code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'speech_to_text_2' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , lowercase=10_000 , lowercase=6 , lowercase=2_048 , lowercase=4 , lowercase=0.0 , lowercase=True , lowercase="relu" , lowercase=256 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=2 , lowercase=True , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=1_024 , **lowercase , ) -> Optional[Any]: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , decoder_start_token_id=lowercase , **lowercase , )
46
import random from typing import Any def a_ ( _A ) -> list[Any]: """simple docstring""" for _ in range(len(_A ) ): snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ , snake_case__ = data[b], data[a] return data if __name__ == "__main__": __UpperCamelCase : Dict = [0, 1, 2, 3, 4, 5, 6, 7] __UpperCamelCase : Any = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
307
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa lowerCamelCase_ = logging.getLogger(__name__) class __A( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """summarization""" SCREAMING_SNAKE_CASE__ = ["""loss"""] SCREAMING_SNAKE_CASE__ = ROUGE_KEYS SCREAMING_SNAKE_CASE__ = """rouge2""" def __init__(self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): if hparams.sortish_sampler and hparams.gpus > 1: UpperCamelCase__ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , mode=self.mode , **__SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) UpperCamelCase__ = Path(self.output_dir ) / """metrics.json""" UpperCamelCase__ = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) UpperCamelCase__ = 0 UpperCamelCase__ = defaultdict(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ = self.config.model_type UpperCamelCase__ = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size UpperCamelCase__ = { """data_dir""": self.hparams.data_dir, """max_source_length""": self.hparams.max_source_length, """prefix""": self.model.config.prefix or """""", } UpperCamelCase__ = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } UpperCamelCase__ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCamelCase__ = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], F"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCamelCase__ = get_git_info()["""repo_sha"""] UpperCamelCase__ = hparams.num_workers UpperCamelCase__ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCamelCase__ = self.decoder_start_token_id UpperCamelCase__ = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) UpperCamelCase__ = False UpperCamelCase__ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCamelCase__ = self.hparams.eval_max_gen_length else: UpperCamelCase__ = self.model.config.max_length UpperCamelCase__ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(__SCREAMING_SNAKE_CASE , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) UpperCamelCase__ = True return readable_batch def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return self.model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.tokenizer.batch_decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) return lmap(str.strip , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.tokenizer.pad_token_id UpperCamelCase__ , UpperCamelCase__ = batch["""input_ids"""], batch["""attention_mask"""] UpperCamelCase__ = batch["""labels"""] if isinstance(self.model , __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = self.model._shift_right(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ = shift_tokens_right(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCamelCase__ = decoder_input_ids self.save_readable_batch(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ = self(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCamelCase__ = nn.CrossEntropyLoss(ignore_index=__SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size UpperCamelCase__ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCamelCase__ = nn.functional.log_softmax(__SCREAMING_SNAKE_CASE , dim=-1 ) UpperCamelCase__ , UpperCamelCase__ = label_smoothed_nll_loss( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=__SCREAMING_SNAKE_CASE ) return (loss,) @property def UpperCAmelCase_ (self ): return self.tokenizer.pad_token_id def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self._step(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) # tokens per batch UpperCamelCase__ = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() UpperCamelCase__ = batch["""input_ids"""].shape[0] UpperCamelCase__ = batch["""input_ids"""].eq(self.pad ).sum() UpperCamelCase__ = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return self._generative_step(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="val" ): self.step_count += 1 UpperCamelCase__ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCamelCase__ = losses["""loss"""] UpperCamelCase__ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } UpperCamelCase__ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCamelCase__ = torch.tensor(__SCREAMING_SNAKE_CASE ).type_as(__SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ = {F"{prefix}_avg_{k}": x for k, x in losses.items()} UpperCamelCase__ = self.step_count self.metrics[prefix].append(__SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path UpperCamelCase__ = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"{prefix}_loss": loss, F"{prefix}_{self.val_metric}": metric_tensor, } def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCamelCase__ = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=__SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCamelCase__ = (time.time() - ta) / batch["""input_ids"""].shape[0] UpperCamelCase__ = self.ids_to_clean_text(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ = self.ids_to_clean_text(batch["""labels"""] ) UpperCamelCase__ = self._step(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = self.calc_generative_metrics(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ = np.mean(lmap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=__SCREAMING_SNAKE_CASE , gen_len=__SCREAMING_SNAKE_CASE , preds=__SCREAMING_SNAKE_CASE , target=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return base_metrics def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return self._generative_step(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return self.validation_epoch_end(__SCREAMING_SNAKE_CASE , prefix="""test""" ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.n_obs[type_path] UpperCamelCase__ = self.target_lens[type_path] UpperCamelCase__ = self.dataset_class( self.tokenizer , type_path=__SCREAMING_SNAKE_CASE , n_obs=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , **self.dataset_kwargs , ) return dataset def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ): UpperCamelCase__ = self.get_dataset(__SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCamelCase__ = dataset.make_sortish_sampler(__SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCamelCase__ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_sampler=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) return dataloader def UpperCAmelCase_ (self ): return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def UpperCAmelCase_ (self ): return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCAmelCase_ (SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): BaseTransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) add_generic_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) parser.add_argument( """--max_source_length""" , default=10_24 , type=__SCREAMING_SNAKE_CASE , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=__SCREAMING_SNAKE_CASE , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_42 , type=__SCREAMING_SNAKE_CASE , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_42 , type=__SCREAMING_SNAKE_CASE , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--max_tokens_per_batch""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--logger_name""" , type=__SCREAMING_SNAKE_CASE , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=__SCREAMING_SNAKE_CASE , default=5_00 , required=__SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=__SCREAMING_SNAKE_CASE , default="""summarization""" , required=__SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=__SCREAMING_SNAKE_CASE , default=0.0 , required=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--src_lang""" , type=__SCREAMING_SNAKE_CASE , default="""""" , required=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--tgt_lang""" , type=__SCREAMING_SNAKE_CASE , default="""""" , required=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--eval_beams""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) parser.add_argument( """--val_metric""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=__SCREAMING_SNAKE_CASE , default=1 , required=__SCREAMING_SNAKE_CASE , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class __A( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """translation""" SCREAMING_SNAKE_CASE__ = ["""loss"""] SCREAMING_SNAKE_CASE__ = ["""bleu"""] SCREAMING_SNAKE_CASE__ = """bleu""" def __init__(self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): super().__init__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase__ = hparams.src_lang UpperCamelCase__ = hparams.tgt_lang def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return calculate_bleu(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __magic_name__ ( __a : int , __a : Any=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=__a ) check_output_dir(__a , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCamelCase__ = SummarizationModule(__a ) else: UpperCamelCase__ = TranslationModule(__a ) UpperCamelCase__ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): UpperCamelCase__ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCamelCase__ = os.environ.get("""WANDB_PROJECT""" , __a ) UpperCamelCase__ = WandbLogger(name=model.output_dir.name , project=__a ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCamelCase__ = WandbLogger(name=model.output_dir.name , project=f"hf_{dataset}" ) if args.early_stopping_patience >= 0: UpperCamelCase__ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCamelCase__ = False UpperCamelCase__ = args.val_metric == """loss""" UpperCamelCase__ = generic_train( __a , __a , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __a ) , early_stopping_callback=__a , logger=__a , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model UpperCamelCase__ = """""" UpperCamelCase__ = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=__a ) ) if checkpoints: UpperCamelCase__ = checkpoints[-1] UpperCamelCase__ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() lowerCamelCase_ = pl.Trainer.add_argparse_args(parser) lowerCamelCase_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) lowerCamelCase_ = parser.parse_args() main(args)
352
import collections import os import re from pathlib import Path lowerCamelCase_ = '''src/transformers''' # Matches is_xxx_available() lowerCamelCase_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCamelCase_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCamelCase_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCamelCase_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase_ = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase_ = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCamelCase_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCamelCase_ = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCamelCase_ = re.compile(r'''^\s*else:''') def __magic_name__ ( __a : List[Any] ): '''simple docstring''' if _re_test_backend.search(__a ) is None: return None UpperCamelCase__ = [b[0] for b in _re_backend.findall(__a )] backends.sort() return "_and_".join(__a ) def __magic_name__ ( __a : Dict ): '''simple docstring''' with open(__a , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = 0 while line_index < len(__a ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__a ): return None # First grab the objects without a specific backend in _import_structure UpperCamelCase__ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: UpperCamelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__a ): UpperCamelCase__ = _re_one_line_import_struct.search(__a ).groups()[0] UpperCamelCase__ = re.findall(R"""\[([^\]]+)\]""" , __a ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue UpperCamelCase__ = _re_import_struct_key_value.search(__a ) if single_line_import_search is not None: UpperCamelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__a ) > 0] objects.extend(__a ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 UpperCamelCase__ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCamelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): UpperCamelCase__ = lines[line_index] if _re_import_struct_add_one.search(__a ) is not None: objects.append(_re_import_struct_add_one.search(__a ).groups()[0] ) elif _re_import_struct_add_many.search(__a ) is not None: UpperCamelCase__ = _re_import_struct_add_many.search(__a ).groups()[0].split(""", """ ) UpperCamelCase__ = [obj[1:-1] for obj in imports if len(__a ) > 0] objects.extend(__a ) elif _re_between_brackets.search(__a ) is not None: UpperCamelCase__ = _re_between_brackets.search(__a ).groups()[0].split(""", """ ) UpperCamelCase__ = [obj[1:-1] for obj in imports if len(__a ) > 0] objects.extend(__a ) elif _re_quote_object.search(__a ) is not None: objects.append(_re_quote_object.search(__a ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 UpperCamelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCamelCase__ = [] while ( line_index < len(__a ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCamelCase__ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(__a ): # If the line is an if is_backend_available, we grab all objects associated. UpperCamelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCamelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __magic_name__ ( __a : Dict , __a : Dict ): '''simple docstring''' def find_duplicates(__a : Optional[Any] ): return [k for k, v in collections.Counter(__a ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCamelCase__ = [] for key in import_dict_objects.keys(): UpperCamelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}" ) UpperCamelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCamelCase__ = """base imports""" if key == """none""" else f"{key} backend" errors.append(f"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT." ) return errors def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = [] for root, _, files in os.walk(__a ): if "__init__.py" in files: UpperCamelCase__ = os.path.join(__a , """__init__.py""" ) UpperCamelCase__ = parse_init(__a ) if objects is not None: UpperCamelCase__ = analyze_results(*__a ) if len(__a ) > 0: UpperCamelCase__ = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(__a ) ) if len(__a ) > 0: raise ValueError("""\n\n""".join(__a ) ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = [] for path, directories, files in os.walk(__a ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(__a ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__a ) / folder).glob("""*.py""" ) ) ) == 0: continue UpperCamelCase__ = str((Path(__a ) / folder).relative_to(__a ) ) UpperCamelCase__ = short_path.replace(os.path.sep , """.""" ) submodules.append(__a ) for fname in files: if fname == "__init__.py": continue UpperCamelCase__ = str((Path(__a ) / fname).relative_to(__a ) ) UpperCamelCase__ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(__a ) return submodules lowerCamelCase_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def __magic_name__ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import UpperCamelCase__ = direct_transformers_import(__a ) UpperCamelCase__ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__a , """__init__.py""" ) , """r""" ) as f: UpperCamelCase__ = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , __a ) ) ) UpperCamelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__a ) > 0: UpperCamelCase__ = """\n""".join(f"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
178
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) // 2 # choose the middle 3 elements lowerCamelCase_ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
204
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A( UpperCamelCase ): '''simple docstring''' def __init__( self : str , A_ : TransformeraDModel , A_ : AutoencoderKL , A_ : KarrasDiffusionSchedulers , A_ : Optional[Dict[int, str]] = None , ) -> str: """simple docstring""" super().__init__() self.register_modules(transformer=A_ , vae=A_ , scheduler=A_ ) # create a imagenet -> id dictionary for easier use lowerCamelCase_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): lowerCamelCase_ = int(A_ ) lowerCamelCase_ = dict(sorted(self.labels.items() ) ) def a__ ( self : Optional[int] , A_ : Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(A_ , A_ ): lowerCamelCase_ = list(A_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Any , A_ : List[int] , A_ : float = 4.0 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : int = 50 , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowerCamelCase_ = len(A_ ) lowerCamelCase_ = self.transformer.config.sample_size lowerCamelCase_ = self.transformer.config.in_channels lowerCamelCase_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=A_ , device=self.device , dtype=self.transformer.dtype , ) lowerCamelCase_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowerCamelCase_ = torch.tensor(A_ , device=self.device ).reshape(-1 ) lowerCamelCase_ = torch.tensor([1000] * batch_size , device=self.device ) lowerCamelCase_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowerCamelCase_ = latent_model_input[: len(A_ ) // 2] lowerCamelCase_ = torch.cat([half, half] , dim=0 ) lowerCamelCase_ = self.scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_ = t if not torch.is_tensor(A_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowerCamelCase_ = latent_model_input.device.type == 'mps' if isinstance(A_ , A_ ): lowerCamelCase_ = torch.floataa if is_mps else torch.floataa else: lowerCamelCase_ = torch.intaa if is_mps else torch.intaa lowerCamelCase_ = torch.tensor([timesteps] , dtype=A_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowerCamelCase_ = self.transformer( A_ , timestep=A_ , class_labels=A_ ).sample # perform guidance if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , len(A_ ) // 2 , dim=0 ) lowerCamelCase_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowerCamelCase_ = torch.cat([half_eps, half_eps] , dim=0 ) lowerCamelCase_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , A_ , dim=1 ) else: lowerCamelCase_ = noise_pred # compute previous image: x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = latent_model_input.chunk(2 , dim=0 ) else: lowerCamelCase_ = latent_model_input lowerCamelCase_ = 1 / self.vae.config.scaling_factor * latents lowerCamelCase_ = self.vae.decode(A_ ).sample lowerCamelCase_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=A_ )
204
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" UpperCamelCase : List[Any] = parent UpperCamelCase : List[str] = batch_size UpperCamelCase : str = decoder_seq_length # For common tests UpperCamelCase : Optional[int] = self.decoder_seq_length UpperCamelCase : Optional[int] = is_training UpperCamelCase : List[str] = use_attention_mask UpperCamelCase : List[Any] = use_labels UpperCamelCase : Dict = vocab_size UpperCamelCase : int = d_model UpperCamelCase : List[str] = d_model UpperCamelCase : List[str] = decoder_layers UpperCamelCase : str = decoder_layers UpperCamelCase : Dict = decoder_ffn_dim UpperCamelCase : Any = decoder_attention_heads UpperCamelCase : int = decoder_attention_heads UpperCamelCase : Dict = eos_token_id UpperCamelCase : Any = bos_token_id UpperCamelCase : List[str] = pad_token_id UpperCamelCase : Optional[int] = decoder_start_token_id UpperCamelCase : Dict = use_cache UpperCamelCase : str = max_position_embeddings UpperCamelCase : str = None UpperCamelCase : Optional[Any] = decoder_seq_length UpperCamelCase : List[str] = 2 UpperCamelCase : List[str] = 1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCamelCase : Optional[Any] = None if self.use_attention_mask: UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCamelCase : str = None if self.use_labels: UpperCamelCase : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCamelCase : Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = True UpperCamelCase : Tuple = TrOCRDecoder(config=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ).eval() UpperCamelCase : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = model(__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) ) self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) + 1 ) UpperCamelCase : Tuple = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids UpperCamelCase : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCamelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )['''last_hidden_state'''] # select random slice UpperCamelCase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase : Optional[Any] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCamelCase : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : int = config_and_inputs UpperCamelCase : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a, _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __UpperCamelCase : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () __UpperCamelCase : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = TrOCRStandaloneDecoderModelTester(self , is_training=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _lowercase ( self ): """simple docstring""" pass
315
def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : Any = set() # Replace all the whitespace in our sentence UpperCamelCase : Union[str, Any] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 2_6 def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : str = [False] * 2_6 for char in input_str: if char.islower(): UpperCamelCase : List[Any] = True elif char.isupper(): UpperCamelCase : List[Any] = True return all(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def a ( ): """simple docstring""" from timeit import timeit UpperCamelCase : int = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
315
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Any = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class A__ ( __snake_case ): _UpperCAmelCase :Dict = 'bart' _UpperCAmelCase :str = ['past_key_values'] _UpperCAmelCase :Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A_=5_0265 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=3 , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , **A_ , ): '''simple docstring''' UpperCamelCase : int = vocab_size UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Any = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = encoder_attention_heads UpperCamelCase : Optional[int] = decoder_ffn_dim UpperCamelCase : List[str] = decoder_layers UpperCamelCase : Optional[int] = decoder_attention_heads UpperCamelCase : int = dropout UpperCamelCase : int = attention_dropout UpperCamelCase : Tuple = activation_dropout UpperCamelCase : Tuple = activation_function UpperCamelCase : int = init_std UpperCamelCase : List[Any] = encoder_layerdrop UpperCamelCase : List[str] = decoder_layerdrop UpperCamelCase : Dict = classifier_dropout UpperCamelCase : Optional[int] = use_cache UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , A_ ): UpperCamelCase : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." ) class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase : List[str] = {0: "batch"} UpperCamelCase : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCamelCase : Dict = {0: "batch", 1: "decoder_sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(A_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase : Optional[int] = self.num_layers for i in range(A_ ): UpperCamelCase : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} else: UpperCamelCase : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Tuple = super().outputs else: UpperCamelCase : Dict = super(A_ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase : int = self.num_layers for i in range(A_ ): UpperCamelCase : int = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Tuple = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs UpperCamelCase : List[Any] = seq_length if not self.use_past else 1 UpperCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) UpperCamelCase : Optional[int] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase : List[Any] = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Optional[Any] = common_inputs["input_ids"].shape UpperCamelCase : List[Any] = common_inputs["decoder_input_ids"].shape[1] UpperCamelCase , UpperCamelCase : List[str] = self.num_attention_heads UpperCamelCase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : List[Any] = decoder_seq_length + 3 UpperCamelCase : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase : int = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(A_ , A_ )] , dim=1 ) UpperCamelCase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase : Union[str, Any] = self.num_layers UpperCamelCase : Any = min(A_ , A_ ) UpperCamelCase : List[str] = max(A_ , A_ ) - min_num_layers UpperCamelCase : Dict = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. UpperCamelCase : Optional[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase : Optional[Any] = seqlen + 2 UpperCamelCase , UpperCamelCase : List[Any] = self.num_layers UpperCamelCase , UpperCamelCase : Optional[int] = self.num_attention_heads UpperCamelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : Optional[Any] = common_inputs["attention_mask"].dtype UpperCamelCase : int = torch.cat( [common_inputs["attention_mask"], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) UpperCamelCase : Optional[Any] = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : Optional[Any] = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add(A_ ) UpperCamelCase : int = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase : Dict = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) elif self.task == "causal-lm": UpperCamelCase : List[str] = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: UpperCamelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[Any] = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: UpperCamelCase : Optional[Any] = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ )
52
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = FunnelConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = FunnelBaseModel(SCREAMING_SNAKE_CASE_ ) if base_model else FunnelModel(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
158
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Union[str, Any]: """simple docstring""" snake_case_ = original_name.split('''.''' )[0] snake_case_ = key.split('''.''' ) snake_case_ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) snake_case_ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) snake_case_ = orig_block_num - offset snake_case_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Optional[int]: """simple docstring""" snake_case_ = OrderedDict() snake_case_ , snake_case_ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): snake_case_ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 snake_case_ = key[: key.find('''proj''' )] snake_case_ = key.replace(SCREAMING_SNAKE_CASE , f'''patch_embeddings.{total_embed_found}.''' ) snake_case_ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: snake_case_ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: snake_case_ = key.replace('''head''' , '''classifier''' ) snake_case_ = value return new_state_dict def __lowerCAmelCase ()-> str: """simple docstring""" snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = PoolFormerConfig() # set attributes based on model_name snake_case_ = '''huggingface/label-files''' snake_case_ = model_name[-3:] snake_case_ = 1000 snake_case_ = '''imagenet-1k-id2label.json''' snake_case_ = (1, 1000) # set config attributes snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} if size == "s12": snake_case_ = [2, 2, 6, 2] snake_case_ = [64, 128, 320, 512] snake_case_ = 4.0 snake_case_ = 0.9 elif size == "s24": snake_case_ = [4, 4, 12, 4] snake_case_ = [64, 128, 320, 512] snake_case_ = 4.0 snake_case_ = 0.9 elif size == "s36": snake_case_ = [6, 6, 18, 6] snake_case_ = [64, 128, 320, 512] snake_case_ = 4.0 snake_case_ = 1E-6 snake_case_ = 0.9 elif size == "m36": snake_case_ = [6, 6, 18, 6] snake_case_ = [96, 192, 384, 768] snake_case_ = 4.0 snake_case_ = 1E-6 snake_case_ = 0.9_5 elif size == "m48": snake_case_ = [8, 8, 24, 8] snake_case_ = [96, 192, 384, 768] snake_case_ = 4.0 snake_case_ = 1E-6 snake_case_ = 0.9_5 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor snake_case_ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image snake_case_ = prepare_img() snake_case_ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict snake_case_ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys snake_case_ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict snake_case_ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor snake_case_ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) snake_case_ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass snake_case_ = model(SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits # define expected logit slices for different models if size == "s12": snake_case_ = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": snake_case_ = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": snake_case_ = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": snake_case_ = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": snake_case_ = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
267
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" return x if y == 0 else greatest_common_divisor(SCREAMING_SNAKE_CASE , x % y ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" return (x * y) // greatest_common_divisor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE = 20 )-> int: """simple docstring""" snake_case_ = 1 for i in range(1 , n + 1 ): snake_case_ = lcm(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return g if __name__ == "__main__": print(f'''{solution() = }''')
267
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 42 class a_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" @register_to_config def __init__( self : int ,snake_case : int = 65536 ,snake_case : Optional[int] = None ,snake_case : int = 2 ,snake_case : int = 2 ,snake_case : int = 0 ,snake_case : str = "fourier" ,snake_case : bool = True ,snake_case : bool = False ,snake_case : float = 0.0 ,snake_case : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") ,snake_case : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") ,snake_case : Tuple[str] = "UNetMidBlock1D" ,snake_case : str = None ,snake_case : Tuple[int] = (32, 32, 64) ,snake_case : str = None ,snake_case : int = 8 ,snake_case : int = 1 ,snake_case : bool = False ,): super().__init__() SCREAMING_SNAKE_CASE =sample_size # time if time_embedding_type == "fourier": SCREAMING_SNAKE_CASE =GaussianFourierProjection( embedding_size=8 ,set_W_to_weight=snake_case ,log=snake_case ,flip_sin_to_cos=snake_case ) SCREAMING_SNAKE_CASE =2 * block_out_channels[0] elif time_embedding_type == "positional": SCREAMING_SNAKE_CASE =Timesteps( block_out_channels[0] ,flip_sin_to_cos=snake_case ,downscale_freq_shift=snake_case ) SCREAMING_SNAKE_CASE =block_out_channels[0] if use_timestep_embedding: SCREAMING_SNAKE_CASE =block_out_channels[0] * 4 SCREAMING_SNAKE_CASE =TimestepEmbedding( in_channels=snake_case ,time_embed_dim=snake_case ,act_fn=snake_case ,out_dim=block_out_channels[0] ,) SCREAMING_SNAKE_CASE =nn.ModuleList([] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =nn.ModuleList([] ) SCREAMING_SNAKE_CASE =None # down SCREAMING_SNAKE_CASE =in_channels for i, down_block_type in enumerate(snake_case ): SCREAMING_SNAKE_CASE =output_channel SCREAMING_SNAKE_CASE =block_out_channels[i] if i == 0: input_channel += extra_in_channels SCREAMING_SNAKE_CASE =i == len(snake_case ) - 1 SCREAMING_SNAKE_CASE =get_down_block( snake_case ,num_layers=snake_case ,in_channels=snake_case ,out_channels=snake_case ,temb_channels=block_out_channels[0] ,add_downsample=not is_final_block or downsample_each_block ,) self.down_blocks.append(snake_case ) # mid SCREAMING_SNAKE_CASE =get_mid_block( snake_case ,in_channels=block_out_channels[-1] ,mid_channels=block_out_channels[-1] ,out_channels=block_out_channels[-1] ,embed_dim=block_out_channels[0] ,num_layers=snake_case ,add_downsample=snake_case ,) # up SCREAMING_SNAKE_CASE =list(reversed(snake_case ) ) SCREAMING_SNAKE_CASE =reversed_block_out_channels[0] if out_block_type is None: SCREAMING_SNAKE_CASE =out_channels else: SCREAMING_SNAKE_CASE =block_out_channels[0] for i, up_block_type in enumerate(snake_case ): SCREAMING_SNAKE_CASE =output_channel SCREAMING_SNAKE_CASE =( reversed_block_out_channels[i + 1] if i < len(snake_case ) - 1 else final_upsample_channels ) SCREAMING_SNAKE_CASE =i == len(snake_case ) - 1 SCREAMING_SNAKE_CASE =get_up_block( snake_case ,num_layers=snake_case ,in_channels=snake_case ,out_channels=snake_case ,temb_channels=block_out_channels[0] ,add_upsample=not is_final_block ,) self.up_blocks.append(snake_case ) SCREAMING_SNAKE_CASE =output_channel # out SCREAMING_SNAKE_CASE =norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 ,32 ) SCREAMING_SNAKE_CASE =get_out_block( out_block_type=snake_case ,num_groups_out=snake_case ,embed_dim=block_out_channels[0] ,out_channels=snake_case ,act_fn=snake_case ,fc_dim=block_out_channels[-1] // 4 ,) def _lowerCAmelCase ( self : Any ,snake_case : torch.FloatTensor ,snake_case : Union[torch.Tensor, float, int] ,snake_case : bool = True ,): SCREAMING_SNAKE_CASE =timestep if not torch.is_tensor(snake_case ): SCREAMING_SNAKE_CASE =torch.tensor([timesteps] ,dtype=torch.long ,device=sample.device ) elif torch.is_tensor(snake_case ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE =timesteps[None].to(sample.device ) SCREAMING_SNAKE_CASE =self.time_proj(snake_case ) if self.config.use_timestep_embedding: SCREAMING_SNAKE_CASE =self.time_mlp(snake_case ) else: SCREAMING_SNAKE_CASE =timestep_embed[..., None] SCREAMING_SNAKE_CASE =timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) SCREAMING_SNAKE_CASE =timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down SCREAMING_SNAKE_CASE =() for downsample_block in self.down_blocks: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =downsample_block(hidden_states=snake_case ,temb=snake_case ) down_block_res_samples += res_samples # 3. mid if self.mid_block: SCREAMING_SNAKE_CASE =self.mid_block(snake_case ,snake_case ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): SCREAMING_SNAKE_CASE =down_block_res_samples[-1:] SCREAMING_SNAKE_CASE =down_block_res_samples[:-1] SCREAMING_SNAKE_CASE =upsample_block(snake_case ,res_hidden_states_tuple=snake_case ,temb=snake_case ) # 5. post-process if self.out_block: SCREAMING_SNAKE_CASE =self.out_block(snake_case ,snake_case ) if not return_dict: return (sample,) return UNetaDOutput(sample=snake_case )
334
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
1
from argparse import ArgumentParser from .env import EnvironmentCommand def lowercase_ ( ) -> int: """simple docstring""" snake_case = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) snake_case = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(A__ ) # Let's go snake_case = parser.parse_args() if not hasattr(A__ , "func" ): parser.print_help() exit(1 ) # Run snake_case = args.func(A__ ) service.run() if __name__ == "__main__": main()
137
from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=A_ ): UpperCAmelCase__ : Union[str, Any] = ["onnx"] def __init__(self : Tuple , *_A : Optional[int] , **_A : Any ) -> Dict: requires_backends(self , ["onnx"] ) @classmethod def UpperCAmelCase(cls : int , *_A : Dict , **_A : List[Any] ) -> Optional[Any]: requires_backends(cls , ["onnx"] ) @classmethod def UpperCAmelCase(cls : Dict , *_A : Tuple , **_A : Optional[Any] ) -> int: requires_backends(cls , ["onnx"] )
137
1
from __future__ import annotations from math import pi, sqrt def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
43
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase = "\\n Text data.\n Second line of data." lowercase = "file" @pytest.fixture(scope='session') def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / (FILE_PATH + '.zstd') snake_case_ = bytes(a_ , 'utf-8') with zstd.open(a_ , 'wb') as f: f.write(a_) return path @pytest.fixture def __UpperCAmelCase ( a_): with open(os.path.join(tmpfs.local_root_dir , a_) , 'w') as f: f.write(a_) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd']) def __UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_): snake_case_ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} snake_case_ = input_paths[compression_format] snake_case_ = tmp_path / 'cache' snake_case_ = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_) snake_case_ = cached_path(a_ , download_config=a_) with open(a_) as f: snake_case_ = f.read() with open(a_) as f: snake_case_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False]) @pytest.mark.parametrize('default_cache_dir' , [True, False]) def __UpperCAmelCase ( a_ , a_ , a_ , a_ , a_): snake_case_ = 'custom_cache' snake_case_ = 'custom_extracted_dir' snake_case_ = tmp_path / 'custom_extracted_path' if default_extracted: snake_case_ = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , a_) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(a_)) snake_case_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case_ = xz_file snake_case_ = ( DownloadConfig(extract_compressed_file=a_) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_) ) snake_case_ = cached_path(a_ , download_config=a_) assert Path(a_).parent.parts[-2:] == expected def __UpperCAmelCase ( a_): # absolute path snake_case_ = str(Path(a_).resolve()) assert cached_path(a_) == text_file # relative path snake_case_ = str(Path(a_).resolve().relative_to(Path(os.getcwd()))) assert cached_path(a_) == text_file def __UpperCAmelCase ( a_): # absolute path snake_case_ = str(tmp_path.resolve() / '__missing_file__.txt') with pytest.raises(a_): cached_path(a_) # relative path snake_case_ = './__missing_file__.txt' with pytest.raises(a_): cached_path(a_) def __UpperCAmelCase ( a_): snake_case_ = get_from_cache(f'''tmp://{tmpfs_file}''') with open(a_) as f: snake_case_ = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( ): with pytest.raises(a_): cached_path('https://huggingface.co') @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / 'file.html' with pytest.raises(a_): http_get('https://huggingface.co' , temp_file=a_) with pytest.raises(a_): http_head('https://huggingface.co') @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / 'file.html' with pytest.raises(a_): ftp_get('ftp://huggingface.co' , temp_file=a_) with pytest.raises(a_): ftp_head('ftp://huggingface.co') @patch('datasets.config.HF_DATASETS_OFFLINE' , a_) def __UpperCAmelCase ( a_): snake_case_ = tmp_path_factory.mktemp('data') / 'file.html' with pytest.raises(a_): fsspec_get('s3://huggingface.co' , temp_file=a_) with pytest.raises(a_): fsspec_head('s3://huggingface.co')
178
0
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : int = 1_0_0_0 ) -> int: A_ : int = 1, 1 A_ : Dict = 2 while True: A_ : List[Any] = 0 A_ : str = fa + fa A_ : str = fa, f index += 1 for _ in str(lowerCamelCase__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
356
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case__ ( lowerCamelCase__ : list[list[int]] ) -> list[list[int]]: A_ : str = [] for i in range(len(lowerCamelCase__ ) ): A_ : Optional[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A_ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A_ : List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase__ ) return next_generation def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[Image.Image]: A_ : List[Any] = [] for _ in range(lowerCamelCase__ ): # Create output image A_ : Optional[int] = Image.new('''RGB''' , (len(cells[0] ), len(lowerCamelCase__ )) ) A_ : int = img.load() # Save cells to image for x in range(len(lowerCamelCase__ ) ): for y in range(len(cells[0] ) ): A_ : Optional[Any] = 2_5_5 - cells[y][x] * 2_5_5 A_ : str = (colour, colour, colour) # Save image images.append(lowerCamelCase__ ) A_ : Optional[int] = new_generation(lowerCamelCase__ ) return images if __name__ == "__main__": snake_case__ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
4
0
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str]=99 , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : int=4 , _UpperCAmelCase : str=30 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=None , ): _A = parent _A = batch_size _A = decoder_seq_length # For common tests _A = self.decoder_seq_length _A = is_training _A = use_attention_mask _A = use_labels _A = vocab_size _A = d_model _A = d_model _A = decoder_layers _A = decoder_layers _A = decoder_ffn_dim _A = decoder_attention_heads _A = decoder_attention_heads _A = eos_token_id _A = bos_token_id _A = pad_token_id _A = decoder_start_token_id _A = use_cache _A = max_position_embeddings _A = None _A = decoder_seq_length _A = 2 _A = 1 def lowerCAmelCase_ ( self : str ): _A = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _A = None if self.use_attention_mask: _A = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _A = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , ): _A = True _A = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() _A = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _A = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) _A = model(_UpperCAmelCase ) _A = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) _A = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids _A = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _A = torch.cat([input_ids, next_tokens] , dim=-1 ) _A = model(_UpperCAmelCase )['last_hidden_state'] _A = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )['last_hidden_state'] # select random slice _A = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _A = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) def lowerCAmelCase_ ( self : Dict ): _A = self.prepare_config_and_inputs() _A , _A , _A , _A = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCAmelCase : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () UpperCAmelCase : Any = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = False def lowerCAmelCase_ ( self : Tuple ): _A = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase ) _A = ConfigTester(self , config_class=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] ): pass def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Dict ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : Optional[Any] ): pass
315
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
1
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _A ): '''simple docstring''' def _lowercase ( self , _lowercase ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as input_file: _lowerCAmelCase = re.compile(R"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) _lowerCAmelCase = input_file.read() _lowerCAmelCase = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , _lowercase ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as input_file: _lowerCAmelCase = re.compile(R"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) _lowerCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _lowerCAmelCase = regexp.finditer(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Path("""./datasets""" ) _lowerCAmelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}' ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = Path("""./datasets""" ) _lowerCAmelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.' )
363
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''convbert''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=768 , _lowercase=2 , _lowercase=9 , _lowercase=1 , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = embedding_size _lowerCAmelCase = head_ratio _lowerCAmelCase = conv_kernel_size _lowerCAmelCase = num_groups _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
229
0
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""google/mt5-small""" ) __SCREAMING_SNAKE_CASE = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids __SCREAMING_SNAKE_CASE = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids __SCREAMING_SNAKE_CASE = shift_tokens_right(__SCREAMING_SNAKE_CASE , model.config.pad_token_id , model.config.decoder_start_token_id ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE ).logits __SCREAMING_SNAKE_CASE = optax.softmax_cross_entropy(__SCREAMING_SNAKE_CASE , onehot(__SCREAMING_SNAKE_CASE , logits.shape[-1] ) ).mean() __SCREAMING_SNAKE_CASE = -(labels.shape[-1] * loss.item()) __SCREAMING_SNAKE_CASE = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
267
'''simple docstring''' class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = name __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = weight def __repr__( self : str ) -> Union[str, Any]: """simple docstring""" return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" return self.value def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" return self.name def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.weight def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" return self.value / self.weight def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] for i in range(len(a__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = sorted(a__ , key=a__ , reverse=a__ ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a__ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
267
1
from __future__ import annotations snake_case_ = 'Muhammad Umer Farooq' snake_case_ = 'MIT' snake_case_ = '1.0.0' snake_case_ = 'Muhammad Umer Farooq' snake_case_ = 'contact@muhammadumerfarooq.me' snake_case_ = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Dict , a__ : str ): """simple docstring""" super().__init__() __snake_case = [] __snake_case = domain def a (self : Tuple , a__ : str , a__ : list[tuple[str, str | None]] ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , a__ ) self.urls.append(a__ ) def lowerCamelCase__ ( snake_case_ : str ) -> str: return ".".join(get_sub_domain_name(snake_case_ ).split('''.''' )[-2:] ) def lowerCamelCase__ ( snake_case_ : str ) -> str: return parse.urlparse(snake_case_ ).netloc def lowerCamelCase__ ( snake_case_ : str = "https://github.com" ) -> list[str]: __snake_case = get_domain_name(snake_case_ ) # Initialize the parser __snake_case = Parser(snake_case_ ) try: # Open URL __snake_case = requests.get(snake_case_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(snake_case_ ) # Get the valid email. __snake_case = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(snake_case_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(snake_case_ ) if __name__ == "__main__": snake_case_ = emails_from_url('https://github.com') print(F'{len(emails)} emails found:') print('\n'.join(sorted(emails)))
238
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
238
1
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a_ : List[str] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. a_ : Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) a_ : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a_ : List[str] = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') a_ : Any = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = None # source code of `config_class` SCREAMING_SNAKE_CASE = inspect.getsource(_UpperCAmelCase) SCREAMING_SNAKE_CASE = _re_checkpoint.findall(_UpperCAmelCase) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/'): SCREAMING_SNAKE_CASE = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link SCREAMING_SNAKE_CASE = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: SCREAMING_SNAKE_CASE = ckpt_name break return checkpoint def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = [] for config_class in list(CONFIG_MAPPING.values()): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue SCREAMING_SNAKE_CASE = get_checkpoint_from_config_class(_UpperCAmelCase) SCREAMING_SNAKE_CASE = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_UpperCAmelCase) if len(_UpperCAmelCase) > 0: SCREAMING_SNAKE_CASE = '\n'.join(sorted(_UpperCAmelCase)) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''') if __name__ == "__main__": check_config_docstrings_have_checkpoints()
137
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _snake_case ( A__ ): _lowercase : int = '''Speech2TextFeatureExtractor''' _lowercase : List[Any] = '''Speech2TextTokenizer''' def __init__( self , a , a) -> str: super().__init__(a , a) SCREAMING_SNAKE_CASE = self.feature_extractor SCREAMING_SNAKE_CASE = False def __call__( self , *a , **a) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a , **a) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') SCREAMING_SNAKE_CASE = kwargs.pop('raw_speech') else: SCREAMING_SNAKE_CASE = kwargs.pop('audio' , a) SCREAMING_SNAKE_CASE = kwargs.pop('sampling_rate' , a) SCREAMING_SNAKE_CASE = kwargs.pop('text' , a) if len(a) > 0: SCREAMING_SNAKE_CASE = args[0] SCREAMING_SNAKE_CASE = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: SCREAMING_SNAKE_CASE = self.feature_extractor(a , *a , sampling_rate=a , **a) if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer(a , **a) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE = encodings['input_ids'] return inputs def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> Union[str, Any]: return self.tokenizer.batch_decode(*a , **a) def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[str]: return self.tokenizer.decode(*a , **a) @contextmanager def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer yield SCREAMING_SNAKE_CASE = self.feature_extractor SCREAMING_SNAKE_CASE = False
137
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase : ClassVar[Features] = Features({'text': Value('string' )} ) lowercase : ClassVar[Features] = Features({'labels': ClassLabel} ) lowercase : str = "text" lowercase : str = "labels" def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __UpperCamelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __UpperCamelCase : int = copy.deepcopy(self ) __UpperCamelCase : List[Any] = self.label_schema.copy() __UpperCamelCase : Union[str, Any] = features[self.label_column] __UpperCamelCase : Optional[Any] = label_schema return task_template @property def __lowerCamelCase ( self ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
365
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Optional[Any] = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[str] = 'marian' lowercase : int = ['past_key_values'] lowercase : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCamelCase=5_81_01 , __UpperCamelCase=None , __UpperCamelCase=10_24 , __UpperCamelCase=12 , __UpperCamelCase=40_96 , __UpperCamelCase=16 , __UpperCamelCase=12 , __UpperCamelCase=40_96 , __UpperCamelCase=16 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="gelu" , __UpperCamelCase=10_24 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=5_81_00 , __UpperCamelCase=False , __UpperCamelCase=5_81_00 , __UpperCamelCase=0 , __UpperCamelCase=0 , __UpperCamelCase=True , **__UpperCamelCase , ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Any = vocab_size __UpperCamelCase : str = decoder_vocab_size or vocab_size __UpperCamelCase : Any = max_position_embeddings __UpperCamelCase : List[Any] = d_model __UpperCamelCase : Optional[int] = encoder_ffn_dim __UpperCamelCase : Union[str, Any] = encoder_layers __UpperCamelCase : Tuple = encoder_attention_heads __UpperCamelCase : Dict = decoder_ffn_dim __UpperCamelCase : Optional[Any] = decoder_layers __UpperCamelCase : Optional[int] = decoder_attention_heads __UpperCamelCase : Union[str, Any] = dropout __UpperCamelCase : List[str] = attention_dropout __UpperCamelCase : int = activation_dropout __UpperCamelCase : Tuple = activation_function __UpperCamelCase : List[str] = init_std __UpperCamelCase : int = encoder_layerdrop __UpperCamelCase : List[Any] = decoder_layerdrop __UpperCamelCase : Dict = use_cache __UpperCamelCase : str = encoder_layers __UpperCamelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase : List[str] = share_encoder_decoder_embeddings super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , forced_eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : Union[str, Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __UpperCamelCase : str = {0: "batch"} __UpperCamelCase : Optional[int] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __UpperCamelCase : Optional[Any] = {0: "batch", 1: "decoder_sequence"} __UpperCamelCase : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __UpperCamelCase : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __UpperCamelCase , __UpperCamelCase : Any = self.num_layers for i in range(__UpperCamelCase ): __UpperCamelCase : Any = {0: "batch", 2: "past_sequence + sequence"} __UpperCamelCase : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: __UpperCamelCase : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : List[Any] = super().outputs else: __UpperCamelCase : Optional[Any] = super(__UpperCamelCase , self ).outputs if self.use_past: __UpperCamelCase , __UpperCamelCase : int = self.num_layers for i in range(__UpperCamelCase ): __UpperCamelCase : List[str] = {0: "batch", 2: "past_sequence + sequence"} __UpperCamelCase : str = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : str = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Generate decoder inputs __UpperCamelCase : Any = seq_length if not self.use_past else 1 __UpperCamelCase : int = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __UpperCamelCase : Any = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __UpperCamelCase : List[Any] = dict(**__UpperCamelCase , **__UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCamelCase , __UpperCamelCase : Dict = common_inputs["input_ids"].shape __UpperCamelCase : Dict = common_inputs["decoder_input_ids"].shape[1] __UpperCamelCase , __UpperCamelCase : Any = self.num_attention_heads __UpperCamelCase : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase : List[str] = decoder_seq_length + 3 __UpperCamelCase : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCamelCase : List[str] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase )] , dim=1 ) __UpperCamelCase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCamelCase , __UpperCamelCase : List[str] = self.num_layers __UpperCamelCase : Optional[int] = min(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase : Optional[int] = max(__UpperCamelCase , __UpperCamelCase ) - min_num_layers __UpperCamelCase : Dict = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__UpperCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), ) ) # TODO: test this. __UpperCamelCase : Any = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__UpperCamelCase , __UpperCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : int = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCamelCase , __UpperCamelCase : str = common_inputs["input_ids"].shape # Not using the same length for past_key_values __UpperCamelCase : int = seqlen + 2 __UpperCamelCase , __UpperCamelCase : str = self.num_layers __UpperCamelCase , __UpperCamelCase : List[str] = self.num_attention_heads __UpperCamelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase : Any = common_inputs["attention_mask"].dtype __UpperCamelCase : Optional[Any] = torch.cat( [common_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) __UpperCamelCase : int = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(__UpperCamelCase ) ] return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : Any = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCamelCase : List[Any] = tokenizer.num_special_tokens_to_add(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence __UpperCamelCase : Tuple = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __UpperCamelCase : Tuple = dict(tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase ) ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) else: __UpperCamelCase : int = self._generate_dummy_inputs_for_causal_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : List[Any] = super()._flatten_past_key_values_(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __UpperCamelCase : str = super(__UpperCamelCase , self )._flatten_past_key_values_( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @property def __lowerCamelCase ( self ) -> float: '''simple docstring''' return 1E-4
171
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __A : Any = logging.get_logger(__name__) __A : List[Any] = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class _a ( __lowercase): """simple docstring""" UpperCamelCase__ = '''dpt''' def __init__( self : int , __UpperCamelCase : List[Any]=7_6_8 , __UpperCamelCase : Optional[Any]=1_2 , __UpperCamelCase : str=1_2 , __UpperCamelCase : List[str]=3_0_7_2 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : List[Any]=1e-12 , __UpperCamelCase : List[str]=3_8_4 , __UpperCamelCase : int=1_6 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : List[str]=False , __UpperCamelCase : str=True , __UpperCamelCase : str=[2, 5, 8, 1_1] , __UpperCamelCase : Union[str, Any]="project" , __UpperCamelCase : List[Any]=[4, 2, 1, 0.5] , __UpperCamelCase : List[Any]=[9_6, 1_9_2, 3_8_4, 7_6_8] , __UpperCamelCase : Any=2_5_6 , __UpperCamelCase : Optional[Any]=-1 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Dict=0.4 , __UpperCamelCase : Any=2_5_5 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Dict=[1, 1_0_2_4, 2_4, 2_4] , __UpperCamelCase : Any=[0, 1] , __UpperCamelCase : Dict=None , **__UpperCamelCase : str , )->int: super().__init__(**UpperCAmelCase__ ) _UpperCAmelCase = hidden_size _UpperCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) _UpperCAmelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } _UpperCAmelCase = BitConfig(**UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): logger.info('''Initializing the config with a `BiT` backbone.''' ) _UpperCAmelCase = BitConfig(**UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _UpperCAmelCase = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) _UpperCAmelCase = backbone_featmap_shape _UpperCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = [] _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias _UpperCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) _UpperCAmelCase = readout_type _UpperCAmelCase = reassemble_factors _UpperCAmelCase = neck_hidden_sizes _UpperCAmelCase = fusion_hidden_size _UpperCAmelCase = head_in_index _UpperCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = semantic_loss_ignore_index _UpperCAmelCase = semantic_classifier_dropout def lowercase__ ( self : str )->Dict: _UpperCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
260
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case =random.Random() if is_torch_available(): import torch def a_ ( lowerCamelCase : Dict , lowerCamelCase : Dict=1.0 , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : int=4_0_0 , UpperCAmelCase__ : int=2_0_0_0 , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Tuple=1_6_0_0_0 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Union[str, Any]=False ) -> Optional[Any]: def _flatten(UpperCAmelCase__ : int ): return list(itertools.chain(*UpperCAmelCase__ ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : Dict = ASTFeatureExtractor def __UpperCAmelCase ( self : str ) -> Optional[int]: lowerCAmelCase = ASTFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(UpperCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(UpperCAmelCase__ ) lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(UpperCAmelCase__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> Tuple: from datasets import load_dataset lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def __UpperCAmelCase ( self : str ) -> Optional[Any]: # fmt: off lowerCAmelCase = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = ASTFeatureExtractor() lowerCAmelCase = feature_extractor(UpperCAmelCase__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , UpperCAmelCase__ , atol=1E-4 ) )
4
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Dict = 'hf-internal-testing/tiny-random-t5' UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Any = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : int = tokenizer('This is me' , return_tensors='pt' ) UpperCAmelCase_ : Union[str, Any] = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCAmelCase_ : Tuple = model.generate(**_UpperCamelCase ) UpperCAmelCase_ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCAmelCase_ : Any = model_reloaded.generate(**_UpperCamelCase ) self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase ) ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[Any] = 'hf-internal-testing/tiny-random-t5' UpperCAmelCase_ : Any = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : str = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_UpperCamelCase ): model.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = model.reverse_bettertransformer() model.save_pretrained(_UpperCamelCase )
350
from __future__ import annotations def lowercase__ ( __snake_case : list[int] , __snake_case : int ): '''simple docstring''' if len(__snake_case ) < k or k < 0: raise ValueError('Invalid Input' ) UpperCAmelCase_ : int = sum(array[:k] ) for i in range(len(__snake_case ) - k ): UpperCAmelCase_ : List[Any] = current_sum - array[i] + array[i + k] UpperCAmelCase_ : List[Any] = max(__snake_case , __snake_case ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __UpperCAmelCase = [randint(-1000, 1000) for i in range(100)] __UpperCAmelCase = randint(0, 110) print(F'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
145
0
import sys from collections import defaultdict class A__ : def __init__( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = [] def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.node_position[vertex] def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = pos def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase : List[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase : Any = 2 * start + 1 else: UpperCamelCase : str = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase , UpperCamelCase : str = heap[smallest_child], positions[smallest_child] UpperCamelCase , UpperCamelCase : Union[str, Any] = ( heap[start], positions[start], ) UpperCamelCase , UpperCamelCase : Optional[Any] = temp, tempa UpperCamelCase : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , A_ ) self.top_to_bottom(A_ , A_ , A_ , A_ ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Any = position[index] while index != 0: UpperCamelCase : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase : Dict = heap[parent] UpperCamelCase : int = position[parent] self.set_position(position[parent] , A_ ) else: UpperCamelCase : Optional[int] = val UpperCamelCase : Tuple = temp self.set_position(A_ , A_ ) break UpperCamelCase : List[Any] = parent else: UpperCamelCase : Dict = val UpperCamelCase : Tuple = temp self.set_position(A_ , 0 ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Tuple = len(A_ ) // 2 - 1 for i in range(A_ , -1 , -1 ): self.top_to_bottom(A_ , A_ , len(A_ ) , A_ ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = positions[0] UpperCamelCase : Any = sys.maxsize self.top_to_bottom(A_ , 0 , len(A_ ) , A_ ) return temp def A_ ( _lowerCAmelCase ) -> Any: UpperCamelCase : List[Any] = Heap() UpperCamelCase : Union[str, Any] = [0] * len(_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = [-1] * len(_lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase : Tuple = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase : Optional[Any] = [] for vertex in range(len(_lowerCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCAmelCase ) heap.node_position.append(_lowerCAmelCase ) UpperCamelCase : int = [] UpperCamelCase : Any = 1 UpperCamelCase : List[Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase : List[Any] = 0 UpperCamelCase : int = distance heap.heapify(_lowerCAmelCase , _lowerCAmelCase ) for _ in range(1 , len(_lowerCAmelCase ) ): UpperCamelCase : str = heap.delete_minimum(_lowerCAmelCase , _lowerCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase : Tuple = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCAmelCase )] ): UpperCamelCase : Any = distance heap.bottom_to_top( _lowerCAmelCase , heap.get_position(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Union[str, Any] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __lowerCamelCase : Any = int(input("""Enter number of edges: """).strip()) __lowerCamelCase : Optional[Any] = defaultdict(list) for _ in range(edges_number): __lowerCamelCase : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
52
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase_ ( snake_case_ : Any ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def UpperCamelCase_ ( snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) __lowerCAmelCase = emb.weight.data return lin_layer def UpperCamelCase_ ( snake_case_ : Any ) -> Any: '''simple docstring''' __lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) __lowerCAmelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] __lowerCAmelCase = mam_aaa["""model"""] remove_ignore_keys_(snake_case_ ) __lowerCAmelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] __lowerCAmelCase = MaMaaaConfig( vocab_size=snake_case_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) __lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""] __lowerCAmelCase = MaMaaaForConditionalGeneration(snake_case_ ) model.model.load_state_dict(snake_case_ , strict=snake_case_ ) __lowerCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : str = parser.parse_args() _A : Optional[int] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
229
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Any =logging.get_logger(__name__) A__ : Optional[Any] ={ '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCAmelCase ( snake_case_ ): _lowercase: Tuple = '''pegasus''' _lowercase: Optional[Any] = ['''past_key_values'''] _lowercase: Optional[int] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Any , __snake_case : Dict=5_02_65 , __snake_case : Dict=10_24 , __snake_case : str=12 , __snake_case : Tuple=40_96 , __snake_case : str=16 , __snake_case : int=12 , __snake_case : Optional[int]=40_96 , __snake_case : Tuple=16 , __snake_case : str=0.0 , __snake_case : Tuple=0.0 , __snake_case : List[str]=True , __snake_case : int=True , __snake_case : Optional[int]="gelu" , __snake_case : int=10_24 , __snake_case : str=0.1 , __snake_case : Union[str, Any]=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : List[str]=0.02 , __snake_case : str=0 , __snake_case : int=False , __snake_case : Optional[Any]=0 , __snake_case : Tuple=1 , __snake_case : str=1 , **__snake_case : List[str] , ) -> List[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) @property def lowercase__ ( self : List[str] ) -> int: return self.encoder_attention_heads @property def lowercase__ ( self : Dict ) -> int: return self.d_model
220
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(snake_case_ ) , '''Tatoeba directory does not exist.''' ) class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : int ) -> Any: _lowerCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=__snake_case ) @slow def lowercase__ ( self : Dict ) -> int: self.resolver.convert_models(["""heb-eng"""] ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__snake_case ) assert mmeta["long_pair"] == "heb-eng"
220
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _lowercase : List[Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Any, *lowerCamelCase : List[str], **lowerCamelCase : str )-> None: warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''', lowerCamelCase, ) super().__init__(*lowerCamelCase, **lowerCamelCase )
238
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __get__( self : Tuple, lowerCamelCase : List[str], lowerCamelCase : Optional[int]=None )-> List[str]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) lowerCamelCase__ : List[str] ='''__cached_''' + self.fget.__name__ lowerCamelCase__ : List[Any] =getattr(lowerCamelCase, lowerCamelCase, lowerCamelCase ) if cached is None: lowerCamelCase__ : Optional[int] =self.fget(lowerCamelCase ) setattr(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return cached def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Optional[Any] =val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if is_torch_fx_proxy(__lowerCamelCase ): return True if is_torch_available(): import torch if isinstance(__lowerCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__lowerCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__lowerCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(__lowerCamelCase , np.ndarray ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" return isinstance(__lowerCamelCase , np.ndarray ) def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" return _is_numpy(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Any ): """simple docstring""" import torch return isinstance(__lowerCamelCase , torch.Tensor ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" import torch return isinstance(__lowerCamelCase , torch.device ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" import torch if isinstance(__lowerCamelCase , __lowerCamelCase ): if hasattr(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Tuple =getattr(__lowerCamelCase , __lowerCamelCase ) else: return False return isinstance(__lowerCamelCase , torch.dtype ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" import tensorflow as tf return isinstance(__lowerCamelCase , tf.Tensor ) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__lowerCamelCase , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(__lowerCamelCase ) return type(__lowerCamelCase ) == tf.Tensor def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(__lowerCamelCase , jnp.ndarray ) def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" return False if not is_flax_available() else _is_jax(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_py_obj(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return [to_py_obj(__lowerCamelCase ) for o in obj] elif is_tf_tensor(__lowerCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ).tolist() elif isinstance(__lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if isinstance(__lowerCamelCase , (dict, UserDict) ): return {k: to_numpy(__lowerCamelCase ) for k, v in obj.items()} elif isinstance(__lowerCamelCase , (list, tuple) ): return np.array(__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): return obj.numpy() elif is_torch_tensor(__lowerCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__lowerCamelCase ): return np.asarray(__lowerCamelCase ) else: return obj class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def snake_case ( self : int )-> Optional[int]: lowerCamelCase__ : Union[str, Any] =fields(self ) # Safety and consistency checks if not len(lowerCamelCase ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) lowerCamelCase__ : List[Any] =getattr(self, class_fields[0].name ) lowerCamelCase__ : Union[str, Any] =all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowerCamelCase ): if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Optional[int] =first_field.items() lowerCamelCase__ : Union[str, Any] =True else: try: lowerCamelCase__ : int =iter(lowerCamelCase ) lowerCamelCase__ : List[Any] =True except TypeError: lowerCamelCase__ : List[Any] =False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowerCamelCase ): if ( not isinstance(lowerCamelCase, (list, tuple) ) or not len(lowerCamelCase ) == 2 or not isinstance(element[0], lowerCamelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase__ : Optional[int] =first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: lowerCamelCase__ : str =element[1] elif first_field is not None: lowerCamelCase__ : Dict =first_field else: for field in class_fields: lowerCamelCase__ : Union[str, Any] =getattr(self, field.name ) if v is not None: lowerCamelCase__ : Optional[int] =v def __delitem__( self : int, *lowerCamelCase : List[str], **lowerCamelCase : Optional[int] )-> str: raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def snake_case ( self : Optional[int], *lowerCamelCase : int, **lowerCamelCase : List[str] )-> Optional[Any]: raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def snake_case ( self : Dict, *lowerCamelCase : Optional[int], **lowerCamelCase : Optional[Any] )-> int: raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def snake_case ( self : List[Any], *lowerCamelCase : Tuple, **lowerCamelCase : List[Any] )-> Optional[int]: raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : Optional[Any], lowerCamelCase : Optional[int] )-> List[Any]: if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Union[str, Any] =dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : List[str] )-> Dict: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowerCamelCase, lowerCamelCase ) super().__setattr__(lowerCamelCase, lowerCamelCase ) def __setitem__( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : int )-> List[Any]: # Will raise a KeyException if needed super().__setitem__(lowerCamelCase, lowerCamelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowerCamelCase, lowerCamelCase ) def snake_case ( self : str )-> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @classmethod def snake_case ( cls : Optional[Any], lowerCamelCase : int )-> str: raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'longest' _a = 'max_length' _a = 'do_not_pad' class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'pt' _a = 'tf' _a = 'np' _a = 'jax' class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int], lowerCamelCase : List[ContextManager] )-> str: lowerCamelCase__ : List[str] =context_managers lowerCamelCase__ : int =ExitStack() def __enter__( self : List[str] )-> Union[str, Any]: for context_manager in self.context_managers: self.stack.enter_context(lowerCamelCase ) def __exit__( self : Tuple, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Tuple )-> List[Any]: self.stack.__exit__(*lowerCamelCase, **lowerCamelCase ) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Tuple =infer_framework(__lowerCamelCase ) if framework == "tf": lowerCamelCase__ : Any =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Tuple =inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : List[str] =inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Optional[Any] =model_class.__name__ lowerCamelCase__ : Tuple =infer_framework(__lowerCamelCase ) if framework == "tf": lowerCamelCase__ : int =inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Any =inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : Union[str, Any] =inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def snake_case__ ( __lowerCamelCase : MutableMapping , __lowerCamelCase : str = "" , __lowerCamelCase : str = "." ): """simple docstring""" def _flatten_dict(__lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int]="" , __lowerCamelCase : str="." ): for k, v in d.items(): lowerCamelCase__ : List[str] =str(__lowerCamelCase ) + delimiter + str(__lowerCamelCase ) if parent_key else k if v and isinstance(__lowerCamelCase , __lowerCamelCase ): yield from flatten_dict(__lowerCamelCase , __lowerCamelCase , delimiter=__lowerCamelCase ).items() else: yield key, v return dict(_flatten_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) @contextmanager def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : bool = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=None ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.transpose(__lowerCamelCase , axes=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.T if axes is None else array.permute(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.transpose(__lowerCamelCase , perm=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.transpose(__lowerCamelCase , axes=__lowerCamelCase ) else: raise ValueError(f'''Type not supported for transpose: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.reshape(*__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.reshape(__lowerCamelCase , __lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.reshape(__lowerCamelCase , __lowerCamelCase ) else: raise ValueError(f'''Type not supported for reshape: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=None ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.squeeze(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f'''Type not supported for squeeze: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.expand_dims(__lowerCamelCase , __lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.unsqueeze(dim=__lowerCamelCase ) elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return jnp.expand_dims(__lowerCamelCase , axis=__lowerCamelCase ) else: raise ValueError(f'''Type not supported for expand_dims: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if is_numpy_array(__lowerCamelCase ): return np.size(__lowerCamelCase ) elif is_torch_tensor(__lowerCamelCase ): return array.numel() elif is_tf_tensor(__lowerCamelCase ): import tensorflow as tf return tf.size(__lowerCamelCase ) elif is_jax_tensor(__lowerCamelCase ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(__lowerCamelCase )}.''' ) def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): """simple docstring""" for key, value in auto_map.items(): if isinstance(__lowerCamelCase , (tuple, list) ): lowerCamelCase__ : Optional[int] =[f'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase__ : Tuple =f'''{repo_id}--{value}''' return auto_map def snake_case__ ( __lowerCamelCase : Optional[int] ): """simple docstring""" for base_class in inspect.getmro(__lowerCamelCase ): lowerCamelCase__ : Tuple =base_class.__module__ lowerCamelCase__ : Tuple =base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
238
1
'''simple docstring''' import logging from transformers import PretrainedConfig lowerCAmelCase: str = logging.getLogger(__name__) lowerCAmelCase: Optional[Any] = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class a__( lowerCamelCase__ ): lowercase__ = """bertabs""" def __init__( self : List[str] , __snake_case : Any=3_05_22 , __snake_case : Any=5_12 , __snake_case : Optional[Any]=6 , __snake_case : Union[str, Any]=5_12 , __snake_case : int=8 , __snake_case : Any=5_12 , __snake_case : Any=0.2 , __snake_case : List[Any]=6 , __snake_case : Optional[int]=7_68 , __snake_case : int=8 , __snake_case : Union[str, Any]=20_48 , __snake_case : Dict=0.2 , **__snake_case : Any , ): super().__init__(**__snake_case ) a : List[str] = vocab_size a : List[str] = max_pos a : str = enc_layers a : Optional[int] = enc_hidden_size a : Optional[int] = enc_heads a : List[str] = enc_ff_size a : Optional[Any] = enc_dropout a : Dict = dec_layers a : List[str] = dec_hidden_size a : str = dec_heads a : str = dec_ff_size a : Any = dec_dropout
96
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[int] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ (lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = KandinskyVaaInpaintPipeline SCREAMING_SNAKE_CASE__ : int = ["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] SCREAMING_SNAKE_CASE__ : Dict = [ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] SCREAMING_SNAKE_CASE__ : Tuple = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE__ : Tuple = False @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ): """simple docstring""" return 100 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : str = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase_ : Optional[Any] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : str = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.dummy_unet UpperCAmelCase_ : Optional[int] = self.dummy_movq UpperCAmelCase_ : Tuple = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_lowerCamelCase , ) UpperCAmelCase_ : List[str] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" UpperCAmelCase_ : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image UpperCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) UpperCAmelCase_ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Any = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert("RGB" ).resize((256, 256) ) # create mask UpperCAmelCase_ : Optional[Any] = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase_ : Dict = 0 if str(_lowerCamelCase ).startswith("mps" ): UpperCAmelCase_ : int = torch.manual_seed(_lowerCamelCase ) else: UpperCAmelCase_ : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) UpperCAmelCase_ : str = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = """cpu""" UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_lowerCamelCase ) UpperCAmelCase_ : str = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCAmelCase_ : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) UpperCAmelCase_ : Optional[Any] = output.images UpperCAmelCase_ : Optional[Any] = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] UpperCAmelCase_ : str = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" ) UpperCAmelCase_ : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ : Dict = np.ones((768, 768) , dtype=np.floataa ) UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : str = """a hat""" UpperCAmelCase_ : str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint" , torch_dtype=torch.floataa ) UpperCAmelCase_ : Union[str, Any] = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) UpperCAmelCase_ : str = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ : int = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ : str = pipeline( image=_lowerCamelCase , mask_image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) UpperCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
61
"""simple docstring""" import numpy as np def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1E-12 , lowerCAmelCase = 1_00 , ) -> tuple[float, np.ndarray]: assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(lowerCAmelCase )[0] == np.shape(lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCAmelCase ) == np.iscomplexobj(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = np.iscomplexobj(lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : Optional[int] = 1E12 while not convergence: # Multiple matrix by the vector. UpperCAmelCase__ : int = np.dot(lowerCAmelCase , lowerCAmelCase ) # Normalize the resulting output vector. UpperCAmelCase__ : Optional[Any] = w / np.linalg.norm(lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) UpperCAmelCase__ : List[Any] = vector.conj().T if is_complex else vector.T UpperCAmelCase__ : Optional[Any] = np.dot(lowerCAmelCase , np.dot(lowerCAmelCase , lowerCAmelCase ) ) # Check convergence. UpperCAmelCase__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[Any] = lambda_ if is_complex: UpperCAmelCase__ : Any = np.real(lambda_ ) return lambda_, vector def a__ ( ) -> None: UpperCAmelCase__ : Tuple = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) UpperCAmelCase__ : int = np.array([41, 4, 20] ) UpperCAmelCase__ : str = real_input_matrix.astype(np.complexaaa ) UpperCAmelCase__ : Any = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T UpperCAmelCase__ : Dict = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": UpperCAmelCase__ : List[str] = real_input_matrix UpperCAmelCase__ : Any = real_vector elif problem_type == "complex": UpperCAmelCase__ : List[Any] = complex_input_matrix UpperCAmelCase__ : int = complex_vector # Our implementation. UpperCAmelCase__ , UpperCAmelCase__ : int = power_iteration(lowerCAmelCase , lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). UpperCAmelCase__ , UpperCAmelCase__ : List[str] = np.linalg.eigh(lowerCAmelCase ) # Last eigenvalue is the maximum one. UpperCAmelCase__ : str = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. UpperCAmelCase__ : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCAmelCase ) - np.abs(lowerCAmelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
171
0
import numpy class lowercase__ : def __init__( self : Optional[int] , UpperCamelCase__ : numpy.ndarray , UpperCamelCase__ : numpy.ndarray ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. SCREAMING_SNAKE_CASE : Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. SCREAMING_SNAKE_CASE : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. SCREAMING_SNAKE_CASE : Union[str, Any] = numpy.random.rand(3 , 1 ) # Real output values provided. SCREAMING_SNAKE_CASE : Tuple = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. SCREAMING_SNAKE_CASE : Optional[Any] = numpy.zeros(output_array.shape ) def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. SCREAMING_SNAKE_CASE : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. SCREAMING_SNAKE_CASE : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) SCREAMING_SNAKE_CASE : List[str] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) SCREAMING_SNAKE_CASE : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __A ( self : Union[str, Any] , UpperCamelCase__ : numpy.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : bool ): '''simple docstring''' for iteration in range(1 , iterations + 1 ): SCREAMING_SNAKE_CASE : int = self.feedforward() self.back_propagation() if give_loss: SCREAMING_SNAKE_CASE : Dict = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def __A ( self : str , UpperCamelCase__ : numpy.ndarray ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = input_arr SCREAMING_SNAKE_CASE : int = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) SCREAMING_SNAKE_CASE : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def A ( _lowercase ): return 1 / (1 + numpy.exp(-value )) def A ( _lowercase ): return (value) * (1 - (value)) def A ( ): SCREAMING_SNAKE_CASE : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. SCREAMING_SNAKE_CASE : Optional[int] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. SCREAMING_SNAKE_CASE : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
258
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase__ : def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]="resnet50" , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : int=True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : Union[str, Any] = out_indices if out_indices is not None else [4] SCREAMING_SNAKE_CASE : List[Any] = stage_names SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : Optional[int] = backbone SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Dict = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : List[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = is_training def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values def __A ( self : List[Any] ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __A ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TimmBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(UpperCamelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = (TimmBackbone,) if is_torch_available() else () UpperCamelCase_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TimmBackboneModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''resnet18''' SCREAMING_SNAKE_CASE : str = '''microsoft/resnet-18''' SCREAMING_SNAKE_CASE : Dict = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = AutoBackbone.from_pretrained(UpperCamelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) SCREAMING_SNAKE_CASE : List[str] = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ , out_indices=[1, 2, 3] ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoBackbone.from_pretrained(UpperCamelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A ( self : Any ): '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self : int ): '''simple docstring''' pass def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Any = self.has_attentions # no need to test all models as different heads yield the same functionality SCREAMING_SNAKE_CASE : Any = self.all_model_classes[0] SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = outputs[0][-1] # Encoder-/Decoder-only models SCREAMING_SNAKE_CASE : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: SCREAMING_SNAKE_CASE : Any = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCamelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : int = model(**UpperCamelCase__ )
258
1
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase_ : List[str] = HfApi() lowerCAmelCase_ : str = {} # fmt: off lowerCAmelCase_ : Any = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) lowerCAmelCase_ : List[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) lowerCAmelCase_ : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) lowerCAmelCase_ : List[Any] = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) lowerCAmelCase_ : Tuple = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) lowerCAmelCase_ : List[str] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) lowerCAmelCase_ : Optional[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) lowerCAmelCase_ : Optional[Any] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) lowerCAmelCase_ : Optional[int] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) lowerCAmelCase_ : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) lowerCAmelCase_ : Tuple = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) lowerCAmelCase_ : str = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) lowerCAmelCase_ : int = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) lowerCAmelCase_ : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) lowerCAmelCase_ : List[str] = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on lowerCAmelCase_ : Any = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase_ : Union[str, Any] = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): lowerCAmelCase_ : Dict = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: lowerCAmelCase_ : int = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase_ : Optional[int] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase_ : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
63
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = '''bridgetower_vision_model''' def __init__( self : int , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Dict=1_6 , lowerCAmelCase__ : int=2_8_8 , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : int=1e-05 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : int=True , lowerCAmelCase__ : int=False , **lowerCAmelCase__ : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : str = image_size _UpperCAmelCase : List[Any] = initializer_factor _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Optional[Any] = stop_gradient _UpperCAmelCase : List[str] = share_layernorm _UpperCAmelCase : List[str] = remove_last_layer @classmethod def _lowerCAmelCase ( cls : Optional[Any] , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Any ) -> "PretrainedConfig": """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Any = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get("model_type" ) == "bridgetower": _UpperCAmelCase : Optional[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = '''bridgetower_text_model''' def __init__( self : int , lowerCAmelCase__ : Optional[int]=5_0_2_6_5 , lowerCAmelCase__ : Tuple=7_6_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Optional[Any]=3_0_7_2 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : int=5_1_4 , lowerCAmelCase__ : List[Any]=1 , lowerCAmelCase__ : Any=1e-05 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : List[Any]="absolute" , lowerCAmelCase__ : Optional[Any]=True , **lowerCAmelCase__ : Any , ) -> List[Any]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : int = initializer_factor _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Optional[Any] = position_embedding_type _UpperCAmelCase : Optional[int] = use_cache _UpperCAmelCase : Optional[Any] = pad_token_id _UpperCAmelCase : Union[str, Any] = bos_token_id _UpperCAmelCase : int = eos_token_id @classmethod def _lowerCAmelCase ( cls : Tuple , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Dict ) -> "PretrainedConfig": """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : str = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get("model_type" ) == "bridgetower": _UpperCAmelCase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Any = '''bridgetower''' def __init__( self : List[str] , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : Dict=7_6_8 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : List[str]=1e-05 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="add" , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Optional[int]=6 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Optional[Any] , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = kwargs.pop("text_config_dict" , lowerCAmelCase__ ) _UpperCAmelCase : int = kwargs.pop("vision_config_dict" , lowerCAmelCase__ ) super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = share_cross_modal_transformer_layers _UpperCAmelCase : int = hidden_act _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Tuple = initializer_factor _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Tuple = share_link_tower_layers _UpperCAmelCase : List[str] = link_tower_type _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Optional[int] = tie_word_embeddings _UpperCAmelCase : int = init_layernorm_from_vision_encoder if text_config is None: _UpperCAmelCase : str = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: _UpperCAmelCase : Union[str, Any] = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) _UpperCAmelCase : str = BridgeTowerTextConfig(**lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = BridgeTowerVisionConfig(**lowerCAmelCase__ ) @classmethod def _lowerCAmelCase ( cls : Union[str, Any] , lowerCAmelCase__ : BridgeTowerTextConfig , lowerCAmelCase__ : BridgeTowerVisionConfig , **lowerCAmelCase__ : Union[str, Any] ) -> Any: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Union[str, Any] = self.text_config.to_dict() _UpperCAmelCase : Union[str, Any] = self.vision_config.to_dict() _UpperCAmelCase : List[str] = self.__class__.model_type return output
145
0
'''simple docstring''' from collections.abc import Callable class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase = None ) -> None: # Stores actual heap items. lowercase__ : list = [] # Stores indexes of each item for supporting updates and deletion. lowercase__ : dict = {} # Stores current size of heap. lowercase__ : int = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowercase__ : Tuple = key or (lambda __lowerCAmelCase : x) def _lowerCAmelCase( self , __lowerCAmelCase ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def _lowerCAmelCase( self , __lowerCAmelCase ) -> int | None: lowercase__ : Tuple = int(2 * i + 1 ) return left if 0 < left < self.size else None def _lowerCAmelCase( self , __lowerCAmelCase ) -> int | None: lowercase__ : Dict = int(2 * i + 2 ) return right if 0 < right < self.size else None def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: lowercase__ : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowercase__ : Optional[int] = self.arr[j], self.arr[i] def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> bool: return self.arr[i][1] < self.arr[j][1] def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: lowercase__ : int = self._left(__lowerCAmelCase ) lowercase__ : List[str] = self._right(__lowerCAmelCase ) lowercase__ : List[Any] = i if left is not None and not self._cmp(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : str = left if right is not None and not self._cmp(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Dict = right return valid_parent def _lowerCAmelCase( self , __lowerCAmelCase ) -> None: lowercase__ : Tuple = self._parent(__lowerCAmelCase ) while parent is not None and not self._cmp(__lowerCAmelCase , __lowerCAmelCase ): self._swap(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Dict = parent, self._parent(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> None: lowercase__ : List[Any] = self._get_valid_parent(__lowerCAmelCase ) while valid_parent != index: self._swap(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : str = valid_parent, self._get_valid_parent(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: if item not in self.pos_map: return lowercase__ : List[Any] = self.pos_map[item] lowercase__ : Tuple = [item, self.key(__lowerCAmelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__lowerCAmelCase ) self._heapify_down(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> None: if item not in self.pos_map: return lowercase__ : Optional[int] = self.pos_map[item] del self.pos_map[item] lowercase__ : Dict = self.arr[self.size - 1] lowercase__ : str = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__lowerCAmelCase ) self._heapify_down(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> None: lowercase__ : int = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__lowerCAmelCase )] ) else: lowercase__ : str = [item, self.key(__lowerCAmelCase )] lowercase__ : List[str] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def _lowerCAmelCase( self ) -> tuple | None: return self.arr[0] if self.size else None def _lowerCAmelCase( self ) -> tuple | None: lowercase__ : Optional[int] = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=2 , __lowerCAmelCase=32 , __lowerCAmelCase=16 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=4 , __lowerCAmelCase=[0, 1, 2, 3] , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=[1, 384, 24, 24] , __lowerCAmelCase=True , __lowerCAmelCase=None , ) -> Dict: lowercase__ : str = parent lowercase__ : List[Any] = batch_size lowercase__ : Dict = image_size lowercase__ : Tuple = patch_size lowercase__ : str = num_channels lowercase__ : Dict = is_training lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : int = backbone_out_indices lowercase__ : List[str] = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[Any] = initializer_range lowercase__ : Optional[int] = num_labels lowercase__ : Optional[int] = backbone_featmap_shape lowercase__ : int = scope lowercase__ : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase__ : List[str] = (image_size // patch_size) ** 2 lowercase__ : Tuple = num_patches + 1 def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Optional[int] = DPTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: lowercase__ : Union[str, Any] = self.num_labels lowercase__ : str = DPTForDepthEstimation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : List[str] = model(__lowerCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: lowercase__ : str = self.num_labels lowercase__ : Tuple = DPTForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Dict = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : List[str] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : str = DPTModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def _lowerCAmelCase( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def _lowerCAmelCase( self ) -> Tuple: pass def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(__lowerCAmelCase ) lowercase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = True if model_class in get_values(__lowerCAmelCase ): continue lowercase__ : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() lowercase__ : Tuple = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) lowercase__ : str = model(**__lowerCAmelCase ).loss loss.backward() def _lowerCAmelCase( self ) -> Tuple: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Any = False lowercase__ : str = True if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue lowercase__ : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() lowercase__ : str = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) lowercase__ : List[Any] = model(**__lowerCAmelCase ).loss loss.backward() def _lowerCAmelCase( self ) -> List[Any]: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = _config_zero_init(__lowerCAmelCase ) for model_class in self.all_model_classes: lowercase__ : Dict = model_class(config=__lowerCAmelCase ) # Skip the check for the backbone lowercase__ : Union[str, Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase__ : List[Any] = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCAmelCase( self ) -> List[str]: pass @slow def _lowerCAmelCase( self ) -> List[Any]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase__ : Dict = DPTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[str] = '''add''' with self.assertRaises(__lowerCAmelCase ): lowercase__ : Tuple = DPTForDepthEstimation(__lowerCAmelCase ) def __UpperCamelCase ( ): lowercase__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> Any: lowercase__ : Optional[int] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowercase__ : List[Any] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__lowerCAmelCase ) lowercase__ : Optional[Any] = prepare_img() lowercase__ : Optional[Any] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**__lowerCAmelCase ) lowercase__ : str = outputs.predicted_depth # verify the predicted depth lowercase__ : Optional[Any] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __lowerCAmelCase ) lowercase__ : str = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __lowerCAmelCase , atol=1E-4 ) )
214
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a : def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=1_6 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope def UpperCamelCase_ ( self ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , use_stable_embedding=_lowerCamelCase , ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = OpenLlamaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = True lowercase = OpenLlamaModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) lowercase = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) lowercase = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = OpenLlamaForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = True lowercase = True lowercase = OpenLlamaForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass lowercase = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase , ) lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )['hidden_states'][0] lowercase = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )['hidden_states'][0] # select random slice lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def UpperCamelCase_ ( self ): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( a_, a_, a_, unittest.TestCase ): UpperCAmelCase_ : Optional[Any] =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase_ : Optional[int] =(OpenLlamaForCausalLM,) if is_torch_available() else () UpperCAmelCase_ : Optional[int] =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ : List[str] =False UpperCAmelCase_ : Optional[int] =False def UpperCamelCase_ ( self ): lowercase = OpenLlamaModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = 3 lowercase = input_dict['input_ids'] lowercase = input_ids.ne(1 ).to(_lowerCamelCase ) lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase = OpenLlamaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = 3 lowercase = 'single_label_classification' lowercase = input_dict['input_ids'] lowercase = input_ids.ne(1 ).to(_lowerCamelCase ) lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase = OpenLlamaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = 3 lowercase = 'multi_label_classification' lowercase = input_dict['input_ids'] lowercase = input_ids.ne(1 ).to(_lowerCamelCase ) lowercase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase = OpenLlamaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def UpperCamelCase_ ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = ids_tensor([1, 1_0] , config.vocab_size ) lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowercase = OpenLlamaModel(_lowerCamelCase ) original_model.to(_lowerCamelCase ) original_model.eval() lowercase = original_model(_lowerCamelCase ).last_hidden_state lowercase = original_model(_lowerCamelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowercase = {'type': scaling_type, 'factor': 1_0.0} lowercase = OpenLlamaModel(_lowerCamelCase ) scaled_model.to(_lowerCamelCase ) scaled_model.eval() lowercase = scaled_model(_lowerCamelCase ).last_hidden_state lowercase = scaled_model(_lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-5 ) )
220
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a ( a_ ): UpperCAmelCase_ : List[Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : str ="AutoImageProcessor" UpperCAmelCase_ : Any ="AutoTokenizer" def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): lowercase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowerCamelCase , ) lowercase = kwargs.pop('feature_extractor' ) lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_lowerCamelCase , _lowerCamelCase ) lowercase = self.image_processor lowercase = False def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) lowercase = kwargs.pop('images' , _lowerCamelCase ) lowercase = kwargs.pop('text' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowercase = args[0] lowercase = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: lowercase = self.image_processor(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if text is not None: lowercase = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: lowercase = encodings['input_ids'] return inputs def UpperCamelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def UpperCamelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def UpperCamelCase_ ( self ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) lowercase = True lowercase = self.tokenizer yield lowercase = self.image_processor lowercase = False def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=None ): if added_vocab is None: lowercase = self.tokenizer.get_added_vocab() lowercase = {} while tokens: lowercase = re.search(R'<s_(.*?)>' , _lowerCamelCase , re.IGNORECASE ) if start_token is None: break lowercase = start_token.group(1 ) lowercase = re.search(RF'</s_{key}>' , _lowerCamelCase , re.IGNORECASE ) lowercase = start_token.group() if end_token is None: lowercase = tokens.replace(_lowerCamelCase , '' ) else: lowercase = end_token.group() lowercase = re.escape(_lowerCamelCase ) lowercase = re.escape(_lowerCamelCase ) lowercase = re.search(F'{start_token_escaped}(.*?){end_token_escaped}' , _lowerCamelCase , re.IGNORECASE ) if content is not None: lowercase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowercase = self.tokenajson(_lowerCamelCase , is_inner_value=_lowerCamelCase , added_vocab=_lowerCamelCase ) if value: if len(_lowerCamelCase ) == 1: lowercase = value[0] lowercase = value else: # leaf nodes lowercase = [] for leaf in content.split(R'<sep/>' ): lowercase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowercase = leaf[1:-2] # for categorical special tokens output[key].append(_lowerCamelCase ) if len(output[key] ) == 1: lowercase = output[key][0] lowercase = tokens[tokens.find(_lowerCamelCase ) + len(_lowerCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_lowerCamelCase , added_vocab=_lowerCamelCase ) if len(_lowerCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCamelCase_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowerCamelCase , ) return self.image_processor_class @property def UpperCamelCase_ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowerCamelCase , ) return self.image_processor
220
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) a =[ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : bool ,SCREAMING_SNAKE_CASE__ : str = None ,SCREAMING_SNAKE_CASE__ : list = None): __lowerCamelCase : List[Any] = None __lowerCamelCase : Optional[Any] = os.path.abspath(os.path.join('examples' ,'by_feature')) __lowerCamelCase : Tuple = os.path.abspath('examples') for item in os.listdir(SCREAMING_SNAKE_CASE__): if item not in EXCLUDE_EXAMPLES: __lowerCamelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) if os.path.isfile(SCREAMING_SNAKE_CASE__) and ".py" in item_path: with self.subTest( tested_script=SCREAMING_SNAKE_CASE__ ,feature_script=SCREAMING_SNAKE_CASE__ ,tested_section='main()' if parser_only else 'training_function()' ,): __lowerCamelCase : Dict = compare_against_test( os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = '\n'.join(SCREAMING_SNAKE_CASE__) if special_strings is not None: for string in special_strings: __lowerCamelCase : Optional[int] = diff.replace(SCREAMING_SNAKE_CASE__ ,'') self.assertEqual(SCREAMING_SNAKE_CASE__ ,'') def lowerCAmelCase ( self : Any): self.one_complete_example('complete_nlp_example.py' ,SCREAMING_SNAKE_CASE__) self.one_complete_example('complete_nlp_example.py' ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Dict = os.path.abspath(os.path.join('examples' ,'cv_example.py')) __lowerCamelCase : Optional[int] = [ ' ' * 1_6 + '{\n\n', ' ' * 2_0 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 2_0 + '"f1": eval_metric["f1"],\n\n', ' ' * 2_0 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 2_0 + '"epoch": epoch,\n\n', ' ' * 1_6 + '},\n\n', ' ' * 1_6 + 'step=epoch,\n', ' ' * 1_2, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) self.one_complete_example('complete_cv_example.py' ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = False @classmethod def lowerCAmelCase ( cls : Any): super().setUpClass() __lowerCamelCase : str = tempfile.mkdtemp() __lowerCamelCase : Dict = os.path.join(cls._tmpdir ,'default_config.yml') write_basic_config(save_location=cls.configPath) __lowerCamelCase : List[str] = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def lowerCAmelCase ( cls : Optional[Any]): super().tearDownClass() shutil.rmtree(cls._tmpdir) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : List[Any] = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir ,'epoch_0'))) def lowerCAmelCase ( self : Any): __lowerCamelCase : int = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() __lowerCamelCase : int = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir ,'step_2'))) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir ,'epoch_0')}\n ".split() __lowerCamelCase : Any = run_command(self._launch_args + testargs ,return_stdout=SCREAMING_SNAKE_CASE__) self.assertNotIn('epoch 0:' ,SCREAMING_SNAKE_CASE__) self.assertIn('epoch 1:' ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Any = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir ,'step_2')}\n ".split() __lowerCamelCase : Optional[int] = run_command(self._launch_args + testargs ,return_stdout=SCREAMING_SNAKE_CASE__) if torch.cuda.is_available(): __lowerCamelCase : Dict = torch.cuda.device_count() else: __lowerCamelCase : List[Any] = 1 if num_processes > 1: self.assertNotIn('epoch 0:' ,SCREAMING_SNAKE_CASE__) self.assertIn('epoch 1:' ,SCREAMING_SNAKE_CASE__) else: self.assertIn('epoch 0:' ,SCREAMING_SNAKE_CASE__) self.assertIn('epoch 1:' ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : int): __lowerCamelCase : Any = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ ,{'TESTING_MOCKED_DATALOADERS': '0'}): __lowerCamelCase : Optional[int] = run_command(self._launch_args + testargs ,return_stdout=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = re.findall('({.+})' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = [r for r in results if 'accuracy' in r][-1] __lowerCamelCase : List[str] = ast.literal_eval(SCREAMING_SNAKE_CASE__) self.assertGreaterEqual(results['accuracy'] ,0.75) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : str = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ ,{'WANDB_MODE': 'offline'}) def lowerCAmelCase ( self : str): with tempfile.TemporaryDirectory() as tmpdir: __lowerCamelCase : Any = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ ,'tracking'))) def lowerCAmelCase ( self : str): __lowerCamelCase : Dict = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs) def lowerCAmelCase ( self : List[str]): __lowerCamelCase : str = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs)
113
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[Any]): # A mock response for an HTTP head request to emulate server down __lowerCamelCase : List[Any] = mock.Mock() __lowerCamelCase : Tuple = 5_0_0 __lowerCamelCase : Dict = {} __lowerCamelCase : List[Any] = HTTPError __lowerCamelCase : int = {} # Download this model to make sure it's in the cache. __lowerCamelCase : Optional[int] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=SCREAMING_SNAKE_CASE__) as mock_head: __lowerCamelCase : Tuple = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase ( self : Any): # A mock response for an HTTP head request to emulate server down __lowerCamelCase : int = mock.Mock() __lowerCamelCase : List[str] = 5_0_0 __lowerCamelCase : Tuple = {} __lowerCamelCase : List[str] = HTTPError __lowerCamelCase : int = {} # Download this model to make sure it's in the cache. __lowerCamelCase : Dict = GPTaTokenizerFast.from_pretrained('gpt2') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=SCREAMING_SNAKE_CASE__) as mock_head: __lowerCamelCase : Optional[int] = GPTaTokenizerFast.from_pretrained('gpt2') # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : str): # This test is for deprecated behavior and can be removed in v5 try: __lowerCamelCase : Tuple = tempfile.mktemp() with open(SCREAMING_SNAKE_CASE__ ,'wb') as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = AlbertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__) finally: os.remove(SCREAMING_SNAKE_CASE__) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json'): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb') as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_0_0_0) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json') def lowerCAmelCase ( self : Optional[Any]): # This test is for deprecated behavior and can be removed in v5 __lowerCamelCase : str = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model') @is_staging_test class A_ ( unittest.TestCase ): _UpperCAmelCase : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowerCAmelCase ( cls : Optional[int]): __lowerCamelCase : Optional[int] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE__) @classmethod def lowerCAmelCase ( cls : str): try: delete_repo(token=cls._token ,repo_id='test-tokenizer') except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org') except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer') except HTTPError: pass def lowerCAmelCase ( self : List[str]): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Union[str, Any] = BertTokenizer(SCREAMING_SNAKE_CASE__) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token) __lowerCamelCase : List[str] = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ,repo_id='test-tokenizer' ,push_to_hub=SCREAMING_SNAKE_CASE__ ,use_auth_token=self._token) __lowerCamelCase : str = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) def lowerCAmelCase ( self : Any): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Optional[Any] = BertTokenizer(SCREAMING_SNAKE_CASE__) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token) __lowerCamelCase : List[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( SCREAMING_SNAKE_CASE__ ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=SCREAMING_SNAKE_CASE__ ,use_auth_token=self._token) __lowerCamelCase : List[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) @require_tokenizers def lowerCAmelCase ( self : int): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Any = CustomTokenizer(SCREAMING_SNAKE_CASE__) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token) __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" ,trust_remote_code=SCREAMING_SNAKE_CASE__) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Dict = BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token) __lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" ,trust_remote_code=SCREAMING_SNAKE_CASE__) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast') __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained( F"{USER}/test-dynamic-tokenizer" ,use_fast=SCREAMING_SNAKE_CASE__ ,trust_remote_code=SCREAMING_SNAKE_CASE__) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer') class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = Trie() trie.add('Hello 友達') self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}}) trie.add('Hello') trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}}) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : str = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100') ,['[CLS] This is a extra_id_100']) trie.add('[CLS]') trie.add('extra_id_1') trie.add('extra_id_100') self.assertEqual(trie.split('[CLS] This is a extra_id_100') ,['[CLS]', ' This is a ', 'extra_id_100']) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Dict = Trie() trie.add('A') self.assertEqual(trie.split('ABC') ,['A', 'BC']) self.assertEqual(trie.split('BCA') ,['BC', 'A']) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Any = Trie() trie.add('TOKEN]') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') ,['This is something ', '[SPECIAL_TOKEN]']) def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = Trie() trie.add('A') trie.add('P') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') ,['This is something ', '[SPECIAL_TOKEN]']) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Any = Trie() trie.add('AB') trie.add('B') trie.add('C') self.assertEqual(trie.split('ABC') ,['AB', 'C']) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Dict = Trie() trie.add('ABC') trie.add('B') trie.add('CD') self.assertEqual(trie.split('ABCD') ,['ABC', 'D']) def lowerCAmelCase ( self : List[Any]): # Even if the offsets are wrong, we necessarily output correct string # parts. __lowerCamelCase : List[Any] = Trie() __lowerCamelCase : Any = trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3]) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['AB', 'C'])
113
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = field(default="""text-classification""", metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCamelCase__ = Features({"""text""": Value("""string""" )} ) lowerCamelCase__ = Features({"""labels""": ClassLabel} ) lowerCamelCase__ = "text" lowerCamelCase__ = "labels" def A_ ( self , lowercase ): if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) _lowerCamelCase : Optional[Any] = copy.deepcopy(self ) _lowerCamelCase : List[str] = self.label_schema.copy() _lowerCamelCase : Optional[int] = features[self.label_column] _lowerCamelCase : Optional[int] = label_schema return task_template @property def A_ ( self ): return { self.text_column: "text", self.label_column: "labels", }
96
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: super().__init__() self.register_modules(vqvae=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ ) @torch.no_grad() def __call__( self , __magic_name__ = 1 , __magic_name__ = None , __magic_name__ = 0.0 , __magic_name__ = 50 , __magic_name__ = "pil" , __magic_name__ = True , **__magic_name__ , ) -> Union[Tuple, ImagePipelineOutput]: _a = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__magic_name__ , ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__magic_name__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _a = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta for t in self.progress_bar(self.scheduler.timesteps ): _a = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual _a = self.unet(__magic_name__ , __magic_name__ ).sample # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # decode the image latents with the VAE _a = self.vqvae.decode(__magic_name__ ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(__magic_name__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=__magic_name__ )
354
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict ) -> Optional[int]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = np.full((len(lowerCAmelCase__ ), sequence_length, 2) , lowerCAmelCase__ ) else: _a = np.full((len(lowerCAmelCase__ ), sequence_length) , lowerCAmelCase__ ) for i, tensor in enumerate(lowerCAmelCase__ ): if padding_side == "right": if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = tensor[:sequence_length] else: _a = tensor[:sequence_length] else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = tensor[:sequence_length] else: _a = tensor[:sequence_length] return out_tensor.tolist() def _A (lowerCAmelCase__ :Any ) -> Union[str, Any]: '''simple docstring''' _a = ord(lowerCAmelCase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _a = unicodedata.category(lowerCAmelCase__ ) if cat.startswith('P' ): return True return False @dataclass class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 42 _lowerCAmelCase = True _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = -1_0_0 _lowerCAmelCase = "pt" def __UpperCAmelCase ( self , __magic_name__ ) -> Any: import torch _a = 'label' if 'label' in features[0].keys() else 'labels' _a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _a = self.tokenizer.pad( __magic_name__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch _a = torch.tensor(batch['entity_ids'] ).shape[1] _a = self.tokenizer.padding_side if padding_side == "right": _a = [ list(__magic_name__ ) + [self.label_pad_token_id] * (sequence_length - len(__magic_name__ )) for label in labels ] else: _a = [ [self.label_pad_token_id] * (sequence_length - len(__magic_name__ )) + list(__magic_name__ ) for label in labels ] _a = [feature['ner_tags'] for feature in features] _a = padding_tensor(__magic_name__ , -1 , __magic_name__ , __magic_name__ ) _a = [feature['original_entity_spans'] for feature in features] _a = padding_tensor(__magic_name__ , (-1, -1) , __magic_name__ , __magic_name__ ) _a = {k: torch.tensor(__magic_name__ , dtype=torch.intaa ) for k, v in batch.items()} return batch
104
0
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase , UpperCAmelCase ) ->list[str]: """simple docstring""" if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) A = number_of_bytes // partitions A = [] for i in range(UpperCAmelCase ): A = i * bytes_per_partition + 1 A = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
258
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __a ( ) ->None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
258
1
import os import time import numpy as np import onnxruntime as ort snake_case : int = "1" snake_case : int = "0" snake_case : int = "1" snake_case : Tuple = ort.SessionOptions() snake_case : Optional[Any] = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") snake_case : Dict = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] snake_case : Union[str, Any] = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) snake_case : Optional[Any] = ort.RunOptions() snake_case : List[str] = 128 snake_case : List[str] = 1 snake_case : List[str] = np.ones((batch, sequence), dtype=np.intaa) snake_case : List[str] = np.ones((batch, sequence), dtype=np.intaa) snake_case : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") snake_case : str = time.time() snake_case : Tuple = 2_000 snake_case : Dict = {} for iter in range(max_iters): snake_case : Tuple = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1_000 / max_iters))
41
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _snake_case ( snake_case ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , "tf_padding" ) ) self.parent.assertTrue(hasattr(_a , "depth_multiplier" ) ) class _snake_case : def __init__( self , _a , _a=13 , _a=3 , _a=32 , _a=0.25 , _a=8 , _a=True , _a=1_024 , _a=32 , _a="relu6" , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , ): __magic_name__ : Optional[int] = parent __magic_name__ : Union[str, Any] = batch_size __magic_name__ : Tuple = num_channels __magic_name__ : Tuple = image_size __magic_name__ : Any = depth_multiplier __magic_name__ : Any = min_depth __magic_name__ : Any = tf_padding __magic_name__ : int = int(last_hidden_size * depth_multiplier ) __magic_name__ : Any = output_stride __magic_name__ : Tuple = hidden_act __magic_name__ : Optional[int] = classifier_dropout_prob __magic_name__ : Any = use_labels __magic_name__ : str = is_training __magic_name__ : List[str] = num_labels __magic_name__ : str = initializer_range __magic_name__ : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Any = None __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : int = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __magic_name__ : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a ): __magic_name__ : List[str] = MobileNetVaModel(config=_a ) model.to(_a ) model.eval() __magic_name__ : Optional[int] = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a ): __magic_name__ : Any = self.num_labels __magic_name__ : Dict = MobileNetVaForImageClassification(_a ) model.to(_a ) model.eval() __magic_name__ : Any = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = config_and_inputs __magic_name__ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () UpperCamelCase__ = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = MobileNetVaModelTester(self ) __magic_name__ : List[str] = MobileNetVaConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE ( self ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : str = model_class(_a ) __magic_name__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): def check_hidden_states_output(_a , _a , _a ): __magic_name__ : Dict = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __magic_name__ : Tuple = model(**self._prepare_for_class(_a , _a ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Optional[Any] = 26 self.assertEqual(len(_a ) , _a ) __magic_name__ , __magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Dict = True check_hidden_states_output(_a , _a , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = MobileNetVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' __magic_name__ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(_a ) __magic_name__ : Dict = self.default_image_processor __magic_name__ : List[str] = prepare_img() __magic_name__ : Optional[Any] = image_processor(images=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): __magic_name__ : Union[str, Any] = model(**_a ) # verify the logits __magic_name__ : List[str] = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , _a ) __magic_name__ : Union[str, Any] = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
41
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : str ) -> str: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='''utf-8''' ,check=_snake_case ,) assert hasattr(self ,'''env''' ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ) -> str: """simple docstring""" lowercase__ : Any = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings lowercase__ : List[str] = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=_snake_case ,instance_count=_snake_case ,instance_type=self.instance_type ,debugger_hook_config=_snake_case ,hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=_snake_case ,py_version='''py36''' ,) def UpperCAmelCase ( self : Dict ,_snake_case : str ) -> Union[str, Any]: """simple docstring""" TrainingJobAnalytics(_snake_case ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCAmelCase ( self : List[Any] ,_snake_case : int ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = self.create_estimator(_snake_case ) # run training estimator.fit() # result dataframe lowercase__ : List[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowercase__ : str = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' ,999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" ,'''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} ,_snake_case )
16
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' lowercase__ : str = set() # Replace all the whitespace in our sentence lowercase__ : Tuple = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 26 def snake_case__ ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' lowercase__ : Dict = [False] * 26 for char in input_str: if char.islower(): lowercase__ : List[Any] = True elif char.isupper(): lowercase__ : Optional[Any] = True return all(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def snake_case__ ( ): '''simple docstring''' from timeit import timeit lowercase__ : Union[str, Any] = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('is_pangram_faster()' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('is_pangram_fastest()' , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
214
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE_ : List[str] = ["""image"""] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""image"""] SCREAMING_SNAKE_CASE_ : Optional[int] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ : Dict = False @property def __A ( self ) -> Optional[int]: return 32 @property def __A ( self ) -> Union[str, Any]: return 32 @property def __A ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def __A ( self ) -> Tuple: return 8 @property def __A ( self ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE = CLIPVisionModel(lowerCAmelCase__ ) return model @property def __A ( self ) -> str: SCREAMING_SNAKE_CASE = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __A ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } SCREAMING_SNAKE_CASE = PriorTransformer(**lowerCAmelCase__ ) return model @property def __A ( self ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE = ShapERenderer(**lowerCAmelCase__ ) return model def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = self.dummy_prior SCREAMING_SNAKE_CASE = self.dummy_image_encoder SCREAMING_SNAKE_CASE = self.dummy_image_processor SCREAMING_SNAKE_CASE = self.dummy_renderer SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[int]: SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = output.images[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Optional[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = torch_device == 'cpu' SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> str: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
113
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=400 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> int: SCREAMING_SNAKE_CASE = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize def __A ( self ) -> Optional[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = ImageGPTImageProcessor if is_vision_available() else None def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = ImageGPTImageProcessingTester(self ) @property def __A ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'clusters' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , 'image_processor.json' ) image_processor_first.to_json_file(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_json_file(lowerCAmelCase__ ).to_dict() SCREAMING_SNAKE_CASE = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase__ ) def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_pretrained(lowerCAmelCase__ ).to_dict() SCREAMING_SNAKE_CASE = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase__ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def __A ( self ) -> Optional[Any]: pass def lowercase () -> Union[str, Any]: SCREAMING_SNAKE_CASE = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) SCREAMING_SNAKE_CASE = Image.open(dataset[4]['file'] ) SCREAMING_SNAKE_CASE = Image.open(dataset[5]['file'] ) SCREAMING_SNAKE_CASE = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) SCREAMING_SNAKE_CASE = prepare_images() # test non-batched SCREAMING_SNAKE_CASE = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) SCREAMING_SNAKE_CASE = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase__ ) # test batched SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) SCREAMING_SNAKE_CASE = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase__ )
113
1
"""simple docstring""" def a__ ( __lowercase = 400_0000 ) -> int: _A = [0, 1] _A = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _A = 0 for j in range(len(__lowercase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
163
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class snake_case ( _UpperCamelCase): __UpperCamelCase = 't5' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Union[str, Any] , a__ : Optional[int]=3_21_28 , a__ : Any=5_12 , a__ : Any=64 , a__ : List[str]=20_48 , a__ : Tuple=6 , a__ : Dict=None , a__ : Optional[int]=8 , a__ : int=32 , a__ : List[str]=1_28 , a__ : Optional[Any]=0.1 , a__ : Union[str, Any]=1E-6 , a__ : Dict=1.0 , a__ : Optional[int]="relu" , a__ : Tuple=True , a__ : Any=True , a__ : Tuple=0 , a__ : Optional[Any]=1 , **a__ : Tuple , ) -> int: '''simple docstring''' _A = vocab_size _A = d_model _A = d_kv _A = d_ff _A = num_layers _A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _A = num_heads _A = relative_attention_num_buckets _A = relative_attention_max_distance _A = dropout_rate _A = layer_norm_epsilon _A = initializer_factor _A = feed_forward_proj _A = use_cache _A = self.feed_forward_proj.split("-" ) _A = act_info[-1] _A = act_info[0] == "gated" if len(a__ ) > 1 and act_info[0] != "gated" or len(a__ ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _A = "gelu_new" super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , **a__ , ) class snake_case ( _UpperCamelCase): @property def a_ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _A = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: _A = "past_encoder_sequence + sequence" _A = {0: "batch"} _A = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _A = {0: "batch", 1: "decoder_sequence"} _A = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a__ , direction="inputs" ) return common_inputs @property def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' return 13
163
1
"""simple docstring""" from collections.abc import Iterable from typing import Any class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase = None ): """simple docstring""" snake_case = value snake_case = None # Added in order to delete a node easier snake_case = None snake_case = None def __repr__( self ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase = None ): """simple docstring""" snake_case = root def __str__( self ): """simple docstring""" return str(self.root ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if new_children is not None: # reset its kids snake_case = node.parent if node.parent is not None: # reset its parent if self.is_right(lowercase__ ): # If it is the right children snake_case = new_children else: snake_case = new_children else: snake_case = new_children def snake_case ( self , lowerCAmelCase ): """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def snake_case ( self ): """simple docstring""" return self.root is None def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = Node(lowercase__ ) # create a new Node if self.empty(): # if Tree is empty snake_case = new_node # set its root else: # Tree is not empty snake_case = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: snake_case = new_node # We insert the new node in a leaf break else: snake_case = parent_node.left else: if parent_node.right is None: snake_case = new_node break else: snake_case = parent_node.right snake_case = parent_node def snake_case ( self , *lowerCAmelCase ): """simple docstring""" for value in values: self.__insert(lowercase__ ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: snake_case = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: snake_case = node.left if value < node.value else node.right return node def snake_case ( self , lowerCAmelCase = None ): """simple docstring""" if node is None: if self.root is None: return None snake_case = self.root if not self.empty(): while node.right is not None: snake_case = node.right return node def snake_case ( self , lowerCAmelCase = None ): """simple docstring""" if node is None: snake_case = self.root if self.root is None: return None if not self.empty(): snake_case = self.root while node.left is not None: snake_case = node.left return node def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.search(lowercase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowercase__ , lowercase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowercase__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowercase__ , node.left ) else: snake_case = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore snake_case = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def snake_case ( self , lowerCAmelCase ): """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def snake_case ( self , lowerCAmelCase=None ): """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if node: self.inorder(lowercase__ , node.left ) arr.append(node.value ) self.inorder(lowercase__ , node.right ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = [] self.inorder(lowercase__ , lowercase__ ) # append all values to list using inorder traversal return arr[k - 1] def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> int: """simple docstring""" snake_case = [] if curr_node is not None: snake_case = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCAmelCase__ ( ) -> List[Any]: """simple docstring""" snake_case = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7) snake_case = BinarySearchTree() for i in testlist: t.insert(A__ ) # Prints all the elements of the list in order traversal print(A__ ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(A__ ) print(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
150
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KT''') lowerCAmelCase__ = TypeVar('''VT''') class lowercase_ (Generic[KT, VT] ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : KT | str = "root" ,lowercase__ : VT | None = None ): __lowercase = key __lowercase = value __lowercase = [] def __repr__( self : Tuple ): return F"Node({self.key}: {self.value})" @property def SCREAMING_SNAKE_CASE ( self : int ): return len(self.forward ) class lowercase_ (Generic[KT, VT] ): """simple docstring""" def __init__( self : int ,lowercase__ : float = 0.5 ,lowercase__ : int = 1_6 ): __lowercase = Node[KT, VT]() __lowercase = 0 __lowercase = p __lowercase = max_level def __str__( self : List[str] ): __lowercase = list(self ) if len(lowercase__ ) == 0: return F"SkipList(level={self.level})" __lowercase = max((len(str(lowercase__ ) ) for item in items) ,default=4 ) __lowercase = max(lowercase__ ,4 ) + 4 __lowercase = self.head __lowercase = [] __lowercase = node.forward.copy() lines.append(F"[{node.key}]".ljust(lowercase__ ,'''-''' ) + '''* ''' * len(lowercase__ ) ) lines.append(''' ''' * label_size + '''| ''' * len(lowercase__ ) ) while len(node.forward ) != 0: __lowercase = node.forward[0] lines.append( F"[{node.key}]".ljust(lowercase__ ,'''-''' ) + ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) ) lines.append(''' ''' * label_size + '''| ''' * len(lowercase__ ) ) __lowercase = node.forward lines.append('''None'''.ljust(lowercase__ ) + '''* ''' * len(lowercase__ ) ) return F"SkipList(level={self.level})\n" + "\n".join(lowercase__ ) def __iter__( self : List[str] ): __lowercase = self.head while len(node.forward ) != 0: yield node.forward[0].key __lowercase = node.forward[0] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = 1 while random() < self.p and level < self.max_level: level += 1 return level def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : str ): __lowercase = [] __lowercase = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: __lowercase = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(lowercase__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : KT ): __lowercase , __lowercase = self._locate_node(lowercase__ ) if node is not None: for i, update_node in enumerate(lowercase__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: __lowercase = node.forward[i] else: __lowercase = update_node.forward[:i] def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : KT ,lowercase__ : VT ): __lowercase , __lowercase = self._locate_node(lowercase__ ) if node is not None: __lowercase = value else: __lowercase = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 ,lowercase__ ): update_vector.append(self.head ) __lowercase = level __lowercase = Node(lowercase__ ,lowercase__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(lowercase__ ) else: __lowercase = new_node def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : VT ): __lowercase , __lowercase = self._locate_node(lowercase__ ) if node is not None: return node.value return None def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key1''' , 3 ) skip_list.insert('''Key2''' , 12 ) skip_list.insert('''Key3''' , 41 ) skip_list.insert('''Key4''' , -19 ) __lowercase = skip_list.head __lowercase = {} while node.level != 0: __lowercase = node.forward[0] __lowercase = node.value assert len(A__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key1''' , 10 ) skip_list.insert('''Key1''' , 12 ) skip_list.insert('''Key5''' , 7 ) skip_list.insert('''Key7''' , 10 ) skip_list.insert('''Key10''' , 5 ) skip_list.insert('''Key7''' , 7 ) skip_list.insert('''Key5''' , 5 ) skip_list.insert('''Key10''' , 10 ) __lowercase = skip_list.head __lowercase = {} while node.level != 0: __lowercase = node.forward[0] __lowercase = node.value if len(A__ ) != 4: print() assert len(A__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _A ( ): """simple docstring""" __lowercase = SkipList() assert skip_list.find('''Some key''' ) is None def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key2''' , 20 ) assert skip_list.find('''Key2''' ) == 20 skip_list.insert('''Some Key''' , 10 ) skip_list.insert('''Key2''' , 8 ) skip_list.insert('''V''' , 13 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 10 assert skip_list.find('''V''' ) == 13 def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 14 assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 142 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''X''' ) def traverse_keys(A__ ): yield node.key for forward_node in node.forward: yield from traverse_keys(A__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _A ( ): """simple docstring""" def is_sorted(A__ ): return all(next_item >= item for item, next_item in zip(A__ , lst[1:] ) ) __lowercase = SkipList() for i in range(10 ): skip_list.insert(A__ , A__ ) assert is_sorted(list(A__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(A__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(A__ ) ) def _A ( ): """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert(2 , '''2''' ) skip_list.insert(4 , '''4''' ) skip_list.insert(6 , '''4''' ) skip_list.insert(4 , '''5''' ) skip_list.insert(8 , '''4''' ) skip_list.insert(9 , '''4''' ) skip_list.delete(4 ) print(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
104
0
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = CustomTokenizer pass
312
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[Any] ='''pt''' elif is_tf_available(): _A : Any ='''tf''' else: _A : List[str] ='''jax''' class _lowercase ( _lowercase , unittest.TestCase ): a = ByTaTokenizer a = False def lowerCamelCase_ ( self: str ): super().setUp() lowerCamelCase__ : str = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase_ ( self: Optional[int] ): return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def lowerCamelCase_ ( self: Any , **UpperCamelCase__: Tuple ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: Any=False , UpperCamelCase__: Union[str, Any]=20 , UpperCamelCase__: Optional[int]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCamelCase__ : List[str] = [] for i in range(len(UpperCamelCase__ ) ): try: lowerCamelCase__ : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase__ : Union[str, Any] = list(filter(lambda UpperCamelCase__ : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , UpperCamelCase__ ) ) lowerCamelCase__ : Tuple = list(filter(lambda UpperCamelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase__ ) , UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: lowerCamelCase__ : Dict = toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: lowerCamelCase__ : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase__ : Union[str, Any] = [t[0] for t in toks] # Ensure consistency lowerCamelCase__ : Union[str, Any] = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: lowerCamelCase__ : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase__ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: lowerCamelCase__ : str = """ """ + output_txt lowerCamelCase__ : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : str = self.ta_base_tokenizer lowerCamelCase__ : Union[str, Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) lowerCamelCase__ : Optional[int] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[Any] = self.ta_base_tokenizer lowerCamelCase__ : Dict = """Unicode €.""" lowerCamelCase__ : List[Any] = tokenizer(UpperCamelCase__ ) lowerCamelCase__ : List[str] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , UpperCamelCase__ ) # decoding lowerCamelCase__ : Tuple = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , """Unicode €.</s>""" ) lowerCamelCase__ : List[Any] = tokenizer("""e è é ê ë""" ) lowerCamelCase__ : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , UpperCamelCase__ ) # decoding lowerCamelCase__ : str = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = self.ta_base_tokenizer lowerCamelCase__ : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off lowerCamelCase__ : List[str] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCamelCase__ : int = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) if FRAMEWORK != "jax": lowerCamelCase__ : Any = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase__ : str = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : List[str] = self.ta_base_tokenizer lowerCamelCase__ : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCamelCase__ : Tuple = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , UpperCamelCase__ ) self.assertIn("""attention_mask""" , UpperCamelCase__ ) self.assertNotIn("""decoder_input_ids""" , UpperCamelCase__ ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : str = self.ta_base_tokenizer lowerCamelCase__ : List[Any] = [ """Summary of the text.""", """Another summary.""", ] lowerCamelCase__ : Union[str, Any] = tokenizer( text_target=UpperCamelCase__ , max_length=32 , padding="""max_length""" , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Tuple = self.ta_base_tokenizer lowerCamelCase__ : str = ["""A long paragraph for summarization. </s>"""] lowerCamelCase__ : Optional[Any] = ["""Summary of the text. </s>"""] # fmt: off lowerCamelCase__ : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCamelCase__ : Any = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCamelCase__ : Any = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch["""input_ids"""][0] ) self.assertEqual(UpperCamelCase__ , batch["""labels"""][0] ) def lowerCamelCase_ ( self: Optional[int] ): # safety check on max_len default value so we are sure the test works lowerCamelCase__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase__ : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : int = tempfile.mkdtemp() lowerCamelCase__ : List[str] = """ He is very happy, UNwant\u00E9d,running""" lowerCamelCase__ : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) lowerCamelCase__ : Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase__ : Any = tempfile.mkdtemp() lowerCamelCase__ : Optional[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) lowerCamelCase__ : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) lowerCamelCase__ : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) lowerCamelCase__ : int = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase__ : Any = tokenizer.__class__.from_pretrained(UpperCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: lowerCamelCase__ : Union[str, Any] = json.load(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: lowerCamelCase__ : Optional[Any] = json.load(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = [F'''<extra_id_{i}>''' for i in range(125 )] lowerCamelCase__ : int = added_tokens_extra_ids + [ """an_additional_special_token""" ] lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(UpperCamelCase__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase__ : Dict = tokenizer_class.from_pretrained( UpperCamelCase__ , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase__ : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=UpperCamelCase__ )] lowerCamelCase__ : Any = tokenizer_class.from_pretrained( UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Dict = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : str = tokenizer_class.from_pretrained(UpperCamelCase__ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def lowerCamelCase_ ( self: Optional[int] ): pass def lowerCamelCase_ ( self: str ): pass def lowerCamelCase_ ( self: List[str] ): pass def lowerCamelCase_ ( self: Optional[int] ): pass def lowerCamelCase_ ( self: int ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens lowerCamelCase__ : Dict = self.get_tokenizers(fast=UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCamelCase__ : str = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] lowerCamelCase__ : str = 0 lowerCamelCase__ : Any = tokenizer.convert_ids_to_tokens( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for attr in attributes_list: setattr(UpperCamelCase__ , attr + """_id""" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + """_id""" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , attr + """_id""" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + """_id""" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens_ids""" ) , [] ) setattr(UpperCamelCase__ , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
41
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A : List[str] =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _A : Tuple =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: lowerCamelCase__ : List[Any] = state_dict.pop(UpperCamelCase ) lowerCamelCase__ : Any = val def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: lowerCamelCase__ : Tuple = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCamelCase__ : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) lowerCamelCase__ : Optional[int] = value else: lowerCamelCase__ : Any = value return new_state_dict def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=False ) -> Dict: lowerCamelCase__ : Optional[int] = """""" if is_panoptic: lowerCamelCase__ : Dict = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase__ : List[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowerCamelCase__ : Union[str, Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : int = in_proj_weight[:256, :] lowerCamelCase__ : Any = in_proj_bias[:256] lowerCamelCase__ : str = in_proj_weight[256:512, :] lowerCamelCase__ : Optional[int] = in_proj_bias[256:512] lowerCamelCase__ : Dict = in_proj_weight[-256:, :] lowerCamelCase__ : str = in_proj_bias[-256:] def SCREAMING_SNAKE_CASE_ () -> List[Any]: lowerCamelCase__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ : Optional[Any] = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowerCamelCase__ : Any = """resnet101""" if "dc5" in model_name: lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : int = """panoptic""" in model_name if is_panoptic: lowerCamelCase__ : List[str] = 250 else: lowerCamelCase__ : int = 91 lowerCamelCase__ : int = """huggingface/label-files""" lowerCamelCase__ : List[str] = """coco-detection-id2label.json""" lowerCamelCase__ : Optional[Any] = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ : Any = {int(UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : str = idalabel lowerCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} # load image processor lowerCamelCase__ : Optional[int] = """coco_panoptic""" if is_panoptic else """coco_detection""" lowerCamelCase__ : int = ConditionalDetrImageProcessor(format=UpperCamelCase ) # prepare image lowerCamelCase__ : List[str] = prepare_img() lowerCamelCase__ : int = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : Optional[Any] = encoding["""pixel_values"""] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub lowerCamelCase__ : List[Any] = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCamelCase , pretrained=UpperCamelCase ).eval() lowerCamelCase__ : Dict = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowerCamelCase__ : Optional[Any] = """conditional_detr.""" + src rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Dict = rename_backbone_keys(UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase , is_panoptic=UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase__ : Dict = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): lowerCamelCase__ : int = state_dict.pop(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase__ : List[str] = state_dict.pop(UpperCamelCase ) lowerCamelCase__ : Any = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: lowerCamelCase__ : int = state_dict.pop(UpperCamelCase ) lowerCamelCase__ : Tuple = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): lowerCamelCase__ : Union[str, Any] = state_dict.pop(UpperCamelCase ) lowerCamelCase__ : Dict = val # finally, create HuggingFace model and load state dict lowerCamelCase__ : Tuple = ConditionalDetrForSegmentation(UpperCamelCase ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() model.push_to_hub(repo_id=UpperCamelCase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion lowerCamelCase__ : Optional[Any] = conditional_detr(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = model(UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) image_processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : List[Any] =argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _A : Optional[Any] =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
41
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int=12 , SCREAMING_SNAKE_CASE : Tuple=7 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Optional[int]=99 , SCREAMING_SNAKE_CASE : Optional[Any]=32 , SCREAMING_SNAKE_CASE : Union[str, Any]=32 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=4 , SCREAMING_SNAKE_CASE : str=37 , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=5_12 , SCREAMING_SNAKE_CASE : Tuple=0.0_2 , SCREAMING_SNAKE_CASE : List[str]=0 , SCREAMING_SNAKE_CASE : Tuple=None , ): '''simple docstring''' UpperCamelCase__ : Optional[int] = parent UpperCamelCase__ : Optional[Any] = batch_size UpperCamelCase__ : Any = seq_length UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : Optional[int] = use_input_mask UpperCamelCase__ : Dict = use_labels UpperCamelCase__ : Dict = vocab_size UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : Tuple = projection_dim UpperCamelCase__ : List[Any] = num_hidden_layers UpperCamelCase__ : Optional[int] = num_attention_heads UpperCamelCase__ : Optional[Any] = intermediate_size UpperCamelCase__ : Any = dropout UpperCamelCase__ : Union[str, Any] = attention_dropout UpperCamelCase__ : int = max_position_embeddings UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Union[str, Any] = scope UpperCamelCase__ : Any = bos_token_id def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : int = None if self.use_input_mask: UpperCamelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCamelCase__ : Any = input_mask.numpy() UpperCamelCase__ , UpperCamelCase__ : List[str] = input_mask.shape UpperCamelCase__ : Any = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = 1 UpperCamelCase__ : Dict = 0 UpperCamelCase__ : Union[str, Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' UpperCamelCase__ : List[Any] = TFBlipTextModel(config=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : str = config_and_inputs UpperCamelCase__ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : Any = (TFBlipTextModel,) if is_tf_available() else () _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : int = False _lowerCAmelCase : List[Any] = False def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : int = BlipTextModelTester(self ) UpperCamelCase__ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowercase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] ): '''simple docstring''' pass def __lowercase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def __lowercase ( self : int ): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def __lowercase ( self : Optional[int] ): '''simple docstring''' pass @slow def __lowercase ( self : List[Any] ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Optional[Any] = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE )
196
lowerCamelCase : Optional[int] ={ '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[str]: UpperCamelCase__ : Optional[Any] = set() # keep track of all the paths to be checked UpperCamelCase__ : Optional[Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase__ : int = queue.pop(0 ) # get the last node from the path UpperCamelCase__ : Dict = path[-1] if node not in explored: UpperCamelCase__ : Tuple = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase__ : List[str] = list(__lowerCAmelCase ) new_path.append(__lowerCAmelCase ) queue.append(__lowerCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__lowerCAmelCase ) # in case there's no path between the 2 nodes return [] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase__ : Tuple = [start] UpperCamelCase__ : Optional[int] = set(__lowerCAmelCase ) # Keep tab on distances from `start` node. UpperCamelCase__ : str = {start: 0, target: -1} while queue: UpperCamelCase__ : Any = queue.pop(0 ) if node == target: UpperCamelCase__ : Union[str, Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__lowerCAmelCase ) queue.append(__lowerCAmelCase ) UpperCamelCase__ : List[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
196
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _A ( unittest.TestCase ): def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = tempfile.mkdtemp() __UpperCAmelCase : Tuple = BlipImageProcessor() __UpperCAmelCase : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) __UpperCAmelCase : Optional[int] = BlipProcessor(UpperCAmelCase__ , UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).tokenizer def __A ( self , **__UpperCAmelCase ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).image_processor def __A ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase : Dict = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Dict = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) __UpperCAmelCase : Union[str, Any] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase__ ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : Union[str, Any] = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __UpperCAmelCase : Optional[int] = self.prepare_image_inputs() __UpperCAmelCase : Dict = image_processor(UpperCAmelCase__ , return_tensors="""np""" ) __UpperCAmelCase : Any = processor(images=UpperCAmelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : Dict = self.get_tokenizer() __UpperCAmelCase : str = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __UpperCAmelCase : Any = """lower newer""" __UpperCAmelCase : Optional[int] = processor(text=UpperCAmelCase__ ) __UpperCAmelCase : Any = tokenizer(UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.get_image_processor() __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Any = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __UpperCAmelCase : Optional[int] = """lower newer""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : List[str] = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : Any = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __UpperCAmelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : List[Any] = processor.batch_decode(UpperCAmelCase__ ) __UpperCAmelCase : str = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = BlipProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ ) __UpperCAmelCase : Tuple = """lower newer""" __UpperCAmelCase : Optional[int] = self.prepare_image_inputs() __UpperCAmelCase : str = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
254
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a = '__DUMMY_TRANSFORMERS_USER__' _a = 'Dummy User' _a = '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' _a = 'https://hub-ci.huggingface.co' _a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _A ( UpperCamelCase_ : List[Any]) -> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : int) -> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT", UpperCamelCase_) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : str) -> Dict: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[Any]) -> List[str]: '''simple docstring''' HfFolder.save_token(UpperCamelCase_) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _A ( ) -> List[Any]: '''simple docstring''' return HfApi(endpoint=UpperCamelCase_) @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi) -> List[Any]: '''simple docstring''' __lowercase = HfFolder.get_token() HfFolder.save_token(UpperCamelCase_) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase_) @pytest.fixture def _A ( UpperCamelCase_ : Dict) -> int: '''simple docstring''' def _cleanup_repo(UpperCamelCase_ : Optional[int]): hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") return _cleanup_repo @pytest.fixture def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' @contextmanager def _temporary_repo(UpperCamelCase_ : Any): try: yield repo_id finally: cleanup_repo(UpperCamelCase_) return _temporary_repo @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data/text_data.txt", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Any, UpperCamelCase_ : Dict) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : int, UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' __lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> int: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : HfApi, UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> List[Any]: '''simple docstring''' __lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3)}""" __lowercase = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset", private=UpperCamelCase_) hf_api.upload_file( token=UpperCamelCase_, path_or_fileobj=str(UpperCamelCase_), path_in_repo="data.zip", repo_id=UpperCamelCase_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(UpperCamelCase_, token=UpperCamelCase_, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str], UpperCamelCase_ : List[str]) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
17
0
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _lowercase : Tuple = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" _lowercase : List[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" _lowercase : Optional[Any] = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {\'accuracy\': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def snake_case ( self : int )-> Dict: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ), homepage='''https://github.com/hendrycks/math''', codebase_urls=['''https://github.com/hendrycks/math'''], ) def snake_case ( self : List[str], lowerCamelCase : List[str], lowerCamelCase : Optional[Any] )-> int: lowerCamelCase__ : Dict =0.0 for i, j in zip(__A, __A ): n_correct += 1.0 if math_equivalence.is_equiv(__A, __A ) else 0.0 lowerCamelCase__ : List[Any] =n_correct / len(__A ) return { "accuracy": accuracy, }
351
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowercase : Dict = logging.get_logger(__name__) _lowercase : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'blenderbot-small' _a = ['past_key_values'] _a = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple, lowerCamelCase : Any=5_0265, lowerCamelCase : Optional[Any]=512, lowerCamelCase : Union[str, Any]=8, lowerCamelCase : Dict=2048, lowerCamelCase : str=16, lowerCamelCase : List[Any]=8, lowerCamelCase : List[str]=2048, lowerCamelCase : int=16, lowerCamelCase : Any=0.0, lowerCamelCase : Dict=0.0, lowerCamelCase : Tuple=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Tuple=512, lowerCamelCase : Tuple=0.1, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : List[str]=0.02, lowerCamelCase : Any=1, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : Any=0, lowerCamelCase : Tuple=1, lowerCamelCase : Tuple=2, lowerCamelCase : Dict=2, **lowerCamelCase : Any, )-> Dict: lowerCamelCase__ : Dict =vocab_size lowerCamelCase__ : Dict =max_position_embeddings lowerCamelCase__ : Optional[Any] =d_model lowerCamelCase__ : Union[str, Any] =encoder_ffn_dim lowerCamelCase__ : Optional[Any] =encoder_layers lowerCamelCase__ : Any =encoder_attention_heads lowerCamelCase__ : Union[str, Any] =decoder_ffn_dim lowerCamelCase__ : Optional[int] =decoder_layers lowerCamelCase__ : Any =decoder_attention_heads lowerCamelCase__ : Optional[int] =dropout lowerCamelCase__ : str =attention_dropout lowerCamelCase__ : Union[str, Any] =activation_dropout lowerCamelCase__ : Tuple =activation_function lowerCamelCase__ : str =init_std lowerCamelCase__ : List[Any] =encoder_layerdrop lowerCamelCase__ : List[str] =decoder_layerdrop lowerCamelCase__ : Tuple =use_cache lowerCamelCase__ : Optional[Any] =encoder_layers lowerCamelCase__ : List[Any] =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, decoder_start_token_id=lowerCamelCase, forced_eos_token_id=lowerCamelCase, **lowerCamelCase, ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' @property def snake_case ( self : Optional[int] )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : int =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase__ : List[str] ={0: '''batch'''} lowerCamelCase__ : Tuple ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCamelCase__ : Union[str, Any] ={0: '''batch''', 1: '''decoder_sequence'''} lowerCamelCase__ : Tuple ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase, direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Optional[Any] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : List[str] =self.num_layers for i in range(lowerCamelCase ): lowerCamelCase__ : Optional[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase__ : Optional[int] ={0: '''batch''', 2: '''past_sequence + sequence'''} else: lowerCamelCase__ : str =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def snake_case ( self : Dict )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict =super().outputs else: lowerCamelCase__ : Optional[Any] =super(lowerCamelCase, self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : str =self.num_layers for i in range(lowerCamelCase ): lowerCamelCase__ : Tuple ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase__ : Dict ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def snake_case ( self : List[str], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: lowerCamelCase__ : Any =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Generate decoder inputs lowerCamelCase__ : str =seq_length if not self.use_past else 1 lowerCamelCase__ : Tuple =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : str ={F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Tuple =dict(**lowerCamelCase, **lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : List[Any] =common_inputs['''input_ids'''].shape lowerCamelCase__ : Optional[Any] =common_inputs['''decoder_input_ids'''].shape[1] lowerCamelCase__ , lowerCamelCase__ : List[str] =self.num_attention_heads lowerCamelCase__ : str =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : List[Any] =decoder_seq_length + 3 lowerCamelCase__ : Optional[int] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : Optional[Any] =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase, lowerCamelCase )], dim=1 ) lowerCamelCase__ : Tuple =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : int =self.num_layers lowerCamelCase__ : Any =min(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Any =max(lowerCamelCase, lowerCamelCase ) - min_num_layers lowerCamelCase__ : Dict ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), ) ) # TODO: test this. lowerCamelCase__ : Union[str, Any] =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCamelCase, lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) ) return common_inputs def snake_case ( self : List[str], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: lowerCamelCase__ : int =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : List[str] =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCamelCase__ : Union[str, Any] =seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : int =self.num_layers lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.num_attention_heads lowerCamelCase__ : int =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : str =common_inputs['''attention_mask'''].dtype lowerCamelCase__ : int =torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCamelCase, lowerCamelCase, dtype=lowerCamelCase )], dim=1 ) lowerCamelCase__ : str =[ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(lowerCamelCase ) ] return common_inputs def snake_case ( self : Optional[int], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ : int =compute_effective_axis_dimension( lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : Optional[int] =tokenizer.num_special_tokens_to_add(lowerCamelCase ) lowerCamelCase__ : Optional[int] =compute_effective_axis_dimension( lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] =dict(tokenizer(lowerCamelCase, return_tensors=lowerCamelCase ) ) return common_inputs def snake_case ( self : List[Any], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] =self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Union[str, Any] =self._generate_dummy_inputs_for_causal_lm( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) else: lowerCamelCase__ : List[Any] =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) return common_inputs def snake_case ( self : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Any )-> str: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Any =super()._flatten_past_key_values_(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) else: lowerCamelCase__ : List[str] =super(lowerCamelCase, self )._flatten_past_key_values_( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase )
272
0
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( a__ ): lowerCAmelCase :List[str] = (CMStochasticIterativeScheduler,) lowerCAmelCase :str = 10 def snake_case__ ( self , **_lowerCamelCase): UpperCAmelCase__ : int = { """num_train_timesteps""": 201, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**_lowerCamelCase) return config def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = 10 UpperCAmelCase__ : Tuple = self.get_scheduler_config() UpperCAmelCase__ : str = self.scheduler_classes[0](**_lowerCamelCase) scheduler.set_timesteps(_lowerCamelCase) UpperCAmelCase__ : int = scheduler.timesteps[0] UpperCAmelCase__ : Union[str, Any] = scheduler.timesteps[1] UpperCAmelCase__ : List[Any] = self.dummy_sample UpperCAmelCase__ : List[str] = 0.1 * sample UpperCAmelCase__ : Optional[Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase).prev_sample UpperCAmelCase__ : Optional[Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def snake_case__ ( self): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase) def snake_case__ ( self): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase__ : Dict = self.get_scheduler_config() UpperCAmelCase__ : Any = scheduler_class(**_lowerCamelCase) UpperCAmelCase__ : Optional[int] = 1 scheduler.set_timesteps(_lowerCamelCase) UpperCAmelCase__ : Tuple = scheduler.timesteps UpperCAmelCase__ : Optional[Any] = torch.manual_seed(0) UpperCAmelCase__ : str = self.dummy_model() UpperCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_lowerCamelCase): # 1. scale model input UpperCAmelCase__ : int = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase) # 2. predict noise residual UpperCAmelCase__ : str = model(_lowerCamelCase , _lowerCamelCase) # 3. predict previous sample x_t-1 UpperCAmelCase__ : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase).prev_sample UpperCAmelCase__ : Optional[Any] = pred_prev_sample UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(_lowerCamelCase)) UpperCAmelCase__ : List[Any] = torch.mean(torch.abs(_lowerCamelCase)) assert abs(result_sum.item() - 192.7614) < 1e-2 assert abs(result_mean.item() - 0.2510) < 1e-3 def snake_case__ ( self): UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : List[str] = self.get_scheduler_config() UpperCAmelCase__ : List[Any] = scheduler_class(**_lowerCamelCase) UpperCAmelCase__ : List[str] = [106, 0] scheduler.set_timesteps(timesteps=_lowerCamelCase) UpperCAmelCase__ : List[str] = scheduler.timesteps UpperCAmelCase__ : str = torch.manual_seed(0) UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCAmelCase__ : Dict = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase) # 2. predict noise residual UpperCAmelCase__ : str = model(_lowerCamelCase , _lowerCamelCase) # 3. predict previous sample x_t-1 UpperCAmelCase__ : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase).prev_sample UpperCAmelCase__ : List[str] = pred_prev_sample UpperCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(_lowerCamelCase)) UpperCAmelCase__ : int = torch.mean(torch.abs(_lowerCamelCase)) assert abs(result_sum.item() - 347.6357) < 1e-2 assert abs(result_mean.item() - 0.4527) < 1e-3 def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase__ : List[Any] = self.get_scheduler_config() UpperCAmelCase__ : Union[str, Any] = scheduler_class(**_lowerCamelCase) UpperCAmelCase__ : int = [39, 30, 12, 15, 0] with self.assertRaises(_lowerCamelCase , msg="""`timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = self.scheduler_classes[0] UpperCAmelCase__ : Tuple = self.get_scheduler_config() UpperCAmelCase__ : List[Any] = scheduler_class(**_lowerCamelCase) UpperCAmelCase__ : List[str] = [39, 30, 12, 1, 0] UpperCAmelCase__ : Any = len(_lowerCamelCase) with self.assertRaises(_lowerCamelCase , msg="""Can only pass one of `num_inference_steps` or `timesteps`."""): scheduler.set_timesteps(num_inference_steps=_lowerCamelCase , timesteps=_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase__ : Any = self.get_scheduler_config() UpperCAmelCase__ : List[str] = scheduler_class(**_lowerCamelCase) UpperCAmelCase__ : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCamelCase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowerCamelCase)
163
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ( ): UpperCAmelCase__ : Any = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" UpperCAmelCase__ : Optional[int] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("""RGB""" ) return image def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : int = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = dct.pop(UpperCamelCase__ ) UpperCAmelCase__ : Dict = val def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase__ : List[Any] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase__ : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase__ : Union[str, Any] = torch.cat((q_bias, torch.zeros_like(UpperCamelCase__ , requires_grad=UpperCamelCase__ ), v_bias) ) UpperCAmelCase__ : Tuple = qkv_bias def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Optional[int] = 3_6_4 if """coco""" in model_name else 2_2_4 UpperCAmelCase__ : int = BlipaVisionConfig(image_size=UpperCamelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase__ : str = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=UpperCamelCase__ ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase__ : List[Any] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=UpperCamelCase__ ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase__ : Dict = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase__ : Optional[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() UpperCAmelCase__ : int = BlipaConfig(vision_config=UpperCamelCase__ , text_config=UpperCamelCase__ ) return config, image_size @torch.no_grad() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False ): UpperCAmelCase__ : Tuple = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) UpperCAmelCase__ : int = tokenizer("""\n""" , add_special_tokens=UpperCamelCase__ ).input_ids[0] UpperCAmelCase__ , UpperCAmelCase__ : Any = get_blipa_config(UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) UpperCAmelCase__ : List[str] = BlipaForConditionalGeneration(UpperCamelCase__ ).eval() UpperCAmelCase__ : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) UpperCAmelCase__ : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = load_model_and_preprocess( name=UpperCamelCase__ , model_type=UpperCamelCase__ , is_eval=UpperCamelCase__ , device=UpperCamelCase__ ) original_model.eval() print("""Done!""" ) # update state dict keys UpperCAmelCase__ : List[Any] = original_model.state_dict() UpperCAmelCase__ : Union[str, Any] = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase__ : str = state_dict.pop(UpperCamelCase__ ) if key.startswith("""Qformer.bert""" ): UpperCAmelCase__ : Any = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: UpperCAmelCase__ : Dict = key.replace("""self""" , """attention""" ) if "opt_proj" in key: UpperCAmelCase__ : Any = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: UpperCAmelCase__ : int = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): UpperCAmelCase__ : Optional[int] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): UpperCAmelCase__ : int = key.replace("""t5""" , """language""" ) UpperCAmelCase__ : List[str] = val # read in qv biases read_in_q_v_bias(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : Any = hf_model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase__ : List[Any] = load_demo_image() UpperCAmelCase__ : Any = vis_processors["""eval"""](UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) UpperCAmelCase__ : Any = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(UpperCamelCase__ ) # create processor UpperCAmelCase__ : int = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ ) UpperCAmelCase__ : Any = BlipaProcessor(image_processor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) UpperCAmelCase__ : Tuple = processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values.to(UpperCamelCase__ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) hf_model.to(UpperCamelCase__ ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase__ : List[str] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits UpperCAmelCase__ : Union[str, Any] = hf_model(UpperCamelCase__ , UpperCamelCase__ ).logits else: UpperCAmelCase__ : List[str] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits UpperCAmelCase__ : Any = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase__ : Optional[Any] = hf_model(UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase__ : Any = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=UpperCamelCase__ ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase__ : int = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=UpperCamelCase__ ) else: # cast to same type UpperCAmelCase__ : int = logits.dtype assert torch.allclose(original_logits.to(UpperCamelCase__ ) , UpperCamelCase__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) UpperCAmelCase__ : Union[str, Any] = """""" UpperCAmelCase__ : Dict = tokenizer(UpperCamelCase__ , return_tensors="""pt""" ).input_ids.to(UpperCamelCase__ ) UpperCAmelCase__ : int = original_model.generate({"""image""": original_pixel_values} ) UpperCAmelCase__ : Optional[Any] = hf_model.generate( UpperCamelCase__ , UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = input_ids.shape[1] UpperCAmelCase__ : Optional[Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCamelCase__ ) UpperCAmelCase__ : Any = [text.strip() for text in output_text] print("""HF generation:""" , UpperCamelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": __A =argparse.ArgumentParser() __A =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __A =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
163
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __A = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCamelCase__: str =terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
361
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = CTRLTokenizer lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__: Optional[Any] =["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] lowerCamelCase__: Optional[Any] =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: Union[str, Any] =["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] lowerCamelCase__: Union[str, Any] ={"unk_token": "<unk>"} lowerCamelCase__: Union[str, Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) lowerCamelCase__: Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCAmelCase_) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : List[str] , **UpperCAmelCase_ : str) ->List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int ="adapt react readapt apt" lowerCamelCase__: int ="adapt react readapt apt" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) lowerCamelCase__: Union[str, Any] ="adapt react readapt apt" lowerCamelCase__: Tuple ="adapt re@@ a@@ c@@ t re@@ adapt apt".split() lowerCamelCase__: Dict =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokens + [tokenizer.unk_token] lowerCamelCase__: List[str] =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
273
0
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCAmelCase ( a_ , a_=None ) -> Optional[Any]: """simple docstring""" A_ : Optional[int] = None if token is not None: A_ : Optional[int] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} A_ : Tuple = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" A_ : Optional[int] = requests.get(a_ , headers=a_ ).json() A_ : Union[str, Any] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A_ : List[Any] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(a_ ): A_ : List[str] = requests.get(url + F"&page={i + 2}" , headers=a_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCAmelCase ( a_ , a_=None ) -> Optional[int]: """simple docstring""" A_ : Tuple = None if token is not None: A_ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} A_ : Optional[Any] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" A_ : Tuple = requests.get(a_ , headers=a_ ).json() A_ : Optional[Any] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) A_ : str = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(a_ ): A_ : Optional[int] = requests.get(url + F"&page={i + 2}" , headers=a_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> List[str]: """simple docstring""" A_ : List[str] = None if token is not None: A_ : Tuple = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} A_ : Tuple = requests.get(a_ , headers=a_ , allow_redirects=a_ ) A_ : Dict = result.headers["""Location"""] A_ : str = requests.get(a_ , allow_redirects=a_ ) A_ : Optional[int] = os.path.join(a_ , F"{artifact_name}.zip" ) with open(a_ , """wb""" ) as fp: fp.write(response.content ) def UpperCAmelCase ( a_ , a_=None ) -> Any: """simple docstring""" A_ : Tuple = [] A_ : Any = [] A_ : List[str] = None with zipfile.ZipFile(a_ ) as z: for filename in z.namelist(): if not os.path.isdir(a_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(a_ ) as f: for line in f: A_ : Tuple = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs A_ : str = line[: line.index(""": """ )] A_ : int = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed A_ : List[Any] = line[len("""FAILED """ ) :] failed_tests.append(a_ ) elif filename == "job_name.txt": A_ : Dict = line if len(a_ ) != len(a_ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(a_ )} for `errors` " F"and {len(a_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) A_ : Dict = None if job_name and job_links: A_ : Union[str, Any] = job_links.get(a_ , a_ ) # A list with elements of the form (line of error, error, failed test) A_ : int = [x + [y] + [job_link] for x, y in zip(a_ , a_ )] return result def UpperCAmelCase ( a_ , a_=None ) -> Dict: """simple docstring""" A_ : Union[str, Any] = [] A_ : List[Any] = [os.path.join(a_ , a_ ) for p in os.listdir(a_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(a_ , job_links=a_ ) ) return errors def UpperCAmelCase ( a_ , a_=None ) -> Tuple: """simple docstring""" A_ : Dict = Counter() counter.update([x[1] for x in logs] ) A_ : Union[str, Any] = counter.most_common() A_ : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: A_ : Tuple = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} A_ : Optional[Any] = dict(sorted(r.items() , key=lambda a_ : item[1]["count"] , reverse=a_ ) ) return r def UpperCAmelCase ( a_ ) -> str: """simple docstring""" A_ : Any = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): A_ : List[str] = test.split("""/""" )[2] else: A_ : int = None return test def UpperCAmelCase ( a_ , a_=None ) -> Union[str, Any]: """simple docstring""" A_ : Tuple = [(x[0], x[1], get_model(x[2] )) for x in logs] A_ : Dict = [x for x in logs if x[2] is not None] A_ : Optional[int] = {x[2] for x in logs} A_ : Tuple = {} for test in tests: A_ : Union[str, Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) A_ : List[Any] = counter.most_common() A_ : Dict = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} A_ : Union[str, Any] = sum(error_counts.values() ) if n_errors > 0: A_ : Optional[int] = {"""count""": n_errors, """errors""": error_counts} A_ : Dict = dict(sorted(r.items() , key=lambda a_ : item[1]["count"] , reverse=a_ ) ) return r def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : Optional[int] = """| no. | error | status |""" A_ : Any = """|-:|:-|:-|""" A_ : Optional[Any] = [header, sep] for error in reduced_by_error: A_ : Any = reduced_by_error[error]["""count"""] A_ : int = F"| {count} | {error[:1_0_0]} | |" lines.append(a_ ) return "\n".join(a_ ) def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" A_ : Any = """| model | no. of errors | major error | count |""" A_ : str = """|-:|-:|-:|-:|""" A_ : List[str] = [header, sep] for model in reduced_by_model: A_ : List[str] = reduced_by_model[model]["""count"""] A_ , A_ : List[str] = list(reduced_by_model[model]["""errors"""].items() )[0] A_ : int = F"| {model} | {count} | {error[:6_0]} | {_count} |" lines.append(a_ ) return "\n".join(a_ ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') UpperCamelCase__ : Any = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCamelCase__ : Dict = get_job_links(args.workflow_run_id, token=args.token) UpperCamelCase__ : Union[str, Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCamelCase__ : Any = k.find(' / ') UpperCamelCase__ : int = k[index + len(' / ') :] UpperCamelCase__ : Optional[Any] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCamelCase__ : List[Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCamelCase__ : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCamelCase__ : int = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCamelCase__ : Dict = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCamelCase__ : List[Any] = reduce_by_error(errors) UpperCamelCase__ : Any = reduce_by_model(errors) UpperCamelCase__ : List[Any] = make_github_table(reduced_by_error) UpperCamelCase__ : Union[str, Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
344
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) -> List[str]: A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __A, __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase_ ( self ) -> Dict: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def UpperCAmelCase_ ( self ) -> int: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: pass def UpperCAmelCase_ ( self ) -> int: A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Dict: A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {"""output_hidden_states""": True} ) def UpperCAmelCase_ ( self ) -> str: A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def UpperCAmelCase_ ( self ) -> Tuple: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" A_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self ) -> int: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors="""tf""" ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
344
1
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a_ ( __snake_case : str , __snake_case : Optional[int] , __snake_case : int ) -> Dict: """simple docstring""" # Construct model if gpta_config_file == "": lowerCamelCase_ =GPTaConfig() else: lowerCamelCase_ =GPTaConfig.from_json_file(__snake_case ) lowerCamelCase_ =GPTaModel(__snake_case ) # Load weights from numpy load_tf_weights_in_gpta(__snake_case , __snake_case , __snake_case ) # Save pytorch-model lowerCamelCase_ =pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCamelCase_ =pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __snake_case ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) a_ : List[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
354
'''simple docstring''' from collections import defaultdict from math import gcd def a_ ( __snake_case : int = 150_0000 ) -> int: """simple docstring""" lowerCamelCase_ =defaultdict(__snake_case ) lowerCamelCase_ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue lowerCamelCase_ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
6
0
from __future__ import annotations import math __lowerCAmelCase = '''2020.9.26''' __lowerCAmelCase = '''xcodz-dot, cclaus, dhruvmanila''' def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> tuple[float, float]: if not all(isinstance(snake_case , (float, int) ) for val in locals().values() ): lowercase__: str = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(snake_case ) lowercase__: List[Any] = ((x * distance) / (z + distance)) * scale lowercase__: List[str] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def snake_case_ ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> tuple[float, float, float]: if not isinstance(snake_case , snake_case ): raise TypeError('Axis must be a str' ) lowercase__: Any = locals() del input_variables["axis"] if not all(isinstance(snake_case , (float, int) ) for val in input_variables.values() ): lowercase__: int = ( 'Input values except axis must either be float or int: ' f'{list(input_variables.values() )}' ) raise TypeError(snake_case ) lowercase__: Optional[int] = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": lowercase__: Optional[int] = x * math.cos(snake_case ) - y * math.sin(snake_case ) lowercase__: Dict = y * math.cos(snake_case ) + x * math.sin(snake_case ) lowercase__: Tuple = z elif axis == "x": lowercase__: Optional[Any] = y * math.cos(snake_case ) - z * math.sin(snake_case ) lowercase__: Optional[int] = z * math.cos(snake_case ) + y * math.sin(snake_case ) lowercase__: List[str] = x elif axis == "y": lowercase__: List[str] = x * math.cos(snake_case ) - z * math.sin(snake_case ) lowercase__: int = z * math.cos(snake_case ) + x * math.sin(snake_case ) lowercase__: List[Any] = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, "y", 90.0) = }''')
196
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __lowerCAmelCase = logging.get_logger(__name__) def snake_case_ ( snake_case , snake_case ) -> List[str]: lowercase__: List[str] = set() lowercase__: List[Any] = [] def parse_line(snake_case ): for line in fp: if isinstance(snake_case , snake_case ): lowercase__: Optional[Any] = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(snake_case ) > 0: lowercase__: List[str] = '\n'.join(snake_case ) # Only keep the warnings specified in `targets` if any(f': {x}: ' in warning for x in targets ): selected_warnings.add(snake_case ) buffer.clear() continue else: lowercase__: Union[str, Any] = line.strip() buffer.append(snake_case ) if from_gh: for filename in os.listdir(snake_case ): lowercase__: Dict = os.path.join(snake_case , snake_case ) if not os.path.isdir(snake_case ): # read the file if filename != "warnings.txt": continue with open(snake_case ) as fp: parse_line(snake_case ) else: try: with zipfile.ZipFile(snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case ): # read the file if filename != "warnings.txt": continue with z.open(snake_case ) as fp: parse_line(snake_case ) except Exception: logger.warning( f'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case_ ( snake_case , snake_case ) -> Any: lowercase__: Optional[Any] = set() lowercase__: int = [os.path.join(snake_case , snake_case ) for p in os.listdir(snake_case ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(snake_case , snake_case ) ) return selected_warnings if __name__ == "__main__": def snake_case_ ( snake_case ) -> str: return values.split(',' ) __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __lowerCAmelCase = extract_warnings(args.output_dir, args.targets) __lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
196
1
'''simple docstring''' def a ( __a = 1000000 ): '''simple docstring''' UpperCamelCase__ :int = 1 UpperCamelCase__ :Optional[int] = 1 UpperCamelCase__ :List[Any] = {1: 1} for inputa in range(2 , __a ): UpperCamelCase__ :Union[str, Any] = 0 UpperCamelCase__ :Optional[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: UpperCamelCase__ :Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: UpperCamelCase__ :int = counter if counter > pre_counter: UpperCamelCase__ :Union[str, Any] = inputa UpperCamelCase__ :int = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
361
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def a ( __a=None ) -> List[str]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = argparse.ArgumentParser(add_help=__a , allow_abbrev=__a ) # The main config parser UpperCamelCase__ :str = config_command_parser(__a ) # The subparser to add commands to UpperCamelCase__ :Union[str, Any] = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(__a , parents=[parent_parser] ) update_command_parser(__a , parents=[parent_parser] ) return config_parser def a ( ) -> Any: '''simple docstring''' UpperCamelCase__ :int = get_config_parser() UpperCamelCase__ :List[Any] = config_parser.parse_args() if not hasattr(__a , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
219
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available __lowercase = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class a__( enum.Enum ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : Any = 2 @add_end_docstrings(lowerCAmelCase__ ) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : int = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase = None if self.model.config.prefix is not None: lowerCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._sanitize_parameters(prefix=__lowerCAmelCase , **self._forward_params) lowerCAmelCase = {**self._preprocess_params, **preprocess_params} lowerCAmelCase = {**self._forward_params, **forward_params} def a_ ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = {} if prefix is not None: lowerCAmelCase = prefix if prefix: lowerCAmelCase = self.tokenizer( __lowerCAmelCase , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework) lowerCAmelCase = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" """ [None, 'hole']""") lowerCAmelCase = handle_long_generation preprocess_params.update(__lowerCAmelCase) lowerCAmelCase = generate_kwargs lowerCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""") if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""") lowerCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""") lowerCAmelCase = ReturnType.TENSORS if return_type is not None: lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase = self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) if len(__lowerCAmelCase) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""") lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True}) return super()._parse_and_tokenize(*__lowerCAmelCase , **__lowerCAmelCase) def __call__( self , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase="" , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.tokenizer( prefix + prompt_text , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework) lowerCAmelCase = prompt_text if handle_long_generation == "hole": lowerCAmelCase = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase = generate_kwargs["""max_new_tokens"""] else: lowerCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""") if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""") lowerCAmelCase = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase = inputs["""attention_mask"""][:, -keep_length:] return inputs def a_ ( self , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = model_inputs["""input_ids"""] lowerCAmelCase = model_inputs.get("""attention_mask""" , __lowerCAmelCase) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = 1 else: lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model_inputs.pop("""prompt_text""") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase = generate_kwargs.pop("""prefix_length""" , 0) if prefix_length > 0: lowerCAmelCase = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase = generate_kwargs.get("""max_length""") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase = self.model.generate(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase = generated_sequence.reshape(__lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": lowerCAmelCase = tf.reshape(__lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=ReturnType.FULL_TEXT , __lowerCAmelCase=True): """simple docstring""" lowerCAmelCase = model_outputs["""generated_sequence"""][0] lowerCAmelCase = model_outputs["""input_ids"""] lowerCAmelCase = model_outputs["""prompt_text"""] lowerCAmelCase = generated_sequence.numpy().tolist() lowerCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase = self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase = 0 else: lowerCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , )) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase = prompt_text + text[prompt_length:] else: lowerCAmelCase = text[prompt_length:] lowerCAmelCase = {"""generated_text""": all_text} records.append(__lowerCAmelCase) return records
272
1
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __snake_case : Optional[Any] = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 48_000, 'sample_size': 131_072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, } def _UpperCAmelCase ( _UpperCamelCase : List[Any], _UpperCamelCase : Any ) -> int: return torch.atana(_UpperCamelCase, _UpperCamelCase ) / math.pi * 2 def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> List[Any]: A_ = torch.sin(t * math.pi / 2 ) ** 2 A_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_UpperCamelCase, _UpperCamelCase ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' pass class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: super().__init__() A_ = DiffusionAttnUnetaD(_SCREAMING_SNAKE_CASE , n_attn_layers=4 ) A_ = deepcopy(self.diffusion ) A_ = torch.quasirandom.SobolEngine(1 , scramble=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _UpperCamelCase : List[Any] ) -> Tuple: A_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' __snake_case : Optional[int] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } __snake_case : Union[str, Any] = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } __snake_case : Optional[int] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } __snake_case : int = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } __snake_case : List[Any] = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } __snake_case : Optional[int] = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def _UpperCAmelCase ( _UpperCamelCase : str ) -> List[Any]: if name.startswith('''skip''' ): return name.replace('''skip''', RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6], RES_CONV_MAP[name[:6]] ) def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> List[Any]: for key, value in ATTN_MAP.items(): if name.startswith(_UpperCamelCase ) and not isinstance(_UpperCamelCase, _UpperCamelCase ): return name.replace(_UpperCamelCase, _UpperCamelCase ) elif name.startswith(_UpperCamelCase ): return [name.replace(_UpperCamelCase, _UpperCamelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def _UpperCAmelCase ( _UpperCamelCase : List[Any], _UpperCamelCase : Optional[int]=13 ) -> List[str]: A_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''', '''time_proj''' ) A_ = 0 if string.startswith('''net.3.''' ): depth += 1 A_ = string[6:] elif string.startswith('''net.''' ): A_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 A_ = string[7:] if string.startswith('''main.''' ): A_ = string[5:] # mid block if string[:2].isdigit(): A_ = string[:2] A_ = string[2:] else: A_ = string[0] A_ = string[1:] if depth == max_depth: A_ = MID_NUM_TO_LAYER[layer_num] A_ = '''mid_block''' elif depth > 0 and int(_UpperCamelCase ) < 7: A_ = DOWN_NUM_TO_LAYER[layer_num] A_ = F'''down_blocks.{depth}''' elif depth > 0 and int(_UpperCamelCase ) > 7: A_ = UP_NUM_TO_LAYER[layer_num] A_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: A_ = DEPTH_0_TO_LAYER[layer_num] A_ = F'''up_blocks.{max_depth - 1}''' if int(_UpperCamelCase ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) A_ = string_left[1:] if "resnets" in new_layer: A_ = convert_resconv_naming(_UpperCamelCase ) elif "attentions" in new_layer: A_ = convert_attn_naming(_UpperCamelCase ) A_ = new_string_left if not isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = prefix + '''.''' + new_layer + '''.''' + string_left else: A_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> List[str]: A_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue A_ = rename(_UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = transform_conv_attns(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) else: A_ = v return new_state_dict def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Optional[int], _UpperCamelCase : str ) -> Dict: if len(_UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight A_ = v[:, :, 0] else: # bias A_ = v else: # qkv matrices A_ = v.shape[0] A_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: A_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: A_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _UpperCAmelCase ( _UpperCamelCase : int ) -> Optional[Any]: A_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) A_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' A_ = download(_UpperCamelCase ) A_ = MODELS_MAP[model_name]['''sample_rate'''] A_ = MODELS_MAP[model_name]['''sample_size'''] A_ = Object() A_ = sample_size A_ = sample_rate A_ = 0 A_ = UNetaDModel(sample_size=_UpperCamelCase, sample_rate=_UpperCamelCase ) A_ = diffusers_model.state_dict() A_ = DiffusionUncond(_UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path, map_location=_UpperCamelCase )['''state_dict'''] ) A_ = orig_model.diffusion_ema.eval() A_ = orig_model.state_dict() A_ = rename_orig_weights(_UpperCamelCase ) A_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) A_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_UpperCamelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(_UpperCamelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": A_ = value.squeeze() A_ = value diffusers_model.load_state_dict(_UpperCamelCase ) A_ = 1_00 A_ = 33 A_ = IPNDMScheduler(num_train_timesteps=_UpperCamelCase ) A_ = torch.manual_seed(_UpperCamelCase ) A_ = torch.randn([1, 2, config.sample_size], generator=_UpperCamelCase ).to(_UpperCamelCase ) A_ = torch.linspace(1, 0, steps + 1, device=_UpperCamelCase )[:-1] A_ = get_crash_schedule(_UpperCamelCase ) A_ = DanceDiffusionPipeline(unet=_UpperCamelCase, scheduler=_UpperCamelCase ) A_ = torch.manual_seed(33 ) A_ = pipe(num_inference_steps=_UpperCamelCase, generator=_UpperCamelCase ).audios A_ = sampling.iplms_sample(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, {} ) A_ = generated.clamp(-1, 1 ) A_ = (generated - audio).abs().sum() A_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''', _UpperCamelCase ) print('''Diff max''', _UpperCamelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') __snake_case : List[Any] = parser.parse_args() main(args)
18
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) UpperCamelCase__ = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __lowerCAmelCase = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): with open(SCREAMING_SNAKE_CASE_ , encoding="utf_8" ) as f: __lowerCAmelCase = csv.reader(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ): __lowerCAmelCase = [] for dataset in encoded_datasets: __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __lowerCAmelCase = np.zeros((n_batch, 2) , dtype=np.intaa ) __lowerCAmelCase = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __lowerCAmelCase = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowerCAmelCase = with_conta __lowerCAmelCase = with_conta __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 __lowerCAmelCase = with_conta __lowerCAmelCase = with_conta __lowerCAmelCase = mc_label __lowerCAmelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def _a ( ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE_ , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE_ , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE_ , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE_ , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE_ , default=6.25E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE_ , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE_ , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE_ , default=3_74 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE_ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE_ , default="" , help="Can be used for distant debugging." ) __lowerCAmelCase = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __lowerCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) __lowerCAmelCase = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __lowerCAmelCase = ["_start_", "_delimiter_", "_classify_"] __lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info("Encoding dataset..." ) __lowerCAmelCase = load_rocstories_dataset(args.train_dataset ) __lowerCAmelCase = load_rocstories_dataset(args.eval_dataset ) __lowerCAmelCase = (train_dataset, eval_dataset) __lowerCAmelCase = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer __lowerCAmelCase = model.config.n_positions // 2 - 2 __lowerCAmelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __lowerCAmelCase = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = tensor_datasets[0], tensor_datasets[1] __lowerCAmelCase = TensorDataset(*SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = RandomSampler(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) __lowerCAmelCase = TensorDataset(*SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = SequentialSampler(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __lowerCAmelCase = args.max_steps __lowerCAmelCase = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs __lowerCAmelCase = list(model.named_parameters() ) __lowerCAmelCase = ["bias", "LayerNorm.bias", "LayerNorm.weight"] __lowerCAmelCase = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] __lowerCAmelCase = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) __lowerCAmelCase = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = tqdm(SCREAMING_SNAKE_CASE_ , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = batch __lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __lowerCAmelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __lowerCAmelCase = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __lowerCAmelCase = model.module if hasattr(SCREAMING_SNAKE_CASE_ , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __lowerCAmelCase = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() __lowerCAmelCase , __lowerCAmelCase = 0, 0 __lowerCAmelCase , __lowerCAmelCase = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc="Evaluating" ): __lowerCAmelCase = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = batch with torch.no_grad(): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = mc_logits.detach().cpu().numpy() __lowerCAmelCase = mc_labels.to("cpu" ).numpy() __lowerCAmelCase = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __lowerCAmelCase = eval_loss / nb_eval_steps __lowerCAmelCase = eval_accuracy / nb_eval_examples __lowerCAmelCase = tr_loss / nb_tr_steps if args.do_train else None __lowerCAmelCase = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} __lowerCAmelCase = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
92
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class A_ : def __init__( self , _A , _A=1_4 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_input_mask UpperCAmelCase = use_labels UpperCAmelCase = use_mc_token_ids UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None if self.use_mc_token_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _lowercase ( self , _A , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = CTRLModel(config=_A ) model.to(_A ) model.eval() model(_A , token_type_ids=_A , head_mask=_A ) model(_A , token_type_ids=_A ) UpperCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _lowercase ( self , _A , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = CTRLLMHeadModel(_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def _lowercase ( self , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = CTRLForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class A_ (a_ , a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = CTRLModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A , n_embd=3_7 ) def _lowercase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowercase ( self ): '''simple docstring''' pass @slow def _lowercase ( self ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = CTRLModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _lowercase ( self ): '''simple docstring''' pass @require_torch class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(_A ) UpperCAmelCase = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] , dtype=torch.long , device=_A ) # Legal the president is UpperCAmelCase = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCAmelCase = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
273
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 1_6 lowercase_ = 3_2 def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 16 ): __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('bert-base-cased' ) __lowerCamelCase : Optional[int] = load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE__ ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase : Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase : Any = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase : List[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__ ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase : Dict = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase : Tuple = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase : Any = 8 else: __lowerCamelCase : Tuple = None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding='longest' , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors='pt' , ) # Instantiate dataloaders. __lowerCamelCase : Optional[Any] = DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ = mocked_dataloaders # noqa: F811 def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE__ ) == "1": __lowerCamelCase : str = 2 # New Code # __lowerCamelCase : List[str] = int(args.gradient_accumulation_steps ) # Initialize accelerator __lowerCamelCase : str = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase : Dict = config['lr'] __lowerCamelCase : Union[str, Any] = int(config['num_epochs'] ) __lowerCamelCase : int = int(config['seed'] ) __lowerCamelCase : str = int(config['batch_size'] ) __lowerCamelCase : str = evaluate.load('glue' , 'mrpc' ) set_seed(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Optional[int] = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase : Tuple = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler __lowerCamelCase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = model(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Tuple = output.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = outputs.logits.argmax(dim=-1 ) __lowerCamelCase , __lowerCamelCase : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( ): __lowerCamelCase : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __lowerCamelCase : Dict = parser.parse_args() __lowerCamelCase : List[str] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
194
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): __lowerCamelCase : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): __lowerCamelCase : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __lowerCamelCase : Optional[int] = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) __lowerCamelCase : str = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 255.0 __lowerCamelCase : List[str] = image.transpose(0 , 3 , 1 , 2 ) __lowerCamelCase : Union[str, Any] = 2.0 * image - 1.0 __lowerCamelCase : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): __lowerCamelCase : str = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.9_995 ): if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): __lowerCamelCase : List[str] = True __lowerCamelCase : str = va.device __lowerCamelCase : int = va.cpu().numpy() __lowerCamelCase : List[str] = va.cpu().numpy() __lowerCamelCase : str = np.sum(va * va / (np.linalg.norm(SCREAMING_SNAKE_CASE__ ) * np.linalg.norm(SCREAMING_SNAKE_CASE__ )) ) if np.abs(SCREAMING_SNAKE_CASE__ ) > DOT_THRESHOLD: __lowerCamelCase : Union[str, Any] = (1 - t) * va + t * va else: __lowerCamelCase : List[Any] = np.arccos(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Dict = np.sin(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = theta_a * t __lowerCamelCase : List[Any] = np.sin(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = np.sin(theta_a - theta_t ) / sin_theta_a __lowerCamelCase : List[Any] = sin_theta_t / sin_theta_a __lowerCamelCase : Union[str, Any] = sa * va + sa * va if inputs_are_torch: __lowerCamelCase : str = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return va def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) __lowerCamelCase : Union[str, Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for param in model.parameters(): __lowerCamelCase : Any = value class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Any , a: AutoencoderKL , a: CLIPTextModel , a: CLIPModel , a: CLIPTokenizer , a: UNetaDConditionModel , a: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , a: CLIPFeatureExtractor , a: Union[str, Any]=None , a: Union[str, Any]=None , a: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=a , text_encoder=a , clip_model=a , tokenizer=a , unet=a , scheduler=a , feature_extractor=a , coca_model=a , coca_tokenizer=a , coca_transform=a , ) __lowerCamelCase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size , a ) else feature_extractor.size['shortest_edge'] ) __lowerCamelCase : List[Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , a ) set_requires_grad(self.clip_model , a ) def _snake_case ( self: Optional[Any] , a: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCamelCase : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def _snake_case ( self: Dict ): self.enable_attention_slicing(a ) def _snake_case ( self: Optional[Any] ): set_requires_grad(self.vae , a ) def _snake_case ( self: List[Any] ): set_requires_grad(self.vae , a ) def _snake_case ( self: int ): set_requires_grad(self.unet , a ) def _snake_case ( self: int ): set_requires_grad(self.unet , a ) def _snake_case ( self: Optional[Any] , a: Union[str, Any] , a: List[str] , a: List[Any] ): # get the original timestep using init_timestep __lowerCamelCase : List[Any] = min(int(num_inference_steps * strength ) , a ) __lowerCamelCase : str = max(num_inference_steps - init_timestep , 0 ) __lowerCamelCase : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self: Union[str, Any] , a: Optional[Any] , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , a: List[str]=None ): if not isinstance(a , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(a )}' ) __lowerCamelCase : Union[str, Any] = image.to(device=a , dtype=a ) if isinstance(a , a ): __lowerCamelCase : str = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] __lowerCamelCase : Tuple = torch.cat(a , dim=0 ) else: __lowerCamelCase : List[Any] = self.vae.encode(a ).latent_dist.sample(a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : List[str] = 0.1_8_2_1_5 * init_latents __lowerCamelCase : Union[str, Any] = init_latents.repeat_interleave(a , dim=0 ) __lowerCamelCase : Optional[int] = randn_tensor(init_latents.shape , generator=a , device=a , dtype=a ) # get latents __lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(a , a , a ) __lowerCamelCase : int = init_latents return latents def _snake_case ( self: Optional[int] , a: Any ): __lowerCamelCase : List[Any] = self.coca_transform(a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowerCamelCase : Any = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __lowerCamelCase : str = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def _snake_case ( self: Any , a: Tuple , a: Tuple ): __lowerCamelCase : Dict = self.feature_extractor.preprocess(a ) __lowerCamelCase : Dict = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() __lowerCamelCase : List[str] = self.clip_model.get_image_features(a ) __lowerCamelCase : Optional[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) __lowerCamelCase : Tuple = image_embeddings_clip.repeat_interleave(a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _snake_case ( self: str , a: str , a: int , a: List[Any] , a: str , a: List[Any] , a: Dict , a: int , ): __lowerCamelCase : Optional[Any] = latents.detach().requires_grad_() __lowerCamelCase : str = self.scheduler.scale_model_input(a , a ) # predict the noise residual __lowerCamelCase : Optional[int] = self.unet(a , a , encoder_hidden_states=a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowerCamelCase : str = self.scheduler.alphas_cumprod[timestep] __lowerCamelCase : Dict = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase : Optional[int] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowerCamelCase : Optional[int] = torch.sqrt(a ) __lowerCamelCase : int = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , a ): __lowerCamelCase : str = self.scheduler.sigmas[index] __lowerCamelCase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : Optional[int] = 1 / 0.1_8_2_1_5 * sample __lowerCamelCase : Optional[Any] = self.vae.decode(a ).sample __lowerCamelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Any = transforms.Resize(self.feature_extractor_size )(a ) __lowerCamelCase : Union[str, Any] = self.normalize(a ).to(latents.dtype ) __lowerCamelCase : Tuple = self.clip_model.get_image_features(a ) __lowerCamelCase : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) __lowerCamelCase : List[str] = spherical_dist_loss(a , a ).mean() * clip_guidance_scale __lowerCamelCase : Tuple = -torch.autograd.grad(a , a )[0] if isinstance(self.scheduler , a ): __lowerCamelCase : Optional[int] = latents.detach() + grads * (sigma**2) __lowerCamelCase : List[Any] = noise_pred_original else: __lowerCamelCase : str = noise_pred_original - torch.sqrt(a ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Any , a: Union[torch.FloatTensor, PIL.Image.Image] , a: Union[torch.FloatTensor, PIL.Image.Image] , a: Optional[str] = None , a: Optional[str] = None , a: Optional[int] = 512 , a: Optional[int] = 512 , a: float = 0.6 , a: Optional[int] = 50 , a: Optional[float] = 7.5 , a: Optional[int] = 1 , a: float = 0.0 , a: Optional[float] = 100 , a: Optional[torch.Generator] = None , a: Optional[str] = "pil" , a: bool = True , a: float = 0.8 , a: float = 0.1 , a: float = 0.1 , ): if isinstance(a , a ) and len(a ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(a )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(a , torch.Generator ) and batch_size > 1: __lowerCamelCase : List[Any] = [generator] + [None] * (batch_size - 1) __lowerCamelCase : Dict = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] __lowerCamelCase : Any = [x[0] for x in coca_is_none if x[1]] __lowerCamelCase : str = ', '.join(a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(a ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __lowerCamelCase : Any = self.get_image_description(a ) if style_prompt is None: if len(a ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __lowerCamelCase : Tuple = self.get_image_description(a ) # get prompt text embeddings for content and style __lowerCamelCase : int = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) __lowerCamelCase : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowerCamelCase : Union[str, Any] = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) __lowerCamelCase : Any = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowerCamelCase : List[Any] = slerp(a , a , a ) # duplicate text embeddings for each generation per prompt __lowerCamelCase : Any = text_embeddings.repeat_interleave(a , dim=0 ) # set timesteps __lowerCamelCase : List[Any] = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowerCamelCase : Union[str, Any] = {} if accepts_offset: __lowerCamelCase : Dict = 1 self.scheduler.set_timesteps(a , **a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowerCamelCase , __lowerCamelCase : Dict = self.get_timesteps(a , a , self.device ) __lowerCamelCase : Tuple = timesteps[:1].repeat(a ) # Preprocess image __lowerCamelCase : Any = preprocess(a , a , a ) __lowerCamelCase : str = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) __lowerCamelCase : Dict = preprocess(a , a , a ) __lowerCamelCase : Optional[int] = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) __lowerCamelCase : int = slerp(a , a , a ) if clip_guidance_scale > 0: __lowerCamelCase : List[str] = self.get_clip_image_embeddings(a , a ) __lowerCamelCase : Union[str, Any] = self.get_clip_image_embeddings(a , a ) __lowerCamelCase : Union[str, Any] = slerp( a , a , a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowerCamelCase : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowerCamelCase : Optional[int] = content_text_input.input_ids.shape[-1] __lowerCamelCase : int = self.tokenizer([''] , padding='max_length' , max_length=a , return_tensors='pt' ) __lowerCamelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowerCamelCase : List[Any] = uncond_embeddings.repeat_interleave(a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase : int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowerCamelCase : str = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowerCamelCase : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowerCamelCase : Tuple = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: __lowerCamelCase : List[Any] = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __lowerCamelCase : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase : int = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase : Dict = {} if accepts_eta: __lowerCamelCase : List[str] = eta # check if the scheduler accepts generator __lowerCamelCase : Optional[int] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowerCamelCase : Optional[Any] = generator with self.progress_bar(total=a ): for i, t in enumerate(a ): # expand the latents if we are doing classifier free guidance __lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase : Union[str, Any] = self.scheduler.scale_model_input(a , a ) # predict the noise residual __lowerCamelCase : Tuple = self.unet(a , a , encoder_hidden_states=a ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase : str = noise_pred.chunk(2 ) __lowerCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowerCamelCase : str = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowerCamelCase , __lowerCamelCase : int = self.cond_fn( a , a , a , a , a , a , a , ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : Tuple = self.scheduler.step(a , a , a , **a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents __lowerCamelCase : Union[str, Any] = self.vae.decode(a ).sample __lowerCamelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : Union[str, Any] = self.numpy_to_pil(a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
194
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : str = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
77
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
6
0
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError("""Input must be a positive integer""" ) _lowerCAmelCase = [True] * (num + 1) _lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case_ ): _lowerCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Dict = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
317
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size def A__ (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = MobileNetVaImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """crop_size""" ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> None: '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __UpperCAmelCase ,__UpperCAmelCase : Optional[int] = array[indexa], array[indexa] def lowerCamelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> None: '''simple docstring''' if length > 1: __UpperCAmelCase : Optional[int] = int(length / 2 ) for i in range(__UpperCamelCase , low + middle ): comp_and_swap(__UpperCamelCase , __UpperCamelCase , i + middle , __UpperCamelCase ) bitonic_merge(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) bitonic_merge(__UpperCamelCase , low + middle , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : list[int] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> None: '''simple docstring''' if length > 1: __UpperCAmelCase : Union[str, Any] = int(length / 2 ) bitonic_sort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , 1 ) bitonic_sort(__UpperCamelCase , low + middle , __UpperCamelCase , 0 ) bitonic_merge(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase : str = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
115
import socket def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE__ = socket.gethostname() SCREAMING_SNAKE_CASE__ = 1_23_12 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: SCREAMING_SNAKE_CASE__ = sock.recv(10_24 ) if not data: break out_file.write(__UpperCamelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
219
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class _lowerCamelCase ( _lowercase ): def __init__(self , *__a , **__a ) -> None: warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
244
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCamelCase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCamelCase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCamelCase = sorted_profit_by_weight[length - i - 1] UpperCamelCase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) UpperCamelCase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) lowerCAmelCase__ = [int(x) for x in input('''Input profits separated by spaces: ''').split()] lowerCAmelCase__ = [int(x) for x in input('''Input weights separated by spaces: ''').split()] lowerCAmelCase__ = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
244
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __lowerCamelCase : Dict = 10 def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[int] , lowerCAmelCase : int ): """simple docstring""" for i in range(lowerCAmelCase , lowerCAmelCase ): if array[i] == target: return i return -1 def _snake_case ( lowerCAmelCase : list[int] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : str = len(lowerCAmelCase ) while left <= right: if right - left < precision: return lin_search(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE_ : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: SCREAMING_SNAKE_CASE_ : Dict = one_third - 1 elif array[two_third] < target: SCREAMING_SNAKE_CASE_ : Any = two_third + 1 else: SCREAMING_SNAKE_CASE_ : List[str] = one_third + 1 SCREAMING_SNAKE_CASE_ : int = two_third - 1 else: return -1 def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[int] , lowerCAmelCase : int ): """simple docstring""" if left < right: if right - left < precision: return lin_search(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE_ : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowerCAmelCase , one_third - 1 , lowerCAmelCase , lowerCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowerCAmelCase , lowerCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip() __lowerCamelCase : str = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __lowerCamelCase : str = int(input('''Enter the number to be found in the list:\n''').strip()) __lowerCamelCase : int = ite_ternary_search(collection, target) __lowerCamelCase : Tuple = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
18
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=3 , lowercase_ : List[Any]=4 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[Any]=7 , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : List[str]=True , lowercase_ : Union[str, Any]=True , lowercase_ : str=99 , lowercase_ : str=36 , lowercase_ : int=3 , lowercase_ : int=4 , lowercase_ : Any=37 , lowercase_ : str="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : int=512 , lowercase_ : int=16 , lowercase_ : Dict=2 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=6 , lowercase_ : Tuple=6 , lowercase_ : Any=3 , lowercase_ : Dict=4 , lowercase_ : Any=None , lowercase_ : Tuple=1_000 , ) -> Tuple: UpperCAmelCase : List[Any] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : int = patch_size UpperCAmelCase : Tuple = text_seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Any = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : int = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Optional[int] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : List[str] = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : int = initializer_range UpperCAmelCase : Optional[int] = coordinate_size UpperCAmelCase : Optional[int] = shape_size UpperCAmelCase : str = num_labels UpperCAmelCase : str = num_choices UpperCAmelCase : int = scope UpperCAmelCase : Tuple = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase : Any = text_seq_length UpperCAmelCase : int = (image_size // patch_size) ** 2 + 1 UpperCAmelCase : Optional[int] = self.text_seq_length + self.image_seq_length def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase : int = bbox[i, j, 3] UpperCAmelCase : List[Any] = bbox[i, j, 1] UpperCAmelCase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase : Tuple = bbox[i, j, 2] UpperCAmelCase : List[str] = bbox[i, j, 0] UpperCAmelCase : List[str] = t UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : int = None if self.use_input_mask: UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase : int = None if self.use_token_type_ids: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase : Dict = None UpperCAmelCase : Dict = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : int = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase : str = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase_ ( self : str , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Optional[Any] ) -> Any: UpperCAmelCase : Dict = LayoutLMvaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() # text + image UpperCAmelCase : Optional[Any] = model(lowercase_ , pixel_values=lowercase_ ) UpperCAmelCase : str = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase : Any = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , token_type_ids=lowercase_ ) UpperCAmelCase : str = model(lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase : List[Any] = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase : Dict = model(pixel_values=lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any , lowercase_ : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : Union[str, Any] = LayoutLMvaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : int = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Any , lowercase_ : int , lowercase_ : str , lowercase_ : Any , lowercase_ : int , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int ) -> Any: UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : int = LayoutLMvaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : Optional[Any] = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Optional[int] ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = LayoutLMvaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[str] = model( lowercase_ , bbox=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( UpperCAmelCase ) : Optional[int] = config_and_inputs UpperCAmelCase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Dict = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : List[str] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase_ : List[str] = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCAmelCase_ ( self : Any , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ) -> Union[str, Any]: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCAmelCase_ ( self : str ) -> Any: UpperCAmelCase : Union[str, Any] = LayoutLMvaModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase_ ( self : Tuple , lowercase_ : int , lowercase_ : Dict , lowercase_ : Any=False ) -> Optional[Any]: UpperCAmelCase : str = copy.deepcopy(lowercase_ ) if model_class in get_values(lowercase_ ): UpperCAmelCase : str = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowercase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase_ ): UpperCAmelCase : Dict = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in get_values(lowercase_ ): UpperCAmelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) UpperCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in [ *get_values(lowercase_ ), ]: UpperCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) elif model_class in [ *get_values(lowercase_ ), ]: UpperCAmelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowercase_ , ) return inputs_dict def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : Optional[int] = type self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Any: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : int = LayoutLMvaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCamelCase( ): UpperCAmelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=lowercase_ ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : Tuple ) -> List[str]: UpperCAmelCase : int = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(lowercase_ ) UpperCAmelCase : Dict = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=lowercase_ , return_tensors='pt' ).pixel_values.to(lowercase_ ) UpperCAmelCase : int = torch.tensor([[1, 2]] ) UpperCAmelCase : Tuple = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCAmelCase : Dict = model( input_ids=input_ids.to(lowercase_ ) , bbox=bbox.to(lowercase_ ) , pixel_values=pixel_values.to(lowercase_ ) , ) # verify the logits UpperCAmelCase : Optional[Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase_ ) UpperCAmelCase : List[str] = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1E-4 ) )
357
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase__ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Any = """maskformer""" UpperCAmelCase_ : Union[str, Any] = {"""hidden_size""": """mask_feature_size"""} UpperCAmelCase_ : Union[str, Any] = ["""resnet""", """swin"""] UpperCAmelCase_ : Optional[int] = ["""detr"""] def __init__( self : Union[str, Any] , lowercase_ : int = 256 , lowercase_ : int = 256 , lowercase_ : float = 0.1 , lowercase_ : bool = False , lowercase_ : Optional[Dict] = None , lowercase_ : Optional[Dict] = None , lowercase_ : float = 0.02 , lowercase_ : float = 1.0 , lowercase_ : float = 1.0 , lowercase_ : float = 1.0 , lowercase_ : float = 20.0 , lowercase_ : Optional[bool] = None , **lowercase_ : int , ) -> Optional[Any]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase : List[Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : List[Any] = backbone_config.pop('model_type' ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(lowercase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase : Dict = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase : Tuple = ( decoder_config.pop('model_type' ) if isinstance(lowercase_ , lowercase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Union[str, Any] = CONFIG_MAPPING[decoder_type] UpperCAmelCase : str = config_class.from_dict(lowercase_ ) UpperCAmelCase : int = backbone_config UpperCAmelCase : Tuple = decoder_config # main feature dimension for the model UpperCAmelCase : Union[str, Any] = fpn_feature_size UpperCAmelCase : Optional[Any] = mask_feature_size # initializer UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : List[str] = init_xavier_std # Hungarian matcher && loss UpperCAmelCase : int = cross_entropy_weight UpperCAmelCase : Tuple = dice_weight UpperCAmelCase : int = mask_weight UpperCAmelCase : Any = use_auxiliary_loss UpperCAmelCase : Tuple = no_object_weight UpperCAmelCase : str = output_auxiliary_logits UpperCAmelCase : Dict = self.decoder_config.encoder_attention_heads UpperCAmelCase : Union[str, Any] = self.decoder_config.num_hidden_layers super().__init__(**lowercase_ ) @classmethod def UpperCAmelCase_ ( cls : Any , lowercase_ : PretrainedConfig , lowercase_ : PretrainedConfig , **lowercase_ : Optional[Any] ) -> str: return cls( backbone_config=lowercase_ , decoder_config=lowercase_ , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict[str, any]: UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : List[str] = self.backbone_config.to_dict() UpperCAmelCase : Any = self.decoder_config.to_dict() UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output
280
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
194
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = np.dot(__snake_case, __snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=7_00_00 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__snake_case ): _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = np.dot(x.T, h - y ) / y.size _UpperCamelCase = theta - alpha * gradient # updating the weights _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = cost_function(__snake_case, __snake_case ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _a = datasets.load_iris() _a = iris.data[:, :2] _a = (iris.target != 0) * 1 _a = 0.1 _a = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return sigmoid_function( np.dot(__snake_case, __snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((_a) , (_a)) = (x[:, 0].min(), x[:, 0].max()) ((_a) , (_a)) = (x[:, 1].min(), x[:, 1].max()) ((_a) , (_a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _a = np.c_[xxa.ravel(), xxa.ravel()] _a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
194
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a : def __init__( self : Tuple , lowercase_ : Any , lowercase_ : List[str]=13 , lowercase_ : List[Any]=7 , lowercase_ : Dict=True , lowercase_ : Optional[int]=True , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=99 , lowercase_ : str=32 , lowercase_ : Dict=5 , lowercase_ : Dict=4 , lowercase_ : Union[str, Any]=37 , lowercase_ : Any="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Dict=512 , lowercase_ : List[Any]=16 , lowercase_ : Optional[int]=2 , lowercase_ : List[Any]=0.02 , lowercase_ : Any=3 , lowercase_ : Any=4 , lowercase_ : Optional[Any]=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = self.vocab_size - 1 def A_ ( self : Optional[int] ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) snake_case_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def A_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[str] , *lowercase_ : Union[str, Any] ): snake_case_ = OpenAIGPTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , token_type_ids=lowercase_ , head_mask=lowercase_ ) snake_case_ = model(lowercase_ , token_type_ids=lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Dict , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Optional[int] , *lowercase_ : Any ): snake_case_ = OpenAIGPTLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Dict , lowercase_ : Dict , *lowercase_ : List[Any] ): snake_case_ = OpenAIGPTDoubleHeadsModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Dict , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : List[Any] , *lowercase_ : Optional[int] ): snake_case_ = self.num_labels snake_case_ = OpenAIGPTForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : List[Any] ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = config_and_inputs snake_case_ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case_ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def A_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Union[str, Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def A_ ( self : Optional[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]=False ): snake_case_ = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ , ) snake_case_ = inputs_dict['''labels'''] snake_case_ = inputs_dict['''labels'''] snake_case_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase_ , ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def A_ ( self : List[Any] ): snake_case_ = OpenAIGPTModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def A_ ( self : List[Any] ): self.config_tester.run_common_tests() def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase_ ) def A_ ( self : Dict ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) def A_ ( self : Optional[int] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase_ ) def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase_ ) @slow def A_ ( self : str ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = OpenAIGPTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch class a ( unittest.TestCase ): @slow def A_ ( self : Any ): snake_case_ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowercase_ ) snake_case_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase_ ) # the president is snake_case_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case_ = model.generate(lowercase_ , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() , lowercase_ )
72
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a : int = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
72
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
308
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=400 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> Tuple: SCREAMING_SNAKE_CASE = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = apply_ocr def __A ( self ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessingTester(self ) @property def __A ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'apply_ocr' ) ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __A ( self ) -> Dict: pass def __A ( self ) -> Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , lowerCAmelCase__ ) self.assertIsInstance(encoding.boxes , lowerCAmelCase__ ) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __A ( self ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __A ( self ) -> Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __A ( self ) -> Optional[Any]: # with apply_OCR = True SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) SCREAMING_SNAKE_CASE = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCAmelCase__ ) self.assertListEqual(encoding.boxes , lowerCAmelCase__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
353
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> Any: # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE_ ) as metadata_file: SCREAMING_SNAKE_CASE = json.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['module'] # Load the entity vocab file SCREAMING_SNAKE_CASE = load_original_entity_vocab(SCREAMING_SNAKE_CASE_ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE = AddedToken('<ent>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = AddedToken('<ent2>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'r' ) as f: SCREAMING_SNAKE_CASE = json.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'MLukeTokenizer' with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['@'] )[0] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['#'] )[0] SCREAMING_SNAKE_CASE = state_dict['embeddings.word_embeddings.weight'] SCREAMING_SNAKE_CASE = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE = state_dict[bias_name] SCREAMING_SNAKE_CASE = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE = F'encoder.layer.{layer_index}.attention.self.' SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE = state_dict['entity_embeddings.entity_embeddings.weight'] SCREAMING_SNAKE_CASE = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE = state_dict['entity_predictions.bias'] SCREAMING_SNAKE_CASE = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): SCREAMING_SNAKE_CASE = state_dict[key] else: SCREAMING_SNAKE_CASE = state_dict[key] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if set(SCREAMING_SNAKE_CASE_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(SCREAMING_SNAKE_CASE_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , task='entity_classification' ) SCREAMING_SNAKE_CASE = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' SCREAMING_SNAKE_CASE = (0, 9) SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 33, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'Tokyo is the capital of <mask>.' SCREAMING_SNAKE_CASE = (24, 30) SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = encoding['input_ids'][0].tolist() SCREAMING_SNAKE_CASE = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) SCREAMING_SNAKE_CASE = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(SCREAMING_SNAKE_CASE_ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = ['[MASK]', '[PAD]', '[UNK]'] SCREAMING_SNAKE_CASE = [json.loads(SCREAMING_SNAKE_CASE_ ) for line in open(SCREAMING_SNAKE_CASE_ )] SCREAMING_SNAKE_CASE = {} for entry in data: SCREAMING_SNAKE_CASE = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE = entity_id break SCREAMING_SNAKE_CASE = F'{language}:{entity_name}' SCREAMING_SNAKE_CASE = entity_id return new_mapping if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
38
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __magic_name__ ( __a : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowerCamelCase_ = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class __A( __lowerCamelCase ): """simple docstring""" @staticmethod def UpperCAmelCase_ (SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=SCREAMING_SNAKE_CASE_ , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(F"Loading model {model_type}" ) UpperCamelCase__ = model_type UpperCamelCase__ = tf_checkpoint UpperCamelCase__ = pytorch_dump_output UpperCamelCase__ = config UpperCamelCase__ = finetuning_task_name def UpperCAmelCase_ (self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCamelCase__ = self._tf_checkpoint UpperCamelCase__ = """""" else: UpperCamelCase__ = self._tf_checkpoint UpperCamelCase__ = """""" convert_transfo_xl_checkpoint_to_pytorch( SCREAMING_SNAKE_CASE_ , self._config , self._pytorch_dump_output , SCREAMING_SNAKE_CASE_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
244
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __magic_name__ ( __a : List[str] , __a : List[Any] , __a : int , __a : Optional[int]=None , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : Tuple=None , ): '''simple docstring''' if attention_mask is None: UpperCamelCase__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase__ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__a ) if decoder_head_mask is None: UpperCamelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__a ) if cross_attn_head_mask is None: UpperCamelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=20 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.eos_token_id # Eos Token UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase__ = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase__ = self.get_config() UpperCamelCase__ = prepare_mam_aaa_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return config, inputs_dict def UpperCAmelCase_ (self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MaMaaaModel(config=SCREAMING_SNAKE_CASE_ ).get_decoder().to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase__ = inputs_dict["""input_ids"""] UpperCamelCase__ = inputs_dict["""attention_mask"""] UpperCamelCase__ = inputs_dict["""head_mask"""] # first forward pass UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )[ """last_hidden_state""" ] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = MaMaaaModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.encoder_last_hidden_state UpperCamelCase__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = model.get_encoder() encoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = model.get_decoder() decoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaDecoder.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertEqual(info["""missing_keys"""] , [] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = copy.deepcopy(self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not self.is_encoder_decoder: UpperCamelCase__ = inputs["""input_ids"""] del inputs["input_ids"] else: UpperCamelCase__ = inputs["""input_ids"""] UpperCamelCase__ = inputs.get("""decoder_input_ids""" , SCREAMING_SNAKE_CASE_ ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCamelCase__ = wte(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = wte(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = wte(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): model(**SCREAMING_SNAKE_CASE_ )[0] def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ = input_dict["""input_ids"""] UpperCamelCase__ = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval().to(SCREAMING_SNAKE_CASE_ ) if torch_device == "cuda": model.half() model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) model.generate(num_beams=4 , do_sample=SCREAMING_SNAKE_CASE_ , early_stopping=SCREAMING_SNAKE_CASE_ , num_return_sequences=3 ) def __magic_name__ ( __a : List[Any] ): '''simple docstring''' return torch.tensor(__a , dtype=torch.long , device=__a ) lowerCamelCase_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __A( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ (self ): return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) UpperCamelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) UpperCamelCase__ = prepare_mam_aaa_inputs_dict(model.config , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # change to expected output here UpperCamelCase__ = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(SCREAMING_SNAKE_CASE_ ) # change to intended input UpperCamelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) UpperCamelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) UpperCamelCase__ = prepare_mam_aaa_inputs_dict(model.config , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # change to expected output here UpperCamelCase__ = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) UpperCamelCase__ = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) UpperCamelCase__ = model.generate( input_ids=dct["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) , attention_mask=dct["""attention_mask"""].to(SCREAMING_SNAKE_CASE_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) UpperCamelCase__ = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] UpperCamelCase__ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) assert generated == expected_en
244
1
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path __SCREAMING_SNAKE_CASE ="src/transformers" # Matches is_xxx_available() __SCREAMING_SNAKE_CASE =re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} __SCREAMING_SNAKE_CASE =re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __SCREAMING_SNAKE_CASE =re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available __SCREAMING_SNAKE_CASE =re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") __SCREAMING_SNAKE_CASE =re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __SCREAMING_SNAKE_CASE =re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", __SCREAMING_SNAKE_CASE =re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], __SCREAMING_SNAKE_CASE =re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo __SCREAMING_SNAKE_CASE =re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: __SCREAMING_SNAKE_CASE =re.compile(r"^\s*try:") # Catches a line with else: __SCREAMING_SNAKE_CASE =re.compile(r"^\s*else:") def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): if _re_test_backend.search(__SCREAMING_SNAKE_CASE ) is None: return None lowercase_ : Tuple = [b[0] for b in _re_backend.findall(__SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase_ : str = f.readlines() lowercase_ : Any = 0 while line_index < len(__SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowercase_ : Optional[Any] = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: lowercase_ : Union[str, Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ).groups()[0] lowercase_ : List[Any] = re.findall('\[([^\]]+)\]' , __SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue lowercase_ : Optional[Any] = _re_import_struct_key_value.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowercase_ : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 lowercase_ : int = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase_ : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): lowercase_ : str = lines[line_index] if _re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ) is not None: lowercase_ : Dict = _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowercase_ : Tuple = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(__SCREAMING_SNAKE_CASE ) is not None: lowercase_ : Dict = _re_between_brackets.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) lowercase_ : Optional[int] = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 lowercase_ : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase_ : int = [] while ( line_index < len(__SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): lowercase_ : List[Any] = lines[line_index] lowercase_ : List[str] = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase_ : Dict = {'none': objects} # Let's continue with backend-specific objects while line_index < len(__SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowercase_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ : int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): lowercase_ : str = lines[line_index] lowercase_ : Dict = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase_ : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): def find_duplicates(__SCREAMING_SNAKE_CASE : Union[str, Any] ): return [k for k, v in collections.Counter(__SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase_ : int = [] for key in import_dict_objects.keys(): lowercase_ : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowercase_ : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase_ : Any = 'base imports' if key == 'none' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def lowercase__( ): lowercase_ : Union[str, Any] = [] for root, _, files in os.walk(__SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowercase_ : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , '__init__.py' ) lowercase_ : Optional[int] = parse_init(__SCREAMING_SNAKE_CASE ) if objects is not None: lowercase_ : Optional[Any] = analyze_results(*__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : Dict = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(__SCREAMING_SNAKE_CASE ) ) def lowercase__( ): lowercase_ : Any = [] for path, directories, files in os.walk(__SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(__SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue lowercase_ : Dict = str((Path(__SCREAMING_SNAKE_CASE ) / folder).relative_to(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Optional[int] = short_path.replace(os.path.sep , '.' ) submodules.append(__SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowercase_ : Dict = str((Path(__SCREAMING_SNAKE_CASE ) / fname).relative_to(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Tuple = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(__SCREAMING_SNAKE_CASE ) return submodules __SCREAMING_SNAKE_CASE =[ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def lowercase__( ): # This is to make sure the transformers module imported is the one in the repo. lowercase_ : List[str] = importlib.util.spec_from_file_location( 'transformers' , os.path.join(__SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowercase_ : List[str] = spec.loader.load_module() lowercase_ : str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : Any = '\n'.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
353
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE ={"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure)
321
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase__ = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
290
import argparse import json from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=a , help='where to store parsed gold_data_path file' , ) __A : Optional[int] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: __A : List[Any] = json.load(a ) for dpr_record in tqdm(a ): __A : Dict = dpr_record['question'] __A : Any = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(a ) + '\n' ) if __name__ == "__main__": main()
280
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( A_ ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> int: """simple docstring""" lowercase__ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case ,'''tf_padding''' ) ) self.parent.assertTrue(hasattr(_snake_case ,'''depth_multiplier''' ) ) class __A : '''simple docstring''' def __init__( self : Any ,_snake_case : Tuple ,_snake_case : List[str]=13 ,_snake_case : Dict=3 ,_snake_case : List[str]=32 ,_snake_case : Optional[Any]=0.25 ,_snake_case : Dict=8 ,_snake_case : Any=8 ,_snake_case : str=6 ,_snake_case : str=32 ,_snake_case : Tuple=True ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Dict="relu6" ,_snake_case : Tuple=1_280 ,_snake_case : Optional[Any]=0.1 ,_snake_case : Union[str, Any]=0.02 ,_snake_case : int=True ,_snake_case : str=True ,_snake_case : Tuple=10 ,_snake_case : str=None ,) -> Union[str, Any]: """simple docstring""" lowercase__ : str = parent lowercase__ : List[str] = batch_size lowercase__ : Optional[Any] = num_channels lowercase__ : int = image_size lowercase__ : str = depth_multiplier lowercase__ : List[Any] = depth_divisible_by lowercase__ : Union[str, Any] = min_depth lowercase__ : Any = expand_ratio lowercase__ : Optional[int] = tf_padding lowercase__ : List[str] = output_stride lowercase__ : List[str] = first_layer_is_expansion lowercase__ : Optional[int] = finegrained_output lowercase__ : Union[str, Any] = hidden_act lowercase__ : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowercase__ : Any = classifier_dropout_prob lowercase__ : Dict = use_labels lowercase__ : Dict = is_training lowercase__ : str = num_labels lowercase__ : Optional[int] = initializer_range lowercase__ : str = scope def UpperCAmelCase ( self : Dict ) -> int: """simple docstring""" lowercase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None lowercase__ : int = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,depth_divisible_by=self.depth_divisible_by ,min_depth=self.min_depth ,expand_ratio=self.expand_ratio ,output_stride=self.output_stride ,first_layer_is_expansion=self.first_layer_is_expansion ,finegrained_output=self.finegrained_output ,hidden_act=self.hidden_act ,tf_padding=self.tf_padding ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Union[str, Any] ,_snake_case : Tuple ,_snake_case : int ,_snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = MobileNetVaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : int = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) self.parent.assertEqual( result.pooler_output.shape ,(self.batch_size, self.last_hidden_size) ,) def UpperCAmelCase ( self : Dict ,_snake_case : List[Any] ,_snake_case : str ,_snake_case : str ,_snake_case : List[str] ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = self.num_labels lowercase__ : str = MobileNetVaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any ,_snake_case : Union[str, Any] ,_snake_case : Optional[Any] ,_snake_case : str ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.num_labels lowercase__ : Optional[int] = MobileNetVaForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[str] = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) lowercase__ : Dict = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase : Any = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Tuple = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = MobileNetVaModelTester(self ) lowercase__ : Any = MobileNetVaConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : List[str] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : List[Any] = [*signature.parameters.keys()] lowercase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : int ,_snake_case : int ): lowercase__ : Tuple = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = 16 self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Optional[Any] = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Tuple = MobileNetVaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Tuple: lowercase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase__ : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(_snake_case ) lowercase__ : List[str] = self.default_image_processor lowercase__ : Union[str, Any] = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Tuple = model(**_snake_case ) # verify the logits lowercase__ : Optional[int] = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[Any] = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) lowercase__ : Optional[Any] = model.to(_snake_case ) lowercase__ : List[Any] = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) lowercase__ : Tuple = prepare_img() lowercase__ : str = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) lowercase__ : Any = outputs.logits # verify the logits lowercase__ : Optional[int] = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape ,_snake_case ) lowercase__ : List[Any] = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] ,device=_snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,_snake_case ,atol=1e-4 ) )
302
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase_ = logging.get_logger(__name__) # General docstring lowerCAmelCase_ = 'RegNetConfig' # Base docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = [1, 1_088, 7, 7] # Image classification docstring lowerCAmelCase_ = 'facebook/regnet-y-040' lowerCAmelCase_ = 'tabby, tabby cat' lowerCAmelCase_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): '''simple docstring''' def __init__( self : int ,_snake_case : int ,_snake_case : int ,_snake_case : int = 3 ,_snake_case : int = 1 ,_snake_case : int = 1 ,_snake_case : Optional[str] = "relu" ,) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ : Tuple = nn.Convad( _snake_case ,_snake_case ,kernel_size=_snake_case ,stride=_snake_case ,padding=kernel_size // 2 ,groups=_snake_case ,bias=_snake_case ,) lowercase__ : List[Any] = nn.BatchNormad(_snake_case ) lowercase__ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.convolution(_snake_case ) lowercase__ : Tuple = self.normalization(_snake_case ) lowercase__ : Tuple = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : List[Any] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowercase__ : str = config.num_channels def UpperCAmelCase ( self : int ,_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ : Optional[int] = self.embedder(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : str ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ) -> Any: """simple docstring""" super().__init__() lowercase__ : List[str] = nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ,stride=_snake_case ,bias=_snake_case ) lowercase__ : Any = nn.BatchNormad(_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ) -> Tensor: """simple docstring""" lowercase__ : Union[str, Any] = self.convolution(_snake_case ) lowercase__ : Optional[int] = self.normalization(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : int ,_snake_case : int ) -> Dict: """simple docstring""" super().__init__() lowercase__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ : Dict = nn.Sequential( nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_snake_case ,_snake_case ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase ( self : int ,_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.pooler(_snake_case ) lowercase__ : Union[str, Any] = self.attention(_snake_case ) lowercase__ : List[str] = hidden_state * attention return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> List[str]: """simple docstring""" super().__init__() lowercase__ : Tuple = in_channels != out_channels or stride != 1 lowercase__ : Optional[int] = max(1 ,out_channels // config.groups_width ) lowercase__ : str = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : Optional[int] = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : str = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" lowercase__ : Tuple = hidden_state lowercase__ : Union[str, Any] = self.layer(_snake_case ) lowercase__ : List[Any] = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 1 ) -> Optional[int]: """simple docstring""" super().__init__() lowercase__ : List[Any] = in_channels != out_channels or stride != 1 lowercase__ : List[str] = max(1 ,out_channels // config.groups_width ) lowercase__ : Tuple = ( RegNetShortCut(_snake_case ,_snake_case ,stride=_snake_case ) if should_apply_shortcut else nn.Identity() ) lowercase__ : str = nn.Sequential( RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_snake_case ,_snake_case ,stride=_snake_case ,groups=_snake_case ,activation=config.hidden_act ) ,RegNetSELayer(_snake_case ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_snake_case ,_snake_case ,kernel_size=1 ,activation=_snake_case ) ,) lowercase__ : Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : str = hidden_state lowercase__ : Optional[Any] = self.layer(_snake_case ) lowercase__ : int = self.shortcut(_snake_case ) hidden_state += residual lowercase__ : str = self.activation(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ,_snake_case : RegNetConfig ,_snake_case : int ,_snake_case : int ,_snake_case : int = 2 ,_snake_case : int = 2 ,) -> Dict: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _snake_case ,_snake_case ,_snake_case ,stride=_snake_case ,) ,*[layer(_snake_case ,_snake_case ,_snake_case ) for _ in range(depth - 1 )] ,) def UpperCAmelCase ( self : Tuple ,_snake_case : int ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.layers(_snake_case ) return hidden_state class __A ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,_snake_case : RegNetConfig ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ : str = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowercase__ : str = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_snake_case ,config.depths[1:] ): self.stages.append(RegNetStage(_snake_case ,_snake_case ,_snake_case ,depth=_snake_case ) ) def UpperCAmelCase ( self : List[str] ,_snake_case : Tensor ,_snake_case : bool = False ,_snake_case : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ : int = hidden_states + (hidden_state,) lowercase__ : Any = stage_module(_snake_case ) if output_hidden_states: lowercase__ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case ,hidden_states=_snake_case ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = RegNetConfig lowerCAmelCase : List[Any] = "regnet" lowerCAmelCase : Optional[int] = "pixel_values" lowerCAmelCase : Union[str, Any] = True def UpperCAmelCase ( self : Any ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" if isinstance(_snake_case ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''' ) elif isinstance(_snake_case ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : Any=False ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case ,_snake_case ): lowercase__ : str = value lowerCAmelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( A_ ): '''simple docstring''' def __init__( self : Optional[Any] ,_snake_case : Any ) -> Tuple: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Any = config lowercase__ : List[str] = RegNetEmbeddings(_snake_case ) lowercase__ : Any = RegNetEncoder(_snake_case ) lowercase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase ( self : Dict ,_snake_case : Tensor ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : Union[str, Any] = self.embedder(_snake_case ) lowercase__ : List[Any] = self.encoder( _snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : str = encoder_outputs[0] lowercase__ : Optional[int] = self.pooler(_snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case ,pooler_output=_snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,A_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( A_ ): '''simple docstring''' def __init__( self : int ,_snake_case : Tuple ) -> Any: """simple docstring""" super().__init__(_snake_case ) lowercase__ : Optional[Any] = config.num_labels lowercase__ : int = RegNetModel(_snake_case ) # classification head lowercase__ : str = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[torch.LongTensor] = None ,_snake_case : Optional[bool] = None ,_snake_case : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ : List[Any] = self.regnet(_snake_case ,output_hidden_states=_snake_case ,return_dict=_snake_case ) lowercase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] lowercase__ : Union[str, Any] = self.classifier(_snake_case ) lowercase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ : Dict = '''single_label_classification''' else: lowercase__ : Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ : Union[str, Any] = MSELoss() if self.num_labels == 1: lowercase__ : List[Any] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowercase__ : Tuple = loss_fct(_snake_case ,_snake_case ) elif self.config.problem_type == "single_label_classification": lowercase__ : Tuple = CrossEntropyLoss() lowercase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ : Any = BCEWithLogitsLoss() lowercase__ : Union[str, Any] = loss_fct(_snake_case ,_snake_case ) if not return_dict: lowercase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case ,logits=_snake_case ,hidden_states=outputs.hidden_states )
302
1
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : int = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : int = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCamelCase : Optional[int] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCamelCase : Union[str, Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : str = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] _lowerCamelCase : Optional[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _lowerCamelCase : Any = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] _lowerCamelCase : str = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] _lowerCamelCase : Union[str, Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : int = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCamelCase : int = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) )
72
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : int = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : int = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCamelCase : Optional[int] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCamelCase : Union[str, Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : str = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] _lowerCamelCase : Optional[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _lowerCamelCase : Any = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] _lowerCamelCase : str = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] _lowerCamelCase : Union[str, Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : int = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _lowerCamelCase : int = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCAmelCase , variant=__lowerCAmelCase ) )
72
1
from __future__ import annotations def __A ( __lowerCamelCase ) -> list[int]: a = 2 a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCamelCase ) if n > 1: factors.append(__lowerCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
347
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): UpperCamelCase__ = '''nat''' UpperCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ): '''simple docstring''' super().__init__(**__magic_name__ ) a = patch_size a = num_channels a = embed_dim a = depths a = len(__magic_name__ ) a = num_heads a = kernel_size a = mlp_ratio a = qkv_bias a = hidden_dropout_prob a = attention_probs_dropout_prob a = drop_path_rate a = hidden_act a = layer_norm_eps a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) ) a = layer_scale_init_value a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
347
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __UpperCAmelCase = logging.get_logger(__name__) def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = R"""\w+[.]\d+""" SCREAMING_SNAKE_CASE : int = re.findall(lowerCamelCase_ , lowerCamelCase_ ) for pat in pats: SCREAMING_SNAKE_CASE : List[str] = key.replace(lowerCamelCase_ , """_""".join(pat.split(""".""" ) ) ) return key def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): SCREAMING_SNAKE_CASE : List[str] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer SCREAMING_SNAKE_CASE : Dict = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: SCREAMING_SNAKE_CASE : Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer SCREAMING_SNAKE_CASE : Dict = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": SCREAMING_SNAKE_CASE : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias SCREAMING_SNAKE_CASE : Optional[int] = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=42 ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params SCREAMING_SNAKE_CASE : Tuple = flax_model.init_weights(PRNGKey(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = flatten_dict(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE : Union[str, Any] = rename_key(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters SCREAMING_SNAKE_CASE : Tuple = rename_key_and_reshape_tensor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE : List[Any] = jnp.asarray(lowerCamelCase_ ) return unflatten_dict(lowerCamelCase_ )
323
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCAmelCase_ : Any = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : Optional[int] , **__lowerCamelCase : Optional[int] ): requires_backends(self , ["""bs4"""] ) super().__init__(**__lowerCamelCase ) def _A ( self : List[str] , __lowerCamelCase : Any ): UpperCamelCase :Optional[int] = [] UpperCamelCase :List[str] = [] UpperCamelCase :Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCamelCase :Optional[Any] = parent.find_all(child.name , recursive=__lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__lowerCamelCase ) else next(i for i, s in enumerate(__lowerCamelCase , 1 ) if s is child ) ) UpperCamelCase :Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _A ( self : Any , __lowerCamelCase : Tuple ): UpperCamelCase :Any = BeautifulSoup(__lowerCamelCase , """html.parser""" ) UpperCamelCase :Union[str, Any] = [] UpperCamelCase :Tuple = [] UpperCamelCase :Tuple = [] for element in html_code.descendants: if type(__lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCamelCase :Any = html.unescape(__lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[Any] = self.xpath_soup(__lowerCamelCase ) stringaxtag_seq.append(__lowerCamelCase ) stringaxsubs_seq.append(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _A ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): UpperCamelCase :Tuple = """""" for tagname, subs in zip(__lowerCamelCase , __lowerCamelCase ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : Any , __lowerCamelCase : Dict ): UpperCamelCase :Any = False # Check that strings has a valid type if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :List[Any] = True elif isinstance(__lowerCamelCase , (list, tuple) ): if len(__lowerCamelCase ) == 0 or isinstance(html_strings[0] , __lowerCamelCase ): UpperCamelCase :Any = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F"""but is of type {type(__lowerCamelCase )}.""" ) UpperCamelCase :str = bool(isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , __lowerCamelCase )) ) if not is_batched: UpperCamelCase :Any = [html_strings] # Get nodes + xpaths UpperCamelCase :Union[str, Any] = [] UpperCamelCase :str = [] for html_string in html_strings: UpperCamelCase , UpperCamelCase , UpperCamelCase :int = self.get_three_from_single(__lowerCamelCase ) nodes.append(__lowerCamelCase ) UpperCamelCase :int = [] for node, tag_list, sub_list in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = self.construct_xpath(__lowerCamelCase , __lowerCamelCase ) xpath_strings.append(__lowerCamelCase ) xpaths.append(__lowerCamelCase ) # return as Dict UpperCamelCase :Optional[int] = {"""nodes""": nodes, """xpaths""": xpaths} UpperCamelCase :Any = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) return encoded_inputs
38
0
'''simple docstring''' def UpperCamelCase ( a , a ) -> bool: '''simple docstring''' __magic_name__ = len(a ) + 1 __magic_name__ = len(a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __magic_name__ = [[0 for i in range(a )] for j in range(a )] # since string of zero length match pattern of zero length __magic_name__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , a ): __magic_name__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , a ): __magic_name__ = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , a ): for j in range(1 , a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __magic_name__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __magic_name__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __magic_name__ = dp[i - 1][j] else: __magic_name__ = 0 else: __magic_name__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _lowerCAmelCase = "aab" _lowerCAmelCase = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
98
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , a__ : Any , a__ : Tuple=sys.maxsize ): __magic_name__ = '''bilinear''' __magic_name__ = max_size __magic_name__ = short_edge_length def __call__( self : Tuple , a__ : List[str] ): __magic_name__ = [] for img in imgs: __magic_name__ , __magic_name__ = img.shape[:2] # later: provide list and randomly choose index for resize __magic_name__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __magic_name__ = size * 1.0 / min(a__ , a__ ) if h < w: __magic_name__ , __magic_name__ = size, scale * w else: __magic_name__ , __magic_name__ = scale * h, size if max(a__ , a__ ) > self.max_size: __magic_name__ = self.max_size * 1.0 / max(a__ , a__ ) __magic_name__ = newh * scale __magic_name__ = neww * scale __magic_name__ = int(neww + 0.5 ) __magic_name__ = int(newh + 0.5 ) if img.dtype == np.uinta: __magic_name__ = Image.fromarray(a__ ) __magic_name__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __magic_name__ = np.asarray(a__ ) else: __magic_name__ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __magic_name__ = nn.functional.interpolate( a__ , (newh, neww) , mode=self.interp_method , align_corners=a__ ).squeeze(0 ) img_augs.append(a__ ) return img_augs class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a__ : Tuple ): __magic_name__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __magic_name__ = cfg.INPUT.FORMAT __magic_name__ = cfg.SIZE_DIVISIBILITY __magic_name__ = cfg.PAD_VALUE __magic_name__ = cfg.INPUT.MAX_SIZE_TEST __magic_name__ = cfg.MODEL.DEVICE __magic_name__ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __magic_name__ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __magic_name__ = lambda a__ : (x - self.pixel_mean) / self.pixel_std def snake_case__ ( self : Union[str, Any] , a__ : Dict ): __magic_name__ = tuple(max(a__ ) for s in zip(*[img.shape for img in images] ) ) __magic_name__ = [im.shape[-2:] for im in images] __magic_name__ = [ nn.functional.pad( a__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(a__ , a__ ) ] return torch.stack(a__ ), torch.tensor(a__ ) def __call__( self : Dict , a__ : Dict , a__ : List[str]=False ): with torch.no_grad(): if not isinstance(a__ , a__ ): __magic_name__ = [images] if single_image: assert len(a__ ) == 1 for i in range(len(a__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(a__ , images.pop(a__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( a__ , torch.as_tensor(img_tensorize(images.pop(a__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __magic_name__ = torch.tensor([im.shape[:2] for im in images] ) __magic_name__ = self.aug(a__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __magic_name__ = [self.normalizer(a__ ) for x in images] # now pad them to do the following operations __magic_name__ , __magic_name__ = self.pad(a__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __magic_name__ = torch.true_divide(a__ , a__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCamelCase ( a , a ) -> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCamelCase ( a , a ) -> Any: '''simple docstring''' assert torch.isfinite(a ).all(), "Box tensor contains infinite or NaN!" __magic_name__ , __magic_name__ = box_size tensor[:, 0].clamp_(min=0 , max=a ) tensor[:, 1].clamp_(min=0 , max=a ) tensor[:, 2].clamp_(min=0 , max=a ) tensor[:, 3].clamp_(min=0 , max=a )
98
1
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] = None ) -> str: '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case : int = quote(__UpperCamelCase ) return hfh.hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' , revision=__UpperCamelCase )
172
'''simple docstring''' def lowercase__ ( __UpperCamelCase = 2000000 )-> int: UpperCamelCase = [0 for i in range(n + 1 )] UpperCamelCase = 1 UpperCamelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __UpperCamelCase ): UpperCamelCase = 1 UpperCamelCase = 0 for i in range(__UpperCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'{solution() = }')
321
0
from math import pi, sqrt def lowerCamelCase__ ( a ) -> float: if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(a ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(a ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowerCamelCase__ ( ) -> None: assert gamma(0.5 ) == sqrt(a ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase__ : Dict = 1.0 while num: UpperCAmelCase__ : Optional[Any] = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
364
def lowerCamelCase__ ( a = 10 ) -> str: if not isinstance(a , a ) or n < 0: raise ValueError('''Invalid input''' ) _A: int = 10**n _A: List[Any] = 2_84_33 * (pow(2 , 7_83_04_57 , a )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
301
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : UNetaDModel __lowerCamelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] , __lowercase : UNetaDModel , __lowercase : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=__lowercase , scheduler=__lowercase ) @torch.no_grad() def __call__( self : Tuple , __lowercase : int = 1 , __lowercase : int = 2000 , __lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowercase : Optional[str] = "pil" , __lowercase : bool = True , **__lowercase : str , ): '''simple docstring''' __a = self.unet.config.sample_size __a = (batch_size, 3, img_size, img_size) __a = self.unet __a = randn_tensor(__lowercase , generator=__lowercase ) * self.scheduler.init_noise_sigma __a = sample.to(self.device ) self.scheduler.set_timesteps(__lowercase ) self.scheduler.set_sigmas(__lowercase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __a = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __a = self.unet(__lowercase , __lowercase ).sample __a = self.scheduler.step_correct(__lowercase , __lowercase , generator=__lowercase ).prev_sample # prediction step __a = model(__lowercase , __lowercase ).sample __a = self.scheduler.step_pred(__lowercase , __lowercase , __lowercase , generator=__lowercase ) __a , __a = output.prev_sample, output.prev_sample_mean __a = sample_mean.clamp(0 , 1 ) __a = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(__lowercase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__lowercase )
302
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Any =( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
302
1
"""simple docstring""" class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : Optional[int] = set_counts _lowercase : str = max(UpperCAmelCase_ ) _lowercase : str = len(UpperCAmelCase_ ) _lowercase : Any = [1] * num_sets _lowercase : str = list(range(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Any = self.get_parent(UpperCAmelCase_ ) _lowercase : str = self.get_parent(UpperCAmelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _lowercase : Tuple = 0 _lowercase : List[str] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _lowercase : List[Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _lowercase : List[Any] = 0 _lowercase : List[str] = src_parent _lowercase : Union[str, Any] = self.set_counts[src_parent] _lowercase : Optional[int] = max(self.max_set ,UpperCAmelCase_ ) return True def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if self.parents[disj_set] == disj_set: return disj_set _lowercase : Dict = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
336
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
1
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = 2 snake_case_ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_SCREAMING_SNAKE_CASE ) if n > 1: factors.append(_SCREAMING_SNAKE_CASE ) return factors if __name__ == "__main__": import doctest doctest.testmod()
347
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[Any] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ) ->int: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ) ->Any: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] )
347
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase_ : ClassVar[Features] = Features({'''image''': Image()} ) UpperCamelCase_ : ClassVar[Features] = Features({'''labels''': ClassLabel} ) UpperCamelCase_ : str = "image" UpperCamelCase_ : str = "labels" def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Tuple ) -> Dict: """simple docstring""" if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) _UpperCAmelCase : Optional[int] = copy.deepcopy(self ) _UpperCAmelCase : Optional[int] = self.label_schema.copy() _UpperCAmelCase : List[str] = features[self.label_column] _UpperCAmelCase : Optional[Any] = label_schema return task_template @property def _lowerCAmelCase ( self : str ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
17
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
1
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCAmelCase__ : Optional[int] = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCAmelCase__ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a_ ( lowerCamelCase ): if "://" in dataset_path: UpperCAmelCase__ = dataset_path.split('://' )[1] return dataset_path def a_ ( lowerCamelCase ): if fs is not None and fs.protocol != "file": return True else: return False def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = not is_remote_filesystem(lowerCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCamelCase ) , fs._strip_protocol(lowerCamelCase ) ) else: fs.mv(lowerCamelCase , lowerCamelCase , recursive=lowerCamelCase ) def a_ ( ): if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = threading.Lock()
98
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : str = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Any = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __A = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser) ->str: '''simple docstring''' lowerCamelCase__: Dict =parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Model's type.") train_parser.add_argument( "--tf_checkpoint" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="TensorFlow checkpoint path or folder.") train_parser.add_argument( "--pytorch_dump_output" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to the PyTorch saved model output.") train_parser.add_argument("--config" , type=UpperCAmelCase_ , default="" , help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=UpperCAmelCase_) def __init__(self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , *UpperCAmelCase_ : Optional[int] , ) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =logging.get_logger("transformers-cli/converting") self._logger.info(F"""Loading model {model_type}""") lowerCamelCase__: Any =model_type lowerCamelCase__: Optional[int] =tf_checkpoint lowerCamelCase__: Any =pytorch_dump_output lowerCamelCase__: Union[str, Any] =config lowerCamelCase__: str =finetuning_task_name def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) if "ckpt" in self._tf_checkpoint.lower(): lowerCamelCase__: Tuple =self._tf_checkpoint lowerCamelCase__: List[str] ="" else: lowerCamelCase__: Any =self._tf_checkpoint lowerCamelCase__: Dict ="" convert_transfo_xl_checkpoint_to_pytorch( UpperCAmelCase_ , self._config , self._pytorch_dump_output , UpperCAmelCase_) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]")
273
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = CTRLTokenizer lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__: Optional[Any] =["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] lowerCamelCase__: Optional[Any] =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: Union[str, Any] =["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] lowerCamelCase__: Union[str, Any] ={"unk_token": "<unk>"} lowerCamelCase__: Union[str, Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) lowerCamelCase__: Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCAmelCase_) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : List[str] , **UpperCAmelCase_ : str) ->List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int ="adapt react readapt apt" lowerCamelCase__: int ="adapt react readapt apt" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) lowerCamelCase__: Union[str, Any] ="adapt react readapt apt" lowerCamelCase__: Tuple ="adapt re@@ a@@ c@@ t re@@ adapt apt".split() lowerCamelCase__: Dict =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokens + [tokenizer.unk_token] lowerCamelCase__: List[str] =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
273
1
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCamelCase_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): __magic_name__ = None def snake_case ( A__ ,A__ ,): import pyspark def generate_fn(): UpperCAmelCase_ : Optional[int] = df.select("*" ,pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: UpperCAmelCase_ : Union[str, Any] = df_with_partition_id.select("*" ).where(F"""part_id = {partition_id}""" ).drop("part_id" ) UpperCAmelCase_ : Dict = partition_df.collect() UpperCAmelCase_ : Tuple = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase_ (_BaseExamplesIterable ): def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=None , ) -> Any: UpperCAmelCase_ : Tuple = df UpperCAmelCase_ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) UpperCAmelCase_ : List[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[int] ) -> str: yield from self.generate_examples_fn() def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : str ) -> "SparkExamplesIterable": UpperCAmelCase_ : str = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(snake_case_ ) return SparkExamplesIterable(self.df , partition_order=snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str ) -> "SparkExamplesIterable": UpperCAmelCase_ : str = self.split_shard_indices_by_worker(snake_case_ , snake_case_ ) return SparkExamplesIterable(self.df , partition_order=snake_case_ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return len(self.partition_order ) class UpperCamelCase_ (datasets.DatasetBuilder ): __magic_name__ = SparkConfig def __init__( self : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : List[Any] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[int]: import pyspark UpperCAmelCase_ : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() UpperCAmelCase_ : Union[str, Any] = df UpperCAmelCase_ : Optional[int] = working_dir super().__init__( cache_dir=snake_case_ , config_name=str(self.df.semanticHash() ) , **snake_case_ , ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: # Returns the path of the created file. def create_cache_and_write_probe(lowerCAmelCase_ : str ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=snake_case_ ) UpperCAmelCase_ : Tuple = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(snake_case_ , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: UpperCAmelCase_ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(snake_case_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: return datasets.DatasetInfo(features=self.config.features ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str ) -> Tuple: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Dict ) -> List[str]: import pyspark def get_arrow_batch_size(lowerCAmelCase_ : Optional[Any] ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) UpperCAmelCase_ : Tuple = self.df.count() UpperCAmelCase_ : Optional[Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. UpperCAmelCase_ : Optional[Any] = ( self.df.limit(snake_case_ ) .repartition(1 ) .mapInArrow(snake_case_ , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) UpperCAmelCase_ : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. UpperCAmelCase_ : List[Any] = min(snake_case_ , int(approx_total_size / max_shard_size ) ) UpperCAmelCase_ : List[Any] = self.df.repartition(snake_case_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark UpperCAmelCase_ : List[Any] = ParquetWriter if file_format == "parquet" else ArrowWriter UpperCAmelCase_ : Any = os.path.join(self._working_dir , os.path.basename(snake_case_ ) ) if self._working_dir else fpath UpperCAmelCase_ : Optional[int] = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. UpperCAmelCase_ : str = self.config.features UpperCAmelCase_ : Optional[Any] = self._writer_batch_size UpperCAmelCase_ : List[Any] = self._fs.storage_options def write_arrow(lowerCAmelCase_ : Union[str, Any] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. UpperCAmelCase_ : Union[str, Any] = pyspark.TaskContext().taskAttemptId() UpperCAmelCase_ : Any = next(snake_case_ , snake_case_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = writer_class( features=snake_case_ , path=working_fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , writer_batch_size=snake_case_ , storage_options=snake_case_ , embed_local_files=snake_case_ , ) UpperCAmelCase_ : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(snake_case_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: UpperCAmelCase_ , UpperCAmelCase_ : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 UpperCAmelCase_ : Optional[int] = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , writer_batch_size=snake_case_ , storage_options=snake_case_ , embed_local_files=snake_case_ , ) UpperCAmelCase_ : str = pa.Table.from_batches([batch] ) writer.write_table(snake_case_ ) if writer._num_bytes > 0: UpperCAmelCase_ , UpperCAmelCase_ : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(snake_case_ ) ): UpperCAmelCase_ : List[Any] = os.path.join(os.path.dirname(snake_case_ ) , os.path.basename(snake_case_ ) ) shutil.move(snake_case_ , snake_case_ ) UpperCAmelCase_ : Union[str, Any] = ( self.df.mapInArrow(snake_case_ , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str = "arrow" , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : Union[str, Any] = None , **lowerCAmelCase_ : List[Any] , ) -> List[Any]: self._validate_cache_dir() UpperCAmelCase_ : Any = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(snake_case_ ) UpperCAmelCase_ : Any = not is_remote_filesystem(self._fs ) UpperCAmelCase_ : str = os.path.join if is_local else posixpath.join UpperCAmelCase_ : Optional[Any] = "-TTTTT-SSSSS-of-NNNNN" UpperCAmelCase_ : Union[str, Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" UpperCAmelCase_ : List[Any] = path_join(self._output_dir , snake_case_ ) UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[Any] = [] for task_id, content in self._prepare_split_single(snake_case_ , snake_case_ , snake_case_ ): ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[str] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(snake_case_ ) UpperCAmelCase_ : Dict = total_num_examples UpperCAmelCase_ : List[str] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: UpperCAmelCase_ : Optional[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. UpperCAmelCase_ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , ): rename( snake_case_ , fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , fpath.replace("TTTTT-SSSSS" , f"""{global_shard_id:05d}""" ).replace("NNNNN" , f"""{total_shards:05d}""" ) , ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : int = 0 for i in range(len(snake_case_ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Any = task_id_and_num_shards[i] for shard_id in range(snake_case_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(snake_case_ , len(snake_case_ ) ).map(lambda lowerCAmelCase_ : _rename_shard(*snake_case_ ) ).collect() else: # don't use any pattern UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Union[str, Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , fpath.replace(snake_case_ , "" ) , ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[Any] , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
268
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ) -> Tuple: __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def A__ ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ ) -> int: __lowerCAmelCase = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(snake_case_ ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) __lowerCAmelCase = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _snake_case = (AutoformerForPrediction,) if is_torch_available() else () _snake_case = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> Optional[int]: __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def A__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ) -> Any: pass def A__ ( self ) -> str: __lowerCAmelCase = inspect.signature(getattr(snake_case_ , """forward""" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , """seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """d_model""" , snake_case_ ) __lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , snake_case_ ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> int: super().test_retain_grad_hidden_states_attentions() def lowercase (_lowerCAmelCase="train-batch.pt" ): __lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCAmelCase , repo_type="""dataset""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> int: __lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) __lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def A__ ( self ) -> Any: __lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(snake_case_ ) __lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case_ ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1e-1 ) )
301
0
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _lowercase : List[str] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE : '''simple docstring''' _a = None @experimental def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return _map_with_joblib(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): """simple docstring""" lowerCamelCase__ : Any =num_proc if num_proc <= len(__lowerCamelCase ) else len(__lowerCamelCase ) lowerCamelCase__ : Any =[] # We organize the splits ourselve (contiguous splits) for index in range(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] =len(__lowerCamelCase ) // num_proc lowerCamelCase__ : Union[str, Any] =len(__lowerCamelCase ) % num_proc lowerCamelCase__ : Dict =div * index + min(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : str =start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__lowerCamelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f'''Error dividing inputs iterable among processes. ''' f'''Total number of objects {len(__lowerCamelCase )}, ''' f'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( f'''Spawning {num_proc} processes for {len(__lowerCamelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) lowerCamelCase__ : Optional[Any] =None, None if not disable_tqdm: lowerCamelCase__ : Optional[Any] =(RLock(),), tqdm.set_lock with Pool(__lowerCamelCase , initargs=__lowerCamelCase , initializer=__lowerCamelCase ) as pool: lowerCamelCase__ : Any =pool.map(__lowerCamelCase , __lowerCamelCase ) logger.info(f'''Finished {num_proc} processes''' ) lowerCamelCase__ : Tuple =[obj for proc_res in mapped for obj in proc_res] logger.info(f'''Unpacked {len(__lowerCamelCase )} objects''' ) return mapped def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__lowerCamelCase ): return joblib.Parallel()( joblib.delayed(__lowerCamelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Optional[int] =backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase__ : Any =None
367
"""simple docstring""" import numpy as np from PIL import Image def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : int =0 lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Union[str, Any] =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase__ : Union[str, Any] =np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase__ : str =np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : Optional[int] =0 return updated_arr def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : str =0 lowerCamelCase__ : List[Any] =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Dict =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase__ : Optional[Any] =np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase__ : Optional[int] =int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[Any] =0 lowerCamelCase__ : int =0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image _lowercase : int = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
272
0
class __UpperCAmelCase : def __init__( self : List[Any], __A : list ): UpperCAmelCase : Tuple = set_counts UpperCAmelCase : Union[str, Any] = max(__A ) UpperCAmelCase : Optional[Any] = len(__A ) UpperCAmelCase : List[Any] = [1] * num_sets UpperCAmelCase : List[Any] = list(range(__A ) ) def __magic_name__ ( self : List[Any], __A : int, __A : int ): UpperCAmelCase : Any = self.get_parent(__A ) UpperCAmelCase : Dict = self.get_parent(__A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCAmelCase : Optional[int] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCAmelCase : str = 0 UpperCAmelCase : Optional[Any] = src_parent UpperCAmelCase : Any = self.set_counts[src_parent] UpperCAmelCase : Tuple = max(self.max_set, __A ) return True def __magic_name__ ( self : List[Any], __A : int ): if self.parents[disj_set] == disj_set: return disj_set UpperCAmelCase : List[str] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
336
def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[Any] = len(UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None UpperCAmelCase : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase : Any = left UpperCAmelCase : List[str] = point elif point > right: UpperCAmelCase : Any = right UpperCAmelCase : List[str] = point else: if item < current_item: UpperCAmelCase : Optional[int] = point - 1 else: UpperCAmelCase : str = point + 1 return None def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( UpperCAmelCase , UpperCAmelCase , point + 1 , UpperCAmelCase ) def a__ ( UpperCAmelCase : Union[str, Any] ) -> int: if collection != sorted(UpperCAmelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys _lowerCamelCase : Optional[int] = 0 if debug == 1: _lowerCamelCase : Dict = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") _lowerCamelCase : List[Any] = 6_7 _lowerCamelCase : Optional[Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
336
1
import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowerCAmelCase_ ( __lowerCamelCase=None ): if subparsers is not None: __snake_case : Tuple = subparsers.add_parser("env" ) else: __snake_case : List[str] = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=_UpperCAmelCase , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : str = torch.__version__ __snake_case : int = torch.cuda.is_available() __snake_case : int = is_xpu_available() __snake_case : Tuple = is_npu_available() __snake_case : List[Any] = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): __snake_case : Tuple = load_config_from_file(args.config_file ).to_dict() __snake_case : Dict = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})', 'PyTorch XPU available': str(_UpperCAmelCase ), 'PyTorch NPU available': str(_UpperCAmelCase ), 'System RAM': F'{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB', } if pt_cuda_available: __snake_case : Optional[int] = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F'- {prop}: {val}' for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) __snake_case : str = ( '\n'.join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else F'\t{accelerate_config}' ) print(_UpperCAmelCase ) __snake_case : Dict = accelerate_config return info def lowerCAmelCase_ ( ): __snake_case : int = env_command_parser() __snake_case : Optional[int] = parser.parse_args() env_command(_UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
359
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _snake_case : Union[str, Any] = datasets.load_iris() _snake_case : Tuple = np.array(data["data"]) _snake_case : int = np.array(data["target"]) _snake_case : int = data["target_names"] _snake_case , _snake_case , _snake_case , _snake_case : Any = train_test_split(X, y) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return np.linalg.norm(np.array(__lowerCamelCase ) - np.array(__lowerCamelCase ) ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=5 ): __snake_case : Optional[Any] = zip(__lowerCamelCase , __lowerCamelCase ) # List of distances of all points from the point to be classified __snake_case : Optional[int] = [] for data_point in data: __snake_case : Union[str, Any] = euclidean_distance(data_point[0] , __lowerCamelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __snake_case : Dict = [i[1] for i in sorted(__lowerCamelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __snake_case : Any = Counter(__lowerCamelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
134
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=lowercase ) class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : str = field(default="image-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __UpperCAmelCase : ClassVar[Features] = Features({"image": Image()} ) __UpperCAmelCase : ClassVar[Features] = Features({"labels": ClassLabel} ) __UpperCAmelCase : str = "image" __UpperCAmelCase : str = "labels" def _lowercase ( self : str, UpperCAmelCase__ : Optional[int] ): if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column], UpperCAmelCase__ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) __lowercase = copy.deepcopy(self ) __lowercase = self.label_schema.copy() __lowercase = features[self.label_column] __lowercase = label_schema return task_template @property def _lowercase ( self : Optional[Any] ): return { self.image_column: "image", self.label_column: "labels", }
17
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : str ): super().__init__() __lowercase = model __lowercase = 2 __lowercase = nn.Linear(self.model.config.hidden_size, self.num_labels ) def _lowercase ( self : Optional[int] ): pass def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = LongformerModel.from_pretrained(UpperCamelCase_) __lowercase = LightningModel(UpperCamelCase_) __lowercase = torch.load(UpperCamelCase_, map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model __lowercase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase_) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase_) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' super().__init__() self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self , snake_case_ = 1 , snake_case_ = None , snake_case_ = 5_0 , snake_case_ = "pil" , snake_case_ = True , **snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=snake_case_ , ) UpperCAmelCase_ : List[str] = image.to(self.device ) # set step values self.scheduler.set_timesteps(snake_case_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_ : List[Any] = self.unet(snake_case_ , snake_case_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase_ : Optional[int] = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample UpperCAmelCase_ : int = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Tuple = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=snake_case_ ), "This is a local test"
274
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Tuple = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ :Optional[Any] = '''ViTImageProcessor''' lowerCamelCase_ :int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case_ , ) UpperCAmelCase_ : int = kwargs.pop('feature_extractor' ) UpperCAmelCase_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case_ , snake_case_ ) def __call__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ): '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: UpperCAmelCase_ : Optional[int] = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if visual_prompt is not None: UpperCAmelCase_ : Optional[Any] = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if images is not None: UpperCAmelCase_ : int = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if visual_prompt is not None and images is not None: UpperCAmelCase_ : Tuple = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase_ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase_ : Dict = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def _UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case_ , ) return self.image_processor_class @property def _UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case_ , ) return self.image_processor
274
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Optional[int] = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class A_ (a_ ): UpperCAmelCase__ = '''vit_mae''' def __init__( self , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu" , _A=0.0 , _A=0.0 , _A=0.02 , _A=1E-12 , _A=2_2_4 , _A=1_6 , _A=3 , _A=True , _A=1_6 , _A=5_1_2 , _A=8 , _A=2_0_4_8 , _A=0.75 , _A=False , **_A , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = qkv_bias UpperCAmelCase = decoder_num_attention_heads UpperCAmelCase = decoder_hidden_size UpperCAmelCase = decoder_num_hidden_layers UpperCAmelCase = decoder_intermediate_size UpperCAmelCase = mask_ratio UpperCAmelCase = norm_pix_loss
273
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class A_ : def __init__( self , _A , _A=1_4 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_input_mask UpperCAmelCase = use_labels UpperCAmelCase = use_mc_token_ids UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None if self.use_mc_token_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _lowercase ( self , _A , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = CTRLModel(config=_A ) model.to(_A ) model.eval() model(_A , token_type_ids=_A , head_mask=_A ) model(_A , token_type_ids=_A ) UpperCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _lowercase ( self , _A , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = CTRLLMHeadModel(_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def _lowercase ( self , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = CTRLForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class A_ (a_ , a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = CTRLModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A , n_embd=3_7 ) def _lowercase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowercase ( self ): '''simple docstring''' pass @slow def _lowercase ( self ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = CTRLModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _lowercase ( self ): '''simple docstring''' pass @require_torch class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(_A ) UpperCAmelCase = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] , dtype=torch.long , device=_A ) # Legal the president is UpperCAmelCase = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCAmelCase = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
273
1
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : def __init__( self ,A ,A=13 ,A=[30, 30] ,A=2 ,A=3 ,A=True ,A=True ,A=32 ,A=5 ,A=4 ,A=37 ,A="gelu" ,A=0.1 ,A=0.1 ,A=10 ,A=0.02 ,A=3 ,A=None ,A=8 ,A=10 ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = n_targets UpperCAmelCase = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCAmelCase = (image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCAmelCase = num_patches + 1 + self.num_detection_tokens def _UpperCamelCase ( self ): UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) UpperCAmelCase = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCAmelCase = [] for i in range(self.batch_size ): UpperCAmelCase = {} UpperCAmelCase = torch.randint( high=self.num_labels ,size=(self.n_targets,) ,device=A ) UpperCAmelCase = torch.rand(self.n_targets ,4 ,device=A ) labels.append(A ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ): return YolosConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,num_detection_tokens=self.num_detection_tokens ,num_labels=self.num_labels ,) def _UpperCamelCase ( self ,A ,A ,A ): UpperCAmelCase = YolosModel(config=A ) model.to(A ) model.eval() UpperCAmelCase = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.expected_seq_len, self.hidden_size) ) def _UpperCamelCase ( self ,A ,A ,A ): UpperCAmelCase = YolosForObjectDetection(A ) model.to(A ) model.eval() UpperCAmelCase = model(pixel_values=A ) UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape ,(self.batch_size, self.num_detection_tokens, 4) ) UpperCAmelCase = model(pixel_values=A ,labels=A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape ,(self.batch_size, self.num_detection_tokens, 4) ) def _UpperCamelCase ( self ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( snake_case , snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = (YolosModel, YolosForObjectDetection) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _UpperCamelCase ( self ,A ,A ,A=False ): UpperCAmelCase = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCAmelCase = [] for i in range(self.model_tester.batch_size ): UpperCAmelCase = {} UpperCAmelCase = torch.ones( size=(self.model_tester.n_targets,) ,device=A ,dtype=torch.long ) UpperCAmelCase = torch.ones( self.model_tester.n_targets ,4 ,device=A ,dtype=torch.float ) labels.append(A ) UpperCAmelCase = labels return inputs_dict def _UpperCamelCase ( self ): UpperCAmelCase = YolosModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def _UpperCamelCase ( self ): self.config_tester.run_common_tests() def _UpperCamelCase ( self ): # YOLOS does not use inputs_embeds pass def _UpperCamelCase ( self ): UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,nn.Linear ) ) def _UpperCamelCase ( self ): UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(A ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True # in YOLOS, the seq_len is different UpperCAmelCase = self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(A ,A ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(A ,A ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) UpperCAmelCase = len(A ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(A ,A ) ) UpperCAmelCase = 1 self.assertEqual(out_len + added_hidden_states ,len(A ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def _UpperCamelCase ( self ): def check_hidden_states_output(A ,A ,A ): UpperCAmelCase = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(A ,A ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A ) ,A ) # YOLOS has a different seq_length UpperCAmelCase = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(A ,A ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*A ) @slow def _UpperCamelCase ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = YolosModel.from_pretrained(A ) self.assertIsNotNone(A ) def _a ( ): """simple docstring""" UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def _UpperCamelCase ( self ): UpperCAmelCase = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(A ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=A ,return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase = model(inputs.pixel_values ) # verify outputs UpperCAmelCase = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape ,A ) UpperCAmelCase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ,device=A ,) UpperCAmelCase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ,device=A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,A ,atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] ,A ,atol=1e-4 ) ) # verify postprocessing UpperCAmelCase = image_processor.post_process_object_detection( A ,threshold=0.3 ,target_sizes=[image.size[::-1]] )[0] UpperCAmelCase = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(A ) UpperCAmelCase = [75, 75, 17, 63, 17] UpperCAmelCase = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(A ) self.assertEqual(len(results["""scores"""] ) ,5 ) self.assertTrue(torch.allclose(results["""scores"""] ,A ,atol=1e-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() ,A ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] ,A ) )
234
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _UpperCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } _UpperCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _a ( _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = create_model( """HTSAT-tiny""" , """roberta""" , _snake_case , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_snake_case , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = R""".*sequential.(\d+).*""" UpperCAmelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase = key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): # replace sequential layers with list UpperCAmelCase = re.match(_snake_case , _snake_case ).group(1 ) UpperCAmelCase = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_snake_case )//3}.linear.''' ) elif re.match(_snake_case , _snake_case ): UpperCAmelCase = int(re.match(_snake_case , _snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase = 1 if projecton_layer == 0 else 2 UpperCAmelCase = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase = value UpperCAmelCase = mixed_qkv.size(0 ) // 3 UpperCAmelCase = mixed_qkv[:qkv_dim] UpperCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase = query_layer UpperCAmelCase = key_layer UpperCAmelCase = value_layer else: UpperCAmelCase = value return model_state_dict def _a ( _snake_case , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = init_clap(_snake_case , enable_fusion=_snake_case ) clap_model.eval() UpperCAmelCase = clap_model.state_dict() UpperCAmelCase = rename_state_dict(_snake_case ) UpperCAmelCase = ClapConfig() UpperCAmelCase = enable_fusion UpperCAmelCase = ClapModel(_snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case ) model.save_pretrained(_snake_case ) transformers_config.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") _UpperCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
234
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: """simple docstring""" for attribute in key.split('.' ): __UpperCamelCase = getattr(_A , _A ) if weight_type is not None: __UpperCamelCase = getattr(_A , _A ).shape else: __UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( _lowercase , _lowercase ) -> str: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __UpperCamelCase = None for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == 'group' , ) __UpperCamelCase = True elif name.split('.' )[0] == "proj": __UpperCamelCase = fairseq_model.proj __UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(_A )[0].split('.' )[-2] __UpperCamelCase = mapped_key.replace('*' , _A ) if "weight_g" in name: __UpperCamelCase = 'weight_g' elif "weight_v" in name: __UpperCamelCase = 'weight_v' elif "bias" in name: __UpperCamelCase = 'bias' elif "weight" in name: __UpperCamelCase = 'weight' else: __UpperCamelCase = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = full_name.split('conv_layers.' )[-1] __UpperCamelCase = name.split('.' ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_A ) def _A ( _lowercase ) -> List[str]: """simple docstring""" __UpperCamelCase, __UpperCamelCase = emb.weight.shape __UpperCamelCase = nn.Linear(_A , _A , bias=_A ) __UpperCamelCase = emb.weight.data return lin_layer def _A ( _lowercase ) -> List[str]: """simple docstring""" with open(_A , 'r' , encoding='utf-8' ) as f: __UpperCamelCase = f.readlines() __UpperCamelCase = [line.split(' ' )[0] for line in lines] __UpperCamelCase = len(_A ) __UpperCamelCase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(_A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = WavaVecaConfig.from_pretrained(_A ) __UpperCamelCase = SpeechaTextaConfig.from_pretrained( _A , vocab_size=_A , decoder_layers=_A , do_stable_layer_norm=_A ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __UpperCamelCase = model[0].eval() # set weights for wav2vec2 encoder __UpperCamelCase = WavaVecaModel(_A ) __UpperCamelCase = recursively_load_weights_wavaveca(model.encoder , _A ) __UpperCamelCase = SpeechaTextaForCausalLM(_A ) __UpperCamelCase, __UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_A ) # set output linear layer unexpected_keys.remove('embed_out' ) __UpperCamelCase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __UpperCamelCase = SpeechEncoderDecoderModel(encoder=_A , decoder=_A ) __UpperCamelCase = False # add projection layer __UpperCamelCase = nn.Parameter(projection_layer.weight ) __UpperCamelCase = nn.Parameter(projection_layer.bias ) __UpperCamelCase = create_vocab_dict(_A ) with open(os.path.join(_A , 'vocab.json' ) , 'w' ) as fp: json.dump(_A , _A ) __UpperCamelCase = SpeechaTextaTokenizer(os.path.join(_A , 'vocab.json' ) ) tokenizer.save_pretrained(_A ) __UpperCamelCase = hf_wavavec.config.to_dict() __UpperCamelCase = tokenizer.pad_token_id __UpperCamelCase = tokenizer.bos_token_id __UpperCamelCase = tokenizer.eos_token_id __UpperCamelCase = 'speech_to_text_2' __UpperCamelCase = 'wav2vec2' __UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(_A ) hf_wavavec.save_pretrained(_A ) feature_extractor.save_pretrained(_A ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0_2_2_4, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
310
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
0
import os def A_ ( ): with open(os.path.dirname(_UpperCAmelCase ) + "/p022_names.txt" ) as file: SCREAMING_SNAKE_CASE_: List[str] = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE_: Optional[int] = names.replace("\"" , "" ).split("," ) names.sort() SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[str] = 0 for i, name in enumerate(_UpperCAmelCase ): for letter in name: name_score += ord(_UpperCAmelCase ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE_: Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
127
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
127
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 class lowerCAmelCase : def __init__( self : List[str] , UpperCAmelCase : int ) -> Dict: lowerCamelCase__ : list[list[Edge]] = [[] for _ in range(UpperCAmelCase )] lowerCamelCase__ : str = size def __getitem__( self : List[str] , UpperCAmelCase : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def A_ ( self : Dict ) -> List[Any]: return self._size def A_ ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> List[Any]: if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(UpperCAmelCase , UpperCAmelCase ) ) def A_ ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int ) -> int | None: lowerCamelCase__ : Dict = deque([start_vertex] ) lowerCamelCase__ : list[int | None] = [None] * self.size lowerCamelCase__ : int = 0 while queue: lowerCamelCase__ : str = queue.popleft() lowerCamelCase__ : List[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCamelCase__ : Any = current_distance + edge.weight lowerCamelCase__ : List[Any] = distances[edge.destination_vertex] if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and new_distance >= dest_vertex_distance ): continue lowerCamelCase__ : List[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' __snake_case : Tuple = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : Any = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
134
0
'''simple docstring''' def _a ( _lowerCamelCase ) -> list[list[int]]: """simple docstring""" __snake_case : List[Any] = [] if len(_lowerCamelCase ) == 1: return [nums.copy()] for _ in range(len(_lowerCamelCase ) ): __snake_case : int = nums.pop(0 ) __snake_case : Optional[int] = permute(_lowerCamelCase ) for perm in permutations: perm.append(_lowerCamelCase ) result.extend(_lowerCamelCase ) nums.append(_lowerCamelCase ) return result def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" def backtrack(_lowerCamelCase ): if start == len(_lowerCamelCase ) - 1: output.append(nums[:] ) else: for i in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case , __snake_case : Tuple = nums[i], nums[start] backtrack(start + 1 ) __snake_case , __snake_case : Any = nums[i], nums[start] # backtrack __snake_case : str = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __UpperCamelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
13
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : Optional[int] = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : List[str] = '''autoformer''' __lowerCamelCase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : List[Any] , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str = "student_t" , __lowerCAmelCase : str = "nll" , __lowerCAmelCase : int = 1 , __lowerCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowerCAmelCase : bool = True , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : int = 64 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 32 , __lowerCAmelCase : int = 32 , __lowerCAmelCase : str = "gelu" , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : float = 0.1 , __lowerCAmelCase : int = 1_00 , __lowerCAmelCase : float = 0.0_2 , __lowerCAmelCase : bool = True , __lowerCAmelCase : str=True , __lowerCAmelCase : int = 10 , __lowerCAmelCase : int = 25 , __lowerCAmelCase : int = 3 , **__lowerCAmelCase : Optional[int] , ) -> Union[str, Any]: """simple docstring""" A__ = prediction_length A__ = context_length if context_length is not None else prediction_length A__ = distribution_output A__ = loss A__ = input_size A__ = num_time_features A__ = lags_sequence A__ = scaling A__ = num_dynamic_real_features A__ = num_static_real_features A__ = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) A__ = cardinality else: A__ = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) A__ = embedding_dimension else: A__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A__ = num_parallel_samples # Transformer architecture configuration A__ = input_size * len(self.lags_sequence ) + self._number_of_features A__ = d_model A__ = encoder_attention_heads A__ = decoder_attention_heads A__ = encoder_ffn_dim A__ = decoder_ffn_dim A__ = encoder_layers A__ = decoder_layers A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = activation_function A__ = init_std A__ = use_cache # Autoformer A__ = label_length A__ = moving_average A__ = autocorrelation_factor super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) @property def a_ ( self : Optional[int] ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
274
class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class A : '''simple docstring''' def __init__( self : List[Any] ) -> str: """simple docstring""" A__ = [ [], [], [], ] def a_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> None: """simple docstring""" try: if len(self.queues[priority] ) >= 1_00: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(__lowerCAmelCase ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def a_ ( self : Optional[Any] ) -> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self : Tuple ) -> str: """simple docstring""" return "\n".join(f'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class A : '''simple docstring''' def __init__( self : int ) -> str: """simple docstring""" A__ = [] def a_ ( self : int , __lowerCAmelCase : int ) -> None: """simple docstring""" if len(self.queue ) == 1_00: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(__lowerCAmelCase ) def a_ ( self : List[str] ) -> int: """simple docstring""" if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: A__ = min(self.queue ) self.queue.remove(__lowerCAmelCase ) return data def __str__( self : List[Any] ) -> str: """simple docstring""" return str(self.queue ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ = FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(__a ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(__a ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __lowerCamelCase ( ) -> int: """simple docstring""" A__ = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(__a ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(__a ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
274
1
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: A_ : Any =False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __a ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=4_00 , a__=None , a__=True , a__=True , a__=None , ): _lowerCamelCase = size if size is not None else {'height': 20, 'width': 20} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = do_convert_rgb _lowerCamelCase = [5_12, 10_24, 20_48, 40_96] _lowerCamelCase = patch_size if patch_size is not None else {'height': 16, 'width': 16} def snake_case_ ( self ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def snake_case_ ( self ): _lowerCamelCase = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _lowerCamelCase = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Tuple = PixaStructImageProcessor if is_vision_available() else None def snake_case_ ( self ): _lowerCamelCase = PixaStructImageProcessingTester(self ) @property def snake_case_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ): _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , 'do_normalize' ) ) self.assertTrue(hasattr(a__ , 'do_convert_rgb' ) ) def snake_case_ ( self ): _lowerCamelCase = self.image_processor_tester.prepare_dummy_image() _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCamelCase = 20_48 _lowerCamelCase = image_processor(a__ , return_tensors='pt' , max_patches=a__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def snake_case_ ( self ): # Initialize image_processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowerCamelCase = image_processor( a__ , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case_ ( self ): # Initialize image_processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _lowerCamelCase = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(a__ ): _lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ ).flattened_patches _lowerCamelCase = 'Hello' _lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ , header_text=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowerCamelCase = image_processor( a__ , return_tensors='pt' , max_patches=a__ , header_text=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case_ ( self ): # Initialize image_processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) _lowerCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowerCamelCase = image_processor( a__ , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case_ ( self ): # Initialize image_processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input _lowerCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowerCamelCase = image_processor( a__ , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : str = PixaStructImageProcessor if is_vision_available() else None def snake_case_ ( self ): _lowerCamelCase = PixaStructImageProcessingTester(self , num_channels=4 ) _lowerCamelCase = 3 @property def snake_case_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ): _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , 'do_normalize' ) ) self.assertTrue(hasattr(a__ , 'do_convert_rgb' ) ) def snake_case_ ( self ): # Initialize image_processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCamelCase = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _lowerCamelCase = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _lowerCamelCase = image_processor( a__ , return_tensors='pt' , max_patches=a__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
80
"""simple docstring""" import numpy as np def SCREAMING_SNAKE_CASE_ ( snake_case : np.ndarray )-> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE_ ( snake_case : np.ndarray )-> np.ndarray: return vector * sigmoid(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
80
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): _UpperCAmelCase : List[str] = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } _UpperCAmelCase , _UpperCAmelCase : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: _UpperCAmelCase : Any = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCAmelCase ) assert base_extractor.is_extractable(__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(__lowerCAmelCase , __lowerCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _UpperCAmelCase : List[Any] = file_path.read_text(encoding="utf-8" ) else: _UpperCAmelCase : Optional[Any] = output_path.read_text(encoding="utf-8" ) _UpperCAmelCase : str = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): _UpperCAmelCase : Tuple = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } _UpperCAmelCase : List[Any] = input_paths[compression_format] if input_path is None: _UpperCAmelCase : Optional[int] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = Extractor.infer_extractor_format(__lowerCAmelCase ) assert extractor_format is not None _UpperCAmelCase : Dict = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _UpperCAmelCase : Any = file_path.read_text(encoding="utf-8" ) else: _UpperCAmelCase : Dict = output_path.read_text(encoding="utf-8" ) _UpperCAmelCase : Dict = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): import tarfile _UpperCAmelCase : Dict = tmp_path / "data_dot_dot" directory.mkdir() _UpperCAmelCase : Any = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(__lowerCAmelCase , "w" ) as f: f.add(__lowerCAmelCase , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase ): import tarfile _UpperCAmelCase : Optional[Any] = tmp_path / "data_sym_link" directory.mkdir() _UpperCAmelCase : List[Any] = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=__lowerCAmelCase ) with tarfile.TarFile(__lowerCAmelCase , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } _UpperCAmelCase : Any = insecure_tar_files[insecure_tar_file] _UpperCAmelCase : Dict = tmp_path / "extracted" TarExtractor.extract(__lowerCAmelCase , __lowerCAmelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCAmelCase (__lowerCAmelCase ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _UpperCAmelCase : Union[str, Any] = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 _UpperCAmelCase : Optional[Any] = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(__lowerCAmelCase ) assert zipfile.is_zipfile(str(__lowerCAmelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__lowerCAmelCase ) # but we're right
234
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCamelCase__ = logging.getLogger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if metric == "rouge2": _UpperCAmelCase : List[str] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _UpperCAmelCase : int = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _UpperCAmelCase : str = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _UpperCAmelCase : List[Any] = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) _UpperCAmelCase : Any = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F"""val_{metric}""" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class lowerCAmelCase__ ( pl.Callback ): def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any]=True ) ->None: '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _UpperCAmelCase : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _UpperCAmelCase : Any = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase : List[Any] = od / "test_results.txt" _UpperCAmelCase : Union[str, Any] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase : Optional[Any] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _UpperCAmelCase : Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCamelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCamelCase__ ) with open(lowerCamelCase__ , "a+" ) as writer: for key in sorted(lowerCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase : Dict = metrics[key] if isinstance(lowerCamelCase__ , torch.Tensor ): _UpperCAmelCase : Tuple = val.item() _UpperCAmelCase : str = F"""{key}: {val:.6f}\n""" writer.write(lowerCamelCase__ ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase : Optional[int] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->Any: '''simple docstring''' try: _UpperCAmelCase : Tuple = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase : int = pl_module.model.num_parameters() _UpperCAmelCase : int = count_trainable_parameters(lowerCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule ) ->int: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCamelCase__ , lowerCamelCase__ , "test" ) @rank_zero_only def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
234
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Tuple = torch.device("""cpu""") def lowerCAmelCase( )-> int: """simple docstring""" UpperCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase_ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> List[Any]: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: """simple docstring""" UpperCamelCase_ = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = val def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Any: """simple docstring""" UpperCamelCase_ = [] for k in state_dict.keys(): UpperCamelCase_ = k if ".pwconv" in k: UpperCamelCase_ = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: UpperCamelCase_ = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: UpperCamelCase_ = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: UpperCamelCase_ = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCamelCase_ = k_new.split("." ) if ls[2].isdigit(): UpperCamelCase_ = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: UpperCamelCase_ = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" UpperCamelCase_ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase_ = 1_0_0_0 UpperCamelCase_ = "huggingface/label-files" UpperCamelCase_ = "imagenet-1k-id2label.json" UpperCamelCase_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase_ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCamelCase_ = [3, 3, 6, 4] UpperCamelCase_ = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": UpperCamelCase_ = [3, 3, 9, 6] UpperCamelCase_ = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": UpperCamelCase_ = [4, 3, 1_0, 5] UpperCamelCase_ = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": UpperCamelCase_ = [4, 4, 1_2, 6] UpperCamelCase_ = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCamelCase_ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" , check_hash=SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase_ = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) UpperCamelCase_ = checkpoint UpperCamelCase_ = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model UpperCamelCase_ = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # prepare test inputs UpperCamelCase_ = prepare_img() UpperCamelCase_ = ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCamelCase_ = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) # compare outputs from both models UpperCamelCase_ = get_expected_output(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
358
from ...processing_utils import ProcessorMixin class __magic_name__ ( snake_case ): UpperCamelCase_ :str = """SpeechT5FeatureExtractor""" UpperCamelCase_ :Optional[int] = """SpeechT5Tokenizer""" def __init__( self , _lowercase , _lowercase )-> Union[str, Any]: super().__init__(_lowercase , _lowercase ) def __call__( self , *_lowercase , **_lowercase )-> Tuple: UpperCamelCase_ = kwargs.pop("audio" , _lowercase ) UpperCamelCase_ = kwargs.pop("text" , _lowercase ) UpperCamelCase_ = kwargs.pop("text_target" , _lowercase ) UpperCamelCase_ = kwargs.pop("audio_target" , _lowercase ) UpperCamelCase_ = kwargs.pop("sampling_rate" , _lowercase ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: UpperCamelCase_ = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) elif text is not None: UpperCamelCase_ = self.tokenizer(_lowercase , **_lowercase ) else: UpperCamelCase_ = None if audio_target is not None: UpperCamelCase_ = self.feature_extractor(audio_target=_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) UpperCamelCase_ = targets["input_values"] elif text_target is not None: UpperCamelCase_ = self.tokenizer(_lowercase , **_lowercase ) UpperCamelCase_ = targets["input_ids"] else: UpperCamelCase_ = None if inputs is None: return targets if targets is not None: UpperCamelCase_ = labels UpperCamelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: UpperCamelCase_ = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> Optional[int]: UpperCamelCase_ = kwargs.pop("input_values" , _lowercase ) UpperCamelCase_ = kwargs.pop("input_ids" , _lowercase ) UpperCamelCase_ = kwargs.pop("labels" , _lowercase ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: UpperCamelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) elif input_ids is not None: UpperCamelCase_ = self.tokenizer.pad(_lowercase , **_lowercase ) else: UpperCamelCase_ = None if labels is not None: if "input_ids" in labels or (isinstance(_lowercase , _lowercase ) and "input_ids" in labels[0]): UpperCamelCase_ = self.tokenizer.pad(_lowercase , **_lowercase ) UpperCamelCase_ = targets["input_ids"] else: UpperCamelCase_ = self.feature_extractor.feature_size UpperCamelCase_ = self.feature_extractor.num_mel_bins UpperCamelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) UpperCamelCase_ = feature_size_hack UpperCamelCase_ = targets["input_values"] else: UpperCamelCase_ = None if inputs is None: return targets if targets is not None: UpperCamelCase_ = labels UpperCamelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: UpperCamelCase_ = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> int: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> int: return self.tokenizer.decode(*_lowercase , **_lowercase )
60
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'deta' __magic_name__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __snake_case=None , __snake_case=9_0_0 , __snake_case=2_0_4_8 , __snake_case=6 , __snake_case=2_0_4_8 , __snake_case=8 , __snake_case=6 , __snake_case=1_0_2_4 , __snake_case=8 , __snake_case=0.0 , __snake_case=True , __snake_case="relu" , __snake_case=2_5_6 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1.0 , __snake_case=True , __snake_case=False , __snake_case="sine" , __snake_case=5 , __snake_case=4 , __snake_case=4 , __snake_case=True , __snake_case=3_0_0 , __snake_case=True , __snake_case=True , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=1 , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , __snake_case=0.25 , **__snake_case , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) snake_case = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(__snake_case , __snake_case ): snake_case = backbone_config.pop('''model_type''' ) snake_case = CONFIG_MAPPING[backbone_model_type] snake_case = config_class.from_dict(__snake_case ) snake_case = backbone_config snake_case = num_queries snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = init_xavier_std snake_case = encoder_layerdrop snake_case = auxiliary_loss snake_case = position_embedding_type # deformable attributes snake_case = num_feature_levels snake_case = encoder_n_points snake_case = decoder_n_points snake_case = two_stage snake_case = two_stage_num_proposals snake_case = with_box_refine snake_case = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher snake_case = class_cost snake_case = bbox_cost snake_case = giou_cost # Loss coefficients snake_case = mask_loss_coefficient snake_case = dice_loss_coefficient snake_case = bbox_loss_coefficient snake_case = giou_loss_coefficient snake_case = eos_coefficient snake_case = focal_alpha super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def a_ ( self ): return self.encoder_attention_heads @property def a_ ( self ): return self.d_model def a_ ( self ): snake_case = copy.deepcopy(self.__dict__ ) snake_case = self.backbone_config.to_dict() snake_case = self.__class__.model_type return output
127
from __future__ import annotations _SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" for i in range(len(UpperCamelCase_ ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase_ ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase_ ,-1 ,-1 ) ,range(UpperCamelCase_ ,-1 ,-1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase_ ,-1 ,-1 ) ,range(UpperCamelCase_ ,len(UpperCamelCase_ ) ) ): if board[i][j] == 1: return False return True def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if row >= len(UpperCamelCase_ ): solution.append(UpperCamelCase_ ) printboard(UpperCamelCase_ ) print() return True for i in range(len(UpperCamelCase_ ) ): if is_safe(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): snake_case = 1 solve(UpperCamelCase_ ,row + 1 ) snake_case = 0 return False def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" for i in range(len(UpperCamelCase_ ) ): for j in range(len(UpperCamelCase_ ) ): if board[i][j] == 1: print('''Q''' ,end=''' ''' ) else: print('''.''' ,end=''' ''' ) print() # n=int(input("The no. of queens")) _SCREAMING_SNAKE_CASE : Tuple = 8 _SCREAMING_SNAKE_CASE : List[Any] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
127
1
'''simple docstring''' from __future__ import annotations from typing import TypedDict class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __a ( _UpperCamelCase: str ) -> list[str]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(_UpperCamelCase ) )] def __a ( _UpperCamelCase: str ) -> BWTTransformDict: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _snake_case = all_rotations(_UpperCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_UpperCamelCase ), } return response def __a ( _UpperCamelCase: str , _UpperCamelCase: int ) -> str: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _snake_case = int(_UpperCamelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(_UpperCamelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _snake_case = [""] * len(_UpperCamelCase ) for _ in range(len(_UpperCamelCase ) ): for i in range(len(_UpperCamelCase ) ): _snake_case = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCamelCase_ : Any = '''Provide a string that I will generate its BWT transform: ''' UpperCamelCase_ : Optional[Any] = input(entry_msg).strip() UpperCamelCase_ : Union[str, Any] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCamelCase_ : List[Any] = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
142
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __a ( _UpperCamelCase: Tuple ) -> Union[str, Any]: """simple docstring""" _snake_case = os.path.join(args.tf_model_dir , "parameters.json" ) _snake_case = json.loads(open(_UpperCamelCase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): _snake_case = args.output + ".pt" _snake_case = OrderedDict() with tf.device("/CPU:0" ): _snake_case = tf.train.load_checkpoint(args.tf_model_dir ) _snake_case = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _snake_case = reader.get_tensor(_UpperCamelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): _snake_case = int(key_name[9] ) elif key_name.startswith("pasts/out" ): _snake_case = 8 _snake_case = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/moe" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/softmlp/kernel" ): _snake_case = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): _snake_case = key_name[-9:-7] for i in range(16 ): _snake_case = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) _snake_case = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/mlp" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wi.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p1/bias" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wi.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wo.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/bias" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wo.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/ln" ): _snake_case = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _snake_case = "model.blocks.%d.feed_forward.norm.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): _snake_case = "model.blocks.%d.feed_forward.norm.weight" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/att" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): _snake_case = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _snake_case = state[:, 0, :, :] _snake_case = state[:, 1, :, :] _snake_case = state[:, 2, :, :] _snake_case = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) _snake_case = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) _snake_case = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/o/kernel" ): _snake_case = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player _snake_case = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/an" ): _snake_case = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _snake_case = "model.blocks.%d.self_attn.norm.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): _snake_case = "model.blocks.%d.self_attn.norm.weight" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): _snake_case = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] _snake_case = "model.%s.weight" % nlayer _snake_case = vnp.copy() # same in embedded _snake_case = torch.tensor(_UpperCamelCase ) if key_name.startswith("model/wte" ): _snake_case = "lm_head.weight" _snake_case = vnp.copy() # same in embedded _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/wob" ): _snake_case = "final_logits_bias" _snake_case = vnp.copy() # same in embedded _snake_case = state.reshape((1, -1) ) _snake_case = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense/kernel": _snake_case = "model.last_project.weight" _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense_1/bias": _snake_case = "model.last_project.bias" _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) torch.save(_UpperCamelCase , args.output ) if __name__ == "__main__": UpperCamelCase_ : Tuple = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') UpperCamelCase_ : Any = parser.parse_args() convert_tf_gptsan_to_pt(args)
142
1
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = [] if len(_UpperCAmelCase ) == 1: return [nums.copy()] for _ in range(len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_: Any = nums.pop(0 ) SCREAMING_SNAKE_CASE_: List[str] = permute(_UpperCAmelCase ) for perm in permutations: perm.append(_UpperCAmelCase ) result.extend(_UpperCAmelCase ) nums.append(_UpperCAmelCase ) return result def A_ ( _UpperCAmelCase ): def backtrack(_UpperCAmelCase ): if start == len(_UpperCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = nums[i], nums[start] backtrack(start + 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = nums[i], nums[start] # backtrack SCREAMING_SNAKE_CASE_: Optional[Any] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase : List[Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
13
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __magic_name__ :torch.FloatTensor class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , __UpperCAmelCase = 3_2 , __UpperCAmelCase = 6_4 , __UpperCAmelCase = 2_0 , __UpperCAmelCase = 7_6_8 , __UpperCAmelCase=7_7 , __UpperCAmelCase=4 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = "silu" , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "linear" , __UpperCAmelCase = "prd" , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Optional[Any] = num_attention_heads lowerCAmelCase__ :List[str] = attention_head_dim lowerCAmelCase__ :List[str] = num_attention_heads * attention_head_dim lowerCAmelCase__ :List[Any] = additional_embeddings lowerCAmelCase__ :Union[str, Any] = time_embed_dim or inner_dim lowerCAmelCase__ :Tuple = embedding_proj_dim or embedding_dim lowerCAmelCase__ :Dict = clip_embed_dim or embedding_dim lowerCAmelCase__ :Dict = Timesteps(_snake_case , _snake_case , 0 ) lowerCAmelCase__ :Optional[Any] = TimestepEmbedding(_snake_case , _snake_case , out_dim=_snake_case , act_fn=_snake_case ) lowerCAmelCase__ :Tuple = nn.Linear(_snake_case , _snake_case ) if embedding_proj_norm_type is None: lowerCAmelCase__ :Any = None elif embedding_proj_norm_type == "layer": lowerCAmelCase__ :Optional[Any] = nn.LayerNorm(_snake_case ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) lowerCAmelCase__ :List[str] = nn.Linear(_snake_case , _snake_case ) if encoder_hid_proj_type is None: lowerCAmelCase__ :List[Any] = None elif encoder_hid_proj_type == "linear": lowerCAmelCase__ :str = nn.Linear(_snake_case , _snake_case ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) lowerCAmelCase__ :Tuple = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _snake_case ) ) if added_emb_type == "prd": lowerCAmelCase__ :int = nn.Parameter(torch.zeros(1 , 1 , _snake_case ) ) elif added_emb_type is None: lowerCAmelCase__ :Union[str, Any] = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`." ) lowerCAmelCase__ :Optional[int] = nn.ModuleList( [ BasicTransformerBlock( _snake_case , _snake_case , _snake_case , dropout=_snake_case , activation_fn='gelu' , attention_bias=_snake_case , ) for d in range(_snake_case ) ] ) if norm_in_type == "layer": lowerCAmelCase__ :Dict = nn.LayerNorm(_snake_case ) elif norm_in_type is None: lowerCAmelCase__ :List[str] = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) lowerCAmelCase__ :int = nn.LayerNorm(_snake_case ) lowerCAmelCase__ :int = nn.Linear(_snake_case , _snake_case ) lowerCAmelCase__ :Tuple = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) lowerCAmelCase__ :List[str] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , _snake_case , persistent=_snake_case ) lowerCAmelCase__ :Any = nn.Parameter(torch.zeros(1 , _snake_case ) ) lowerCAmelCase__ :str = nn.Parameter(torch.zeros(1 , _snake_case ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = {} def fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(_snake_case , 'set_processor' ): lowerCAmelCase__ :Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , _snake_case , _snake_case ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_snake_case , _snake_case , _snake_case ) return processors def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_snake_case , _snake_case ) and len(_snake_case ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(_snake_case )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(_snake_case , 'set_processor' ): if not isinstance(_snake_case , _snake_case ): module.set_processor(_snake_case ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , _snake_case , _snake_case ) for name, module in self.named_children(): fn_recursive_attn_processor(_snake_case , _snake_case , _snake_case ) def snake_case ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , ): '''simple docstring''' lowerCAmelCase__ :str = hidden_states.shape[0] lowerCAmelCase__ :Optional[Any] = timestep if not torch.is_tensor(_snake_case ): lowerCAmelCase__ :Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_snake_case ) and len(timesteps.shape ) == 0: lowerCAmelCase__ :Union[str, Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCAmelCase__ :Optional[Any] = timesteps * torch.ones(_snake_case , dtype=timesteps.dtype , device=timesteps.device ) lowerCAmelCase__ :int = self.time_proj(_snake_case ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCAmelCase__ :str = timesteps_projected.to(dtype=self.dtype ) lowerCAmelCase__ :Optional[int] = self.time_embedding(_snake_case ) if self.embedding_proj_norm is not None: lowerCAmelCase__ :Optional[int] = self.embedding_proj_norm(_snake_case ) lowerCAmelCase__ :Optional[Any] = self.embedding_proj(_snake_case ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCAmelCase__ :Union[str, Any] = self.encoder_hidden_states_proj(_snake_case ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowerCAmelCase__ :str = self.proj_in(_snake_case ) lowerCAmelCase__ :Dict = self.positional_embedding.to(hidden_states.dtype ) lowerCAmelCase__ :Tuple = [] lowerCAmelCase__ :List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_snake_case ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCAmelCase__ :Dict = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCAmelCase__ :Optional[int] = hidden_states[:, None, :] lowerCAmelCase__ :Tuple = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCAmelCase__ :Tuple = self.prd_embedding.to(hidden_states.dtype ).expand(_snake_case , -1 , -1 ) additional_embeds.append(_snake_case ) lowerCAmelCase__ :str = torch.cat( _snake_case , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCAmelCase__ :Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCAmelCase__ :Tuple = F.pad( _snake_case , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCAmelCase__ :List[str] = hidden_states + positional_embeddings if attention_mask is not None: lowerCAmelCase__ :int = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 lowerCAmelCase__ :Optional[int] = F.pad(_snake_case , (0, self.additional_embeddings) , value=0.0 ) lowerCAmelCase__ :Any = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCAmelCase__ :List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCAmelCase__ :Union[str, Any] = self.norm_in(_snake_case ) for block in self.transformer_blocks: lowerCAmelCase__ :str = block(_snake_case , attention_mask=_snake_case ) lowerCAmelCase__ :str = self.norm_out(_snake_case ) if self.prd_embedding is not None: lowerCAmelCase__ :Tuple = hidden_states[:, -1] else: lowerCAmelCase__ :Any = hidden_states[:, additional_embeddings_len:] lowerCAmelCase__ :Tuple = self.proj_to_clip_embeddings(_snake_case ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_snake_case ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
351
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) ->str: """simple docstring""" if attention_mask is None: lowerCAmelCase__ :List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ :Tuple = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ :Union[str, Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: lowerCAmelCase__ :List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: lowerCAmelCase__ :List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=9_9 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=2_0 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ): '''simple docstring''' lowerCAmelCase__ :List[Any] = parent lowerCAmelCase__ :Any = batch_size lowerCAmelCase__ :Optional[Any] = seq_length lowerCAmelCase__ :int = is_training lowerCAmelCase__ :Tuple = use_labels lowerCAmelCase__ :Union[str, Any] = vocab_size lowerCAmelCase__ :Tuple = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :Tuple = num_attention_heads lowerCAmelCase__ :Dict = intermediate_size lowerCAmelCase__ :Optional[int] = hidden_act lowerCAmelCase__ :Any = hidden_dropout_prob lowerCAmelCase__ :Dict = attention_probs_dropout_prob lowerCAmelCase__ :Tuple = encoder_layerdrop lowerCAmelCase__ :Tuple = decoder_layerdrop lowerCAmelCase__ :Tuple = max_position_embeddings lowerCAmelCase__ :Any = eos_token_id lowerCAmelCase__ :str = pad_token_id lowerCAmelCase__ :Tuple = bos_token_id def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Tuple = self.eos_token_id # Eos Token lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ :List[Any] = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ :Dict = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ :Optional[Any] = self.get_config() lowerCAmelCase__ :Any = prepare_mam_aaa_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def snake_case ( self ): '''simple docstring''' return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = MaMaaaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() lowerCAmelCase__ :Optional[int] = inputs_dict['input_ids'] lowerCAmelCase__ :Any = inputs_dict['attention_mask'] lowerCAmelCase__ :Tuple = inputs_dict['head_mask'] # first forward pass lowerCAmelCase__ :int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ :Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ :int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase__ :Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ :Union[str, Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase__ :Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )['last_hidden_state'] lowerCAmelCase__ :Optional[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[ 'last_hidden_state' ] # select random slice lowerCAmelCase__ :Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ :List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ :Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = MaMaaaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() lowerCAmelCase__ :List[Any] = model(**__UpperCAmelCase ) lowerCAmelCase__ :int = outputs.encoder_last_hidden_state lowerCAmelCase__ :Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Union[str, Any] = model.get_encoder() encoder.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = MaMaaaEncoder.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :Any = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[int] = model.get_decoder() decoder.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Dict = MaMaaaDecoder.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :int = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _lowerCAmelCase ( a , a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __magic_name__ :str = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __magic_name__ :str = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __magic_name__ :Any = True __magic_name__ :Union[str, Any] = True __magic_name__ :Tuple = False __magic_name__ :List[str] = False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = MaMaaaModelTester(self ) lowerCAmelCase__ :Tuple = ConfigTester(self , config_class=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = model_class.from_pretrained(__UpperCAmelCase , output_loading_info=__UpperCAmelCase ) self.assertEqual(info['missing_keys'] , [] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowerCAmelCase__ :Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = copy.deepcopy(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) if not self.is_encoder_decoder: lowerCAmelCase__ :List[str] = inputs['input_ids'] del inputs["input_ids"] else: lowerCAmelCase__ :int = inputs['input_ids'] lowerCAmelCase__ :str = inputs.get('decoder_input_ids' , __UpperCAmelCase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.get_input_embeddings() if not self.is_encoder_decoder: lowerCAmelCase__ :Tuple = wte(__UpperCAmelCase ) else: lowerCAmelCase__ :List[Any] = wte(__UpperCAmelCase ) lowerCAmelCase__ :Dict = wte(__UpperCAmelCase ) with torch.no_grad(): model(**__UpperCAmelCase )[0] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ :Any = input_dict['input_ids'] lowerCAmelCase__ :Optional[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = MaMaaaForConditionalGeneration(__UpperCAmelCase ).eval().to(__UpperCAmelCase ) if torch_device == "cuda": model.half() model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) model.generate(num_beams=4 , do_sample=__UpperCAmelCase , early_stopping=__UpperCAmelCase , num_return_sequences=3 ) def __A (_SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __A = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) lowerCAmelCase__ :str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase__ :Optional[int] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase__ :Union[str, Any] = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :Any = model(**__UpperCAmelCase )[0] lowerCAmelCase__ :List[str] = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here lowerCAmelCase__ :int = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) # change to intended input lowerCAmelCase__ :str = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase__ :Any = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase__ :List[Any] = prepare_mam_aaa_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase__ :List[Any] = model(**__UpperCAmelCase )[0] lowerCAmelCase__ :Any = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here lowerCAmelCase__ :List[Any] = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=__UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) lowerCAmelCase__ :Tuple = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowerCAmelCase__ :Union[str, Any] = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='pt' ) lowerCAmelCase__ :List[Any] = model.generate( input_ids=dct['input_ids'].to(__UpperCAmelCase ) , attention_mask=dct['attention_mask'].to(__UpperCAmelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) lowerCAmelCase__ :Optional[Any] = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] lowerCAmelCase__ :Any = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) assert generated == expected_en
254
0
'''simple docstring''' def _UpperCamelCase ( __A ) -> "list[int]": '''simple docstring''' if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) UpperCamelCase__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase__ = 1 if upper_limit > 0: UpperCamelCase__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__A ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: a__ : Tuple = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
80
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( a__ , unittest.TestCase ): __UpperCAmelCase = CLIPTokenizer __UpperCAmelCase = CLIPTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = {} __UpperCAmelCase = False def __a ( self ): super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a , range(len(a ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a ) ) def __a ( self , **a ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **a ) def __a ( self , **a ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a ) def __a ( self , a ): UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def __a ( self ): UpperCamelCase__ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a ) self.assertListEqual(a , a ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @require_ftfy def __a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a , **a ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a , **a ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a ) UpperCamelCase__ = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a ) UpperCamelCase__ = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a ) UpperCamelCase__ = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a ) UpperCamelCase__ = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) def __a ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'''{text_of_1_token} {text_of_1_token}''' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) UpperCamelCase__ = f''' {text}''' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , ) def __a ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(a ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def __a ( self ): super().test_tokenization_python_rust_equals() def __a ( self ): # CLIP always lower cases letters pass
80
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase__ : Optional[int] = 16 UpperCamelCase__ : Optional[Any] = 32 def _a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): return int(x / 2**20 ) class a__ : def __enter__( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowerCAmelCase = torch.cuda.memory_allocated() return self def __exit__( self , *_A ): """simple docstring""" gc.collect() torch.cuda.empty_cache() __lowerCAmelCase = torch.cuda.memory_allocated() __lowerCAmelCase = torch.cuda.max_memory_allocated() __lowerCAmelCase = bamb(self.end - self.begin ) __lowerCAmelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def _a ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 , SCREAMING_SNAKE_CASE_ : str = "bert-base-cased" , SCREAMING_SNAKE_CASE_ : int = 3_20 , SCREAMING_SNAKE_CASE_ : int = 1_60 , ): __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) __lowerCAmelCase = load_dataset( "glue" , "mrpc" , split={"train": F"""train[:{n_train}]""", "validation": F"""validation[:{n_val}]"""} ) def tokenize_function(SCREAMING_SNAKE_CASE_ : Any ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=lowerCamelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase_ , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(lowerCamelCase_ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) __lowerCAmelCase = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any ): __lowerCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["""lr"""] __lowerCAmelCase = int(config["num_epochs"] ) __lowerCAmelCase = int(config["seed"] ) __lowerCAmelCase = int(config["batch_size"] ) __lowerCAmelCase = args.model_name_or_path set_seed(lowerCamelCase_ ) __lowerCAmelCase = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) # Instantiate optimizer __lowerCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCAmelCase = optimizer_cls(params=model.parameters() , lr=lowerCamelCase_ ) if accelerator.state.deepspeed_plugin is not None: __lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCAmelCase = 1 __lowerCAmelCase = (len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=0 , num_training_steps=lowerCamelCase_ , ) else: __lowerCAmelCase = DummyScheduler(lowerCamelCase_ , total_num_steps=lowerCamelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCAmelCase = 0 # Now we train the model __lowerCAmelCase = {} for epoch in range(lowerCamelCase_ , lowerCamelCase_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCamelCase_ ): __lowerCAmelCase = model(**lowerCamelCase_ ) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowerCAmelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def _a ( ): __lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=lowerCamelCase_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowerCamelCase_ , ) parser.add_argument( "--output_dir" , type=lowerCamelCase_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=lowerCamelCase_ , default=lowerCamelCase_ , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=lowerCamelCase_ , default=3_20 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=lowerCamelCase_ , default=1_60 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=lowerCamelCase_ , default=1 , help="Number of train epochs." , ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
358
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class a__ ( snake_case__ ): _a : Optional[int] = """new-model""" if is_tf_available(): class a__ ( snake_case__ ): _a : Dict = NewModelConfig @require_tf class a__ ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "bert-base-cased" __lowerCAmelCase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "bert-base-cased" __lowerCAmelCase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(_A ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(_A ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __lowerCAmelCase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __lowerCAmelCase = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) __lowerCAmelCase , __lowerCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 1_4_4_1_0 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 1_4_4_1_0 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(_A , _A ) __lowerCAmelCase = copy.deepcopy(model.config ) __lowerCAmelCase = ["FunnelBaseModel"] __lowerCAmelCase = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) __lowerCAmelCase = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" try: AutoConfig.register("new-model" , _A ) __lowerCAmelCase = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCAmelCase = BertModelTester(self ).get_config() __lowerCAmelCase = NewModelConfig(**tiny_config.to_dict() ) __lowerCAmelCase = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) __lowerCAmelCase = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" with self.assertRaisesRegex( _A , "bert-base is not a local folder and is not a valid model identifier" ): __lowerCAmelCase = TFAutoModel.from_pretrained("bert-base" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" with self.assertRaisesRegex( _A , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __lowerCAmelCase = TFAutoModel.from_pretrained(_A , revision="aaaaaa" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" with self.assertRaisesRegex( _A , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): __lowerCAmelCase = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" with self.assertRaisesRegex(_A , "Use `from_pt=True` to load this model" ): __lowerCAmelCase = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __lowerCAmelCase = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __lowerCAmelCase = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: __lowerCAmelCase = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
102
0