch_decode(pred.label_ids , group_tokens=lowercase_ ) _lowerCamelCase = wer_metric.compute(predictions=lowercase_ , references=lowercase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowerCamelCase = DataCollatorCTCWithPadding(processor=lowercase_ , padding=lowercase_ ) # Initialize our Trainer _lowerCamelCase = CTCTrainer( model=lowercase_ , data_collator=lowercase_ , args=lowercase_ , compute_metrics=lowercase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowerCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _lowerCamelCase = model_args.model_name_or_path else: _lowerCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _lowerCamelCase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() _lowerCamelCase = train_result.metrics _lowerCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase_ ) ) _lowerCamelCase = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics('''train''' , lowercase_ ) trainer.save_metrics('''train''' , lowercase_ ) trainer.save_state() # Evaluation _lowerCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _lowerCamelCase = trainer.evaluate() _lowerCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowercase_ ) _lowerCamelCase = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics('''eval''' , lowercase_ ) trainer.save_metrics('''eval''' , lowercase_ ) return results if __name__ == "__main__": main()
368
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCamelCase_: '''simple docstring''' def __init__( self ): _lowerCamelCase = '''''' _lowerCamelCase = '''''' _lowerCamelCase = [] _lowerCamelCase = 0 _lowerCamelCase = 2_5_6 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 0 def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = cva.imread(lowerCamelCase__ , 0 ) _lowerCamelCase = copy.deepcopy(self.img ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label='''x''' ) _lowerCamelCase = np.sum(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): _lowerCamelCase = x[i] / self.k self.sk += prk _lowerCamelCase = (self.L - 1) * self.sk if self.rem != 0: _lowerCamelCase = int(last % last ) _lowerCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCamelCase__ ) _lowerCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) _lowerCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _lowerCamelCase = self.img[j][i] if num != self.last_list[num]: _lowerCamelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def snake_case__ ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def snake_case__ ( self ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __SCREAMING_SNAKE_CASE : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
73
0
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCAmelCase__ = logging.get_logger(__name__) class _lowerCamelCase ( _lowercase ): def snake_case_ (self , __a ) -> int: if isinstance(__a , __a ): UpperCamelCase = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__(self , __a , __a , __a ) -> str: if len(__a ) == 0 or len(__a ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(__a ) ) if isinstance(__a , __a ): UpperCamelCase = [sequences] UpperCamelCase = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_lowercase ) class _lowerCamelCase ( _lowercase ): def __init__(self , __a=ZeroShotClassificationArgumentHandler() , *__a , **__a ) -> Optional[int]: UpperCamelCase = args_parser super().__init__(*__a , **__a ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def snake_case_ (self ) -> Any: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def snake_case_ (self , __a , __a=True , __a=True , __a=TruncationStrategy.ONLY_FIRST , **__a ) -> Dict: UpperCamelCase = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) UpperCamelCase = self.tokenizer.eos_token try: UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCamelCase = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def snake_case_ (self , **__a ) -> Optional[Any]: if kwargs.get("multi_class" , __a ) is not None: UpperCamelCase = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: UpperCamelCase = kwargs["hypothesis_template"] UpperCamelCase = {} if "multi_label" in kwargs: UpperCamelCase = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__(self , __a , *__a , **__a , ) -> str: if len(__a ) == 0: pass elif len(__a ) == 1 and "candidate_labels" not in kwargs: UpperCamelCase = args[0] else: raise ValueError(F"Unable to understand extra arguments {args}" ) return super().__call__(__a , **__a ) def snake_case_ (self , __a , __a=None , __a="This example is {}." ) -> Union[str, Any]: UpperCamelCase , UpperCamelCase = self._args_parser(__a , __a , __a ) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ): UpperCamelCase = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a ) - 1, **model_input, } def snake_case_ (self , __a ) -> Dict: UpperCamelCase = inputs["candidate_label"] UpperCamelCase = inputs["sequence"] UpperCamelCase = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCamelCase = self.model(**__a ) UpperCamelCase = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def snake_case_ (self , __a , __a=False ) -> Tuple: UpperCamelCase = [outputs["candidate_label"] for outputs in model_outputs] UpperCamelCase = [outputs["sequence"] for outputs in model_outputs] UpperCamelCase = np.concatenate([output["logits"].numpy() for output in model_outputs] ) UpperCamelCase = logits.shape[0] UpperCamelCase = len(__a ) UpperCamelCase = N // n UpperCamelCase = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCamelCase = self.entailment_id UpperCamelCase = -1 if entailment_id == 0 else 0 UpperCamelCase = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCamelCase = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCamelCase = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCamelCase = reshaped_outputs[..., self.entailment_id] UpperCamelCase = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCamelCase = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
153
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase__ = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' lowerCAmelCase__ = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' lowerCAmelCase__ = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def snake_case_ (self , __a , __a , __a=None , __a=1 , __a="binary" , __a=None , __a="warn" , ) -> str: UpperCamelCase = recall_score( __a , __a , labels=__a , pos_label=__a , average=__a , sample_weight=__a , zero_division=__a , ) return {"recall": float(__a ) if score.size == 1 else score}
153
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __snake_case = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['DeiTFeatureExtractor'] __snake_case = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] = KandinskyVaaControlnetPipeline __lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase : Optional[int] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase : Optional[Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase : Dict = False @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 100 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any ={ '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase : List[Any] =UNetaDConditionModel(**snake_case__ ) return model @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =self.dummy_unet UpperCAmelCase : Tuple =self.dummy_movq UpperCAmelCase : Union[str, Any] =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case__ , ) UpperCAmelCase : Tuple ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> Any: '''simple docstring''' UpperCAmelCase : str =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase : Tuple =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create hint UpperCAmelCase : Tuple =floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : Optional[int] =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : int =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : List[str] ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] ='''cpu''' UpperCAmelCase : List[Any] =self.get_dummy_components() UpperCAmelCase : Tuple =self.pipeline_class(**snake_case__ ) UpperCAmelCase : Tuple =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Optional[int] =pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCAmelCase : str =output.images UpperCAmelCase : List[str] =pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] UpperCAmelCase : Union[str, Any] =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Union[str, Any] =np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) UpperCAmelCase : int =torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0 UpperCAmelCase : List[str] =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase : Dict =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) UpperCAmelCase : int =KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) UpperCAmelCase : str =pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : int ='''A robot, 4k photo''' UpperCAmelCase : int =torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase : List[str] =pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase : List[str] =torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase : Dict =pipeline( image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , output_type='''np''' , ) UpperCAmelCase : List[Any] =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
78
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class a__ ( a_ ): """simple docstring""" __lowerCamelCase = "deberta-v2" def __init__( self , lowercase=128100 , lowercase=1536 , lowercase=24 , lowercase=24 , lowercase=6144 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=0 , lowercase=0.02 , lowercase=1e-7 , lowercase=False , lowercase=-1 , lowercase=0 , lowercase=True , lowercase=None , lowercase=0 , lowercase="gelu" , **lowercase , ) -> Dict: '''simple docstring''' super().__init__(**_lowerCamelCase ) A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = relative_attention A__ = max_relative_positions A__ = pad_token_id A__ = position_biased_input # Backwards compatibility if type(_lowerCamelCase ) == str: A__ = [x.strip() for x in pos_att_type.lower().split("|" )] A__ = pos_att_type A__ = vocab_size A__ = layer_norm_eps A__ = kwargs.get("pooler_hidden_size" , _lowerCamelCase ) A__ = pooler_dropout A__ = pooler_hidden_act class a__ ( a_ ): """simple docstring""" @property def UpperCamelCase ( self ) -> str: '''simple docstring''' if self.task == "multiple-choice": A__ = {0: "batch", 1: "choice", 2: "sequence"} else: A__ = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return 12 def UpperCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 40 , lowercase = 40 , lowercase = None , ) -> Any: '''simple docstring''' A__ = super().generate_dummy_inputs(preprocessor=_lowerCamelCase , framework=_lowerCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
68
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase : List[Any] = 4 _UpperCamelCase : Optional[Any] = 3 class a ( a_ ): pass def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): '''simple docstring''' for shard in shards: for i in range(__snake_case ): yield {"i": i, "shard": shard} def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = int(os.environ['RANK'] ) lowercase = int(os.environ['WORLD_SIZE'] ) lowercase = ArgumentParser() parser.add_argument('--streaming' , type=__snake_case ) parser.add_argument('--local_rank' , type=__snake_case ) parser.add_argument('--num_workers' , type=__snake_case , default=0 ) lowercase = parser.parse_args() lowercase = args.streaming lowercase = args.num_workers lowercase = {'shards': [f'shard_{shard_idx}' for shard_idx in range(__snake_case )]} lowercase = IterableDataset.from_generator(__snake_case , gen_kwargs=__snake_case ) if not streaming: lowercase = Dataset.from_list(list(__snake_case ) ) lowercase = split_dataset_by_node(__snake_case , rank=__snake_case , world_size=__snake_case ) lowercase = torch.utils.data.DataLoader(__snake_case , num_workers=__snake_case ) lowercase = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
220
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def lowerCAmelCase_ ( __A, __A = 16, __A = "bert-base-cased" ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = AutoTokenizer.from_pretrained(__A ) UpperCAmelCase__ = load_dataset("glue", "mrpc" ) def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["sentence1"], examples["sentence2"], truncation=__A, max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase__ = datasets.map( __A, batched=__A, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=__A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__A, padding="max_length", max_length=128, return_tensors="pt" ) return tokenizer.pad(__A, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["train"], shuffle=__A, collate_fn=__A, batch_size=__A ) UpperCAmelCase__ = DataLoader( tokenized_datasets["validation"], shuffle=__A, collate_fn=__A, batch_size=__A ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( __A, __A, __A, __A ) -> int: '''simple docstring''' model.eval() UpperCAmelCase__ = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ = model(**__A ) UpperCAmelCase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__A ) - 1: UpperCAmelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__A, references=__A, ) UpperCAmelCase__ = metric.compute() return eval_metric["accuracy"] def lowerCAmelCase_ ( __A, __A ) -> str: '''simple docstring''' UpperCAmelCase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["lr"] UpperCAmelCase__ = int(config["num_epochs"] ) UpperCAmelCase__ = int(config["seed"] ) UpperCAmelCase__ = int(config["batch_size"] ) UpperCAmelCase__ = args.model_name_or_path set_seed(__A ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(__A, __A, __A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained(__A, return_dict=__A ) # Instantiate optimizer UpperCAmelCase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase__ = optimizer_cls(params=model.parameters(), lr=__A ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: UpperCAmelCase__ = 1 UpperCAmelCase__ = (len(__A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=__A, num_warmup_steps=0, num_training_steps=__A, ) else: UpperCAmelCase__ = DummyScheduler(__A, total_num_steps=__A, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( __A, __A, __A, __A, __A ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase__ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase__ = 0 UpperCAmelCase__ = evaluate.load("glue", "mrpc" ) UpperCAmelCase__ = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase__ = args.resume_from_checkpoint.split("epoch_" )[1] UpperCAmelCase__ = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase__ = int(__A ) + 1 UpperCAmelCase__ = evaluation_loop(__A, __A, __A, __A ) accelerator.print("resumed checkpoint performance:", __A ) accelerator.print("resumed checkpoint's scheduler's lr:", lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:", optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir, f"""state_{starting_epoch-1}.json""" ), "r" ) as f: UpperCAmelCase__ = json.load(__A ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase__ = {} for epoch in range(__A, __A ): model.train() for step, batch in enumerate(__A ): UpperCAmelCase__ = model(**__A ) UpperCAmelCase__ = outputs.loss UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(__A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase__ = f"""epoch_{epoch}""" UpperCAmelCase__ = os.path.join(args.output_dir, __A ) accelerator.save_state(__A ) UpperCAmelCase__ = evaluation_loop(__A, __A, __A, __A ) UpperCAmelCase__ = accuracy UpperCAmelCase__ = lr_scheduler.get_lr()[0] UpperCAmelCase__ = optimizer.param_groups[0]["lr"] UpperCAmelCase__ = epoch UpperCAmelCase__ = overall_step accelerator.print(f"""epoch {epoch}:""", __A ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, f"""state_{epoch}.json""" ), "w" ) as f: json.dump(__A, __A ) def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path", type=__A, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=__A, ) parser.add_argument( "--output_dir", type=__A, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--resume_from_checkpoint", type=__A, default=__A, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--partial_train_epoch", type=__A, default=__A, help="If passed, the training will stop after this number of epochs.", ) parser.add_argument( "--num_epochs", type=__A, default=2, help="Number of train epochs.", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__A, __A ) if __name__ == "__main__": main()
143
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = Dict[str, Any] UpperCamelCase__ = List[Prediction] @add_end_docstrings(UpperCAmelCase_ ) class A ( UpperCAmelCase_ ): def __init__(self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowercase_ (self : Optional[Any] , **__UpperCAmelCase : Dict ) -> Any: """simple docstring""" UpperCAmelCase__ = {} if "threshold" in kwargs: UpperCAmelCase__ = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__(self : Optional[int] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Dict ) -> Union[Predictions, List[Prediction]]: """simple docstring""" return super().__call__(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = load_image(__UpperCAmelCase ) UpperCAmelCase__ = torch.IntTensor([[image.height, image.width]] ) UpperCAmelCase__ = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: UpperCAmelCase__ = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) UpperCAmelCase__ = target_size return inputs def lowercase_ (self : List[str] , __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = model_inputs.pop("target_size" ) UpperCAmelCase__ = self.model(**__UpperCAmelCase ) UpperCAmelCase__ = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: UpperCAmelCase__ = model_inputs["bbox"] return model_outputs def lowercase_ (self : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict=0.9 ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. UpperCAmelCase__ , UpperCAmelCase__ = target_size[0].tolist() def unnormalize(__UpperCAmelCase : List[str] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_0_0_0), (height * bbox[1] / 1_0_0_0), (width * bbox[2] / 1_0_0_0), (height * bbox[3] / 1_0_0_0), ] ) ) UpperCAmelCase__ , UpperCAmelCase__ = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) UpperCAmelCase__ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] UpperCAmelCase__ = [unnormalize(__UpperCAmelCase ) for bbox in model_outputs["bbox"].squeeze(0 )] UpperCAmelCase__ = ["score", "label", "box"] UpperCAmelCase__ = [dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) for vals in zip(scores.tolist() , __UpperCAmelCase , __UpperCAmelCase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel UpperCAmelCase__ = self.image_processor.post_process_object_detection(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = raw_annotations[0] UpperCAmelCase__ = raw_annotation["scores"] UpperCAmelCase__ = raw_annotation["labels"] UpperCAmelCase__ = raw_annotation["boxes"] UpperCAmelCase__ = scores.tolist() UpperCAmelCase__ = [self.model.config.idalabel[label.item()] for label in labels] UpperCAmelCase__ = [self._get_bounding_box(__UpperCAmelCase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] UpperCAmelCase__ = ["score", "label", "box"] UpperCAmelCase__ = [ dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def lowercase_ (self : List[str] , __UpperCAmelCase : "torch.Tensor" ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = box.int().tolist() UpperCAmelCase__ = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
143
1