code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __snake_case ( a ): UpperCAmelCase__ : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase__ : ClassVar[Features] = Features({'''audio''': Audio()} ) UpperCAmelCase__ : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) UpperCAmelCase__ : str = "audio" UpperCAmelCase__ : str = "transcription" def lowerCamelCase ( self : Union[str, Any] , _snake_case : Tuple): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""") if not isinstance(features[self.audio_column] , _snake_case): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""") UpperCAmelCase_ = copy.deepcopy(self) UpperCAmelCase_ = self.input_schema.copy() UpperCAmelCase_ = features[self.audio_column] UpperCAmelCase_ = input_schema return task_template @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
51
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""audio_values""", """audio_mask"""] def __init__( self :List[str] , lowerCamelCase_ :List[str]=2_048 , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :int=[16, 16] , lowerCamelCase_ :str=128 , lowerCamelCase_ :Union[str, Any]=44_100 , lowerCamelCase_ :Optional[Any]=86 , lowerCamelCase_ :Dict=2_048 , lowerCamelCase_ :Union[str, Any]=0.0 , **lowerCamelCase_ :Tuple , ): """simple docstring""" super().__init__( feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : List[str] =spectrogram_length lowerCamelCase__ : Dict =num_channels lowerCamelCase__ : List[Any] =patch_size lowerCamelCase__ : Union[str, Any] =feature_size // self.patch_size[1] lowerCamelCase__ : int =n_fft lowerCamelCase__ : List[str] =sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ : str =sampling_rate lowerCamelCase__ : int =padding_value lowerCamelCase__ : Dict =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCamelCase_ , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCamelCase_ , norm='slaney' , mel_scale='slaney' , ).T def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :np.array ): """simple docstring""" lowerCamelCase__ : List[Any] =spectrogram( lowerCamelCase_ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) lowerCamelCase__ : Any =log_spec[:, :-1] lowerCamelCase__ : Tuple =log_spec - 20.0 lowerCamelCase__ : List[str] =np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self :Optional[Any] , lowerCamelCase_ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = True , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = False , **lowerCamelCase_ :Tuple , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCamelCase__ : Dict =isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowerCamelCase__ : Union[str, Any] =is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : Optional[Any] =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): lowerCamelCase__ : Optional[Any] =np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : Union[str, Any] =raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : List[str] =[np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ : Any =[ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCamelCase_ ): lowerCamelCase__ : Dict =[np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ : Optional[Any] =max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ : Any =[ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ : Union[str, Any] =np.array(lowerCamelCase_ ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ : Tuple =max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ : str =np.ones([len(lowerCamelCase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ : Dict =padded_audio_features * self.padding_value for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ : Union[str, Any] =audio_features[i] lowerCamelCase__ : Union[str, Any] =feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ : int ={'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowerCamelCase__ : Tuple ={'audio_values': padded_audio_features} lowerCamelCase__ : Union[str, Any] =BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ ) return encoded_inputs
126
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = FunnelTokenizer _snake_case : Union[str, Any] = FunnelTokenizerFast _snake_case : Union[str, Any] = True _snake_case : Tuple = True def snake_case__ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().setUp() _UpperCamelCase = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def snake_case__ ( self : Optional[int] , **lowerCAmelCase__ : Dict ) -> Dict: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def snake_case__ ( self : List[str] , **lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = '''UNwant\u00E9d,running''' _UpperCamelCase = '''unwanted, running''' return input_text, output_text def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class(self.vocab_file ) _UpperCamelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: _UpperCamelCase = tokenizer('''UNwant\u00E9d,running''' ) _UpperCamelCase = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) _UpperCamelCase = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
352
'''simple docstring''' def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase : int, lowercase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _UpperCamelCase = update_area_of_max_square(lowercase, col + 1 ) _UpperCamelCase = update_area_of_max_square(row + 1, col + 1 ) _UpperCamelCase = update_area_of_max_square(row + 1, lowercase ) if mat[row][col]: _UpperCamelCase = 1 + min([right, diagonal, down] ) _UpperCamelCase = max(largest_square_area[0], lowercase ) return sub_problem_sol else: return 0 _UpperCamelCase = [0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _UpperCamelCase = update_area_of_max_square_using_dp_array(lowercase, col + 1, lowercase ) _UpperCamelCase = update_area_of_max_square_using_dp_array(row + 1, col + 1, lowercase ) _UpperCamelCase = update_area_of_max_square_using_dp_array(row + 1, lowercase, lowercase ) if mat[row][col]: _UpperCamelCase = 1 + min([right, diagonal, down] ) _UpperCamelCase = max(largest_square_area[0], lowercase ) _UpperCamelCase = sub_problem_sol return sub_problem_sol else: return 0 _UpperCamelCase = [0] _UpperCamelCase = [[-1] * cols for _ in range(lowercase )] update_area_of_max_square_using_dp_array(0, 0, lowercase ) return largest_square_area[0] def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" _UpperCamelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] _UpperCamelCase = 0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): _UpperCamelCase = dp_array[row][col + 1] _UpperCamelCase = dp_array[row + 1][col + 1] _UpperCamelCase = dp_array[row + 1][col] if mat[row][col] == 1: _UpperCamelCase = 1 + min(lowercase, lowercase, lowercase ) _UpperCamelCase = max(dp_array[row][col], lowercase ) else: _UpperCamelCase = 0 return largest_square_area def a__ ( lowercase : int, lowercase : int, lowercase : list[list[int]] ) -> int: """simple docstring""" _UpperCamelCase = [0] * (cols + 1) _UpperCamelCase = [0] * (cols + 1) _UpperCamelCase = 0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): _UpperCamelCase = current_row[col + 1] _UpperCamelCase = next_row[col + 1] _UpperCamelCase = next_row[col] if mat[row][col] == 1: _UpperCamelCase = 1 + min(lowercase, lowercase, lowercase ) _UpperCamelCase = max(current_row[col], lowercase ) else: _UpperCamelCase = 0 _UpperCamelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
287
0
from __future__ import annotations from collections import namedtuple def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple: a = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
228
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
228
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument _A : List[str] ={ '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Optional[Any]: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model lowerCamelCase__ : int = list(s_dict.keys() ) for key in keys: lowerCamelCase__ : str = r""".*/layers_(\d+)""" lowerCamelCase__ : int = key if re.match(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : List[str] = re.sub(r"""layers_(\d+)""" , r"""block/\1/layer""" , UpperCamelCase ) lowerCamelCase__ : Tuple = r"""(encoder|decoder)\/""" if re.match(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : List[Any] = re.match(UpperCamelCase , UpperCamelCase ).groups() if groups[0] == "encoder": lowerCamelCase__ : Optional[Any] = re.sub(r"""/mlp/""" , r"""/1/mlp/""" , UpperCamelCase ) lowerCamelCase__ : int = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/1/layer_norm/""" , UpperCamelCase ) elif groups[0] == "decoder": lowerCamelCase__ : List[str] = re.sub(r"""/mlp/""" , r"""/2/mlp/""" , UpperCamelCase ) lowerCamelCase__ : Optional[Any] = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/2/layer_norm/""" , UpperCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCamelCase__ : Union[str, Any] = new_key.replace(UpperCamelCase , UpperCamelCase ) print(f'''{key} -> {new_key}''' ) lowerCamelCase__ : str = s_dict.pop(UpperCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase__ : List[Any] = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase__ : str = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCamelCase__ : Union[str, Any] = s_dict[key].shape[0] lowerCamelCase__ : Tuple = s_dict[key] for idx in range(UpperCamelCase ): lowerCamelCase__ : Union[str, Any] = expert_weihts[idx] print(f'''{key} -> {key.replace('expert/' , 'nested fstring' )}''' ) s_dict.pop(UpperCamelCase ) return s_dict _A : str ={ '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Dict: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCamelCase , """r""" ) as f: lowerCamelCase__ : Dict = f.read() lowerCamelCase__ : int = re.findall(r"""(.*) = ([0-9.]*)""" , UpperCamelCase ) lowerCamelCase__ : int = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCamelCase__ : Optional[Any] = float(UpperCamelCase ) if """.""" in value else int(UpperCamelCase ) lowerCamelCase__ : Optional[int] = re.findall(r"""(.*activations) = \(\'(.*)\',\)""" , UpperCamelCase )[0] lowerCamelCase__ : Optional[Any] = str(activation[1] ) lowerCamelCase__ : str = num_experts lowerCamelCase__ : str = SwitchTransformersConfig(**UpperCamelCase ) return config def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase="./" , UpperCamelCase=8 ) -> Tuple: # Initialise PyTorch model print(f'''Loading flax weights from : {flax_checkpoint_path}''' ) lowerCamelCase__ : Union[str, Any] = checkpoints.load_tax_checkpoint(UpperCamelCase ) if gin_file is not None: lowerCamelCase__ : Dict = convert_gin_to_config(UpperCamelCase , UpperCamelCase ) else: lowerCamelCase__ : Dict = SwitchTransformersConfig.from_pretrained(UpperCamelCase ) lowerCamelCase__ : List[Any] = SwitchTransformersForConditionalGeneration(UpperCamelCase ) lowerCamelCase__ : List[str] = flax_params["""target"""] lowerCamelCase__ : Union[str, Any] = flatten_dict(UpperCamelCase , sep="""/""" ) lowerCamelCase__ : str = rename_keys(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = unflatten_dict(UpperCamelCase , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCamelCase , UpperCamelCase ) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') _A : int =parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
362
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _A : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(_lowercase ) class _lowercase ( _lowercase ): def __init__( self: Union[str, Any] , **UpperCamelCase__: str ): super().__init__(**UpperCamelCase__ ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self: Optional[Any] , UpperCamelCase__: Union[np.ndarray, bytes, str] , **UpperCamelCase__: int ): return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] , **UpperCamelCase__: int ): lowerCamelCase__ : Optional[Any] = {} if "candidate_labels" in kwargs: lowerCamelCase__ : str = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowerCamelCase__ : int = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: int , UpperCamelCase__: List[str]=None , UpperCamelCase__: Dict="This is a sound of {}." ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCamelCase__ : int = requests.get(UpperCamelCase__ ).content else: with open(UpperCamelCase__ , """rb""" ) as f: lowerCamelCase__ : Dict = f.read() if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase__ : str = ffmpeg_read(UpperCamelCase__ , self.feature_extractor.sampling_rate ) if not isinstance(UpperCamelCase__ , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) lowerCamelCase__ : Optional[Any] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) lowerCamelCase__ : Any = candidate_labels lowerCamelCase__ : Any = [hypothesis_template.format(UpperCamelCase__ ) for x in candidate_labels] lowerCamelCase__ : int = self.tokenizer(UpperCamelCase__ , return_tensors=self.framework , padding=UpperCamelCase__ ) lowerCamelCase__ : Tuple = [text_inputs] return inputs def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : Any = model_inputs.pop("""candidate_labels""" ) lowerCamelCase__ : Union[str, Any] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , UpperCamelCase__ ): lowerCamelCase__ : Optional[int] = text_inputs[0] else: # Batching case. lowerCamelCase__ : Tuple = text_inputs[0][0] lowerCamelCase__ : Tuple = self.model(**UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase__ : str = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : List[str] = model_outputs.pop("""candidate_labels""" ) lowerCamelCase__ : int = model_outputs["""logits"""][0] if self.framework == "pt": lowerCamelCase__ : Optional[int] = logits.softmax(dim=0 ) lowerCamelCase__ : Any = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) lowerCamelCase__ : Tuple = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase__ , UpperCamelCase__ ) , key=lambda UpperCamelCase__ : -x[0] ) ] return result
129
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def __lowercase ( ): UpperCamelCase_ : List[Any] = 10 UpperCamelCase_ : Optional[Any] = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCamelCase_ : str = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__UpperCamelCase ) ), } , features=__UpperCamelCase , ) return dataset @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ): UpperCamelCase_ : List[str] = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__UpperCamelCase ) return filename # FILE_CONTENT + files a_ = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : List[Any] ): UpperCamelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCamelCase_ : List[str] = FILE_CONTENT with open(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase ) return filename @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Optional[Any] ): import bza UpperCamelCase_ : str = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCamelCase_ : Union[str, Any] = bytes(__UpperCamelCase , 'utf-8' ) with bza.open(__UpperCamelCase , 'wb' ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Optional[int] ): import gzip UpperCamelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCamelCase_ : List[str] = bytes(__UpperCamelCase , 'utf-8' ) with gzip.open(__UpperCamelCase , 'wb' ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Tuple ): if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCamelCase_ : str = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCamelCase_ : List[str] = bytes(__UpperCamelCase , 'utf-8' ) with lza.frame.open(__UpperCamelCase , 'wb' ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCamelCase_ : Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__UpperCamelCase , 'w' ) as archive: archive.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict ): import tarfile UpperCamelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__UpperCamelCase , 'w' ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Any ): import lzma UpperCamelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCamelCase_ : int = bytes(__UpperCamelCase , 'utf-8' ) with lzma.open(__UpperCamelCase , 'wb' ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : str ): import zipfile UpperCamelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Any ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCamelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCamelCase_ : int = bytes(__UpperCamelCase , 'utf-8' ) with zstd.open(__UpperCamelCase , 'wb' ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Dict ): UpperCamelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCamelCase_ : List[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase ) return filename a_ = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] a_ = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] a_ = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } a_ = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] a_ = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def __lowercase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Any ): UpperCamelCase_ : List[str] = datasets.Dataset.from_dict(__UpperCamelCase ) UpperCamelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Tuple ): UpperCamelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__UpperCamelCase ) ) as con: UpperCamelCase_ : int = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__UpperCamelCase , 'w' , newline='' ) as f: UpperCamelCase_ : str = csv.DictWriter(__UpperCamelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : List[Any] ): UpperCamelCase_ : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__UpperCamelCase , 'w' , newline='' ) as f: UpperCamelCase_ : int = csv.DictWriter(__UpperCamelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : str ): import bza UpperCamelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__UpperCamelCase , 'rb' ) as f: UpperCamelCase_ : Optional[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCamelCase , 'wb' ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] ): UpperCamelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int ): UpperCamelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__UpperCamelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ): UpperCamelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Dict ): UpperCamelCase_ : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCamelCase_ : Optional[Any] = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__UpperCamelCase , 'wb' ) as f: UpperCamelCase_ : Optional[Any] = pq.ParquetWriter(__UpperCamelCase , schema=__UpperCamelCase ) UpperCamelCase_ : int = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCamelCase ) )] for k in DATA[0]} , schema=__UpperCamelCase ) writer.write_table(__UpperCamelCase ) writer.close() return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCamelCase_ : Dict = {'data': DATA} with open(__UpperCamelCase , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Union[str, Any] ): UpperCamelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCamelCase_ : int = {'data': DATA_DICT_OF_LISTS} with open(__UpperCamelCase , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Optional[int] ): UpperCamelCase_ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__UpperCamelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Union[str, Any] ): UpperCamelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__UpperCamelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__UpperCamelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__UpperCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__UpperCamelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCamelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : str , lowerCamelCase : Optional[Any] ): import gzip UpperCamelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__UpperCamelCase , 'rb' ) as orig_file: with gzip.open(__UpperCamelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Any , lowerCamelCase : List[Any] ): import gzip UpperCamelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__UpperCamelCase , 'rb' ) as orig_file: with gzip.open(__UpperCamelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : int ): UpperCamelCase_ : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Any ): UpperCamelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : str , lowerCamelCase : Optional[Any] ): UpperCamelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : Dict ): UpperCamelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__UpperCamelCase , 'w' ) as f: f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.add(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Tuple ): UpperCamelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__UpperCamelCase , 'w' ) as f: f.add(__UpperCamelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Tuple ): UpperCamelCase_ : Union[str, Any] = ['0', '1', '2', '3'] UpperCamelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__UpperCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Optional[Any] ): UpperCamelCase_ : Tuple = ['0', '1', '2', '3'] UpperCamelCase_ : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__UpperCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Tuple ): UpperCamelCase_ : List[str] = ['0', '1', '2', '3'] UpperCamelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__UpperCamelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): UpperCamelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : List[str] ): UpperCamelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCamelCase ) ) ) f.write(__UpperCamelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCamelCase ) ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] ): UpperCamelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(__UpperCamelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : List[Any] ): UpperCamelCase_ : int = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCamelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(__UpperCamelCase ) return path @pytest.fixture(scope='session' ) def __lowercase ( ): return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def __lowercase ( ): return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : int , lowerCamelCase : Tuple ): UpperCamelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__UpperCamelCase , 'w' ) as f: f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ) ) f.write(__UpperCamelCase , arcname=os.path.basename(__UpperCamelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def __lowercase ( lowerCamelCase : Optional[Any] ): UpperCamelCase_ : List[str] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
175
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any], _lowerCamelCase : Tuple, _lowerCamelCase : List[str]=13, _lowerCamelCase : Optional[Any]=7, _lowerCamelCase : Optional[int]=True, _lowerCamelCase : int=True, _lowerCamelCase : List[str]=True, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : int=99, _lowerCamelCase : Optional[int]=32, _lowerCamelCase : Tuple=5, _lowerCamelCase : Tuple=4, _lowerCamelCase : str=37, _lowerCamelCase : Union[str, Any]="gelu", _lowerCamelCase : int=0.1, _lowerCamelCase : List[Any]=0.1, _lowerCamelCase : Dict=5_12, _lowerCamelCase : List[Any]=16, _lowerCamelCase : Any=2, _lowerCamelCase : Any=0.02, _lowerCamelCase : Dict=4, ): '''simple docstring''' __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_attention_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_choices def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __A = None if self.use_attention_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) __A = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_lowerCamelCase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Dict = True A_ : Tuple = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = FlaxRoFormerModelTester(self ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''', from_pt=_lowerCamelCase ) __A = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __A = jnp.array([[0, 1, 2, 3, 4, 5]] ) __A = model(_lowerCamelCase )[0] __A = 5_00_00 __A = (1, 6, vocab_size) self.assertEqual(output.shape, _lowerCamelCase ) __A = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3], _lowerCamelCase, atol=1e-4 ) )
266
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( A__ : Optional[int] , A__ : Union[str, Any]=False ): '''simple docstring''' __lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __lowerCamelCase = "" else: __lowerCamelCase = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __lowerCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCamelCase = in_proj_bias[: config.hidden_size] __lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( A__ : int , A__ : Union[str, Any] , A__ : Any ): '''simple docstring''' __lowerCamelCase = dct.pop(_lowerCAmelCase ) __lowerCamelCase = val def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCamelCase = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( A__ : str , A__ : List[str] ): '''simple docstring''' __lowerCamelCase = DeiTConfig() # all deit models have fine-tuned heads __lowerCamelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __lowerCamelCase = 1000 __lowerCamelCase = "huggingface/label-files" __lowerCamelCase = "imagenet-1k-id2label.json" __lowerCamelCase = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __lowerCamelCase = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = int(deit_name[-6:-4] ) __lowerCamelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): __lowerCamelCase = 192 __lowerCamelCase = 768 __lowerCamelCase = 12 __lowerCamelCase = 3 elif deit_name[9:].startswith("""small""" ): __lowerCamelCase = 384 __lowerCamelCase = 1536 __lowerCamelCase = 12 __lowerCamelCase = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): __lowerCamelCase = 1024 __lowerCamelCase = 4096 __lowerCamelCase = 24 __lowerCamelCase = 16 # load original model from timm __lowerCamelCase = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCamelCase = timm_model.state_dict() __lowerCamelCase = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model __lowerCamelCase = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor __lowerCamelCase = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __lowerCamelCase = DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) __lowerCamelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowerCamelCase = encoding["pixel_values"] __lowerCamelCase = model(_lowerCAmelCase ) __lowerCamelCase = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
353
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if isinstance(__lowercase , collections.abc.Iterable ): return x return (x, x) @require_tf class A_ : def lowercase ( self : str , snake_case_ : int , snake_case_ : int ): pass def lowercase ( self : Optional[Any] ): pass def lowercase ( self : int ): pass def lowercase ( self : List[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Any , snake_case_ : int , snake_case_ : List[str]=None , **snake_case_ : int ): _UpperCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case_ , snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel(snake_case_ ) _UpperCAmelCase = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase ( self : List[str] , snake_case_ : int , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Tuple=None , **snake_case_ : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(snake_case_ , snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) _UpperCAmelCase = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Union[str, Any]=None , **snake_case_ : Any ): _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(snake_case_ , snake_case_ ) _UpperCAmelCase = {"vision_model": vision_model, "text_model": text_model} _UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case_ ) _UpperCAmelCase = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any]=None , **snake_case_ : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(snake_case_ , snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) _UpperCAmelCase = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) _UpperCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ ) _UpperCAmelCase = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) _UpperCAmelCase = after_output[0].numpy() _UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1e-5 ) def lowercase ( self : int , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : int=None , **snake_case_ : str ): _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(snake_case_ , snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) _UpperCAmelCase = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) _UpperCAmelCase = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = to_atuple(vision_model.config.image_size ) _UpperCAmelCase = to_atuple(vision_model.config.patch_size ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCAmelCase = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self : Optional[int] , snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : float ): _UpperCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(snake_case_ , snake_case_ , f'Difference between torch and flax is {diff} (>= {tol}).' ) def lowercase ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**snake_case_ ) @slow def lowercase ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.get_pretrained_model_and_inputs() _UpperCAmelCase = model_a(**snake_case_ ) _UpperCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ ) _UpperCAmelCase = model_a(**snake_case_ ) _UpperCAmelCase = after_outputs[0].numpy() _UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1e-5 ) @require_tf class A_ ( lowerCAmelCase_ , unittest.TestCase ): def lowercase ( self : Optional[int] ): _UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) _UpperCAmelCase = 1_3 _UpperCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _UpperCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _UpperCAmelCase = random_attention_mask([batch_size, 4] ) _UpperCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowercase ( self : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ): _UpperCAmelCase = TFViTModel(snake_case_ , name="vision_model" ) _UpperCAmelCase = TFBertModel(snake_case_ , name="text_model" ) return vision_model, text_model def lowercase ( self : int ): _UpperCAmelCase = TFViTModelTester(self ) _UpperCAmelCase = TFBertModelTester(self ) _UpperCAmelCase = vit_model_tester.prepare_config_and_inputs() _UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = vision_config_and_inputs ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A_ ( lowerCAmelCase_ , unittest.TestCase ): def lowercase ( self : List[Any] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) _UpperCAmelCase = 1_3 _UpperCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _UpperCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _UpperCAmelCase = random_attention_mask([batch_size, 4] ) _UpperCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowercase ( self : int , snake_case_ : int , snake_case_ : Dict , snake_case_ : str , snake_case_ : Tuple , snake_case_ : str=None , **snake_case_ : Tuple ): _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(snake_case_ , snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) _UpperCAmelCase = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) _UpperCAmelCase = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _UpperCAmelCase = to_atuple(vision_model.config.image_size ) _UpperCAmelCase = to_atuple(vision_model.config.patch_size ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCAmelCase = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self : List[Any] , snake_case_ : Dict , snake_case_ : Optional[Any] ): _UpperCAmelCase = TFDeiTModel(snake_case_ , name="vision_model" ) _UpperCAmelCase = TFRobertaModel(snake_case_ , name="text_model" ) return vision_model, text_model def lowercase ( self : Any ): _UpperCAmelCase = TFDeiTModelTester(self ) _UpperCAmelCase = TFRobertaModelTester(self ) _UpperCAmelCase = vit_model_tester.prepare_config_and_inputs() _UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = vision_config_and_inputs ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A_ ( lowerCAmelCase_ , unittest.TestCase ): def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) _UpperCAmelCase = 1_3 _UpperCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _UpperCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _UpperCAmelCase = random_attention_mask([batch_size, 4] ) _UpperCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowercase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] ): _UpperCAmelCase = TFCLIPVisionModel(snake_case_ , name="vision_model" ) _UpperCAmelCase = TFBertModel(snake_case_ , name="text_model" ) return vision_model, text_model def lowercase ( self : Optional[int] ): _UpperCAmelCase = TFCLIPVisionModelTester(self ) _UpperCAmelCase = TFBertModelTester(self ) _UpperCAmelCase = clip_model_tester.prepare_config_and_inputs() _UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase = vision_config_and_inputs ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A_ ( unittest.TestCase ): @slow def lowercase ( self : int ): _UpperCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=snake_case_ ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase = processor( text=["una foto di un gatto", "una foto di un cane"] , images=snake_case_ , padding=snake_case_ , return_tensors="np" ) _UpperCAmelCase = model(**snake_case_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCAmelCase = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , snake_case_ , atol=1e-3 ) )
22
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> Union[str, Any]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
349
0
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = LxmertTokenizer lowerCamelCase = LxmertTokenizerFast lowerCamelCase = True lowerCamelCase = True def _lowerCAmelCase ( self ) -> Optional[int]: super().setUp() _lowerCAmelCase =[ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _lowerCAmelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase ="""UNwant\u00E9d,running""" _lowerCAmelCase ="""unwanted, running""" return input_text, output_text def _lowerCAmelCase ( self ) -> List[Any]: _lowerCAmelCase =self.tokenizer_class(self.vocab_file ) _lowerCAmelCase =tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def _lowerCAmelCase ( self ) -> Dict: if not self.test_rust_tokenizer: return _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase ="""I was born in 92000, and this is falsé.""" _lowerCAmelCase =tokenizer.tokenize(__UpperCAmelCase ) _lowerCAmelCase =rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _lowerCAmelCase =rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _lowerCAmelCase =self.get_rust_tokenizer() _lowerCAmelCase =tokenizer.encode(__UpperCAmelCase ) _lowerCAmelCase =rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
341
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowerCamelCase() -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
341
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=9_9 , __magic_name__=2_4 , __magic_name__=2 , __magic_name__=6 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_2 , __magic_name__=1_6 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=None , __magic_name__=1_0_0_0 , ): lowerCamelCase : Union[str, Any] = parent lowerCamelCase : Union[str, Any] = batch_size lowerCamelCase : Tuple = seq_length lowerCamelCase : int = is_training lowerCamelCase : str = use_input_mask lowerCamelCase : List[Any] = use_token_type_ids lowerCamelCase : List[str] = use_labels lowerCamelCase : Optional[Any] = vocab_size lowerCamelCase : Tuple = hidden_size lowerCamelCase : Optional[Any] = num_hidden_layers lowerCamelCase : Dict = num_attention_heads lowerCamelCase : Any = intermediate_size lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : Optional[Any] = hidden_dropout_prob lowerCamelCase : int = attention_probs_dropout_prob lowerCamelCase : Union[str, Any] = max_position_embeddings lowerCamelCase : Dict = type_vocab_size lowerCamelCase : Dict = type_sequence_label_size lowerCamelCase : str = initializer_range lowerCamelCase : Tuple = num_labels lowerCamelCase : Union[str, Any] = scope lowerCamelCase : Optional[Any] = range_bbox def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase : int = bbox[i, j, 3] lowerCamelCase : Tuple = bbox[i, j, 1] lowerCamelCase : Optional[int] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase : List[str] = bbox[i, j, 2] lowerCamelCase : Tuple = bbox[i, j, 0] lowerCamelCase : List[str] = t lowerCamelCase : Any = None if self.use_input_mask: lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCamelCase : Tuple = None if self.use_token_type_ids: lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase : Tuple = None lowerCamelCase : int = None if self.use_labels: lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : Optional[int] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase__ ( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): lowerCamelCase : List[str] = LiltModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase : Union[str, Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) lowerCamelCase : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ ) lowerCamelCase : List[Any] = model(__magic_name__ , bbox=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): lowerCamelCase : Union[str, Any] = self.num_labels lowerCamelCase : Any = LiltForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase : Optional[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): lowerCamelCase : List[str] = LiltForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase : Optional[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[int] = config_and_inputs lowerCamelCase : Dict = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): _UpperCAmelCase : Optional[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase : List[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Dict = False def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): return True def UpperCamelCase__ ( self ): lowerCamelCase : Optional[Any] = LiltModelTester(self ) lowerCamelCase : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=3_7 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase : Tuple = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @slow def UpperCamelCase__ ( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : str = LiltModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @slow class A__ ( unittest.TestCase): def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(__magic_name__ ) lowerCamelCase : Optional[Any] = torch.tensor([[1, 2]] , device=__magic_name__ ) lowerCamelCase : Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ ) # forward pass with torch.no_grad(): lowerCamelCase : int = model(input_ids=__magic_name__ , bbox=__magic_name__ ) lowerCamelCase : Union[str, Any] = torch.Size([1, 2, 7_6_8] ) lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__magic_name__ , ) self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1e-3 ) )
287
from scipy.stats import pearsonr import datasets _lowerCamelCase =""" Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ _lowerCamelCase =""" Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ _lowerCamelCase =""" @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class A__ ( datasets.Metric): def UpperCamelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__=False ): if return_pvalue: lowerCamelCase : Optional[Any] = pearsonr(__magic_name__ , __magic_name__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__magic_name__ , __magic_name__ )[0] )}
287
1
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : set ): A__ , A__ = len(UpperCAmelCase_ ), len(grid[0] ) if ( min(UpperCAmelCase_ , UpperCAmelCase_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A__ = 0 count += depth_first_search(UpperCAmelCase_ , row + 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , row - 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col + 1 , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col - 1 , UpperCAmelCase_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
69
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = tempfile.mkdtemp() A__ = SamImageProcessor() A__ = SamProcessor(UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self: Optional[int] , **UpperCamelCase: List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ).image_processor def UpperCamelCase ( self: List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) A__ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(UpperCamelCase , return_tensors="""np""" ) A__ = processor(images=UpperCamelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def UpperCamelCase ( self: Any ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = [torch.ones((1, 3, 5, 5) )] A__ = [[17_64, 26_46]] A__ = [[6_83, 10_24]] A__ = processor.post_process_masks(UpperCamelCase , UpperCamelCase , UpperCamelCase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A__ = processor.post_process_masks( UpperCamelCase , torch.tensor(UpperCamelCase ) , torch.tensor(UpperCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A__ = [np.ones((1, 3, 5, 5) )] A__ = processor.post_process_masks(UpperCamelCase , np.array(UpperCamelCase ) , np.array(UpperCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A__ = [[1, 0], [0, 1]] with self.assertRaises(UpperCamelCase ): A__ = processor.post_process_masks(UpperCamelCase , np.array(UpperCamelCase ) , np.array(UpperCamelCase ) ) @require_vision @require_tf class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = tempfile.mkdtemp() A__ = SamImageProcessor() A__ = SamProcessor(UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self: Optional[int] , **UpperCamelCase: str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ).image_processor def UpperCamelCase ( self: List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) A__ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(UpperCamelCase , return_tensors="""np""" ) A__ = processor(images=UpperCamelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def UpperCamelCase ( self: Any ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = [tf.ones((1, 3, 5, 5) )] A__ = [[17_64, 26_46]] A__ = [[6_83, 10_24]] A__ = processor.post_process_masks(UpperCamelCase , UpperCamelCase , UpperCamelCase , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A__ = processor.post_process_masks( UpperCamelCase , tf.convert_to_tensor(UpperCamelCase ) , tf.convert_to_tensor(UpperCamelCase ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A__ = [np.ones((1, 3, 5, 5) )] A__ = processor.post_process_masks( UpperCamelCase , np.array(UpperCamelCase ) , np.array(UpperCamelCase ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A__ = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A__ = processor.post_process_masks( UpperCamelCase , np.array(UpperCamelCase ) , np.array(UpperCamelCase ) , return_tensors="""tf""" ) @require_vision @require_torchvision class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = tempfile.mkdtemp() A__ = SamImageProcessor() A__ = SamProcessor(UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self: Tuple , **UpperCamelCase: Tuple ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ).image_processor def UpperCamelCase ( self: Optional[int] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) A__ = [tf.convert_to_tensor(UpperCamelCase )] A__ = [torch.tensor(UpperCamelCase )] A__ = [[17_64, 26_46]] A__ = [[6_83, 10_24]] A__ = processor.post_process_masks( UpperCamelCase , UpperCamelCase , UpperCamelCase , return_tensors="""tf""" ) A__ = processor.post_process_masks( UpperCamelCase , UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.get_image_processor() A__ = SamProcessor(image_processor=UpperCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(UpperCamelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() A__ = processor(images=UpperCamelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() A__ = image_processor(UpperCamelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() A__ = processor(images=UpperCamelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) )
69
1
import os lowerCAmelCase__ :List[Any] = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0} def lowerCAmelCase__ ( a__: str ) -> Any: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(lowerCamelCase_ ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowerCAmelCase__ ( a__: int ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = '''''' _UpperCAmelCase = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 _UpperCAmelCase = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 _UpperCAmelCase = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowerCAmelCase__ ( a__: str = "/p089_roman.txt" ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(lowerCamelCase_ ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(lowerCamelCase_ ) _UpperCAmelCase = generate_roman_numerals(lowerCamelCase_ ) savings += len(lowerCamelCase_ ) - len(lowerCamelCase_ ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
329
import os import jsonlines import numpy as np from tqdm import tqdm __snake_case : Any =2_0_4_8 __snake_case : Union[str, Any] =4_0_9_6 __snake_case : Optional[Any] =4_2 __snake_case : Dict =os.environ.pop('PROCESS_TRAIN', 'false') __snake_case : List[str] ={'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4} def lowerCAmelCase__ ( lowerCamelCase_ : List[Any]): '''simple docstring''' def choose_first(lowerCamelCase_ : List[str] ,lowerCamelCase_ : Any=False): assert isinstance(lowerCamelCase_ ,lowerCamelCase_) if len(lowerCamelCase_) == 1: lowerCAmelCase__ : Optional[int] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowerCAmelCase__ : Any = {k: [a[k]] for k in a} if len(a['''start_token''']) > 0: break return a lowerCAmelCase__ : Optional[Any] = {'''id''': example['''id''']} lowerCAmelCase__ : int = example['''annotations'''] lowerCAmelCase__ : str = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: lowerCAmelCase__ : Union[str, Any] = ['''yes'''] if 1 in yes_no_answer else ['''no'''] lowerCAmelCase__ : int = [] lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : int = ['''<cls>'''] else: lowerCAmelCase__ : Tuple = ['''short'''] lowerCAmelCase__ : int = choose_first(annotation['''short_answers''']) if len(out['''start_token''']) == 0: # answer will be long if short is not available lowerCAmelCase__ : Optional[Any] = ['''long'''] lowerCAmelCase__ : str = choose_first(annotation['''long_answer'''] ,is_long_answer=lowerCamelCase_) lowerCAmelCase__ : Optional[int] = [] answer.update(lowerCamelCase_) # disregard some samples if len(answer['''start_token''']) > 1 or answer["start_token"] == answer["end_token"]: lowerCAmelCase__ : Optional[Any] = True else: lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Tuple = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] ,lowerCamelCase_) for k in cols): raise ValueError('''Issue in ID''' ,example['''id''']) return answer def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Union[str, Any]=False): '''simple docstring''' lowerCAmelCase__ : Any = _get_single_answer(lowerCamelCase_) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCAmelCase__ : List[Any] = example['''document''']['''tokens'''] lowerCAmelCase__ : Any = [] for i in range(len(doc['''token'''])): if not doc["is_html"][i]: context.append(doc['''token'''][i]) return { "context": " ".join(lowerCamelCase_), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowerCAmelCase__ : Union[str, Any] = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k]) > 0 else answer[k] for k in cols}) # e.g. [10] == 10 lowerCAmelCase__ : List[Any] = example['''document''']['''tokens'''] lowerCAmelCase__ : Optional[Any] = answer['''start_token'''] lowerCAmelCase__ : Union[str, Any] = answer['''end_token'''] lowerCAmelCase__ : int = [] for i in range(len(doc['''token'''])): if not doc["is_html"][i]: context.append(doc['''token'''][i]) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowerCAmelCase__ : List[Any] = ''' '''.join(context[start_token:end_token]) # checking above code if assertion: lowerCAmelCase__ : str = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] lowerCAmelCase__ : List[Any] = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] lowerCAmelCase__ : Optional[int] = ''' '''.join([old[i] for i in range(len(lowerCamelCase_)) if not is_html[i]]) if new != old: print('''ID:''' ,example['''id''']) print('''New:''' ,lowerCamelCase_ ,end='''\n''') print('''Old:''' ,lowerCamelCase_ ,end='''\n\n''') return { "context": " ".join(lowerCamelCase_), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : str ,lowerCamelCase_ : Tuple=2048 ,lowerCamelCase_ : Dict=4096 ,lowerCamelCase_ : Optional[Any]=True): '''simple docstring''' lowerCAmelCase__ : int = get_context_and_ans(lowerCamelCase_ ,assertion=lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowerCAmelCase__ : Union[str, Any] = tokenizer(example['''question''']['''text'''] ,out['''context''']).input_ids lowerCAmelCase__ : List[str] = input_ids.index(tokenizer.sep_token_id) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[Any] = input_ids[:q_len] lowerCAmelCase__ : List[Any] = range(lowerCamelCase_ ,len(lowerCamelCase_) ,max_length - doc_stride) for i in doc_start_indices: lowerCAmelCase__ : Union[str, Any] = i + max_length - q_len lowerCAmelCase__ : Any = input_ids[i:end_index] inputs.append(q_indices + slice) category.append(answer['''category'''][0]) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowerCamelCase_), "end_token": [-100] * len(lowerCamelCase_), "category": category, }, } lowerCAmelCase__ : Optional[Any] = out['''context'''].split() lowerCAmelCase__ : Union[str, Any] = splitted_context[answer['''end_token''']] lowerCAmelCase__ : Optional[int] = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']]) ,add_special_tokens=lowerCamelCase_ ,).input_ids) lowerCAmelCase__ : Dict = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']]) ,add_special_tokens=lowerCamelCase_).input_ids) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowerCAmelCase__ : int = len(tokenizer(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_).input_ids) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowerCAmelCase__ : Union[str, Any] = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive lowerCAmelCase__ : List[str] = answer['''start_token'''] lowerCAmelCase__ : Union[str, Any] = answer['''end_token'''] if assertion: lowerCAmelCase__ : int = tokenizer.decode(lowerCamelCase_) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''') print('''OLD:''' ,answer['''span''']) print('''NEW:''' ,lowerCamelCase_ ,end='''\n\n''') if len(lowerCamelCase_) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowerCAmelCase__ : int = input_ids[:q_len] lowerCAmelCase__ : Optional[Any] = range(lowerCamelCase_ ,len(lowerCamelCase_) ,max_length - doc_stride) lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Any = [] # null, yes, no, long, short for i in doc_start_indices: lowerCAmelCase__ : str = i + max_length - q_len lowerCAmelCase__ : List[str] = input_ids[i:end_index] inputs.append(q_indices + slice) assert len(inputs[-1]) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowerCAmelCase__ : int = start_token - i + q_len lowerCAmelCase__ : str = end_token - i + q_len answers_category.append(answer['''category'''][0]) # ["short"] -> "short" else: lowerCAmelCase__ : Tuple = -100 lowerCAmelCase__ : List[str] = -100 answers_category.append('''null''') lowerCAmelCase__ : int = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase_) answers_end_token.append(lowerCamelCase_) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' ,example['''id''']) print('''New:''' ,tokenizer.decode(lowerCamelCase_)) print('''Old:''' ,tokenizer.decode(lowerCamelCase_) ,end='''\n\n''') if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : List[Any] ,lowerCamelCase_ : int=2048 ,lowerCamelCase_ : Tuple=4096 ,lowerCamelCase_ : Optional[int]=False): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = get_strided_contexts_and_ans( lowerCamelCase_ ,lowerCamelCase_ ,doc_stride=lowerCamelCase_ ,max_length=lowerCamelCase_ ,assertion=lowerCamelCase_ ,) return example def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : int): '''simple docstring''' with jsonlines.open(lowerCamelCase_ ,'''a''') as writer: for example in tqdm(lowerCamelCase_ ,total=len(lowerCamelCase_) ,desc='''Saving samples ... '''): lowerCAmelCase__ : Optional[Any] = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] ,labels['''start_token'''] ,labels['''end_token'''] ,labels['''category'''] ,): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], }) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __snake_case : Optional[int] =load_dataset('natural_questions') __snake_case : Union[str, Any] =BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') __snake_case : Tuple =data['train' if PROCESS_TRAIN == 'true' else 'validation'] __snake_case : Optional[int] ={ 'tokenizer': tokenizer, 'doc_stride': DOC_STRIDE, 'max_length': MAX_LENGTH, 'assertion': False, } __snake_case : Dict =data.map(prepare_inputs, fn_kwargs=fn_kwargs) __snake_case : Dict =data.remove_columns(['annotations', 'document', 'id', 'question']) print(data) np.random.seed(SEED) __snake_case : int ='nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl' save_to_disk(data, file_name=cache_file_name)
129
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType a_ : str = False, False, False @dataclass class _snake_case : _lowercase : Optional[int] = None _lowercase : bool = True _lowercase : bool = True _lowercase : Optional[str] = None # Automatically constructed _lowercase : ClassVar[str] = "dict" _lowercase : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _lowercase : str = field(default='''Audio''' , init=A__ , repr=A__ ) def __call__( self) -> Optional[int]: return self.pa_type def SCREAMING_SNAKE_CASE__ ( self , a) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.') from err if isinstance(a , a): return {"bytes": None, "path": value} elif isinstance(a , a): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes SCREAMING_SNAKE_CASE = BytesIO() sf.write(a , value['array'] , value['sampling_rate'] , format='wav') return {"bytes": buffer.getvalue(), "path": None} elif value.get('path') is not None and os.path.isfile(value['path']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm'): # "PCM" only has raw audio bytes if value.get('sampling_rate') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object') if value.get('bytes'): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) SCREAMING_SNAKE_CASE = np.frombuffer(value['bytes'] , dtype=np.intaa).astype(np.floataa) / 3_2767 else: SCREAMING_SNAKE_CASE = np.memmap(value['path'] , dtype='h' , mode='r').astype(np.floataa) / 3_2767 SCREAMING_SNAKE_CASE = BytesIO(bytes()) sf.write(a , a , value['sampling_rate'] , format='wav') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path')} elif value.get('bytes') is not None or value.get('path') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes'), "path": value.get('path')} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''') def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> dict: if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (value['path'], BytesIO(value['bytes'])) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''') try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.') from err SCREAMING_SNAKE_CASE = xsplitext(a)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ') if file is None: SCREAMING_SNAKE_CASE = token_per_repo_id or {} SCREAMING_SNAKE_CASE = path.split('::')[-1] try: SCREAMING_SNAKE_CASE = string_to_dict(a , config.HUB_DATASETS_URL)['repo_id'] SCREAMING_SNAKE_CASE = token_per_repo_id[repo_id] except (ValueError, KeyError): SCREAMING_SNAKE_CASE = None with xopen(a , 'rb' , use_auth_token=a) as f: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sf.read(a) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sf.read(a) SCREAMING_SNAKE_CASE = array.T if self.mono: SCREAMING_SNAKE_CASE = librosa.to_mono(a) if self.sampling_rate and self.sampling_rate != sampling_rate: SCREAMING_SNAKE_CASE = librosa.resample(a , orig_sr=a , target_sr=self.sampling_rate) SCREAMING_SNAKE_CASE = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def SCREAMING_SNAKE_CASE__ ( self) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.') return { "bytes": Value('binary'), "path": Value('string'), } def SCREAMING_SNAKE_CASE__ ( self , a) -> pa.StructArray: if pa.types.is_string(storage.type): SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.binary()) SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.string()) SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('array'): SCREAMING_SNAKE_CASE = pa.array([Audio().encode_example(a) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('bytes') >= 0: SCREAMING_SNAKE_CASE = storage.field('bytes') else: SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.binary()) if storage.type.get_field_index('path') >= 0: SCREAMING_SNAKE_CASE = storage.field('path') else: SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.string()) SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null()) return array_cast(a , self.pa_type) def SCREAMING_SNAKE_CASE__ ( self , a) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(a): with xopen(a , 'rb') as f: SCREAMING_SNAKE_CASE = f.read() return bytes_ SCREAMING_SNAKE_CASE = pa.array( [ (path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE = pa.array( [os.path.basename(a) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(a , self.pa_type)
366
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCamelCase__ (_UpperCAmelCase): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _snake_case ( nn.Module ): def __init__( self , a , a) -> Union[str, Any]: super().__init__() SCREAMING_SNAKE_CASE = module SCREAMING_SNAKE_CASE = nn.Sequential( nn.Linear(module.in_features , a , bias=a) , nn.Linear(a , module.out_features , bias=a) , ) SCREAMING_SNAKE_CASE = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=a) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def SCREAMING_SNAKE_CASE__ ( self , a , *a , **a) -> Any: return self.module(a , *a , **a) + self.adapter(a) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _lowercase : Union[str, Any] = '''bigscience/bloom-1b7''' # Constant values _lowercase : str = 2.109_6595_5269_2574 _lowercase : Any = '''Hello my name is''' _lowercase : Any = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) _lowercase : Union[str, Any] = 10 def SCREAMING_SNAKE_CASE__ ( self) -> Any: # Models and tokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(self.model_name) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto') SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.model_abit.config self.assertTrue(hasattr(a , 'quantization_config')) SCREAMING_SNAKE_CASE = config.to_dict() SCREAMING_SNAKE_CASE = config.to_diff_dict() SCREAMING_SNAKE_CASE = config.to_json_string() def SCREAMING_SNAKE_CASE__ ( self) -> Any: from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE) SCREAMING_SNAKE_CASE = get_some_linear_layer(self.model_abit) self.assertTrue(linear.weight.__class__ == Paramsabit) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(a , torch.nn.Linear): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = BitsAndBytesConfig() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) def SCREAMING_SNAKE_CASE__ ( self) -> str: with self.assertRaises(a), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = BitsAndBytesConfig() with self.assertRaises(a): SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a , load_in_abit=a , device_map='auto' , bnb_abit_quant_type='nf4' , ) def SCREAMING_SNAKE_CASE__ ( self) -> int: with self.assertRaises(a): # Tries with `str` self.model_abit.to('cpu') with self.assertRaises(a): # Tries with a `dtype`` self.model_abit.to(torch.floataa) with self.assertRaises(a): # Tries with a `device` self.model_abit.to(torch.device('cuda:0')) with self.assertRaises(a): # Tries with a `device` self.model_abit.float() with self.assertRaises(a): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = self.model_fpaa.to(torch.floataa) SCREAMING_SNAKE_CASE = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.to('cpu') # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.float() def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=a , device_map='auto') self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls) -> Tuple: SCREAMING_SNAKE_CASE = 't5-small' SCREAMING_SNAKE_CASE = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(cls.model_name) SCREAMING_SNAKE_CASE = 'Translate in German: Hello, my dog is cute' def SCREAMING_SNAKE_CASE__ ( self) -> Dict: gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE = None # test with `t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) # test with `flan-t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) SCREAMING_SNAKE_CASE = modules def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit)) SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) # test with `flan-t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> str: super().setUp() # model_name SCREAMING_SNAKE_CASE = 'bigscience/bloom-560m' SCREAMING_SNAKE_CASE = 't5-small' # Different types of model SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # Sequence classification model SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=a , device_map='auto') # CausalLM model SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # Seq2seq model SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=a , device_map='auto') def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Dict: del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE = self.pipe(self.input_text) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> int: super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=a , device_map='balanced') # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1}) # Check that inference pass works on the model SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') # Second real batch SCREAMING_SNAKE_CASE = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = 'facebook/opt-350m' super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Any: if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a) self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()}) for param in model.parameters(): SCREAMING_SNAKE_CASE = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE = param.data.to(torch.floataa) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(a)): SCREAMING_SNAKE_CASE = LoRALayer(module.q_proj , rank=16) SCREAMING_SNAKE_CASE = LoRALayer(module.k_proj , rank=16) SCREAMING_SNAKE_CASE = LoRALayer(module.v_proj , rank=16) # Step 3: dummy batch SCREAMING_SNAKE_CASE = self.tokenizer('Test batch ' , return_tensors='pt').to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE = model.forward(**a) out.logits.norm().backward() for module in model.modules(): if isinstance(a , a): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(a , nn.Embedding): self.assertTrue(module.weight.grad is None) class _snake_case ( A__ ): _lowercase : str = '''gpt2-xl''' _lowercase : Union[str, Any] = 3.3191_8548_5415_2187
327
0
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __UpperCamelCase = logging.getLogger(__name__) __UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) SCREAMING_SNAKE_CASE_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def a_ ( self) -> Tuple: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE_ = field(default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) SCREAMING_SNAKE_CASE_ = field( default=5 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE_ = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) def a_ ( self) -> Optional[Any]: if self.train_file is not None: snake_case_ = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: snake_case_ = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as f: snake_case_ = [json.loads(UpperCAmelCase ) for line in f.read().splitlines() if (len(UpperCAmelCase ) > 0 and not line.isspace())] assert len(UpperCAmelCase ) == len(UpperCAmelCase ) snake_case_ = {c: dataset[c] for c in dataset.column_names} snake_case_ = refs return Dataset.from_dict(UpperCAmelCase ) def UpperCAmelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[:{data_args.validation_split_percentage}%]' , ) snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[{data_args.validation_split_percentage}%:]' , ) else: snake_case_ = {} if data_args.train_file is not None: snake_case_ = data_args.train_file if data_args.validation_file is not None: snake_case_ = data_args.validation_file snake_case_ = data_args.train_file.split('.' )[-1] if extension == "txt": snake_case_ = 'text' snake_case_ = load_dataset(UpperCAmelCase , data_files=UpperCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: snake_case_ = AutoConfig.from_pretrained(model_args.config_name , **UpperCAmelCase ) elif model_args.model_name_or_path: snake_case_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: snake_case_ = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) snake_case_ = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: snake_case_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCAmelCase ) elif model_args.model_name_or_path: snake_case_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: snake_case_ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) snake_case_ = AutoModelForMaskedLM.from_config(UpperCAmelCase ) model.resize_token_embeddings(len(UpperCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: snake_case_ = datasets['train'].column_names else: snake_case_ = datasets['validation'].column_names snake_case_ = 'text' if 'text' in column_names else column_names[0] snake_case_ = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(UpperCAmelCase ): # Remove empty lines snake_case_ = [line for line in examples['text'] if len(UpperCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=data_args.max_seq_length ) snake_case_ = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: snake_case_ = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: snake_case_ = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer snake_case_ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: snake_case_ = False # Data collator # This one will take care of randomly masking the tokens. snake_case_ = DataCollatorForWholeWordMask(tokenizer=UpperCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case_ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): snake_case_ = model_args.model_name_or_path else: snake_case_ = None snake_case_ = trainer.train(resume_from_checkpoint=UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = math.exp(eval_output['eval_loss'] ) snake_case_ = perplexity snake_case_ = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) return results def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
69
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def lowercase__ ( __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=3 , __snake_case : Any=16 , __snake_case : int = 10 , __snake_case : int = 2 ): '''simple docstring''' def get_dataset(__snake_case : Optional[Any] ): UpperCAmelCase_ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Any = get_dataset(__snake_case ) UpperCAmelCase_ : str = get_dataset(__snake_case ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase__ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] for epoch in range(__snake_case ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = batch UpperCAmelCase_ : List[Any] = model(__snake_case ) UpperCAmelCase_ : int = torch.nn.functional.mse_loss(__snake_case , __snake_case ) accelerator.backward(__snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[Any]: super().__init__() UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: return x * self.a + self.b class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCamelCase , automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Dict = Accelerator(project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[Any] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Tuple = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial UpperCAmelCase_ : Any = os.path.join(_UpperCamelCase , 'initial' ) accelerator.save_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() UpperCAmelCase_ : Union[str, Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_UpperCamelCase , 'checkpoint' ) accelerator.save_state(_UpperCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCamelCase ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : Union[str, Any] = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Any = Accelerator() with self.assertRaises(_UpperCamelCase ) as ve: accelerator.register_for_checkpointing(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ : Dict = torch.optim.lr_scheduler.StepLR(_UpperCamelCase , step_size=1 , gamma=0.99 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() UpperCAmelCase_ : Dict = scheduler.state_dict() train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_UpperCamelCase , scheduler.state_dict() ) def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase , total_limit=2 ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ : str = accelerator.prepare(_UpperCamelCase ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '/tmp/accelerate/state_checkpointing' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
29
0
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __lowerCAmelCase ( _lowerCAmelCase ): """simple docstring""" _snake_case : Optional[Any] = "EncodecFeatureExtractor" _snake_case : List[Any] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ) -> int: '''simple docstring''' super().__init__(_lowercase , _lowercase ) _UpperCamelCase = self.feature_extractor _UpperCamelCase = False def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=True ) -> Optional[int]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : int ) -> Union[str, Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) _UpperCamelCase = kwargs.pop('''audio''' , _lowercase ) _UpperCamelCase = kwargs.pop('''sampling_rate''' , _lowercase ) _UpperCamelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: _UpperCamelCase = args[0] _UpperCamelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: _UpperCamelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: _UpperCamelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: _UpperCamelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: _UpperCamelCase = audio_inputs['''padding_mask'''] return inputs def snake_case__ ( self : str , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' _UpperCamelCase = kwargs.pop('''audio''' , _lowercase ) _UpperCamelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: _UpperCamelCase = args[0] _UpperCamelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def snake_case__ ( self : Dict , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Union[str, Any] ) -> int: '''simple docstring''' return self.tokenizer.decode(*_lowercase , **_lowercase ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional = None ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = to_numpy(_lowercase ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) _UpperCamelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _UpperCamelCase = seq_len - padding_mask.shape[-1] _UpperCamelCase = 1 - self.feature_extractor.padding_value _UpperCamelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) _UpperCamelCase = audio_values.tolist() for i in range(_lowercase ): _UpperCamelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _UpperCamelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
370
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCamelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' _UpperCamelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) )
287
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = LxmertTokenizer lowerCAmelCase_ = LxmertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True def lowercase (self ) -> Union[str, Any]: super().setUp() _snake_case = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowercase (self , UpperCAmelCase ) -> Any: _snake_case = """UNwant\u00E9d,running""" _snake_case = """unwanted, running""" return input_text, output_text def lowercase (self ) -> int: _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase (self ) -> List[Any]: if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = """I was born in 92000, and this is falsé.""" _snake_case = tokenizer.tokenize(UpperCAmelCase ) _snake_case = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _snake_case = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _snake_case = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(UpperCAmelCase ) _snake_case = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
341
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "deberta-v2" def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]: super().__init__(**UpperCAmelCase ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = relative_attention _snake_case = max_relative_positions _snake_case = pad_token_id _snake_case = position_biased_input # Backwards compatibility if type(UpperCAmelCase ) == str: _snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )] _snake_case = pos_att_type _snake_case = vocab_size _snake_case = layer_norm_eps _snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase ) _snake_case = pooler_dropout _snake_case = pooler_hidden_act class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowercase (self ) -> int: return 12 def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]: _snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
341
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _A = HfApi() _A = {} # fmt: off _A = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _A = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _A = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _A = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _A = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _A = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _A = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _A = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _A = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _A = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _A = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _A = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _A = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _A = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _A = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _A = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _A = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(f'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): _A = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: _A = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _A = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _A = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _A = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(f'''{mod.modelId} has passed successfully!!!''')
359
"""simple docstring""" import sys import turtle def a__ ( lowerCAmelCase , lowerCAmelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) triangle(lowerCAmelCase , get_mid(lowerCAmelCase , lowerCAmelCase ) , get_mid(lowerCAmelCase , lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) _A = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") _A = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
166
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "beit" def __init__( self, lowerCAmelCase__=8192, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=224, lowerCAmelCase__=16, lowerCAmelCase__=3, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=True, lowerCAmelCase__=[3, 5, 7, 11], lowerCAmelCase__=[1, 2, 3, 6], lowerCAmelCase__=True, lowerCAmelCase__=0.4, lowerCAmelCase__=256, lowerCAmelCase__=1, lowerCAmelCase__=False, lowerCAmelCase__=255, **lowerCAmelCase__, ) -> List[str]: super().__init__(**lowerCAmelCase__) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = use_mask_token snake_case_ = use_absolute_position_embeddings snake_case_ = use_relative_position_bias snake_case_ = use_shared_relative_position_bias snake_case_ = layer_scale_init_value snake_case_ = drop_path_rate snake_case_ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ = out_indices snake_case_ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = semantic_loss_ignore_index class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-4
69
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> Optional[int]: snake_case_ = data snake_case_ = None class UpperCamelCase : def __init__( self) -> Dict: snake_case_ = None snake_case_ = None def __iter__( self) -> Iterator[Any]: snake_case_ = self.head while self.head: yield node.data snake_case_ = node.next if node == self.head: break def __len__( self) -> int: return sum(1 for _ in self) def __repr__( self) -> str: return "->".join(str(lowerCAmelCase__) for item in iter(self)) def a_ ( self, lowerCAmelCase__) -> None: self.insert_nth(len(self), lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> None: self.insert_nth(0, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> None: if index < 0 or index > len(self): raise IndexError('list index out of range.') snake_case_ = Node(lowerCAmelCase__) if self.head is None: snake_case_ = new_node # first node points itself snake_case_ = snake_case_ = new_node elif index == 0: # insert at head snake_case_ = self.head snake_case_ = snake_case_ = new_node else: snake_case_ = self.head for _ in range(index - 1): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = new_node if index == len(self) - 1: # insert at tail snake_case_ = new_node def a_ ( self) -> str: return self.delete_nth(0) def a_ ( self) -> Any: return self.delete_nth(len(self) - 1) def a_ ( self, lowerCAmelCase__ = 0) -> Any: if not 0 <= index < len(self): raise IndexError('list index out of range.') snake_case_ = self.head if self.head == self.tail: # just one node snake_case_ = snake_case_ = None elif index == 0: # delete head node snake_case_ = self.tail.next.next snake_case_ = self.head.next else: snake_case_ = self.head for _ in range(index - 1): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = temp.next.next if index == len(self) - 1: # delete at tail snake_case_ = temp return delete_node.data def a_ ( self) -> bool: return len(self) == 0 def UpperCAmelCase ( ) -> None: snake_case_ = CircularLinkedList() assert len(UpperCAmelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCAmelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCAmelCase ) == i circular_linked_list.insert_nth(UpperCAmelCase , i + 1 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
69
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() A_ : Union[str, Any] = logging.get_logger(__name__) set_seed(770) A_ : Optional[int] = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } A_ : int = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } A_ : str = os.path.dirname(os.path.abspath(__file__)) A_ : int = os.path.join(os.path.expanduser('~'), '.cache') A_ : Tuple = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def UpperCamelCase (lowercase_: Optional[int] , lowercase_: Tuple=False ) -> Union[str, Any]: A__ : Dict = model_type if use_small: key += "_small" return os.path.join(lowercase_ , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def UpperCamelCase (lowercase_: str , lowercase_: Optional[Any] ) -> List[Any]: os.makedirs(lowercase_ , exist_ok=lowercase_ ) hf_hub_download(repo_id=lowercase_ , filename=lowercase_ , local_dir=lowercase_ ) def UpperCamelCase (lowercase_: str , lowercase_: List[str] , lowercase_: Any=False , lowercase_: int="text" ) -> Tuple: if model_type == "text": A__ : str = BarkSemanticModel A__ : Dict = BarkSemanticConfig A__ : Tuple = BarkSemanticGenerationConfig elif model_type == "coarse": A__ : int = BarkCoarseModel A__ : Union[str, Any] = BarkCoarseConfig A__ : int = BarkCoarseGenerationConfig elif model_type == "fine": A__ : Union[str, Any] = BarkFineModel A__ : Any = BarkFineConfig A__ : Union[str, Any] = BarkFineGenerationConfig else: raise NotImplementedError() A__ : Union[str, Any] = f"""{model_type}_small""" if use_small else model_type A__ : Union[str, Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowercase_ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) A__ : Any = torch.load(lowercase_ , map_location=lowercase_ ) # this is a hack A__ : Dict = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: A__ : Dict = model_args["""vocab_size"""] A__ : Optional[Any] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments A__ : Union[str, Any] = model_args.pop("""n_head""" ) A__ : str = model_args.pop("""n_embd""" ) A__ : Dict = model_args.pop("""n_layer""" ) A__ : str = ConfigClass(**checkpoint["""model_args"""] ) A__ : Optional[int] = ModelClass(config=lowercase_ ) A__ : Dict = GenerationConfigClass() A__ : Tuple = model_generation_config A__ : int = checkpoint["""model"""] # fixup checkpoint A__ : List[Any] = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(lowercase_ ): # replace part of the key with corresponding layer name in HF implementation A__ : Any = k[len(lowercase_ ) :] for old_layer_name in new_layer_name_dict: A__ : Any = new_k.replace(lowercase_ , new_layer_name_dict[old_layer_name] ) A__ : Optional[int] = state_dict.pop(lowercase_ ) A__ : Optional[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) A__ : int = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} A__ : int = set(model.state_dict().keys() ) - set(state_dict.keys() ) A__ : Optional[Any] = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(lowercase_ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(lowercase_ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(lowercase_ , strict=lowercase_ ) A__ : int = model.num_parameters(exclude_embeddings=lowercase_ ) A__ : Union[str, Any] = checkpoint["""best_val_loss"""].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowercase_ , 3 )} loss""" ) model.eval() model.to(lowercase_ ) del checkpoint, state_dict return model def UpperCamelCase (lowercase_: Tuple , lowercase_: Any=False , lowercase_: Optional[Any]="text" ) -> Union[str, Any]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() A__ : Union[str, Any] = """cpu""" # do conversion on cpu A__ : List[str] = _get_ckpt_path(lowercase_ , use_small=lowercase_ ) A__ : str = _load_model(lowercase_ , lowercase_ , model_type=lowercase_ , use_small=lowercase_ ) # load bark initial model A__ : Union[str, Any] = _bark_load_model(lowercase_ , """cpu""" , model_type=lowercase_ , use_small=lowercase_ ) if model_type == "text": A__ : str = bark_model["""model"""] if model.num_parameters(exclude_embeddings=lowercase_ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model A__ : List[Any] = 5 A__ : List[Any] = 10 if model_type in ["text", "coarse"]: A__ : int = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) A__ : Union[str, Any] = bark_model(lowercase_ )[0] A__ : Any = model(lowercase_ ) # take last logits A__ : List[str] = output_new_model_total.logits[:, [-1], :] else: A__ : Optional[int] = 3 A__ : Optional[int] = 8 A__ : Tuple = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) A__ : List[Any] = model(lowercase_ , lowercase_ ) A__ : Union[str, Any] = bark_model(lowercase_ , lowercase_ ) A__ : List[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) def UpperCamelCase (lowercase_: List[str] , lowercase_: Any , lowercase_: List[Any] , lowercase_: Optional[int] , lowercase_: int , lowercase_: List[str] , ) -> Any: A__ : Tuple = os.path.join(lowercase_ , lowercase_ ) A__ : Dict = BarkSemanticConfig.from_pretrained(os.path.join(lowercase_ , """config.json""" ) ) A__ : List[Any] = BarkCoarseConfig.from_pretrained(os.path.join(lowercase_ , """config.json""" ) ) A__ : str = BarkFineConfig.from_pretrained(os.path.join(lowercase_ , """config.json""" ) ) A__ : str = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) A__ : str = BarkSemanticModel.from_pretrained(lowercase_ ) A__ : List[str] = BarkCoarseModel.from_pretrained(lowercase_ ) A__ : Tuple = BarkFineModel.from_pretrained(lowercase_ ) A__ : List[Any] = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) A__ : int = BarkConfig.from_sub_model_configs( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A__ : Any = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) A__ : Any = BarkModel(lowercase_ ) A__ : str = semantic A__ : Optional[Any] = coarseAcoustic A__ : int = fineAcoustic A__ : Any = codec A__ : str = bark_generation_config Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) bark.save_pretrained(lowercase_ , repo_id=lowercase_ , push_to_hub=lowercase_ ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') A_ : Optional[int] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
141
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Dict = '''falcon''' UpperCAmelCase__: Any = ['''past_key_values'''] def __init__( self , A__=6_5024 , A__=4544 , A__=32 , A__=71 , A__=1e-5 , A__=0.0_2 , A__=True , A__=0.0 , A__=0.0 , A__=None , A__=False , A__=False , A__=True , A__=True , A__=False , A__=11 , A__=11 , **A__ , ): A__ : Dict = vocab_size # Backward compatibility with n_embed kwarg A__ : Union[str, Any] = kwargs.pop("""n_embed""" , A__ ) A__ : Optional[Any] = hidden_size if n_embed is None else n_embed A__ : Any = num_hidden_layers A__ : Any = num_attention_heads A__ : Optional[Any] = layer_norm_epsilon A__ : Tuple = initializer_range A__ : Tuple = use_cache A__ : str = hidden_dropout A__ : List[str] = attention_dropout A__ : List[Any] = bos_token_id A__ : Optional[Any] = eos_token_id A__ : Optional[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads A__ : List[str] = alibi A__ : Tuple = new_decoder_architecture A__ : List[str] = multi_query # Ignored when new_decoder_architecture is True A__ : List[Any] = parallel_attn A__ : int = bias super().__init__(bos_token_id=A__ , eos_token_id=A__ , **A__ ) @property def __A ( self ): return self.hidden_size // self.num_attention_heads @property def __A ( self ): return not self.alibi
141
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : str, _lowerCamelCase : List[Any], _lowerCamelCase : int=13, _lowerCamelCase : str=3, _lowerCamelCase : Optional[Any]=2_24, _lowerCamelCase : str=30, _lowerCamelCase : int=4_00, _lowerCamelCase : str=True, _lowerCamelCase : List[str]=None, _lowerCamelCase : Tuple=True, _lowerCamelCase : List[str]=[0.5, 0.5, 0.5], _lowerCamelCase : Any=[0.5, 0.5, 0.5], ): '''simple docstring''' __A = size if size is not None else {'height': 18, 'width': 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_normalize __A = image_mean __A = image_std def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case ( snake_case_ , unittest.TestCase ): '''simple docstring''' A_ : Any = ViTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = EfficientFormerImageProcessorTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A, '''image_mean''' ) ) self.assertTrue(hasattr(_A, '''image_std''' ) ) self.assertTrue(hasattr(_A, '''do_normalize''' ) ) self.assertTrue(hasattr(_A, '''do_resize''' ) ) self.assertTrue(hasattr(_A, '''size''' ) ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A, Image.Image ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_A, numpify=_A ) for image in image_inputs: self.assertIsInstance(_A, np.ndarray ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_A, torchify=_A ) for image in image_inputs: self.assertIsInstance(_A, torch.Tensor ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), )
266
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 50_00_00 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : int = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : Dict = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case_ : List[Any] = generate_example_dataset( os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a ) snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a ) def tokenize(__a ): return tokenizer(examples['text'] ) snake_case_ : Any = map(__a ) snake_case_ : Tuple = map(__a , batched=__a ) snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='numpy' ): snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='pandas' ): snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case_ : int = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a ) snake_case_ : int = map(__a , function=__a , batched=__a ) snake_case_ : Optional[Any] = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , 'wb' ) as f: f.write(json.dumps(__a ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
327
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'luke' def __init__( self : int ,lowercase__ : Tuple=5_0_2_6_7 ,lowercase__ : str=5_0_0_0_0_0 ,lowercase__ : Union[str, Any]=7_6_8 ,lowercase__ : Any=2_5_6 ,lowercase__ : int=1_2 ,lowercase__ : Dict=1_2 ,lowercase__ : List[Any]=3_0_7_2 ,lowercase__ : Dict="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : List[Any]=5_1_2 ,lowercase__ : Tuple=2 ,lowercase__ : Any=0.0_2 ,lowercase__ : Tuple=1e-1_2 ,lowercase__ : Optional[int]=True ,lowercase__ : Optional[int]=None ,lowercase__ : Tuple=1 ,lowercase__ : int=0 ,lowercase__ : Tuple=2 ,**lowercase__ : Dict ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = entity_vocab_size __lowercase = hidden_size __lowercase = entity_emb_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = use_entity_aware_attention __lowercase = classifier_dropout
52
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase_ = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Dict = """segformer""" def __init__( self , __magic_name__=3 , __magic_name__=4 , __magic_name__=[2, 2, 2, 2] , __magic_name__=[8, 4, 2, 1] , __magic_name__=[3_2, 6_4, 1_6_0, 2_5_6] , __magic_name__=[7, 3, 3, 3] , __magic_name__=[4, 2, 2, 2] , __magic_name__=[1, 2, 5, 8] , __magic_name__=[4, 4, 4, 4] , __magic_name__="gelu" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.1 , __magic_name__=0.02 , __magic_name__=0.1 , __magic_name__=1e-6 , __magic_name__=2_5_6 , __magic_name__=2_5_5 , **__magic_name__ , ): super().__init__(**__magic_name__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __magic_name__ , ) lowerCamelCase : Optional[Any] = num_channels lowerCamelCase : str = num_encoder_blocks lowerCamelCase : Any = depths lowerCamelCase : List[Any] = sr_ratios lowerCamelCase : int = hidden_sizes lowerCamelCase : Union[str, Any] = patch_sizes lowerCamelCase : Optional[Any] = strides lowerCamelCase : Dict = mlp_ratios lowerCamelCase : str = num_attention_heads lowerCamelCase : Any = hidden_act lowerCamelCase : Tuple = hidden_dropout_prob lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase : Dict = classifier_dropout_prob lowerCamelCase : Tuple = initializer_range lowerCamelCase : Dict = drop_path_rate lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : Any = decoder_hidden_size lowerCamelCase : str = kwargs.get("""reshape_last_stage""" , __magic_name__ ) lowerCamelCase : Dict = semantic_loss_ignore_index class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : str = version.parse("""1.11""") @property def UpperCamelCase__ ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase__ ( self ): return 1e-4 @property def UpperCamelCase__ ( self ): return 1_2
287
0
from typing import Any class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case = data _snake_case = None def __repr__( self ) -> str: return F'''Node({self.data})''' class UpperCamelCase_ : def __init__( self ) -> Union[str, Any]: _snake_case = None def __iter__( self ) -> Any: _snake_case = self.head while node: yield node.data _snake_case = node.next def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join([str(lowerCAmelCase_ ) for item in self] ) def __getitem__( self , lowerCAmelCase_ ) -> Any: if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) _snake_case = self.head for _ in range(lowerCAmelCase_ ): _snake_case = current.next _snake_case = data def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: self.insert_nth(len(self ) , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: self.insert_nth(0 , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) _snake_case = Node(lowerCAmelCase_ ) if self.head is None: _snake_case = new_node elif index == 0: _snake_case = self.head # link new_node to head _snake_case = new_node else: _snake_case = self.head for _ in range(index - 1 ): _snake_case = temp.next _snake_case = temp.next _snake_case = new_node def lowerCAmelCase ( self ) -> None: # print every node data print(self ) def lowerCAmelCase ( self ) -> Any: return self.delete_nth(0 ) def lowerCAmelCase ( self ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def lowerCAmelCase ( self , lowerCAmelCase_ = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) _snake_case = self.head # default first node if index == 0: _snake_case = self.head.next else: _snake_case = self.head for _ in range(index - 1 ): _snake_case = temp.next _snake_case = temp.next _snake_case = temp.next.next return delete_node.data def lowerCAmelCase ( self ) -> bool: return self.head is None def lowerCAmelCase ( self ) -> None: _snake_case = None _snake_case = self.head while current: # Store the current node's next node. _snake_case = current.next # Make the current node's next point backwards _snake_case = prev # Make the previous node be the current node _snake_case = current # Make the current node the next node (to progress iteration) _snake_case = next_node # Return prev in order to put the head at the end _snake_case = prev def lowerCamelCase__ ( ) -> None: '''simple docstring''' _snake_case = LinkedList() assert linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(UpperCamelCase__ ) == i linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(UpperCamelCase__ ) == 9 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _snake_case = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(-8 , 1 ) ) def lowerCamelCase__ ( ) -> None: '''simple docstring''' _snake_case = [ -9, 100, Node(77_345_112 ), 'dlrow olleH', 7, 5_555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] _snake_case = LinkedList() for i in test_input: linked_list.insert_tail(UpperCamelCase__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(UpperCamelCase__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _snake_case = linked_list.delete_head() assert result == -9 assert ( str(UpperCamelCase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _snake_case = linked_list.delete_tail() assert result == 12.2 assert ( str(UpperCamelCase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _snake_case = linked_list.delete_nth(10 ) assert result is None assert ( str(UpperCamelCase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(UpperCamelCase__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(UpperCamelCase__ ) assert ( str(UpperCamelCase__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(UpperCamelCase__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCamelCase__ ( ) -> List[Any]: '''simple docstring''' from doctest import testmod testmod() _snake_case = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(UpperCamelCase__ ) print('\nReading/changing Node data using indexing:' ) print(F'''Element at Position 1: {linked_list[1]}''' ) _snake_case = input('Enter New Value: ' ).strip() print('New list:' ) print(UpperCamelCase__ ) print(F'''length of linked_list is : {len(UpperCamelCase__ )}''' ) if __name__ == "__main__": main()
295
import random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> dict: '''simple docstring''' _snake_case = {i: [] for i in range(UpperCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if random.random() < probability: graph[i].append(UpperCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase__ ) return graph def lowerCamelCase__ ( UpperCamelCase__ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase__ ) if i != j] for i in range(UpperCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
295
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: A_ :int = None A_ :Optional[int] = logging.get_logger(__name__) A_ :Tuple = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} A_ :int = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } A_ :Union[str, Any] = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off A_ :int = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __A ( a ): """simple docstring""" UpperCamelCase__ : List[str] =VOCAB_FILES_NAMES UpperCamelCase__ : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Tuple =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : str =["""input_ids""", """attention_mask"""] UpperCamelCase__ : Any =MBartTokenizer UpperCamelCase__ : List[int] =[] UpperCamelCase__ : List[int] =[] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Union[str, Any] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( vocab_file=lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , src_lang=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : int =vocab_file __UpperCamelCase : Tuple =False if not self.vocab_file else True __UpperCamelCase : Dict =FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __UpperCamelCase : List[str] ={ lang_code: self.convert_tokens_to_ids(lowerCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCamelCase : Optional[Any] =src_lang if src_lang is not None else 'en_XX' __UpperCamelCase : str =self.convert_tokens_to_ids(self._src_lang ) __UpperCamelCase : str =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[Any] =[self.sep_token_id] __UpperCamelCase : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase : List[str] =src_lang __UpperCamelCase : List[str] =self(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =self.convert_tokens_to_ids(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =tgt_lang_id return inputs def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = "en_XX" , lowerCamelCase__ = None , lowerCamelCase__ = "ro_RO" , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Dict =src_lang __UpperCamelCase : Optional[Any] =tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.convert_tokens_to_ids(lowerCamelCase__ ) __UpperCamelCase : Tuple =[] __UpperCamelCase : Optional[Any] =[self.eos_token_id, self.cur_lang_code] __UpperCamelCase : Optional[Any] =self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCamelCase : List[Any] =self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCamelCase : Union[str, Any] =processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.convert_tokens_to_ids(lowerCamelCase__ ) __UpperCamelCase : int =[] __UpperCamelCase : List[str] =[self.eos_token_id, self.cur_lang_code] __UpperCamelCase : Optional[int] =self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCamelCase : Dict =self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCamelCase : List[str] =processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return __UpperCamelCase : List[Any] =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
71
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """blenderbot-small""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Tuple , _lowerCAmelCase : Any=5_0_2_6_5 , _lowerCAmelCase : str=5_1_2 , _lowerCAmelCase : List[Any]=8 , _lowerCAmelCase : Tuple=2_0_4_8 , _lowerCAmelCase : str=1_6 , _lowerCAmelCase : Optional[int]=8 , _lowerCAmelCase : str=2_0_4_8 , _lowerCAmelCase : Dict=1_6 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : int=5_1_2 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : str=0 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Any=2 , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' __lowercase =vocab_size __lowercase =max_position_embeddings __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =use_cache __lowercase =encoder_layers __lowercase =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class _UpperCamelCase ( A ): '''simple docstring''' @property def __lowerCamelCase ( self : str): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super().outputs else: __lowercase =super(_lowerCAmelCase , self).outputs if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # Generate decoder inputs __lowercase =seq_length if not self.use_past else 1 __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) __lowercase ={f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __lowercase =dict(**_lowerCAmelCase , **_lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape __lowercase =common_inputs['decoder_input_ids'].shape[1] __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =decoder_seq_length + 3 __lowercase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase)] , dim=1) __lowercase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase =self.num_layers __lowercase =min(_lowerCAmelCase , _lowerCAmelCase) __lowercase =max(_lowerCAmelCase , _lowerCAmelCase) - min_num_layers __lowercase ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_lowerCAmelCase): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), )) # TODO: test this. __lowercase =encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase))) return common_inputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase , __lowercase =self.num_layers __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =common_inputs['attention_mask'].dtype __lowercase =torch.cat( [common_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase)] , dim=1) __lowercase =[ (torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)) for _ in range(_lowerCAmelCase) ] return common_inputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase =tokenizer.num_special_tokens_to_add(_lowerCAmelCase) __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase) # Generate dummy inputs according to compute batch and sequence __lowercase =[' '.join([tokenizer.unk_token]) * seq_length] * batch_size __lowercase =dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase)) return common_inputs def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) elif self.task == "causal-lm": __lowercase =self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) else: __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) return common_inputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) else: __lowercase =super(_lowerCAmelCase , self)._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
166
0
'''simple docstring''' import argparse import json import subprocess def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Optional[int] ): lowercase_ :Optional[int] = [] lowercase_ :Optional[int] = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) lowercase_ :Optional[Any] = subprocess.run(__lowerCamelCase ,shell=__lowerCamelCase ,stdout=subprocess.PIPE ) lowercase_ :int = output.stdout.decode("utf-8" ) lowercase_ :Dict = json.loads(__lowerCamelCase ) lowercase_ :int = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(__lowerCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" ,"w" ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) if len(__lowerCamelCase ) > 0: lowercase_ :Optional[Any] = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ): return values.split("," ) lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) lowerCAmelCase : Optional[int] =parser.parse_args() get_runner_status(args.target_runners, args.token)
147
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): __A = ["input_features"] def __init__( self : Any , lowercase : Tuple=80 , lowercase : Optional[int]=16_000 , lowercase : Optional[Any]=160 , lowercase : Optional[int]=30 , lowercase : List[Any]=400 , lowercase : Dict=0.0 , lowercase : Tuple=False , **lowercase : Optional[int] , ): """simple docstring""" super().__init__( feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , ) lowercase_ :Optional[int] = n_fft lowercase_ :List[Any] = hop_length lowercase_ :Tuple = chunk_length lowercase_ :List[str] = chunk_length * sampling_rate lowercase_ :Optional[Any] = self.n_samples // hop_length lowercase_ :Any = sampling_rate lowercase_ :List[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowercase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=lowercase , norm="slaney" , mel_scale="slaney" , ) def lowercase__ ( self : str , lowercase : np.array ): """simple docstring""" lowercase_ :Any = spectrogram( lowercase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowercase_ :Any = log_spec[:, :-1] lowercase_ :List[Any] = np.maximum(lowercase , log_spec.max() - 8.0 ) lowercase_ :Dict = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowercase__ ( lowercase : List[np.ndarray] , lowercase : List[np.ndarray] , lowercase : float = 0.0 ): """simple docstring""" if attention_mask is not None: lowercase_ :Optional[int] = np.array(lowercase , np.intaa ) lowercase_ :Any = [] for vector, length in zip(lowercase , attention_mask.sum(-1 ) ): lowercase_ :Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowercase_ :List[Any] = padding_value normed_input_values.append(lowercase ) else: lowercase_ :List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Tuple , lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase : bool = True , lowercase : Optional[int] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Optional[bool] = None , lowercase : Optional[str] = "max_length" , lowercase : Optional[int] = None , lowercase : Optional[int] = None , lowercase : Optional[bool] = None , **lowercase : Union[str, Any] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase_ :List[str] = isinstance(lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowercase_ :Optional[Any] = is_batched_numpy or ( isinstance(lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase_ :Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowercase , np.ndarray ): lowercase_ :List[Any] = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase_ :Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase_ :Optional[int] = [np.asarray([raw_speech] ).T] lowercase_ :int = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowercase_ :Tuple = self.pad( lowercase , padding=lowercase , max_length=max_length if max_length else self.n_samples , truncation=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase_ :Union[str, Any] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowercase_ :List[Any] = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowercase_ :Union[str, Any] = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowercase_ :List[str] = [self._np_extract_fbank_features(lowercase ) for waveform in input_features[0]] if isinstance(input_features[0] , lowercase ): lowercase_ :Tuple = [np.asarray(lowercase , dtype=np.floataa ) for feature in input_features] else: lowercase_ :Union[str, Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase_ :Dict = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowercase_ :Tuple = padded_inputs.convert_to_tensors(lowercase ) return padded_inputs def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase_ :List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
147
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase : @staticmethod def snake_case ( *__lowercase : int , **__lowercase : Dict ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): lowerCAmelCase_ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def snake_case ( self : List[str] , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Tuple ): """simple docstring""" __lowercase =pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) __lowercase =[ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def snake_case ( self : Optional[int] , __lowercase : str , __lowercase : Dict ): """simple docstring""" __lowercase =vqa_pipeline(__lowercase , top_k=1 ) self.assertEqual( __lowercase , [ [{'score': ANY(__lowercase ), 'answer': ANY(__lowercase )}], [{'score': ANY(__lowercase ), 'answer': ANY(__lowercase )}], ] , ) @require_torch def snake_case ( self : Dict ): """simple docstring""" __lowercase =pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) __lowercase ='./tests/fixtures/tests_samples/COCO/000000039769.png' __lowercase ='How many cats are there?' __lowercase =vqa_pipeline(image=__lowercase , question='How many cats are there?' , top_k=2 ) self.assertEqual( __lowercase , [{'score': ANY(__lowercase ), 'answer': ANY(__lowercase )}, {'score': ANY(__lowercase ), 'answer': ANY(__lowercase )}] ) __lowercase =vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( __lowercase , [{'score': ANY(__lowercase ), 'answer': ANY(__lowercase )}, {'score': ANY(__lowercase ), 'answer': ANY(__lowercase )}] ) @slow @require_torch def snake_case ( self : Dict ): """simple docstring""" __lowercase =pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) __lowercase ='./tests/fixtures/tests_samples/COCO/000000039769.png' __lowercase ='How many cats are there?' __lowercase =vqa_pipeline(image=__lowercase , question=__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [{'score': 0.8_7_9_9, 'answer': '2'}, {'score': 0.2_9_6, 'answer': '1'}] ) __lowercase =vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [{'score': 0.8_7_9_9, 'answer': '2'}, {'score': 0.2_9_6, 'answer': '1'}] ) __lowercase =vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [[{'score': 0.8_7_9_9, 'answer': '2'}, {'score': 0.2_9_6, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def snake_case ( self : Dict ): """simple docstring""" pass
141
'''simple docstring''' def __UpperCamelCase ( lowercase__ : list, lowercase__ : list, lowercase__ : int ): '''simple docstring''' __lowercase =len(lowercase__ ) __lowercase =[[0] * n for i in range(lowercase__ )] for i in range(lowercase__ ): __lowercase =y_points[i] for i in range(2, lowercase__ ): for j in range(lowercase__, lowercase__ ): __lowercase =( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
141
1
"""simple docstring""" import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def UpperCAmelCase ( UpperCamelCase__=None ): """simple docstring""" A__ = argparse.ArgumentParser(add_help=UpperCamelCase__ , allow_abbrev=UpperCamelCase__ ) # The main config parser A__ = config_command_parser(UpperCamelCase__ ) # The subparser to add commands to A__ = config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(UpperCamelCase__ , parents=[parent_parser] ) update_command_parser(UpperCamelCase__ , parents=[parent_parser] ) return config_parser def UpperCAmelCase ( ): """simple docstring""" A__ = get_config_parser() A__ = config_parser.parse_args() if not hasattr(UpperCamelCase__ , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(UpperCamelCase__ ) if __name__ == "__main__": main()
351
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"vocab_file": "vocab.json"} __lowerCamelCase = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } __lowerCamelCase = {"mgp-str": 27} class UpperCamelCase__( __A ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase="[GO]" ,__UpperCAmelCase="[GO]" ,__UpperCAmelCase="[s]" ,__UpperCAmelCase="[GO]" ,**__UpperCAmelCase ) -> List[str]: super().__init__( unk_token=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,**__UpperCAmelCase ,) with open(__UpperCAmelCase ,encoding='utf-8' ) as vocab_handle: A__ = json.load(__UpperCAmelCase ) A__ = {v: k for k, v in self.vocab.items()} @property def snake_case__ ( self ) -> Any: return len(self.vocab ) def snake_case__ ( self ) -> List[str]: return dict(self.vocab ,**self.added_tokens_encoder ) def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = [] for s in text: char_tokens.extend(__UpperCAmelCase ) return char_tokens def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]: return self.vocab.get(__UpperCAmelCase ,self.vocab.get(self.unk_token ) ) def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: return self.decoder.get(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(__UpperCAmelCase ) ) return A__ = os.path.join( __UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(__UpperCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.vocab ,indent=2 ,sort_keys=__UpperCAmelCase ,ensure_ascii=__UpperCAmelCase ) + '\n' ) return (vocab_file,)
154
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP snake_case__ : Dict = False try: snake_case__ : Any = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class snake_case_: def __init__( self : List[Any] , UpperCamelCase_ : str = None , UpperCamelCase_ : list = [] ): lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : str = choices lowerCAmelCase : Any = prompt if sys.platform == "win32": lowerCAmelCase : Optional[Any] = '''*''' else: lowerCAmelCase : List[str] = '''➔ ''' def lowerCamelCase__ ( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , UpperCamelCase_ ) else: forceWrite(self.choices[index] , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): if index == self.position: forceWrite(F''' {self.arrow_char} ''' ) self.write_choice(UpperCamelCase_ ) else: forceWrite(F''' {self.choices[index]}''' ) reset_cursor() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Direction , UpperCamelCase_ : int = 1 ): lowerCAmelCase : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase_ ) move_cursor(UpperCamelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def lowerCamelCase__ ( self : Dict ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def lowerCamelCase__ ( self : List[Any] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def lowerCamelCase__ ( self : List[str] ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def lowerCamelCase__ ( self : Optional[Any] ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase_ )] for number in range(1_0 )] ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = int(chr(self.current_selection ) ) lowerCAmelCase : Any = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCamelCase_ ) else: return else: return def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) lowerCAmelCase : Tuple = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase_ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: lowerCAmelCase : List[str] = int(builtins.input() ) except ValueError: lowerCAmelCase : Optional[int] = default_choice else: lowerCAmelCase : Tuple = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(UpperCamelCase_ , '''\n''' ) return choice
60
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Any = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class A__ ( __snake_case ): _UpperCAmelCase :Dict = 'bart' _UpperCAmelCase :str = ['past_key_values'] _UpperCAmelCase :Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A_=5_0265 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=3 , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , **A_ , ): '''simple docstring''' UpperCamelCase : int = vocab_size UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Any = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = encoder_attention_heads UpperCamelCase : Optional[int] = decoder_ffn_dim UpperCamelCase : List[str] = decoder_layers UpperCamelCase : Optional[int] = decoder_attention_heads UpperCamelCase : int = dropout UpperCamelCase : int = attention_dropout UpperCamelCase : Tuple = activation_dropout UpperCamelCase : Tuple = activation_function UpperCamelCase : int = init_std UpperCamelCase : List[Any] = encoder_layerdrop UpperCamelCase : List[str] = decoder_layerdrop UpperCamelCase : Dict = classifier_dropout UpperCamelCase : Optional[int] = use_cache UpperCamelCase : List[Any] = encoder_layers UpperCamelCase : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , A_ ): UpperCamelCase : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." ) class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase : List[str] = {0: "batch"} UpperCamelCase : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCamelCase : Dict = {0: "batch", 1: "decoder_sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(A_ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase : Optional[int] = self.num_layers for i in range(A_ ): UpperCamelCase : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} else: UpperCamelCase : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCamelCase( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Tuple = super().outputs else: UpperCamelCase : Dict = super(A_ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase : int = self.num_layers for i in range(A_ ): UpperCamelCase : int = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase : Tuple = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) # Generate decoder inputs UpperCamelCase : List[Any] = seq_length if not self.use_past else 1 UpperCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) UpperCamelCase : Optional[int] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase : List[Any] = dict(**A_ , **A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Optional[Any] = common_inputs["input_ids"].shape UpperCamelCase : List[Any] = common_inputs["decoder_input_ids"].shape[1] UpperCamelCase , UpperCamelCase : List[str] = self.num_attention_heads UpperCamelCase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : List[Any] = decoder_seq_length + 3 UpperCamelCase : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase : int = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(A_ , A_ )] , dim=1 ) UpperCamelCase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase : Union[str, Any] = self.num_layers UpperCamelCase : Any = min(A_ , A_ ) UpperCamelCase : List[str] = max(A_ , A_ ) - min_num_layers UpperCamelCase : Dict = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(A_ ): common_inputs["past_key_values"].append( ( torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), torch.zeros(A_ ), ) ) # TODO: test this. UpperCamelCase : Optional[Any] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(A_ , A_ ): common_inputs["past_key_values"].append((torch.zeros(A_ ), torch.zeros(A_ )) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , A_ , A_ , A_ , A_ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase , UpperCamelCase : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase : Optional[Any] = seqlen + 2 UpperCamelCase , UpperCamelCase : List[Any] = self.num_layers UpperCamelCase , UpperCamelCase : Optional[int] = self.num_attention_heads UpperCamelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : Optional[Any] = common_inputs["attention_mask"].dtype UpperCamelCase : int = torch.cat( [common_inputs["attention_mask"], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) UpperCamelCase : Optional[Any] = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(A_ ) ] return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' UpperCamelCase : Optional[Any] = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase : Union[str, Any] = tokenizer.num_special_tokens_to_add(A_ ) UpperCamelCase : int = compute_effective_axis_dimension( A_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase : int = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase : Dict = dict(tokenizer(A_ , return_tensors=A_ ) ) return common_inputs def __UpperCamelCase( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) elif self.task == "causal-lm": UpperCamelCase : List[str] = self._generate_dummy_inputs_for_causal_lm( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) else: UpperCamelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) return common_inputs def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[Any] = super()._flatten_past_key_values_(A_ , A_ , A_ , A_ ) else: UpperCamelCase : Optional[Any] = super(A_ , self )._flatten_past_key_values_( A_ , A_ , A_ , A_ )
52
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ ): super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__(self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 5_0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , lowerCAmelCase__ ): _UpperCAmelCase : str = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _UpperCAmelCase : int = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _UpperCAmelCase : Optional[Any] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase : str = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase : List[str] = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , eta=lowerCAmelCase__ , use_clipped_model_output=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample _UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
170
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase_ : Dict = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = '''cpu''' lowerCAmelCase_ : List[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase_ : List[Any] = '''path-to-your-trained-model''' lowerCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase_ : str = pipe.to(device) # to channels last lowerCAmelCase_ : Dict = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase_ : Union[str, Any] = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase_ : Optional[int] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase_ : Any = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase_ : str = torch.randn(2, 4, 64, 64) lowerCAmelCase_ : str = torch.rand(1) * 999 lowerCAmelCase_ : Any = torch.randn(2, 77, 768) lowerCAmelCase_ : Optional[Any] = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase_ : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase_ : Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ : Dict = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ : Optional[int] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase_ : Optional[int] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase_ : str = 666 lowerCAmelCase_ : int = torch.Generator(device).manual_seed(seed) lowerCAmelCase_ : Dict = {'''generator''': generator} if args.steps is not None: lowerCAmelCase_ : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase_ : Tuple = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
170
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A ( A_ ): def __init__(self , *lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) __lowercase= eval_examples __lowercase= post_process_function def _A (self , lowerCAmelCase = None , lowerCAmelCase=None , lowerCAmelCase = None , lowerCAmelCase = "eval" , **lowerCAmelCase , ): __lowercase= gen_kwargs.copy() __lowercase= ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) __lowercase= ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) __lowercase= gen_kwargs __lowercase= self.eval_dataset if eval_dataset is None else eval_dataset __lowercase= self.get_eval_dataloader(lowerCAmelCase ) __lowercase= self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase= self.compute_metrics __lowercase= None __lowercase= time.time() __lowercase= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase= eval_loop( lowerCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase , metric_key_prefix=lowerCAmelCase , ) finally: __lowercase= compute_metrics __lowercase= self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowerCAmelCase , lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowercase= self.post_process_function(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= self.compute_metrics(lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): __lowercase= metrics.pop(lowerCAmelCase ) metrics.update(output.metrics ) else: __lowercase= output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowercase= self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase ) return metrics def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase = "test" , **lowerCAmelCase ): __lowercase= gen_kwargs.copy() __lowercase= self.get_test_dataloader(lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. __lowercase= self.compute_metrics __lowercase= None __lowercase= time.time() __lowercase= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase= eval_loop( lowerCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase , metric_key_prefix=lowerCAmelCase , ) finally: __lowercase= compute_metrics __lowercase= self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowerCAmelCase , lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowercase= self.post_process_function(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , 'predict' ) __lowercase= self.compute_metrics(lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): __lowercase= metrics.pop(lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase )
295
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Any =PriorTransformer UpperCamelCase_ : List[str] ='''hidden_states''' @property def _A (self ): __lowercase= 4 __lowercase= 8 __lowercase= 7 __lowercase= floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _A (self , lowerCAmelCase=0 ): torch.manual_seed(lowerCAmelCase ) __lowercase= 4 __lowercase= 8 __lowercase= 7 __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _A (self ): return (4, 8) @property def _A (self ): return (4, 8) def _A (self ): __lowercase= { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } __lowercase= self.dummy_input return init_dict, inputs_dict def _A (self ): __lowercase, __lowercase= PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase ) __lowercase= model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _A (self ): __lowercase, __lowercase= self.prepare_init_args_and_inputs_for_common() __lowercase= self.model_class(**lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowerCAmelCase ) def _A (self ): __lowercase= PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) __lowercase= model.to(lowerCAmelCase ) if hasattr(lowerCAmelCase , 'set_default_attn_processor' ): model.set_default_attn_processor() __lowercase= self.get_dummy_seed_input() with torch.no_grad(): __lowercase= model(**lowerCAmelCase )[0] __lowercase= output[0, :5].flatten().cpu() print(lowerCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowercase= torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-2 ) ) @slow class A ( unittest.TestCase ): def _A (self , lowerCAmelCase=1 , lowerCAmelCase=7_6_8 , lowerCAmelCase=7_7 , lowerCAmelCase=0 ): torch.manual_seed(lowerCAmelCase ) __lowercase= batch_size __lowercase= embedding_dim __lowercase= num_embeddings __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [3_7, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCAmelCase ) __lowercase= self.get_dummy_seed_input(seed=lowerCAmelCase ) with torch.no_grad(): __lowercase= model(**lowerCAmelCase )[0] assert list(sample.shape ) == [1, 7_6_8] __lowercase= sample[0, :8].flatten().cpu() print(lowerCAmelCase ) __lowercase= torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1E-3 )
295
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
365
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Any , snake_case_ : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = 0 if start < end: UpperCAmelCase_ = randint(snake_case_ , snake_case_ ) UpperCAmelCase_ = a[end] UpperCAmelCase_ = a[pivot] UpperCAmelCase_ = temp UpperCAmelCase_ , UpperCAmelCase_ = _in_place_partition(snake_case_ , snake_case_ , snake_case_ ) count += _in_place_quick_sort(snake_case_ , snake_case_ , p - 1 ) count += _in_place_quick_sort(snake_case_ , p + 1 , snake_case_ ) return count def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = randint(snake_case_ , snake_case_ ) UpperCAmelCase_ = a[end] UpperCAmelCase_ = a[pivot] UpperCAmelCase_ = temp UpperCAmelCase_ = start - 1 for index in range(snake_case_ , snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCAmelCase_ = new_pivot_index + 1 UpperCAmelCase_ = a[new_pivot_index] UpperCAmelCase_ = a[index] UpperCAmelCase_ = temp UpperCAmelCase_ = a[new_pivot_index + 1] UpperCAmelCase_ = a[end] UpperCAmelCase_ = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_: List[str] =TemporaryFile() SCREAMING_SNAKE_CASE_: int =1_00 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_: str =0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_: List[str] =np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_: str =np.load(outfile) SCREAMING_SNAKE_CASE_: List[Any] =len(M) - 1 SCREAMING_SNAKE_CASE_: Dict =_in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
106
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = StableDiffusionInpaintPipeline A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A = frozenset([] ) def __snake_case (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase_: Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""), up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D"""), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Optional[int] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) torch.manual_seed(0 ) UpperCAmelCase_: Tuple = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) UpperCAmelCase_: str = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="""gelu""", projection_dim=512, ) UpperCAmelCase_: Optional[int] = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase_: Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> List[Any]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCAmelCase_: Optional[Any] = floats_tensor((1, 3, 32, 32), rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = image.cpu().permute(0, 2, 3, 1 )[0] UpperCAmelCase_: str = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert("""RGB""" ).resize((64, 64) ) UpperCAmelCase_: Dict = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCAmelCase_: Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __snake_case (self ) -> int: UpperCAmelCase_: Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: List[Any] = self.get_dummy_components() UpperCAmelCase_: List[Any] = StableDiffusionInpaintPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCAmelCase_: int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_: Optional[int] = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case (self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): def __snake_case (self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case (self ) -> List[str]: UpperCAmelCase_: Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) UpperCAmelCase_: Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) UpperCAmelCase_: int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) UpperCAmelCase_: str = """stabilityai/stable-diffusion-2-inpainting""" UpperCAmelCase_: List[str] = StableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_, safety_checker=SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() UpperCAmelCase_: Tuple = """Face of a yellow cat, high resolution, sitting on a park bench""" UpperCAmelCase_: Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase_: Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, output_type="""np""", ) UpperCAmelCase_: int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) UpperCAmelCase_: Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) UpperCAmelCase_: Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) UpperCAmelCase_: Union[str, Any] = """stabilityai/stable-diffusion-2-inpainting""" UpperCAmelCase_: str = StableDiffusionInpaintPipeline.from_pretrained( SCREAMING_SNAKE_CASE_, torch_dtype=torch.floataa, safety_checker=SCREAMING_SNAKE_CASE_, ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() UpperCAmelCase_: Dict = """Face of a yellow cat, high resolution, sitting on a park bench""" UpperCAmelCase_: Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_: Any = pipe( prompt=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, output_type="""np""", ) UpperCAmelCase_: List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __snake_case (self ) -> str: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_: Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) UpperCAmelCase_: List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) UpperCAmelCase_: Optional[int] = """stabilityai/stable-diffusion-2-inpainting""" UpperCAmelCase_: str = PNDMScheduler.from_pretrained(SCREAMING_SNAKE_CASE_, subfolder="""scheduler""" ) UpperCAmelCase_: Dict = StableDiffusionInpaintPipeline.from_pretrained( SCREAMING_SNAKE_CASE_, safety_checker=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_, torch_dtype=torch.floataa, ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_: List[str] = """Face of a yellow cat, high resolution, sitting on a park bench""" UpperCAmelCase_: Any = torch.manual_seed(0 ) UpperCAmelCase_: Union[str, Any] = pipe( prompt=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type="""np""", ) UpperCAmelCase_: int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
147
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Optional[Any] = '▁' a : List[Any] = {'vocab_file': 'sentencepiece.bpe.model'} a : Optional[Any] = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } a : Any = { 'facebook/xglm-564M': 2_048, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['''input_ids''', '''attention_mask'''] def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCAmelCase_: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase_: Optional[int] = 7 UpperCAmelCase_: Dict = [f'<madeupword{i}>' for i in range(self.num_madeup_words )] UpperCAmelCase_: List[Any] = kwargs.get("""additional_special_tokens""", [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_: Dict = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_: Any = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCAmelCase_: Union[str, Any] = len(self.sp_model ) UpperCAmelCase_: Optional[int] = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> Any: UpperCAmelCase_: List[Any] = self.__dict__.copy() UpperCAmelCase_: List[Any] = None UpperCAmelCase_: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: List[Any] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): UpperCAmelCase_: int = {} UpperCAmelCase_: List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase_: List[str] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __snake_case (self ) -> Tuple: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Tuple = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_: str = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: int = """""".join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, """ """ ).strip() return out_string def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase_: List[Any] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, """wb""" ) as fi: UpperCAmelCase_: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
147
1
"""simple docstring""" def __lowercase ( _a ): if not isinstance(_a , _a ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) snake_case_ : Tuple = str(_a ) snake_case_ : str = ''''''.join(sorted(_a ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowercase ( _a = 99 ): if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) snake_case_ : int = 0 snake_case_ : List[str] = 1 while True: if check_bouncy(_a ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(99)}')
357
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __lowercase ( _a = 3 ): if isinstance(_a , _a ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_a ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) snake_case_ : Tuple = QuantumRegister(_a , '''qr''' ) snake_case_ : Optional[Any] = ClassicalRegister(_a , '''cr''' ) snake_case_ : Any = QuantumCircuit(_a , _a ) snake_case_ : int = number_of_qubits for i in range(_a ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_a ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _a , _a ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_a , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_a , _a ) # simulate with 10000 shots snake_case_ : Any = Aer.get_backend('''qasm_simulator''' ) snake_case_ : Optional[int] = execute(_a , _a , shots=10_000 ) return job.result().get_counts(_a ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
155
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def a_ ( __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =s.rsplit(_A , _A ) return new.join(_A ) def a_ ( __snake_case : List[Any] ) -> Dict: """simple docstring""" return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def a_ ( __snake_case : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ =['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase_ =key.replace(F'''{group_key}.''' , F'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase_ =key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): lowerCamelCase_ =rreplace(_A , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): lowerCamelCase_ =rreplace(_A , '''.b''' , '''.bias''' , 1 ) lowerCamelCase_ =value.float() return upgrade @torch.no_grad() def a_ ( __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : Dict=True ) -> Optional[int]: """simple docstring""" from dall_e import Encoder lowerCamelCase_ =Encoder() if os.path.exists(_A ): lowerCamelCase_ =torch.load(_A ) else: lowerCamelCase_ =torch.hub.load_state_dict_from_url(_A ) if isinstance(_A , _A ): lowerCamelCase_ =ckpt.state_dict() encoder.load_state_dict(_A ) if config_path is not None: lowerCamelCase_ =FlavaImageCodebookConfig.from_pretrained(_A ) else: lowerCamelCase_ =FlavaImageCodebookConfig() lowerCamelCase_ =FlavaImageCodebook(_A ).eval() lowerCamelCase_ =encoder.state_dict() lowerCamelCase_ =upgrade_state_dict(_A ) hf_model.load_state_dict(_A ) lowerCamelCase_ =hf_model.state_dict() lowerCamelCase_ =count_parameters(_A ) lowerCamelCase_ =count_parameters(_A ) assert torch.allclose(_A , _A , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_A ) else: return hf_state_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") a_ : List[Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
75
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A : Any = logging.get_logger(__name__) __A : Dict = {'vocab_file': 'spiece.model'} __A : List[Any] = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<sep>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<cls>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=["<eop>", "<eod>"] , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> None: lowerCamelCase_ =AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token lowerCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =3 lowerCamelCase_ =do_lower_case lowerCamelCase_ =remove_space lowerCamelCase_ =keep_accents lowerCamelCase_ =vocab_file lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) lowerCamelCase_ =jieba lowerCamelCase_ =str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self )-> Any: return len(self.sp_model ) def _snake_case ( self )-> Dict: lowerCamelCase_ ={self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self )-> List[Any]: lowerCamelCase_ =self.__dict__.copy() lowerCamelCase_ =None return state def __setstate__( self , _SCREAMING_SNAKE_CASE )-> List[Any]: lowerCamelCase_ =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase_ ={} lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> int: if self.remove_space: lowerCamelCase_ =""" """.join(inputs.strip().split() ) else: lowerCamelCase_ =inputs lowerCamelCase_ =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase_ =unicodedata.normalize("""NFKD""" , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ ="""""".join([c for c in outputs if not unicodedata.combining(_SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: lowerCamelCase_ =outputs.lower() return outputs def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =self.preprocess_text(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =[] for piece in pieces: if len(_SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase_ =self.sp_model.EncodeAsPieces(piece[:-1].replace(_SCREAMING_SNAKE_CASE , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase_ =cur_pieces[1:] else: lowerCamelCase_ =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_SCREAMING_SNAKE_CASE ) else: new_pieces.append(_SCREAMING_SNAKE_CASE ) return new_pieces def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: lowerCamelCase_ ="""""".join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> List[int]: lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> List[int]: lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )-> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase_ =os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: lowerCamelCase_ =self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> Any: lowerCamelCase_ =super()._decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
154
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE : Tuple = get_logger(__name__) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=0 ): """simple docstring""" os.makedirs(UpperCamelCase_ ,exist_ok=UpperCamelCase_ ) with FSDP.state_dict_type( UpperCamelCase_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' snake_case = os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(UpperCamelCase_ ,UpperCamelCase_ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case = os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(UpperCamelCase_ ,UpperCamelCase_ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case = os.path.join(UpperCamelCase_ ,F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(UpperCamelCase_ ,exist_ok=UpperCamelCase_ ) logger.info(F'''Saving model to {ckpt_dir}''' ) snake_case = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=UpperCamelCase_ ,storage_writer=dist_cp.FileSystemWriter(UpperCamelCase_ ) ,planner=DefaultSavePlanner() ,) logger.info(F'''Model saved to {ckpt_dir}''' ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( UpperCamelCase_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(UpperCamelCase_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' snake_case = os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) logger.info(F'''Loading model from {input_model_file}''' ) snake_case = torch.load(UpperCamelCase_ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case = os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) logger.info(F'''Loading model from {input_model_file}''' ) snake_case = torch.load(UpperCamelCase_ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case = ( os.path.join(UpperCamelCase_ ,F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) snake_case = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=UpperCamelCase_ ,storage_reader=dist_cp.FileSystemReader(UpperCamelCase_ ) ,planner=DefaultLoadPlanner() ,) snake_case = state_dict['''model'''] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=0 ): """simple docstring""" os.makedirs(UpperCamelCase_ ,exist_ok=UpperCamelCase_ ) with FSDP.state_dict_type( UpperCamelCase_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): snake_case = FSDP.optim_state_dict(UpperCamelCase_ ,UpperCamelCase_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case = os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(UpperCamelCase_ ,UpperCamelCase_ ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: snake_case = os.path.join(UpperCamelCase_ ,F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(UpperCamelCase_ ,exist_ok=UpperCamelCase_ ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} ,storage_writer=dist_cp.FileSystemWriter(UpperCamelCase_ ) ,planner=DefaultSavePlanner() ,) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( UpperCamelCase_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case = os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) snake_case = torch.load(UpperCamelCase_ ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: snake_case = ( os.path.join(UpperCamelCase_ ,F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() ,optimizer_key='''optimizer''' ,storage_reader=dist_cp.FileSystemReader(UpperCamelCase_ ) ,) snake_case = optim_state['''optimizer'''] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) snake_case = FSDP.optim_state_dict_to_load(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) optimizer.load_state_dict(UpperCamelCase_ )
213
import argparse import copy def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = {} with open(UpperCamelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[1], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[0], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" with open(UpperCamelCase_ ) as f: snake_case = f.read(1 ) snake_case = start_node snake_case = [] snake_case = start_node snake_case = 0 while visiting not in first_solution: snake_case = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCamelCase_ ) and k[0] not in first_solution: snake_case = k[1] snake_case = k[0] first_solution.append(UpperCamelCase_ ) snake_case = distance_of_first_solution + int(UpperCamelCase_ ) snake_case = best_node first_solution.append(UpperCamelCase_ ) snake_case = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = [] for n in solution[1:-1]: snake_case = solution.index(UpperCamelCase_ ) for kn in solution[1:-1]: snake_case = solution.index(UpperCamelCase_ ) if n == kn: continue snake_case = copy.deepcopy(UpperCamelCase_ ) snake_case = kn snake_case = n snake_case = 0 for k in _tmp[:-1]: snake_case = _tmp[_tmp.index(UpperCamelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case = distance + int(i[1] ) _tmp.append(UpperCamelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCamelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = 1 snake_case = first_solution snake_case = [] snake_case = distance_of_first_solution snake_case = solution while count <= iters: snake_case = find_neighborhood(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = 0 snake_case = neighborhood[index_of_best_solution] snake_case = len(UpperCamelCase_ ) - 1 snake_case = False while not found: snake_case = 0 while i < len(UpperCamelCase_ ): if best_solution[i] != solution[i]: snake_case = best_solution[i] snake_case = solution[i] break snake_case = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case = True snake_case = best_solution[:-1] snake_case = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case = cost snake_case = solution else: snake_case = index_of_best_solution + 1 snake_case = neighborhood[index_of_best_solution] if len(UpperCamelCase_ ) >= size: tabu_list.pop(0 ) snake_case = count + 1 return best_solution_ever, best_cost def UpperCAmelCase__ (UpperCamelCase_=None ): """simple docstring""" snake_case = generate_neighbours(args.File ) snake_case , snake_case = generate_first_solution( args.File ,UpperCamelCase_ ) snake_case , snake_case = tabu_search( UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,args.Iterations ,args.Size ,) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
213
1
def lowerCAmelCase_ ( _lowercase : Dict , _lowercase : List[str]) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""") for i in range(_lowercase): for j in range(_lowercase): if dist[i][j] != float("""inf"""): print(int(dist[i][j]) , end="""\t""") else: print("""INF""" , end="""\t""") print() def lowerCAmelCase_ ( _lowercase : Tuple , _lowercase : Any) -> List[str]: """simple docstring""" a__ : List[Any] = [[float("""inf""") for _ in range(_lowercase)] for _ in range(_lowercase)] for i in range(_lowercase): for j in range(_lowercase): a__ : Dict = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_lowercase): # looping through rows of graph array for i in range(_lowercase): # looping through columns of graph array for j in range(_lowercase): if ( dist[i][k] != float("""inf""") and dist[k][j] != float("""inf""") and dist[i][k] + dist[k][j] < dist[i][j] ): a__ : Dict = dist[i][k] + dist[k][j] _print_dist(_lowercase , _lowercase) return dist, v if __name__ == "__main__": _lowercase : Any =int(input("Enter number of vertices: ")) _lowercase : str =int(input("Enter number of edges: ")) _lowercase : str =[[float("inf") for i in range(v)] for j in range(v)] for i in range(v): _lowercase : Optional[Any] =0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) _lowercase : int =int(input("Enter source:")) _lowercase : str =int(input("Enter destination:")) _lowercase : List[Any] =float(input("Enter weight:")) _lowercase : int =weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
170
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _lowercase : Any =logging.get_logger(__name__) @add_end_docstrings(A__ ) class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , **__lowercase ) -> int: """simple docstring""" super().__init__(*__lowercase , **__lowercase ) requires_backends(self , """vision""" ) self.check_model_type(__lowercase ) def __call__( self , __lowercase , **__lowercase ) -> Union[str, Any]: """simple docstring""" return super().__call__(__lowercase , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> Optional[Any]: """simple docstring""" return {}, {}, {} def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = load_image(__lowercase ) a__ : Optional[int] = image.size a__ : int = self.image_processor(images=__lowercase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : str = self.model(**__lowercase ) return model_outputs def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" a__ : Optional[int] = model_outputs.predicted_depth a__ : Any = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=__lowercase ) a__ : Union[str, Any] = prediction.squeeze().cpu().numpy() a__ : List[str] = (output * 2_5_5 / np.max(__lowercase )).astype("""uint8""" ) a__ : Any = Image.fromarray(__lowercase ) a__ : List[str] = {} a__ : Tuple = predicted_depth a__ : Any = depth return output_dict
170
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowercase_ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowercase_ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowercase_ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : str )-> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ),id='references' ), } ),) def snake_case__ ( self : Union[str, Any],lowercase_ : List[List[List[str]]],lowercase_ : List[List[str]],lowercase_ : int = 1,lowercase_ : int = 4,)-> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowercase_,hypotheses=lowercase_,min_len=lowercase_,max_len=lowercase_ ) }
282
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class A ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str],lowercase_ : List[str],lowercase_ : bool = True,lowercase_ : Dict[str, int] = None,lowercase_ : int = 3_2,lowercase_ : bool = True,lowercase_ : Union[int, float] = 1 / 2_5_5,lowercase_ : bool = True,lowercase_ : bool = True,lowercase_ : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073],lowercase_ : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711],lowercase_ : bool = True,lowercase_ : Tuple=7,lowercase_ : str=3_0,lowercase_ : Union[str, Any]=4_0_0,lowercase_ : Dict=3,)-> List[Any]: '''simple docstring''' A__ = parent A__ = do_resize A__ = size if size is not None else {'shortest_edge': 2_8_8} A__ = size_divisor A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = do_center_crop A__ = image_mean A__ = image_std A__ = do_pad A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution def snake_case__ ( self : Optional[Any] )-> Optional[int]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def snake_case__ ( self : int,lowercase_ : Optional[int],lowercase_ : List[str]=False )-> Any: '''simple docstring''' if not batched: A__ = self.size['shortest_edge'] A__ = image_inputs[0] if isinstance(lowercase_,Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] A__ = size / min(lowercase_,lowercase_ ) if h < w: A__ , A__ = size, scale * w else: A__ , A__ = scale * h, size A__ = int((1_3_3_3 / 8_0_0) * size ) if max(lowercase_,lowercase_ ) > max_size: A__ = max_size / max(lowercase_,lowercase_ ) A__ = newh * scale A__ = neww * scale A__ , A__ = int(newh + 0.5 ), int(neww + 0.5 ) A__ , A__ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(lowercase_,key=lambda lowercase_ : item[0] )[0] A__ = max(lowercase_,key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' A__ = BridgeTowerImageProcessingTester(self ) @property def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_,'image_mean' ) ) self.assertTrue(hasattr(lowercase_,'image_std' ) ) self.assertTrue(hasattr(lowercase_,'do_normalize' ) ) self.assertTrue(hasattr(lowercase_,'do_resize' ) ) self.assertTrue(hasattr(lowercase_,'size' ) ) self.assertTrue(hasattr(lowercase_,'size_divisor' ) ) def snake_case__ ( self : Any )-> List[str]: '''simple docstring''' pass def snake_case__ ( self : int )-> Any: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_,Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched A__ = image_processing(lowercase_,return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_,batched=lowercase_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def snake_case__ ( self : List[str] )-> Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=lowercase_,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_,np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched A__ = image_processing(lowercase_,return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_,batched=lowercase_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=lowercase_,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_,torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched A__ = image_processing(lowercase_,return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_,batched=lowercase_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),)
282
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = '''swinv2''' __lowercase : str = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=4 , lowerCAmelCase__=3 , lowerCAmelCase__=9_6 , lowerCAmelCase__=[2, 2, 6, 2] , lowerCAmelCase__=[3, 6, 1_2, 2_4] , lowerCAmelCase__=7 , lowerCAmelCase__=4.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=3_2 , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = len(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = use_absolute_embeddings __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(lowerCAmelCase__) - 1)) __SCREAMING_SNAKE_CASE = (0, 0, 0, 0)
100
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase_ : List[str] ,lowercase_ : Any=1_0_0 ,lowercase_ : str=1_3 ,lowercase_ : Any=3_0 ,lowercase_ : Optional[int]=2 ,lowercase_ : Dict=3 ,lowercase_ : Optional[int]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Optional[Any]=3_2 ,lowercase_ : List[Any]=5 ,lowercase_ : Any=4 ,lowercase_ : Optional[int]=3_7 ,lowercase_ : List[Any]="gelu" ,lowercase_ : Dict=0.1 ,lowercase_ : List[Any]=0.1 ,lowercase_ : int=1_0 ,lowercase_ : int=0.02 ,lowercase_ : List[str]=3 ,): lowerCAmelCase__ : int = parent lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : List[Any] = batch_size lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : Optional[int] = patch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : str = is_training lowerCAmelCase__ : Optional[Any] = use_labels lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : Union[str, Any] = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Any = (image_size // patch_size) ** 2 lowerCAmelCase__ : str = num_patches + 1 def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : List[str] = BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,) return config, pixel_values, labels def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ,lowercase_ : Dict ,lowercase_ : Any ): lowerCAmelCase__ : Any = FlaxBeitModel(config=lowercase_ ) lowerCAmelCase__ : str = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Dict ,lowercase_ : Any ,lowercase_ : Union[str, Any] ,lowercase_ : Any ): lowerCAmelCase__ : Optional[int] = FlaxBeitForMaskedImageModeling(config=lowercase_ ) lowerCAmelCase__ : str = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowerCAmelCase ( self : List[str] ,lowercase_ : str ,lowercase_ : List[str] ,lowercase_ : str ): lowerCAmelCase__ : Dict = self.type_sequence_label_size lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification(config=lowercase_ ) lowerCAmelCase__ : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ : int = 1 lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification(lowercase_ ) lowerCAmelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : List[str] = model(lowercase_ ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Optional[int] = config_and_inputs lowerCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Tuple = FlaxBeitModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ,hidden_size=3_7 ) def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(lowercase_ ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Union[str, Any] = self._prepare_for_class(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Dict = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : Dict ,**lowercase_ : List[Any] ): return model(pixel_values=lowercase_ ,**lowercase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : Any = model_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : int = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ ,lowercase_ ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def __lowerCAmelCase ( self : List[str] ): for model_class_name in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCAmelCase__ : List[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowercase_ ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self : Dict ): return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Tuple = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) lowerCAmelCase__ : List[str] = self.default_image_processor lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=lowercase_ ,return_tensors='''np''' ).pixel_values # prepare bool_masked_pos lowerCAmelCase__ : str = np.ones((1, 1_9_6) ,dtype=lowercase_ ) # forward pass lowerCAmelCase__ : Dict = model(pixel_values=lowercase_ ,bool_masked_pos=lowercase_ ) lowerCAmelCase__ : str = outputs.logits # verify the logits lowerCAmelCase__ : Any = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : str = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] ,lowercase_ ,atol=1E-2 ) ) @slow def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[str] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCAmelCase__ : Dict = self.default_image_processor lowerCAmelCase__ : Optional[Any] = prepare_img() lowerCAmelCase__ : Any = image_processor(images=lowercase_ ,return_tensors='''np''' ) # forward pass lowerCAmelCase__ : List[Any] = model(**lowercase_ ) lowerCAmelCase__ : int = outputs.logits # verify the logits lowerCAmelCase__ : Dict = (1, 1_0_0_0) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : Dict = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] ,lowercase_ ,atol=1E-4 ) ) lowerCAmelCase__ : Union[str, Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() ,lowercase_ ) @slow def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) lowerCAmelCase__ : Union[str, Any] = self.default_image_processor lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=lowercase_ ,return_tensors='''np''' ) # forward pass lowerCAmelCase__ : Tuple = model(**lowercase_ ) lowerCAmelCase__ : int = outputs.logits # verify the logits lowerCAmelCase__ : Optional[int] = (1, 2_1_8_4_1) self.assertEqual(logits.shape ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] ,lowercase_ ,atol=1E-4 ) ) lowerCAmelCase__ : Optional[int] = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() ,lowercase_ )
106
0
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase__ : Any = 5 # Realm tok lowerCAmelCase__ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase__ : List[Any] = os.path.join(self.tmpdirname ,'''realm_tokenizer''' ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = os.path.join(lowercase_ ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCAmelCase__ : Dict = os.path.join(self.tmpdirname ,'''realm_block_records''' ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname ,'''realm_tokenizer''' ) ) def __lowerCAmelCase ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Tuple = RealmConfig(num_block_records=self.num_block_records ) return config def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : List[str] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Dict = np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] ,dtype=lowercase_ ,) return block_records def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : int = RealmRetriever( block_records=self.get_dummy_block_records() ,tokenizer=self.get_tokenizer() ,) return retriever def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : int = self.get_config() lowerCAmelCase__ : List[str] = self.get_dummy_retriever() lowerCAmelCase__ : Any = retriever.tokenizer lowerCAmelCase__ : Optional[int] = np.array([0, 3] ,dtype='''long''' ) lowerCAmelCase__ : Optional[Any] = tokenizer(['''Test question'''] ).input_ids lowerCAmelCase__ : List[Any] = tokenizer( ['''the fourth'''] ,add_special_tokens=lowercase_ ,return_token_type_ids=lowercase_ ,return_attention_mask=lowercase_ ,).input_ids lowerCAmelCase__ : List[str] = config.reader_seq_len lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : str = retriever( lowercase_ ,lowercase_ ,answer_ids=lowercase_ ,max_length=lowercase_ ,return_tensors='''np''' ) self.assertEqual(len(lowercase_ ) ,2 ) self.assertEqual(len(lowercase_ ) ,2 ) self.assertEqual(len(lowercase_ ) ,2 ) self.assertEqual(concat_inputs.input_ids.shape ,(2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape ,(2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape ,(2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape ,(2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) ,['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] ,) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) ,['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] ,) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : List[str] = self.get_config() lowerCAmelCase__ : str = self.get_dummy_retriever() lowerCAmelCase__ : int = retriever.tokenizer lowerCAmelCase__ : Optional[int] = np.array([0, 3, 5] ,dtype='''long''' ) lowerCAmelCase__ : Union[str, Any] = tokenizer(['''Test question'''] ).input_ids lowerCAmelCase__ : Tuple = tokenizer( ['''the fourth''', '''longer longer'''] ,add_special_tokens=lowercase_ ,return_token_type_ids=lowercase_ ,return_attention_mask=lowercase_ ,).input_ids lowerCAmelCase__ : Union[str, Any] = config.reader_seq_len lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : str = retriever( lowercase_ ,lowercase_ ,answer_ids=lowercase_ ,max_length=lowercase_ ,return_tensors='''np''' ) self.assertEqual([False, True, True] ,lowercase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] ,lowercase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] ,lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[str] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname ,'''realm_block_records''' ) ) # Test local path lowerCAmelCase__ : Dict = retriever.from_pretrained(os.path.join(self.tmpdirname ,'''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] ,B'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: lowerCAmelCase__ : Union[str, Any] = os.path.join( os.path.join(self.tmpdirname ,'''realm_block_records''' ) ,_REALM_BLOCK_RECORDS_FILENAME ) lowerCAmelCase__ : Optional[Any] = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] ,B'''This is the first record''' )
74
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "" lowercase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowercase__ = None # compression type in fsspec. ex: "gzip" lowercase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Dict ,lowercase_ : str = "" ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[dict] = None ,**lowercase_ : Any ): super().__init__(self ,**lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase__ : Dict = fsspec.open( lowercase_ ,mode='''rb''' ,protocol=lowercase_ ,compression=self.compression ,client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) lowerCAmelCase__ : Any = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCAmelCase__ : Tuple = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCAmelCase__ : Any = None @classmethod def __lowerCAmelCase ( cls : Optional[int] ,lowercase_ : int ): # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('''/''' ) def __lowerCAmelCase ( self : Optional[Any] ): if self.dir_cache is None: lowerCAmelCase__ : List[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCAmelCase__ : str = {f['''name''']: f} def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ): return self.file.open().read() def __lowerCAmelCase ( self : Tuple ,lowercase_ : str ,lowercase_ : str = "rb" ,lowercase_ : List[Any]=None ,lowercase_ : Dict=True ,lowercase_ : Any=None ,**lowercase_ : Tuple ,): lowerCAmelCase__ : Union[str, Any] = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "bz2" lowercase__ = "bz2" lowercase__ = ".bz2" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "gzip" lowercase__ = "gzip" lowercase__ = ".gz" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "lz4" lowercase__ = "lz4" lowercase__ = ".lz4" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "xz" lowercase__ = "xz" lowercase__ = ".xz" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "zstd" lowercase__ = "zstd" lowercase__ = ".zst" def __init__( self : str ,lowercase_ : str ,lowercase_ : str = "rb" ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[dict] = None ,lowercase_ : int = DEFAULT_BLOCK_SIZE ,**lowercase_ : Union[str, Any] ,): super().__init__( fo=lowercase_ ,mode=lowercase_ ,target_protocol=lowercase_ ,target_options=lowercase_ ,block_size=lowercase_ ,**lowercase_ ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase__ : List[str] = self.file.__enter__ class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : Tuple = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : int ,*lowercase_ : str ,**lowercase_ : Optional[Any] ): self._file.__exit__(*lowercase_ ,**lowercase_ ) def __iter__( self : Union[str, Any] ): return iter(self._file ) def __lowerCAmelCase ( self : Tuple ): return next(self._file ) def __getattr__( self : str ,lowercase_ : Any ): return getattr(self._file ,lowercase_ ) def fixed_enter(*lowercase_ : List[Any] ,**lowercase_ : Dict ): return WrappedFile(_enter(*lowercase_ ,**lowercase_ ) ) lowerCAmelCase__ : Any = fixed_enter
74
1
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" if not isinstance(snake_case__ , snake_case__ ): A = f"""Input value of [number={number}] must be an integer""" raise TypeError(snake_case__ ) if number < 0: return False A = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
258
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] a = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def lowercase (snake_case__ : Dict ) -> str: '''simple docstring''' lowerCAmelCase = torch.load(snake_case__ , map_location="""cpu""" ) return sd def lowercase (snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=rename_keys_prefix ) -> Dict: '''simple docstring''' lowerCAmelCase = OrderedDict() lowerCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowerCAmelCase = key for name_pair in rename_keys_prefix: lowerCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) lowerCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowerCAmelCase = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def lowercase (snake_case__ : List[Any] , snake_case__ : Optional[int] ) -> List[str]: '''simple docstring''' assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: lowerCAmelCase = """pretraining""" if "vcr" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048} elif "vqa" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048} elif "nlvr" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 1_024} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 512} lowerCAmelCase = """multichoice""" elif "vqa_advanced" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048} lowerCAmelCase = """vqa_advanced""" elif "vqa" in checkpoint_path: lowerCAmelCase = {"""visual_embedding_dim""": 2_048, """num_labels""": 3_129} lowerCAmelCase = """vqa""" elif "nlvr" in checkpoint_path: lowerCAmelCase = { """visual_embedding_dim""": 1_024, """num_labels""": 2, } lowerCAmelCase = """nlvr""" lowerCAmelCase = VisualBertConfig(**snake_case__ ) # Load State Dict lowerCAmelCase = load_state_dict(snake_case__ ) lowerCAmelCase = get_new_dict(snake_case__ , snake_case__ ) if model_type == "pretraining": lowerCAmelCase = VisualBertForPreTraining(snake_case__ ) elif model_type == "vqa": lowerCAmelCase = VisualBertForQuestionAnswering(snake_case__ ) elif model_type == "nlvr": lowerCAmelCase = VisualBertForVisualReasoning(snake_case__ ) elif model_type == "multichoice": lowerCAmelCase = VisualBertForMultipleChoice(snake_case__ ) model.load_state_dict(snake_case__ ) # Save Checkpoints Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') a = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
155
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , **__a ) -> Optional[Any]: """simple docstring""" super().__init__(**__a ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) self.check_model_type(__a ) def UpperCamelCase__ (self , **__a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , __a , *__a , __a=None , __a=None , **__a ) -> List[str]: """simple docstring""" return super().__call__(__a , *__a , num_workers=__a , batch_size=__a , **__a ) def UpperCamelCase__ (self , __a , __a=64 , __a = 0 , __a = 512 / 1500 , __a = 32 , __a = 1 , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = load_image(__a ) UpperCAmelCase__ = self.image_processor.size['longest_edge'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( __a , __a , __a , __a , __a , __a ) UpperCAmelCase__ = self.image_processor(images=__a , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(__a , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , __a , __a ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase__ (self , __a , __a=0.88 , __a=0.95 , __a=0 , __a=1 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = model_inputs.pop('input_boxes' ) UpperCAmelCase__ = model_inputs.pop('is_last' ) UpperCAmelCase__ = model_inputs.pop('original_sizes' ).tolist() UpperCAmelCase__ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCAmelCase__ = self.model(**__a ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs['pred_masks'] UpperCAmelCase__ = self.image_processor.post_process_masks( __a , __a , __a , __a , binarize=__a ) UpperCAmelCase__ = model_outputs['iou_scores'] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __a , __a , __a , __a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase__ (self , __a , __a=False , __a=False , __a=0.7 , ) -> Dict: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ = torch.cat(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( __a , __a , __a , __a ) UpperCAmelCase__ = defaultdict(__a ) for output in model_outputs: for k, v in output.items(): extra[k].append(__a ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
364
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __SCREAMING_SNAKE_CASE =True except (ImportError, AttributeError): __SCREAMING_SNAKE_CASE =object def lowercase__( *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : int ): pass __SCREAMING_SNAKE_CASE =False __SCREAMING_SNAKE_CASE =logging.get_logger("transformers-cli/serving") def lowercase__( __SCREAMING_SNAKE_CASE : Namespace ): lowercase_ : int = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__SCREAMING_SNAKE_CASE , args.host , args.port , args.workers ) class UpperCamelCase ( lowercase_ ): lowercase = 42 class UpperCamelCase ( lowercase_ ): lowercase = 42 lowercase = 42 class UpperCamelCase ( lowercase_ ): lowercase = 42 class UpperCamelCase ( lowercase_ ): lowercase = 42 class UpperCamelCase ( lowercase_ ): @staticmethod def _UpperCAmelCase ( __UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : List[Any] = parser.add_parser( 'serve' ,help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' ,type=__UpperCamelCase ,choices=get_supported_tasks() ,help='The task to run the pipeline on' ,) serve_parser.add_argument('--host' ,type=__UpperCamelCase ,default='localhost' ,help='Interface the server will listen on.' ) serve_parser.add_argument('--port' ,type=__UpperCamelCase ,default=8888 ,help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' ,type=__UpperCamelCase ,default=1 ,help='Number of http workers' ) serve_parser.add_argument('--model' ,type=__UpperCamelCase ,help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' ,type=__UpperCamelCase ,help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' ,type=__UpperCamelCase ,help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' ,type=__UpperCamelCase ,default=-1 ,help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' ,) serve_parser.set_defaults(func=__UpperCamelCase ) def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Optional[int] = pipeline lowercase_ : List[Any] = host lowercase_ : List[Any] = port lowercase_ : Optional[int] = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(f'''Serving model over {host}:{port}''' ) lowercase_ : List[Any] = FastAPI( routes=[ APIRoute( '/' ,self.model_info ,response_model=__UpperCamelCase ,response_class=__UpperCamelCase ,methods=['GET'] ,), APIRoute( '/tokenize' ,self.tokenize ,response_model=__UpperCamelCase ,response_class=__UpperCamelCase ,methods=['POST'] ,), APIRoute( '/detokenize' ,self.detokenize ,response_model=__UpperCamelCase ,response_class=__UpperCamelCase ,methods=['POST'] ,), APIRoute( '/forward' ,self.forward ,response_model=__UpperCamelCase ,response_class=__UpperCamelCase ,methods=['POST'] ,), ] ,timeout=600 ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' run(self._app ,host=self.host ,port=self.port ,workers=self.workers ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _UpperCAmelCase ( self ,__UpperCamelCase = Body(__UpperCamelCase ,embed=__UpperCamelCase ) ,__UpperCamelCase = Body(__UpperCamelCase ,embed=__UpperCamelCase ) ) -> int: '''simple docstring''' try: lowercase_ : Tuple = self._pipeline.tokenizer.tokenize(__UpperCamelCase ) if return_ids: lowercase_ : int = self._pipeline.tokenizer.convert_tokens_to_ids(__UpperCamelCase ) return ServeTokenizeResult(tokens=__UpperCamelCase ,tokens_ids=__UpperCamelCase ) else: return ServeTokenizeResult(tokens=__UpperCamelCase ) except Exception as e: raise HTTPException(status_code=500 ,detail={'model': '', 'error': str(__UpperCamelCase )} ) def _UpperCAmelCase ( self ,__UpperCamelCase = Body(__UpperCamelCase ,embed=__UpperCamelCase ) ,__UpperCamelCase = Body(__UpperCamelCase ,embed=__UpperCamelCase ) ,__UpperCamelCase = Body(__UpperCamelCase ,embed=__UpperCamelCase ) ,) -> Optional[Any]: '''simple docstring''' try: lowercase_ : Tuple = self._pipeline.tokenizer.decode(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return ServeDeTokenizeResult(model='' ,text=__UpperCamelCase ) except Exception as e: raise HTTPException(status_code=500 ,detail={'model': '', 'error': str(__UpperCamelCase )} ) async def _UpperCAmelCase ( self ,__UpperCamelCase=Body(__UpperCamelCase ,embed=__UpperCamelCase ) ) -> Any: '''simple docstring''' if len(__UpperCamelCase ) == 0: return ServeForwardResult(output=[] ,attention=[] ) try: # Forward through the model lowercase_ : Any = self._pipeline(__UpperCamelCase ) return ServeForwardResult(output=__UpperCamelCase ) except Exception as e: raise HTTPException(500 ,{'error': str(__UpperCamelCase )} )
213
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=30 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=10 ,__UpperCamelCase=0.02 ,__UpperCamelCase=None ,__UpperCamelCase=2 ,) -> List[Any]: '''simple docstring''' lowercase_ : Tuple = parent lowercase_ : List[Any] = batch_size lowercase_ : Optional[int] = image_size lowercase_ : List[str] = patch_size lowercase_ : int = num_channels lowercase_ : List[str] = is_training lowercase_ : Union[str, Any] = use_labels lowercase_ : str = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : List[str] = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : List[str] = type_sequence_label_size lowercase_ : Union[str, Any] = initializer_range lowercase_ : int = scope lowercase_ : Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : Any = (image_size // patch_size) ** 2 lowercase_ : Optional[int] = num_patches + 1 def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Tuple = None if self.use_labels: lowercase_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : Any = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : List[Any] = ViTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Optional[int] = ViTForMaskedImageModeling(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ : Any = 1 lowercase_ : List[Any] = ViTForMaskedImageModeling(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Dict = self.type_sequence_label_size lowercase_ : Dict = ViTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : int = model(__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : Dict = 1 lowercase_ : Any = ViTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[Any] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[Any] = config_and_inputs lowercase_ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = ViTModelTester(self ) lowercase_ : Dict = ConfigTester(self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase ,nn.Linear ) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(__UpperCamelCase ) lowercase_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Tuple = [*signature.parameters.keys()] lowercase_ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[Any] = ViTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__( ): lowercase_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : str = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(__UpperCamelCase ) lowercase_ : Any = self.default_image_processor lowercase_ : Dict = prepare_img() lowercase_ : Tuple = image_processor(images=__UpperCamelCase ,return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): lowercase_ : Any = model(**__UpperCamelCase ) # verify the logits lowercase_ : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,__UpperCamelCase ) lowercase_ : Optional[int] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : str = ViTModel.from_pretrained('facebook/dino-vits8' ).to(__UpperCamelCase ) lowercase_ : int = ViTImageProcessor.from_pretrained('facebook/dino-vits8' ,size=480 ) lowercase_ : int = prepare_img() lowercase_ : Dict = image_processor(images=__UpperCamelCase ,return_tensors='pt' ) lowercase_ : int = inputs.pixel_values.to(__UpperCamelCase ) # forward pass with torch.no_grad(): lowercase_ : int = model(__UpperCamelCase ,interpolate_pos_encoding=__UpperCamelCase ) # verify the logits lowercase_ : Any = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape ,__UpperCamelCase ) lowercase_ : Any = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Optional[int] = ViTModel.from_pretrained('facebook/dino-vits8' ,torch_dtype=torch.floataa ,device_map='auto' ) lowercase_ : int = self.default_image_processor lowercase_ : Optional[int] = prepare_img() lowercase_ : Tuple = image_processor(images=__UpperCamelCase ,return_tensors='pt' ) lowercase_ : Union[str, Any] = inputs.pixel_values.to(__UpperCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )
213
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : Optional[int] = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
import math import sys def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 lowercase__ : Tuple = [-1] * (number + 1) lowercase__ : Tuple = 0 for i in range(1 , number + 1 ): lowercase__ : Tuple = sys.maxsize lowercase__ : str = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): lowercase__ : List[Any] = 1 + answers[i - (j**2)] lowercase__ : str = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
216
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : int ): '''simple docstring''' _snake_case = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _snake_case = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _snake_case = 'The dog is cute and lives in the garden house' _snake_case = jnp.array([tokenizer.encode(lowercase )] ) _snake_case = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _snake_case = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) _snake_case = model(lowercase )['last_hidden_state'] self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , lowercase , atol=1E-3 ) )
282
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict , lowercase : str , lowercase : List[str]=13 , lowercase : Any=7 , lowercase : Dict=True , lowercase : str=True , lowercase : List[Any]=True , lowercase : Any=True , lowercase : Tuple=99 , lowercase : str=24 , lowercase : str=2 , lowercase : Any=6 , lowercase : Dict=37 , lowercase : List[str]="gelu" , lowercase : Dict=0.1 , lowercase : Tuple=0.1 , lowercase : Optional[Any]=512 , lowercase : List[Any]=16 , lowercase : str=2 , lowercase : int=0.02 , lowercase : List[Any]=3 , lowercase : List[Any]=None , lowercase : int=1_000 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = scope _snake_case = range_bbox def A ( self : List[Any] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _snake_case = bbox[i, j, 3] _snake_case = bbox[i, j, 1] _snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: _snake_case = bbox[i, j, 2] _snake_case = bbox[i, j, 0] _snake_case = t _snake_case = None if self.use_input_mask: _snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A ( self : List[str] ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A ( self : str , lowercase : Tuple , lowercase : Tuple , lowercase : str , lowercase : Any , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : str , ): '''simple docstring''' _snake_case = LiltModel(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model(lowercase , bbox=lowercase , attention_mask=lowercase , token_type_ids=lowercase ) _snake_case = model(lowercase , bbox=lowercase , token_type_ids=lowercase ) _snake_case = model(lowercase , bbox=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : List[Any] , lowercase : int , lowercase : int , lowercase : Any , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Optional[int] , ): '''simple docstring''' _snake_case = self.num_labels _snake_case = LiltForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model( lowercase , bbox=lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[str] , lowercase : Union[str, Any] , lowercase : str , lowercase : Dict , lowercase : Optional[int] , lowercase : List[str] , lowercase : int , lowercase : int , ): '''simple docstring''' _snake_case = LiltForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() _snake_case = model( lowercase , bbox=lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase : List[str] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Union[str, Any] = False def A ( self : Dict , lowercase : Dict , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : List[str] , lowercase : Tuple ): '''simple docstring''' return True def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = LiltModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Dict ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*lowercase ) def A ( self : Any ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) def A ( self : Any ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = LiltModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Tuple ): '''simple docstring''' _snake_case = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(lowercase ) _snake_case = torch.tensor([[1, 2]] , device=lowercase ) _snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowercase ) # forward pass with torch.no_grad(): _snake_case = model(input_ids=lowercase , bbox=lowercase ) _snake_case = torch.Size([1, 2, 768] ) _snake_case = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=lowercase , ) self.assertTrue(outputs.last_hidden_state.shape , lowercase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowercase , atol=1E-3 ) )
282
1
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> List[Any]: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowercase__ ( lowercase_ ,lowercase_=0 ) -> List[Any]: """simple docstring""" return sorted(SCREAMING_SNAKE_CASE_ ,key=lambda lowercase_ : x[column] ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=float("inf" ) ) -> Union[str, Any]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 ,SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: _UpperCamelCase : Any = current_dis return min_dis def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=float("inf" ) ) -> Union[str, Any]: """simple docstring""" for i in range(min(6 ,points_counts - 1 ) ,SCREAMING_SNAKE_CASE_ ): for j in range(max(0 ,i - 6 ) ,SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: _UpperCamelCase : List[Any] = current_dis return min_dis def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[Any]: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # recursion _UpperCamelCase : Optional[int] = points_counts // 2 _UpperCamelCase : Optional[int] = closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE_ ,points_sorted_on_y[:mid] ,SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : List[str] = closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE_ ,points_sorted_on_y[mid:] ,points_counts - mid ) _UpperCamelCase : Tuple = min(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : Optional[int] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : Tuple = dis_between_closest_in_strip( SCREAMING_SNAKE_CASE_ ,len(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) return min(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[int] = column_based_sort(SCREAMING_SNAKE_CASE_ ,column=0 ) _UpperCamelCase : Dict = column_based_sort(SCREAMING_SNAKE_CASE_ ,column=1 ) return ( closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
366
"""simple docstring""" lowerCamelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = [False] * len(lowercase_ ) _UpperCamelCase : Dict = [s] _UpperCamelCase : List[str] = True while queue: _UpperCamelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase_ ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[str] = u return visited[t] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = [-1] * (len(lowercase_ )) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ): _UpperCamelCase : int = float("Inf" ) _UpperCamelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _UpperCamelCase : List[Any] = min(lowercase_ ,graph[parent[s]][s] ) _UpperCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _UpperCamelCase : Union[str, Any] = sink while v != source: _UpperCamelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : Dict = parent[v] for i in range(len(lowercase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
310
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: int = StableDiffusionInstructPixaPixPipeline _lowerCamelCase: Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} _lowerCamelCase: str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCamelCase: Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase: str = IMAGE_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=8 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) A = PNDMScheduler(skip_prk_steps=A_ ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) A = CLIPTextModel(A_ ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Tuple=0 ) -> Union[str, Any]: A = floats_tensor((1, 3, 32, 32) ,rng=random.Random(A_ ) ).to(A_ ) A = image.cpu().permute(0 ,2 ,3 ,1 )[0] A = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ) if str(A_ ).startswith('mps' ): A = torch.manual_seed(A_ ) else: A = torch.Generator(device=A_ ).manual_seed(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = sd_pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 'french fries' A = sd_pipe(**A_ ,negative_prompt=A_ ) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = [inputs['prompt']] * 2 A = np.array(inputs['image'] ).astype(np.floataa ) / 2_55.0 A = torch.from_numpy(A_ ).unsqueeze(0 ).to(A_ ) A = image / 2 + 0.5 A = image.permute(0 ,3 ,1 ,2 ) A = image.repeat(2 ,1 ,1 ,1 ) A = sd_pipe(**A_ ).images A = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ) A = StableDiffusionInstructPixaPixPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = sd_pipe(**A_ ).images A = image[0, -3:, -3:, -1] A = [round(A_ ,4 ) for x in image_slice.flatten().tolist()] print(','.join([str(A_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**A_ ) A = VaeImageProcessor(do_resize=A_ ,do_normalize=A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) A = pipe(**self.get_dummy_inputs_by_type(A_ ,input_image_type='pt' ) )[0] A = components['vae'] A = self.get_dummy_inputs_by_type(A_ ,input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A = vae.encode(inputs[image_param] ).latent_dist.mode() A = pipe(**A_ )[0] A = np.abs(out - out_latents_inputs ).max() self.assertLess(A_ ,1e-4 ,'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Optional[int]=0 ) -> str: A = torch.manual_seed(A_ ) A = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) A = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' ,safety_checker=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' ,safety_checker=A_ ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' ,safety_checker=A_ ) A = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = 0 def callback_fn(A_ : int ,A_ : int ,A_ : torch.FloatTensor ) -> None: A = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A = latents[0, -3:, -3:, -1] A = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A = latents[0, -3:, -3:, -1] A = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A = False A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' ,safety_checker=A_ ,torch_dtype=torch.floataa ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = self.get_inputs() pipe(**A_ ,callback=A_ ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' ,safety_checker=A_ ,torch_dtype=torch.floataa ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A = self.get_inputs() A = pipe(**A_ ) A = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A = inputs['image'].resize((504, 504) ) A = 'timbrooks/instruct-pix2pix' A = StableDiffusionInstructPixaPixPipeline.from_pretrained( A_ ,safety_checker=A_ ,) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = pipe(**A_ ) A = output.images[0] A = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) A = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
74
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case ( snake_case__ : List[Any] , snake_case__ : Optional[int]=0.999 , snake_case__ : Union[str, Any]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) A = [] for i in range(snake_case__ ): A = i / num_diffusion_timesteps A = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCAmelCase_ ( _lowercase , _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = [e.name for e in KarrasDiffusionSchedulers] _lowerCamelCase: Optional[Any] = 2 @register_to_config def __init__( self : str ,A_ : int = 1000 ,A_ : float = 0.0_00_85 ,A_ : float = 0.0_12 ,A_ : str = "linear" ,A_ : Optional[Union[np.ndarray, List[float]]] = None ,A_ : str = "epsilon" ,A_ : Optional[bool] = False ,A_ : Optional[bool] = False ,A_ : float = 1.0 ,A_ : str = "linspace" ,A_ : int = 0 ,) -> List[str]: if trained_betas is not None: A = torch.tensor(A_ ,dtype=torch.floataa ) elif beta_schedule == "linear": A = torch.linspace(A_ ,A_ ,A_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,A_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A = betas_for_alpha_bar(A_ ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": A = betas_for_alpha_bar(A_ ,alpha_transform_type='exp' ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) A = 1.0 - self.betas A = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(A_ ,A_ ,A_ ) A = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Tuple ,A_ : Tuple=None ) -> Tuple: if schedule_timesteps is None: A = self.timesteps A = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A = 1 if len(A_ ) > 1 else 0 else: A = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep A = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : torch.FloatTensor ,A_ : Union[float, torch.FloatTensor] ,) -> torch.FloatTensor: A = self.index_for_timestep(A_ ) A = self.sigmas[step_index] A = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : Union[str, torch.device] = None ,A_ : Optional[int] = None ,) -> Optional[Any]: A = num_inference_steps A = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A = np.linspace(0 ,num_train_timesteps - 1 ,A_ ,dtype=A_ )[::-1].copy() elif self.config.timestep_spacing == "leading": A = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A = (np.arange(0 ,A_ ) * step_ratio).round()[::-1].copy().astype(A_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A = (np.arange(A_ ,0 ,-step_ratio )).round().copy().astype(A_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) A = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A = np.log(A_ ) A = np.interp(A_ ,np.arange(0 ,len(A_ ) ) ,A_ ) if self.config.use_karras_sigmas: A = self._convert_to_karras(in_sigmas=A_ ,num_inference_steps=self.num_inference_steps ) A = np.array([self._sigma_to_t(A_ ,A_ ) for sigma in sigmas] ) A = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A = torch.from_numpy(A_ ).to(device=A_ ) A = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A = torch.from_numpy(A_ ) A = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(A_ ).startswith('mps' ): # mps does not support float64 A = timesteps.to(A_ ,dtype=torch.floataa ) else: A = timesteps.to(device=A_ ) # empty dt and derivative A = None A = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A = defaultdict(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : List[str] ) -> Dict: # get log sigma A = np.log(A_ ) # get distribution A = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A = low_idx + 1 A = log_sigmas[low_idx] A = log_sigmas[high_idx] # interpolate sigmas A = (low - log_sigma) / (low - high) A = np.clip(A_ ,0 ,1 ) # transform interpolation to time range A = (1 - w) * low_idx + w * high_idx A = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : torch.FloatTensor ,A_ : int ) -> torch.FloatTensor: A = in_sigmas[-1].item() A = in_sigmas[0].item() A = 7.0 # 7.0 is the value used in the paper A = np.linspace(0 ,1 ,A_ ) A = sigma_min ** (1 / rho) A = sigma_max ** (1 / rho) A = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return self.dt is None def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[torch.FloatTensor, np.ndarray] ,A_ : Union[float, torch.FloatTensor] ,A_ : Union[torch.FloatTensor, np.ndarray] ,A_ : bool = True ,) -> Union[SchedulerOutput, Tuple]: A = self.index_for_timestep(A_ ) # advance index counter by 1 A = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A = self.sigmas[step_index] A = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A = self.sigmas[step_index - 1] A = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A = 0 A = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A = sigma_hat if self.state_in_first_order else sigma_next A = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A = sigma_hat if self.state_in_first_order else sigma_next A = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: A = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A = sigma_next - sigma_hat # store for 2nd order step A = derivative A = dt A = sample else: # 2. 2nd order / Heun's method A = (sample - pred_original_sample) / sigma_next A = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A = self.dt A = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A = None A = None A = None A = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : torch.FloatTensor ,A_ : torch.FloatTensor ,A_ : torch.FloatTensor ,) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples A = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A_ ): # mps does not support float64 A = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) A = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: A = self.timesteps.to(original_samples.device ) A = timesteps.to(original_samples.device ) A = [self.index_for_timestep(A_ ,A_ ) for t in timesteps] A = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A = sigma.unsqueeze(-1 ) A = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ) -> int: return self.config.num_train_timesteps
74
1
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase=True , __UpperCAmelCase=2 ): from .. import __version__ _lowercase : Tuple = take_from _lowercase : Union[str, Any] = () if not isinstance(args[0] , __UpperCAmelCase ): _lowercase : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__UpperCAmelCase ).base_version ) >= version.parse(__UpperCAmelCase ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) _lowercase : List[str] = None if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__UpperCAmelCase ),) _lowercase : Union[str, Any] = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__UpperCAmelCase , __UpperCAmelCase ): values += (getattr(__UpperCAmelCase , __UpperCAmelCase ),) _lowercase : List[str] = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _lowercase : int = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _lowercase : Dict = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , __UpperCAmelCase , stacklevel=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) > 0: _lowercase : Tuple = inspect.getouterframes(inspect.currentframe() )[1] _lowercase : List[Any] = call_frame.filename _lowercase : Tuple = call_frame.lineno _lowercase : Optional[Any] = call_frame.function _lowercase : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__UpperCAmelCase ) == 0: return elif len(__UpperCAmelCase ) == 1: return values[0] return values
359
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _lowercase ( _lowerCamelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ): """simple docstring""" super().__init__( features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) a = Generator( cache_dir=lowerCamelCase_ , features=lowerCamelCase_ , generator=lowerCamelCase_ , gen_kwargs=lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCamelCase_ (self ): """simple docstring""" if self.streaming: a = self.builder.as_streaming_dataset(split="train" ) # Build regular (map-style) dataset else: a = None a = None a = None a = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) a = self.builder.as_dataset( split="train" , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory ) return dataset
227
"""simple docstring""" import math class a : """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: List[str]=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" A__ = n A__ = [ [math.inf for j in range(0 , UpperCamelCase )] for i in range(0 , UpperCamelCase ) ] # adjacency matrix for weight A__ = [ [math.inf for j in range(0 , UpperCamelCase )] for i in range(0 , UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple ): """simple docstring""" A__ = w def UpperCamelCase ( self: int ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A__ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase ( self: int , UpperCamelCase: List[str] , UpperCamelCase: Dict ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[Any] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
335
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _A ( _lowerCamelCase ): _UpperCamelCase : int = '''camembert''' def __init__( self : List[str] , _A : int=30_522 , _A : Optional[Any]=768 , _A : Dict=12 , _A : List[str]=12 , _A : Any=3_072 , _A : Union[str, Any]="gelu" , _A : int=0.1 , _A : Tuple=0.1 , _A : Dict=512 , _A : Tuple=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=1E-12 , _A : List[Any]=1 , _A : Tuple=0 , _A : Optional[Any]=2 , _A : List[str]="absolute" , _A : Tuple=True , _A : Union[str, Any]=None , **_A : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) lowercase : Optional[int] = vocab_size lowercase : Dict = hidden_size lowercase : int = num_hidden_layers lowercase : Tuple = num_attention_heads lowercase : Tuple = hidden_act lowercase : List[str] = intermediate_size lowercase : Optional[int] = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : Optional[Any] = max_position_embeddings lowercase : int = type_vocab_size lowercase : Tuple = initializer_range lowercase : List[Any] = layer_norm_eps lowercase : Dict = position_embedding_type lowercase : Optional[Any] = use_cache lowercase : int = classifier_dropout class _A ( _lowerCamelCase ): @property def __a ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
356
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''input_values''', '''attention_mask'''] def __init__( self : Optional[Any] , _A : int = 1 , _A : int = 16_000 , _A : float = 0.0 , _A : bool = False , _A : int = 80 , _A : int = 16 , _A : int = 64 , _A : str = "hann_window" , _A : float = 1.0 , _A : float = 80 , _A : float = 7_600 , _A : float = 1E-10 , _A : int = 2 , _A : bool = True , **_A : int , ) -> Union[str, Any]: """simple docstring""" super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) lowercase : str = do_normalize lowercase : int = return_attention_mask lowercase : Union[str, Any] = num_mel_bins lowercase : Union[str, Any] = hop_length lowercase : Dict = win_length lowercase : Union[str, Any] = win_function lowercase : int = frame_signal_scale lowercase : Dict = fmin lowercase : Optional[Any] = fmax lowercase : str = mel_floor lowercase : Dict = reduction_factor lowercase : List[Any] = win_length * sampling_rate // 1_000 lowercase : Union[str, Any] = hop_length * sampling_rate // 1_000 lowercase : Optional[Any] = optimal_fft_length(self.sample_size ) lowercase : Dict = (self.n_fft // 2) + 1 lowercase : Any = window_function(window_length=self.sample_size , name=self.win_function , periodic=_A ) lowercase : Dict = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[int] = np.array(_A , np.intaa ) lowercase : Dict = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : List[str] = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __a ( self : Any , _A : np.ndarray , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = spectrogram( _A , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : List[Any] , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , **_A : Tuple , ) -> BatchFeature: """simple docstring""" if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: lowercase : Any = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) else: lowercase : Any = None if audio_target is not None: lowercase : Tuple = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) if inputs is None: return inputs_target else: lowercase : Any = inputs_target['''input_values'''] lowercase : Dict = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase : Union[str, Any] = decoder_attention_mask return inputs def __a ( self : List[Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = False , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , **_A : Any , ) -> BatchFeature: """simple docstring""" lowercase : Optional[int] = isinstance(_A , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : int = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : Optional[int] = [np.asarray(_A , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[str] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowercase : List[str] = speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : Union[str, Any] = [speech] # needed to make pad() work on spectrogram inputs lowercase : Any = self.feature_size # convert into correct format for padding if is_target: lowercase : int = [self._extract_mel_features(_A ) for waveform in speech] lowercase : Any = BatchFeature({'''input_values''': features} ) lowercase : Optional[Any] = self.num_mel_bins else: lowercase : Optional[Any] = BatchFeature({'''input_values''': speech} ) lowercase : Optional[int] = self.pad( _A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , ) lowercase : str = feature_size_hack # convert input values to correct format lowercase : List[Any] = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): lowercase : List[str] = [np.asarray(_A , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_A , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowercase : List[str] = [array.astype(np.floataa ) for array in input_values] elif isinstance(_A , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowercase : Optional[Any] = input_values.astype(np.floataa ) # convert attention_mask to correct format lowercase : int = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase : Union[str, Any] = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowercase : Any = ( attention_mask if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase : Optional[int] = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_A , padding_value=self.padding_value ) if return_tensors is not None: lowercase : Tuple = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. lowercase : Optional[int] = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
116
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = args.log_outputs UpperCAmelCase__ = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric UpperCAmelCase__ = load_metric('wer' ) UpperCAmelCase__ = load_metric('cer' ) # compute metrics UpperCAmelCase__ = wer.compute(references=result['target'] , predictions=result['prediction'] ) UpperCAmelCase__ = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results UpperCAmelCase__ = f'''WER: {wer_result}\nCER: {cer_result}''' print(lowerCamelCase ) with open(f'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(lowerCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ = f'''log_{dataset_id}_predictions.txt''' UpperCAmelCase__ = f'''log_{dataset_id}_targets.txt''' with open(lowerCamelCase , 'w' ) as p, open(lowerCamelCase , 'w' ) as t: # mapping function to write output def write_to_file(lowerCamelCase , lowerCamelCase ): p.write(f'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(lowerCamelCase , with_indices=lowerCamelCase ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ = re.sub(lowerCamelCase , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: UpperCAmelCase__ = ' '.join(text.split(lowerCamelCase ) ) return text def a_ ( lowerCamelCase ): # load dataset UpperCAmelCase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ = dataset.cast_column('audio' , Audio(sampling_rate=lowerCamelCase ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase ): UpperCAmelCase__ = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ = prediction['text'] UpperCAmelCase__ = normalize_text(batch['sentence'] ) return batch # run inference on all examples UpperCAmelCase__ = dataset.map(lowerCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) lowerCAmelCase__ : Dict = parser.parse_args() main(args)
98
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ ={ 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } lowercase__ ='ETAOINSHRDLCUMWFGYPBVKJXQZ' lowercase__ ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : List[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __UpperCamelCase ( lowerCAmelCase__ : tuple ): return x[0] def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : Optional[Any] = get_letter_count(lowerCAmelCase__ ) __a : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase__ ) __a : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase__ ) __a : int = ''''''.join(freq_to_letter[freq] ) __a : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) __a : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = get_frequency_order(lowerCAmelCase__ ) __a : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
216
0
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> float: snake_case__ : str = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: snake_case__ : Optional[int] = 1 - (matter_density + radiation_density + dark_energy) snake_case__ : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) snake_case__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __a = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
365
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = MvpTokenizer lowercase = MvpTokenizerFast lowercase = True lowercase = filter_roberta_detectors def lowerCamelCase ( self : Union[str, Any] ): super().setUp() snake_case__ : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Union[str, Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) snake_case__ : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Tuple = {"""unk_token""": """<unk>"""} snake_case__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case_ ) ) def lowerCamelCase ( self : Optional[Any] , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : List[str] , **snake_case_ : List[str] ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : List[Any] , snake_case_ : List[str] ): return "lower newer", "lower newer" @cached_property def lowerCamelCase ( self : int ): return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCamelCase ( self : Tuple ): return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCamelCase ( self : Any ): snake_case__ : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] snake_case__ : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : List[Any] = tokenizer(snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) snake_case__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) # Test that special tokens are reset @require_torch def lowerCamelCase ( self : Dict ): snake_case__ : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : List[Any] = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , snake_case_ ) self.assertIn("""attention_mask""" , snake_case_ ) self.assertNotIn("""labels""" , snake_case_ ) self.assertNotIn("""decoder_attention_mask""" , snake_case_ ) @require_torch def lowerCamelCase ( self : Tuple ): snake_case__ : Any = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : str = tokenizer(text_target=snake_case_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase ( self : List[str] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : Optional[Any] = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def lowerCamelCase ( self : str ): snake_case__ : Optional[Any] = ["""A long paragraph for summarization."""] snake_case__ : Optional[Any] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : int = tokenizer(snake_case_ , text_target=snake_case_ , return_tensors="""pt""" ) snake_case__ : int = inputs["""input_ids"""] snake_case__ : str = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase ( self : int ): pass def lowerCamelCase ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : int = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) snake_case__ : Optional[Any] = """A, <mask> AllenNLP sentence.""" snake_case__ : List[str] = tokenizer_r.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) snake_case__ : int = tokenizer_p.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case__ : Any = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case__ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( snake_case_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( snake_case_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
43
0
"""simple docstring""" from __future__ import annotations import math def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : bool , _snake_case : list[int] , _snake_case : float ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _snake_case , _snake_case , _snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , _snake_case , _snake_case , _snake_case ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _snake_case , _snake_case , _snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , _snake_case , _snake_case , _snake_case ) , ) ) def _snake_case ( ): lowerCAmelCase : Optional[int] = [90, 23, 6, 33, 21, 65, 123, 34423] lowerCAmelCase : Union[str, Any] = math.log(len(_snake_case ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , _snake_case , _snake_case , _snake_case )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : @staticmethod def snake_case_ ( *A_: Optional[Any],**A_: Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase (unittest.TestCase ): _lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self: Dict,A_: Optional[int],A_: Tuple,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=A_,image_processor=A_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self: int,A_: Any,A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png',threshold=0.0 ) self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils','image',split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(A_,threshold=0.0 ) self.assertEqual(len(A_ ),len(A_ ) ) for outputs in batch_outputs: self.assertGreater(len(A_ ),0 ) for detected_object in outputs: self.assertEqual( A_,{ 'score': ANY(A_ ), 'label': ANY(A_ ), 'box': {'xmin': ANY(A_ ), 'ymin': ANY(A_ ), 'xmax': ANY(A_ ), 'ymax': ANY(A_ )}, },) @require_tf @unittest.skip('Object detection not implemented in TF' ) def snake_case_ ( self: str ): '''simple docstring''' pass @require_torch def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=0.0 ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ],threshold=0.0,) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ],) @require_torch @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(A_ ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(A_ ) __UpperCamelCase = ObjectDetectionPipeline(model=A_,feature_extractor=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ],) @require_torch @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection',model=A_ ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg',threshold=A_ ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ],) @require_torch @require_pytesseract @slow def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection',model=A_,threshold=A_ ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(A_,decimals=4 ),[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ],)
310
0
from __future__ import annotations from functools import lru_cache from math import ceil A : Union[str, Any] = 1_00 A : List[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def a__ ( __UpperCamelCase ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def a__ ( __UpperCamelCase = 5_0_0_0 ): for number_to_partition in range(1 , __UpperCamelCase ): if len(partition(__UpperCamelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
305
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
1
"""simple docstring""" import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() def _lowercase ( self : Union[str, Any] ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __lowercase = '''xvjiarui/stable-diffusion-2-inpainting''' __lowercase = FlaxStableDiffusionInpaintPipeline.from_pretrained(__A, safety_checker=__A ) __lowercase = '''Face of a yellow cat, high resolution, sitting on a park bench''' __lowercase = jax.random.PRNGKey(0 ) __lowercase = 5_0 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = num_samples * [init_image] __lowercase = num_samples * [mask_image] __lowercase = pipeline.prepare_inputs(__A, __A, __A ) # shard inputs and rng __lowercase = replicate(__A ) __lowercase = jax.random.split(__A, jax.device_count() ) __lowercase = shard(__A ) __lowercase = shard(__A ) __lowercase = shard(__A ) __lowercase = pipeline( __A, __A, __A, __A, __A, __A, jit=__A ) __lowercase = output.images.reshape(__A, 5_1_2, 5_1_2, 3 ) __lowercase = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array( [0.3_611_307, 0.37_649_736, 0.3_757_408, 0.38_213_953, 0.39_295_167, 0.3_841_631, 0.41_554_978, 0.4_137_475, 0.4_217_084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
17
from __future__ import annotations def a__ ( UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Union[str, Any] = len(UpperCAmelCase ) # We need to create solution object to save path. UpperCAmelCase : int = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] UpperCAmelCase : Union[str, Any] = run_maze(UpperCAmelCase , 0 , 0 , UpperCAmelCase ) if solved: print('''\n'''.join(str(UpperCAmelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def a__ ( UpperCAmelCase : list[list[int]] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[list[int]] ) -> bool: UpperCAmelCase : Dict = len(UpperCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase : Dict = 1 return True UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase : str = 1 # check for directions if ( run_maze(UpperCAmelCase , i + 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j + 1 , UpperCAmelCase ) or run_maze(UpperCAmelCase , i - 1 , UpperCAmelCase , UpperCAmelCase ) or run_maze(UpperCAmelCase , UpperCAmelCase , j - 1 , UpperCAmelCase ) ): return True UpperCAmelCase : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : Dict = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : List[str] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""CLIPFeatureExtractor"""] lowercase : Union[str, Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
0
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def _snake_case ( ) -> int: '''simple docstring''' lowerCAmelCase_ :Optional[int] = 9, 1_4 # noqa: F841 lowerCAmelCase_ :Optional[int] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] lowerCAmelCase_ :str = defaultdict(_lowerCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCAmelCase_ :str = mst(_lowerCAmelCase ) lowerCAmelCase_ :Optional[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCAmelCase_ :Tuple = tuple(answer[:2] ) lowerCAmelCase_ :int = tuple(edge[::-1] ) assert edge in result or reverse in result
84
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Dict = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = "xmod" def __init__( self, lowerCamelCase__=3_0522, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=False, lowerCamelCase__=2, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=("en_XX",), lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : int = vocab_size A : int = hidden_size A : str = num_hidden_layers A : List[str] = num_attention_heads A : List[str] = hidden_act A : Dict = intermediate_size A : Optional[int] = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : int = max_position_embeddings A : Tuple = type_vocab_size A : List[Any] = initializer_range A : str = layer_norm_eps A : Union[str, Any] = position_embedding_type A : Any = use_cache A : int = classifier_dropout A : int = pre_norm A : List[str] = adapter_reduction_factor A : Any = adapter_layer_norm A : Any = adapter_reuse_layer_norm A : str = ln_before_adapter A : Dict = list(lowerCamelCase__ ) A : Union[str, Any] = default_language class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
116
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Union[str, Any] = BarthezTokenizer _lowercase : Any = BarthezTokenizerFast _lowercase : Any = True _lowercase : Dict = True def _lowercase ( self ) -> Tuple: '''simple docstring''' super().setUp() a__ : Any =BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) a__ : int =tokenizer def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[Any] ="<pad>" a__ : List[str] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Dict =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowercase ( self ) -> str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Dict =["A long paragraph for summarization.", "Another paragraph for summarization."] a__ : Dict =[0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] a__ : Union[str, Any] =self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) a__ : Optional[Any] =batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return a__ : str =self.get_tokenizer() a__ : Any =self.get_rust_tokenizer() a__ : List[Any] ="I was born in 92000, and this is falsé." a__ : Optional[int] =tokenizer.tokenize(lowerCAmelCase__ ) a__ : Union[str, Any] =rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[int] =tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a__ : List[str] =rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Union[str, Any] =self.get_rust_tokenizer() a__ : str =tokenizer.encode(lowerCAmelCase__ ) a__ : int =rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Any ={"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. a__ : Any =[ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
148
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCAmelCase : List[Any] = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class __lowerCAmelCase ( unittest.TestCase): _lowercase : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowercase : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowercase : Dict = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowercase : int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : str =pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) a__ : Any =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) a__ : Any =text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}] ) a__ : Tuple =text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) a__ : List[Any] =text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) # Legacy behavior a__ : Any =text_classifier("This is great !" , return_all_scores=lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) a__ : List[str] =text_classifier("This is great !" , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}]] ) a__ : Optional[int] =text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) a__ : int =text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_0", "score": 0.5_04}, ] , ) @require_torch def _lowercase ( self ) -> List[Any]: '''simple docstring''' import torch a__ : Dict =pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) a__ : Optional[Any] =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @require_tf def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] =pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) a__ : Optional[Any] =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @slow @require_torch def _lowercase ( self ) -> str: '''simple docstring''' a__ : Union[str, Any] =pipeline("text-classification" ) a__ : Union[str, Any] =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 1.0}] ) a__ : Optional[Any] =text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) a__ : Dict =text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 0.9_88}] ) @slow @require_tf def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Tuple =pipeline("text-classification" , framework="tf" ) a__ : str =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 1.0}] ) a__ : str =text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) a__ : Dict =text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 0.9_88}] ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ : List[Any] =TextClassificationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' a__ : Tuple =text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 a__ : List[Any] ="HuggingFace is in" a__ : int =text_classifier(lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) a__ : Optional[int] =["HuggingFace is in ", "Paris is in France"] a__ : Optional[Any] =text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}, {"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format a__ : Union[str, Any] =text_classifier(lowerCAmelCase__ , top_k=lowerCAmelCase__ ) a__ : Optional[Any] =len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] * N, [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] * N] , ) a__ : List[str] ={"text": "HuggingFace is in ", "text_pair": "Paris is in France"} a__ : Optional[Any] =text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , {"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. a__ : Any =[["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(lowerCAmelCase__ ): text_classifier(lowerCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility a__ : Optional[int] =text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
148
1
"""simple docstring""" import argparse import json from tqdm import tqdm def _snake_case ( ) -> List[str]: lowerCamelCase_ : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=lowerCamelCase__ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=lowerCamelCase__ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=lowerCamelCase__ , help="where to store parsed gold_data_path file" , ) lowerCamelCase_ : str =parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: lowerCamelCase_ : List[str] =json.load(lowerCamelCase__ ) for dpr_record in tqdm(lowerCamelCase__ ): lowerCamelCase_ : List[str] =dpr_record['''question'''] lowerCamelCase_ : Tuple =[context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + "\n" ) gold_file.write("\t".join(lowerCamelCase__ ) + "\n" ) if __name__ == "__main__": main()
144
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __lowercase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __lowercase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __lowercase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE ) if g == main_target[position]] ) return (item, float(SCREAMING_SNAKE_CASE )) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) __UpperCamelCase :Tuple = parent_a[:random_slice] + parent_a[random_slice:] __UpperCamelCase :Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = list(SCREAMING_SNAKE_CASE ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __UpperCamelCase :str = random.choice(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' __UpperCamelCase :int = [] # Generate more children proportionally to the fitness score. __UpperCamelCase :int = int(parent_a[1] * 100 ) + 1 __UpperCamelCase :List[str] = 10 if child_n >= 10 else child_n for _ in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = population_score[random.randint(0 , SCREAMING_SNAKE_CASE )][0] __UpperCamelCase , __UpperCamelCase :Any = crossover(parent_a[0] , SCREAMING_SNAKE_CASE ) # Append new string to the population list. pop.append(mutate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) pop.append(mutate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return pop def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: __UpperCamelCase :List[Any] = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(SCREAMING_SNAKE_CASE ) # Verify that the target contains no genes besides the ones inside genes variable. __UpperCamelCase :List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __UpperCamelCase :Optional[int] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(SCREAMING_SNAKE_CASE ) # Generate random starting population. __UpperCamelCase :int = [] for _ in range(SCREAMING_SNAKE_CASE ): population.append(''''''.join([random.choice(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) )] ) ) # Just some logs to know what the algorithms is doing. __UpperCamelCase , __UpperCamelCase :List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(SCREAMING_SNAKE_CASE ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __UpperCamelCase :Tuple = [evaluate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for item in population] # Check if there is a matching evolution. __UpperCamelCase :Tuple = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] , reverse=SCREAMING_SNAKE_CASE ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __UpperCamelCase :str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(SCREAMING_SNAKE_CASE ) # Normalize population score to be between 0 and 1. __UpperCamelCase :Union[str, Any] = [ (item, score / len(SCREAMING_SNAKE_CASE )) for item, score in population_score ] # This is selection for i in range(SCREAMING_SNAKE_CASE ): population.extend(select(population_score[int(SCREAMING_SNAKE_CASE )] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(SCREAMING_SNAKE_CASE ) > N_POPULATION: break if __name__ == "__main__": __lowercase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __lowercase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __lowercase , __lowercase , __lowercase = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
43
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ :int = logging.get_logger(__name__) A_ :Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart A_ :List[Any] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } A_ :List[str] = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } @lru_cache() def A ( ) -> Optional[int]: __UpperCamelCase : int =( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) __UpperCamelCase : Optional[int] =bs[:] __UpperCamelCase : str =0 for b in range(2**8 ): if b not in bs: bs.append(a_ ) cs.append(2**8 + n ) n += 1 __UpperCamelCase : int =[chr(a_ ) for n in cs] return dict(zip(a_ ,a_ ) ) def A ( a_ ) -> Dict: __UpperCamelCase : Dict =set() __UpperCamelCase : Any =word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase : Optional[int] =char return pairs class __A ( a ): """simple docstring""" UpperCamelCase__ : Union[str, Any] =VOCAB_FILES_NAMES UpperCamelCase__ : int =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : List[str] =["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Union[str, Any] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token __UpperCamelCase : str =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token __UpperCamelCase : Dict =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token __UpperCamelCase : Optional[Any] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token __UpperCamelCase : Tuple =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token __UpperCamelCase : Optional[int] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase : Optional[int] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) with open(lowerCamelCase__ , encoding='utf-8' ) as vocab_handle: __UpperCamelCase : Tuple =json.load(lowerCamelCase__ ) __UpperCamelCase : int ={v: k for k, v in self.encoder.items()} __UpperCamelCase : List[Any] =errors # how to handle errors in decoding __UpperCamelCase : Optional[Any] =bytes_to_unicode() __UpperCamelCase : Dict ={v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ , encoding='utf-8' ) as merges_handle: __UpperCamelCase : Optional[Any] =merges_handle.read().split('\n' )[1:-1] __UpperCamelCase : List[Any] =[tuple(merge.split() ) for merge in bpe_merges] __UpperCamelCase : int =dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __UpperCamelCase : List[str] ={} __UpperCamelCase : Dict =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCamelCase : Any =re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __lowercase ( self ): """simple docstring""" return len(self.encoder ) def __lowercase ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if token in self.cache: return self.cache[token] __UpperCamelCase : Union[str, Any] =tuple(lowerCamelCase__ ) __UpperCamelCase : Any =get_pairs(lowerCamelCase__ ) if not pairs: return token while True: __UpperCamelCase : Any =min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __UpperCamelCase : int =bigram __UpperCamelCase : Dict =[] __UpperCamelCase : Optional[Any] =0 while i < len(lowerCamelCase__ ): try: __UpperCamelCase : Optional[Any] =word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCamelCase : Tuple =j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCamelCase : List[Any] =tuple(lowerCamelCase__ ) __UpperCamelCase : Any =new_word if len(lowerCamelCase__ ) == 1: break else: __UpperCamelCase : Optional[Any] =get_pairs(lowerCamelCase__ ) __UpperCamelCase : List[str] =' '.join(lowerCamelCase__ ) __UpperCamelCase : str =word return word def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =[] for token in re.findall(self.pat , lowerCamelCase__ ): __UpperCamelCase : Dict =''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(' ' ) ) return bpe_tokens def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.decoder.get(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =''.join(lowerCamelCase__ ) __UpperCamelCase : str =bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Tuple =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : str =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + '\n' ) __UpperCamelCase : Optional[Any] =0 with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) __UpperCamelCase : str =token_index writer.write(' '.join(lowerCamelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase : Optional[Any] =[self.cls_token_id] __UpperCamelCase : Any =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : Union[str, Any] =[self.sep_token_id] __UpperCamelCase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=False , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): __UpperCamelCase : List[str] =' ' + text return (text, kwargs)
352
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( a_ = 3 ) -> qiskit.result.counts.Counts: if isinstance(a_ ,a_ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(a_ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) __UpperCamelCase : str =QuantumRegister(a_ ,'qr' ) __UpperCamelCase : Optional[int] =ClassicalRegister(a_ ,'cr' ) __UpperCamelCase : Optional[Any] =QuantumCircuit(a_ ,a_ ) __UpperCamelCase : Any =number_of_qubits for i in range(a_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(a_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,a_ ,a_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(a_ ,number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(a_ ,a_ ) # simulate with 10000 shots __UpperCamelCase : Any =Aer.get_backend('qasm_simulator' ) __UpperCamelCase : Tuple =execute(a_ ,a_ ,shots=10_000 ) return job.result().get_counts(a_ ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
245
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str="last" , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , 2 ).float() lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , ) -> int: """simple docstring""" lowercase__ = FlaubertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , ) -> List[Any]: """simple docstring""" lowercase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , ) -> Any: """simple docstring""" lowercase__ = FlaubertForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) lowercase__ = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = FlaubertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> List[str]: """simple docstring""" lowercase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) ) lowercase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) lowercase__ = np.array(__magic_name__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) lowercase__ = model.fit(disp=__magic_name__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def UpperCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : list ) -> float: """simple docstring""" lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) lowercase__ = regressor.predict(__magic_name__ ) return y_pred[0] def UpperCamelCase ( __magic_name__ : list ) -> float: """simple docstring""" train_user.sort() lowercase__ = np.percentile(__magic_name__ , 25 ) lowercase__ = np.percentile(__magic_name__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def UpperCamelCase ( __magic_name__ : list , __magic_name__ : float ) -> bool: """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] A : str = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) A : Any = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : Any = normalize_df[:, 0].tolist() A : str = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Any = x[: len(x) - 1] A : Tuple = x[len(x) - 1 :] # for linear regression & sarimax A : Optional[int] = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : Union[str, Any] = total_date[len(total_date) - 1 :] A : List[str] = total_user[len(total_user) - 1 :] A : str = total_match[len(total_match) - 1 :] # voting system with forecasting A : int = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
305
1
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase = 1_6 __lowerCAmelCase = 3_2 def UpperCAmelCase_ (__a : Accelerator , __a : int = 1_6 ): """simple docstring""" _a : List[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) _a : Optional[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(__a : List[str] ): # max_length=None => use the model max length (it's actually the default) _a : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Dict = datasets.map( __a , batched=__a , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : str = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__a : int ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : str = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : Any = 1_6 elif accelerator.mixed_precision != "no": _a : Any = 8 else: _a : List[Any] = None return tokenizer.pad( __a , padding='longest' , max_length=__a , pad_to_multiple_of=__a , return_tensors='pt' , ) # Instantiate dataloaders. _a : List[str] = DataLoader( tokenized_datasets['train'] , shuffle=__a , collate_fn=__a , batch_size=__a , drop_last=__a ) _a : int = DataLoader( tokenized_datasets['validation'] , shuffle=__a , collate_fn=__a , batch_size=__a , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def UpperCAmelCase_ (__a : Dict , __a : str ): """simple docstring""" _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : List[str] = config['lr'] _a : Optional[Any] = int(config['num_epochs'] ) _a : Union[str, Any] = int(config['seed'] ) _a : List[str] = int(config['batch_size'] ) _a : List[str] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _a : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Any = batch_size // MAX_GPU_BATCH_SIZE _a : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(__a ) _a, _a : int = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : Any = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : Tuple = model.to(accelerator.device ) # Instantiate optimizer _a : Union[str, Any] = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler _a : List[Any] = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=1_0_0 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a, _a, _a, _a, _a : Any = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Union[str, Any] = model(**__a ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Union[str, Any] = model(**__a ) _a : Union[str, Any] = outputs.logits.argmax(dim=-1 ) _a, _a : Tuple = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__a , references=__a , ) _a : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __a ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__a , default=__a , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _a : List[Any] = parser.parse_args() _a : str = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(__a , __a ) if __name__ == "__main__": main()
5
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
259
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCamelCase__ : Union[str, Any] = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCamelCase__ : Optional[Any] = '</w>' lowerCamelCase__ : Union[str, Any] = '@@ ' def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ = char return pairs # Speech2Text2 has no max input length lowerCamelCase__ : Any = {'facebook/s2t-wav2vec2-large-en-de': 1_024} class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]="<s>" , _lowerCAmelCase : Any="<pad>" , _lowerCAmelCase : List[str]="</s>" , _lowerCAmelCase : int="<unk>" , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : Tuple , ): super().__init__( unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case with open(_lowerCAmelCase , encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE_ = json.load(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None else: with open(_lowerCAmelCase , encoding='utf-8' ) as merges_handle: SCREAMING_SNAKE_CASE_ = merges_handle.read().split('\n' )[:-1] SCREAMING_SNAKE_CASE_ = [tuple(merge.split()[:2] ) for merge in merges] SCREAMING_SNAKE_CASE_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE_ = {} @property def lowerCAmelCase_ ( self : List[str] ): return len(self.decoder ) def lowerCAmelCase_ ( self : Tuple ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = bigram SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 while i < len(_lowerCAmelCase ): try: SCREAMING_SNAKE_CASE_ = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ = tuple(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = new_word if len(_lowerCAmelCase ) == 1: break else: SCREAMING_SNAKE_CASE_ = get_pairs(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ' '.join(_lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: SCREAMING_SNAKE_CASE_ = '\n' + BPE_TOKEN_MERGES if word.endswith(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = word.replace(_lowerCAmelCase , '' ) SCREAMING_SNAKE_CASE_ = word.replace(' ' , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = word return word def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Optional[int] ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: SCREAMING_SNAKE_CASE_ = text.lower() SCREAMING_SNAKE_CASE_ = text.split() SCREAMING_SNAKE_CASE_ = [] for token in text: if token: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(' ' ) ) ) return split_tokens def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : str ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = self.decoder.get(_lowerCAmelCase , self.unk_token ) return result def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = ' '.join(_lowerCAmelCase ) # make sure @@ tokens are concatenated SCREAMING_SNAKE_CASE_ = ''.join(string.split(_lowerCAmelCase ) ) return string def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + '\n' ) SCREAMING_SNAKE_CASE_ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) SCREAMING_SNAKE_CASE_ = token_index writer.write(' '.join(_lowerCAmelCase ) + '\n' ) index += 1 return (vocab_file, merges_file)
225
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : List[Any] = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
367
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int = 50 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =[[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
114
0
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowercase__ : int , lowercase__ : List[str] , lowercase__ : List[str] ): # Initialise PyTorch model snake_case : Optional[Any] = TaConfig.from_json_file(lowercase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case : Tuple = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
148
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Union[str, Any] = ["""pixel_values"""] def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , **SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) snake_case : int = size if size is not None else {"shortest_edge": 224} snake_case : int = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) snake_case : List[str] = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE , param_name="crop_size" ) snake_case : Dict = do_resize snake_case : Optional[int] = size snake_case : int = resample snake_case : Union[str, Any] = do_center_crop snake_case : Dict = crop_size snake_case : Dict = do_rescale snake_case : Any = rescale_factor snake_case : Tuple = do_normalize snake_case : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD snake_case : Tuple = do_convert_rgb def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" snake_case : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case : Dict = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size["shortest_edge"] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" snake_case : Tuple = get_size_dict(SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ): """simple docstring""" snake_case : int = do_resize if do_resize is not None else self.do_resize snake_case : List[str] = size if size is not None else self.size snake_case : Dict = get_size_dict(SCREAMING_SNAKE_CASE , param_name="size" , default_to_square=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = resample if resample is not None else self.resample snake_case : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size snake_case : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE , param_name="crop_size" , default_to_square=SCREAMING_SNAKE_CASE ) snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case : List[str] = image_mean if image_mean is not None else self.image_mean snake_case : Optional[int] = image_std if image_std is not None else self.image_std snake_case : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case : List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case : Optional[int] = [convert_to_rgb(SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. snake_case : List[str] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: snake_case : Optional[Any] = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: snake_case : int = [self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: snake_case : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: snake_case : Optional[int] = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] snake_case : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] snake_case : Tuple = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
148
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __UpperCamelCase : def __init__( self :Tuple ,_UpperCamelCase :Any ,_UpperCamelCase :Optional[Any]=1_3 ,_UpperCamelCase :Union[str, Any]=3_0 ,_UpperCamelCase :int=2 ,_UpperCamelCase :Dict=3 ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :List[str]=True ,_UpperCamelCase :Dict=3_2 ,_UpperCamelCase :Optional[int]=2 ,_UpperCamelCase :int=4 ,_UpperCamelCase :List[str]=3_7 ,_UpperCamelCase :Optional[Any]="gelu" ,_UpperCamelCase :Dict=0.1 ,_UpperCamelCase :Dict=0.1 ,_UpperCamelCase :List[str]=1_0 ,_UpperCamelCase :Optional[int]=0.02 ,_UpperCamelCase :Union[str, Any]=3 ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Dict=2 ,): snake_case_ : Optional[Any] = parent snake_case_ : int = batch_size snake_case_ : Dict = image_size snake_case_ : Union[str, Any] = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Tuple = is_training snake_case_ : List[Any] = use_labels snake_case_ : Any = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Optional[int] = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : str = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : Optional[Any] = scope snake_case_ : Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case_ : Dict = (image_size // patch_size) ** 2 snake_case_ : List[str] = num_patches + 2 def a__ ( self :Any ): snake_case_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : str = None if self.use_labels: snake_case_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case_ : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self :Any ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_UpperCamelCase ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def a__ ( self :List[str] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Optional[int] ): snake_case_ : List[str] = TFDeiTModel(config=_UpperCamelCase ) snake_case_ : List[str] = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self :List[Any] ,_UpperCamelCase :str ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any ): snake_case_ : List[Any] = TFDeiTForMaskedImageModeling(config=_UpperCamelCase ) snake_case_ : Union[str, Any] = model(_UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ : Dict = 1 snake_case_ : Dict = TFDeiTForMaskedImageModeling(_UpperCamelCase ) snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :int ): snake_case_ : Tuple = self.type_sequence_label_size snake_case_ : Dict = TFDeiTForImageClassification(_UpperCamelCase ) snake_case_ : Tuple = model(_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ : Dict = 1 snake_case_ : Optional[Any] = TFDeiTForImageClassification(_UpperCamelCase ) snake_case_ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : Any = model(_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def a__ ( self :Dict ): snake_case_ : Dict = self.prepare_config_and_inputs() snake_case_ : Optional[Any] = config_and_inputs snake_case_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): lowercase : List[str] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowercase : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowercase : List[str] = False lowercase : Dict = False lowercase : Any = False lowercase : Dict = False def a__ ( self :Optional[Any] ): snake_case_ : str = TFDeiTModelTester(self ) snake_case_ : Optional[int] = ConfigTester(self ,config_class=_UpperCamelCase ,has_text_modality=_UpperCamelCase ,hidden_size=3_7 ) def a__ ( self :int ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def a__ ( self :Any ): pass def a__ ( self :Optional[Any] ): snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) snake_case_ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase ,tf.keras.layers.Dense ) ) def a__ ( self :str ): snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[int] = model_class(_UpperCamelCase ) snake_case_ : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : int = [*signature.parameters.keys()] snake_case_ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_UpperCamelCase ) def a__ ( self :Optional[int] ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def a__ ( self :List[Any] ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCamelCase ) def a__ ( self :Tuple ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def a__ ( self :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Union[str, Any]=False ): snake_case_ : str = super()._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ,return_labels=_UpperCamelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ ( self :Union[str, Any] ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : List[str] = TFDeiTModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def a__ ( self :Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def a__ ( self :List[Any] ): snake_case_ : int = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) snake_case_ : Tuple = self.default_image_processor snake_case_ : List[str] = prepare_img() snake_case_ : Dict = image_processor(images=_UpperCamelCase ,return_tensors="""tf""" ) # forward pass snake_case_ : Optional[int] = model(**_UpperCamelCase ) # verify the logits snake_case_ : List[str] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,_UpperCamelCase ) snake_case_ : Union[str, Any] = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,_UpperCamelCase ,atol=1E-4 ) )
367
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __UpperCamelCase ( lowercase__ ): lowercase : Union[List[PIL.Image.Image], np.ndarray] lowercase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
8
0
"""simple docstring""" from collections.abc import Iterable from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] ,lowercase_ : int | None = None ): lowerCAmelCase__ : List[str] = value lowerCAmelCase__ : Node | None = None # Added in order to delete a node easier lowerCAmelCase__ : Node | None = None lowerCAmelCase__ : Node | None = None def __repr__( self : List[str] ): from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} ,indent=1 ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int ,lowercase_ : Node | None = None ): lowerCAmelCase__ : Union[str, Any] = root def __str__( self : Union[str, Any] ): return str(self.root ) def __lowerCAmelCase ( self : Dict ,lowercase_ : Node ,lowercase_ : Node | None ): if new_children is not None: # reset its kids lowerCAmelCase__ : List[str] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowercase_ ): # If it is the right children lowerCAmelCase__ : Union[str, Any] = new_children else: lowerCAmelCase__ : Optional[Any] = new_children else: lowerCAmelCase__ : List[str] = new_children def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Node ): if node.parent and node.parent.right: return node == node.parent.right return False def __lowerCAmelCase ( self : List[str] ): return self.root is None def __lowerCAmelCase ( self : Tuple ,lowercase_ : Any ): lowerCAmelCase__ : Union[str, Any] = Node(lowercase_ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ : Dict = new_node # set its root else: # Tree is not empty lowerCAmelCase__ : Union[str, Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ : int = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ : Any = new_node break else: lowerCAmelCase__ : List[str] = parent_node.right lowerCAmelCase__ : Dict = parent_node def __lowerCAmelCase ( self : str ,*lowercase_ : Dict ): for value in values: self.__insert(lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Any ): if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: lowerCAmelCase__ : str = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ : Tuple = node.left if value < node.value else node.right return node def __lowerCAmelCase ( self : int ,lowercase_ : Node | None = None ): if node is None: if self.root is None: return None lowerCAmelCase__ : str = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ : List[Any] = node.right return node def __lowerCAmelCase ( self : Any ,lowercase_ : Node | None = None ): if node is None: lowerCAmelCase__ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ : str = self.root while node.left is not None: lowerCAmelCase__ : int = node.left return node def __lowerCAmelCase ( self : Dict ,lowercase_ : int ): lowerCAmelCase__ : Tuple = self.search(lowercase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowercase_ ,lowercase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowercase_ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowercase_ ,node.left ) else: lowerCAmelCase__ : Dict = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ : List[str] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Node | None ): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __lowerCAmelCase ( self : str ,lowercase_ : List[str]=None ): if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __lowerCAmelCase ( self : Dict ,lowercase_ : list ,lowercase_ : Node | None ): if node: self.inorder(lowercase_ ,node.left ) arr.append(node.value ) self.inorder(lowercase_ ,node.right ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : int ,lowercase_ : Node ): lowerCAmelCase__ : list[int] = [] self.inorder(lowercase_ ,lowercase_ ) # append all values to list using inorder traversal return arr[k - 1] def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Union[str, Any] = [] if curr_node is not None: lowerCAmelCase__ : int = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ : Optional[int] = BinarySearchTree() for i in testlist: t.insert(A_ ) # Prints all the elements of the list in order traversal print(A_ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(A_ ) print(A_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
106
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __lowercase ( _A ) -> Optional[int]: SCREAMING_SNAKE_CASE : List[str] = torch.exp(_A ) SCREAMING_SNAKE_CASE : List[str] = torch.sum(_A , dim=1 ) # sum of exp(x_i) SCREAMING_SNAKE_CASE : Dict = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_A ) - B / A class a__ ( nn.Module ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase__ : int ) ->List[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = config.output_attentions SCREAMING_SNAKE_CASE : Any = config.output_hidden_states SCREAMING_SNAKE_CASE : str = nn.ModuleList([BertLayer(UpperCAmelCase__ ) for _ in range(config.num_hidden_layers )] ) SCREAMING_SNAKE_CASE : str = nn.ModuleList([BertHighway(UpperCAmelCase__ ) for _ in range(config.num_hidden_layers )] ) SCREAMING_SNAKE_CASE : Union[str, Any] = [-1 for _ in range(config.num_hidden_layers )] def _lowercase ( self : str , UpperCAmelCase__ : str ) ->Dict: """simple docstring""" if (type(UpperCAmelCase__ ) is float) or (type(UpperCAmelCase__ ) is int): for i in range(len(self.early_exit_entropy ) ): SCREAMING_SNAKE_CASE : Tuple = x else: SCREAMING_SNAKE_CASE : Optional[Any] = x def _lowercase ( self : str , UpperCAmelCase__ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Tuple=None , ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = () SCREAMING_SNAKE_CASE : Dict = () SCREAMING_SNAKE_CASE : str = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: SCREAMING_SNAKE_CASE : Union[str, Any] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : int = layer_module( UpperCAmelCase__ , UpperCAmelCase__ , head_mask[i] , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = layer_outputs[0] if self.output_attentions: SCREAMING_SNAKE_CASE : Dict = all_attentions + (layer_outputs[1],) SCREAMING_SNAKE_CASE : Optional[int] = (hidden_states,) if self.output_hidden_states: SCREAMING_SNAKE_CASE : int = current_outputs + (all_hidden_states,) if self.output_attentions: SCREAMING_SNAKE_CASE : int = current_outputs + (all_attentions,) SCREAMING_SNAKE_CASE : Dict = self.highway[i](UpperCAmelCase__ ) # logits, pooled_output if not self.training: SCREAMING_SNAKE_CASE : str = highway_exit[0] SCREAMING_SNAKE_CASE : Dict = entropy(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy SCREAMING_SNAKE_CASE : Union[str, Any] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: SCREAMING_SNAKE_CASE : Dict = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCAmelCase__ , i + 1 ) else: SCREAMING_SNAKE_CASE : Dict = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : Optional[int] = (hidden_states,) if self.output_hidden_states: SCREAMING_SNAKE_CASE : Optional[int] = outputs + (all_hidden_states,) if self.output_attentions: SCREAMING_SNAKE_CASE : Optional[int] = outputs + (all_attentions,) SCREAMING_SNAKE_CASE : Any = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , UpperCAmelCase , ) class a__ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple ) ->List[str]: """simple docstring""" super().__init__(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = config SCREAMING_SNAKE_CASE : Union[str, Any] = BertEmbeddings(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = DeeBertEncoder(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = BertPooler(UpperCAmelCase__ ) self.init_weights() def _lowercase ( self : str ) ->Optional[int]: """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def _lowercase ( self : str ) ->Union[str, Any]: """simple docstring""" return self.embeddings.word_embeddings def _lowercase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = value def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Dict ) ->str: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase__ ) @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) def _lowercase ( self : Dict , UpperCAmelCase__ : str=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Dict=None , ) ->int: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: SCREAMING_SNAKE_CASE : str = input_ids.size() elif inputs_embeds is not None: SCREAMING_SNAKE_CASE : Dict = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) SCREAMING_SNAKE_CASE : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: SCREAMING_SNAKE_CASE : List[str] = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ ) if encoder_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[int] = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ ) if token_type_ids is None: SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros(UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. SCREAMING_SNAKE_CASE : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: SCREAMING_SNAKE_CASE : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: SCREAMING_SNAKE_CASE : Optional[int] = encoder_attention_mask[:, None, None, :] SCREAMING_SNAKE_CASE : Optional[int] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility SCREAMING_SNAKE_CASE : str = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] SCREAMING_SNAKE_CASE : str = self.get_head_mask(UpperCAmelCase__ , self.config.num_hidden_layers ) SCREAMING_SNAKE_CASE : str = self.embeddings( input_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = self.encoder( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : int = encoder_outputs[0] SCREAMING_SNAKE_CASE : int = self.pooler(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class a__ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = message SCREAMING_SNAKE_CASE : str = exit_layer # start from 1! class a__ ( nn.Module ): """simple docstring""" def __init__( self : str , UpperCAmelCase__ : Any ) ->List[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = BertPooler(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE : Tuple = nn.Linear(config.hidden_size , config.num_labels ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Tuple ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = encoder_outputs[0] SCREAMING_SNAKE_CASE : int = self.pooler(UpperCAmelCase__ ) # "return" pooler_output # BertModel SCREAMING_SNAKE_CASE : Union[str, Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification SCREAMING_SNAKE_CASE : List[Any] = bmodel_output[1] SCREAMING_SNAKE_CASE : Any = self.dropout(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : int = self.classifier(UpperCAmelCase__ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , UpperCAmelCase , ) class a__ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) ->int: """simple docstring""" super().__init__(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : int = config.num_hidden_layers SCREAMING_SNAKE_CASE : Dict = DeeBertModel(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE : List[str] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : List[Any]=-1 , UpperCAmelCase__ : List[str]=False , ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_layers try: SCREAMING_SNAKE_CASE : str = self.bert( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits SCREAMING_SNAKE_CASE : Optional[Any] = outputs[1] SCREAMING_SNAKE_CASE : Any = self.dropout(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self.classifier(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE : Optional[int] = e.message SCREAMING_SNAKE_CASE : Optional[Any] = e.exit_layer SCREAMING_SNAKE_CASE : Union[str, Any] = outputs[0] if not self.training: SCREAMING_SNAKE_CASE : Optional[Any] = entropy(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Dict = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE : List[str] = MSELoss() SCREAMING_SNAKE_CASE : str = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE : Tuple = CrossEntropyLoss() SCREAMING_SNAKE_CASE : Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE : List[Any] = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE : Optional[int] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE : Any = MSELoss() SCREAMING_SNAKE_CASE : List[str] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE : Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE : Any = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase__ ) if train_highway: SCREAMING_SNAKE_CASE : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE : int = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE : Dict = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE : List[str] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
245
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowerCamelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Any = 256 class A__ ( __lowerCamelCase ): _UpperCAmelCase :Union[str, Any] = ['melgan'] def __init__( self , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' super().__init__() # From MELGAN UpperCamelCase : Optional[Any] = math.log(1e-5 ) # Matches MelGAN training. UpperCamelCase : Tuple = 4.0 # Largest value for most examples UpperCamelCase : int = 128 self.register_modules( notes_encoder=UpperCamelCase_ , continuous_encoder=UpperCamelCase_ , decoder=UpperCamelCase_ , scheduler=UpperCamelCase_ , melgan=UpperCamelCase_ , ) def __UpperCamelCase( self , A_ , A_=(-1.0, 1.0) , A_=False ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Dict = output_range if clip: UpperCamelCase : Tuple = torch.clip(UpperCamelCase_ , self.min_value , self.max_value ) # Scale to [0, 1]. UpperCamelCase : Optional[Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __UpperCamelCase( self , A_ , A_=(-1.0, 1.0) , A_=False ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Dict = input_range UpperCamelCase : Optional[Any] = torch.clip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if clip else outputs # Scale to [0, 1]. UpperCamelCase : Optional[int] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Dict = input_tokens > 0 UpperCamelCase , UpperCamelCase : Optional[int] = self.notes_encoder( encoder_input_tokens=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) UpperCamelCase , UpperCamelCase : Union[str, Any] = self.continuous_encoder( encoder_inputs=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = noise_time if not torch.is_tensor(UpperCamelCase_ ): UpperCamelCase : str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(UpperCamelCase_ ) and len(timesteps.shape ) == 0: UpperCamelCase : Optional[int] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase : Any = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase : Dict = self.decoder( encodings_and_masks=UpperCamelCase_ , decoder_input_tokens=UpperCamelCase_ , decoder_noise_time=UpperCamelCase_ ) return logits @torch.no_grad() def __call__( self , A_ , A_ = None , A_ = 100 , A_ = True , A_ = "numpy" , A_ = None , A_ = 1 , ): '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(UpperCamelCase_ )}.""" ) UpperCamelCase : Any = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) UpperCamelCase : Tuple = np.zeros([1, 0, self.n_dims] , np.floataa ) UpperCamelCase : str = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) for i, encoder_input_tokens in enumerate(UpperCamelCase_ ): if i == 0: UpperCamelCase : str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase : Dict = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase : Optional[int] = ones UpperCamelCase : int = self.scale_features( UpperCamelCase_ , output_range=[-1.0, 1.0] , clip=UpperCamelCase_ ) UpperCamelCase : Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=UpperCamelCase_ , continuous_mask=UpperCamelCase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase : Any = randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCamelCase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase : str = self.decode( encodings_and_masks=UpperCamelCase_ , input_tokens=UpperCamelCase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase : int = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample UpperCamelCase : Any = self.scale_to_features(UpperCamelCase_ , input_range=[-1.0, 1.0] ) UpperCamelCase : str = mel[:1] UpperCamelCase : List[str] = mel.cpu().float().numpy() UpperCamelCase : List[Any] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ ) logger.info("Generated segment" , UpperCamelCase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": UpperCamelCase : Optional[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase : Tuple = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCamelCase_ )
357
from __future__ import annotations def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) UpperCamelCase : str = number_of_bytes // partitions UpperCamelCase : List[Any] = [] for i in range(_lowerCAmelCase ): UpperCamelCase : Optional[Any] = i * bytes_per_partition + 1 UpperCamelCase : Any = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
140
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 16 UpperCAmelCase__ = 32 def UpperCAmelCase_ ( __snake_case , __snake_case = 16 ) -> Any: """simple docstring""" _lowercase =AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowercase =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__snake_case ): # max_length=None => use the model max length (it's actually the default) _lowercase =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase =datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase =16 elif accelerator.mixed_precision != "no": _lowercase =8 else: _lowercase =None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowercase =DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case , drop_last=__snake_case ) _lowercase =DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[str]: """simple docstring""" _lowercase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase =config['''lr'''] _lowercase =int(config['''num_epochs'''] ) _lowercase =int(config['''seed'''] ) _lowercase =int(config['''batch_size'''] ) _lowercase =evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _lowercase =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowercase =batch_size // MAX_GPU_BATCH_SIZE _lowercase =MAX_GPU_BATCH_SIZE set_seed(__snake_case ) _lowercase , _lowercase =get_dataloaders(__snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase =model.to(accelerator.device ) # Instantiate optimizer _lowercase =AdamW(params=model.parameters() , lr=__snake_case ) # Instantiate scheduler _lowercase =get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase =model(**__snake_case ) _lowercase =outputs.loss _lowercase =loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase =model(**__snake_case ) _lowercase =outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) _lowercase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __snake_case ) def UpperCAmelCase_ ( ) -> List[str]: """simple docstring""" _lowercase =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _lowercase =parser.parse_args() _lowercase ={'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
5
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _SCREAMING_SNAKE_CASE ( ) -> str: assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _SCREAMING_SNAKE_CASE ( ) -> Dict: A__ = 'mock-s3-bucket' A__ = f"""s3://{mock_bucket}""" A__ = extract_path_from_uri(lowercase_ ) assert dataset_path.startswith("s3://" ) is False A__ = './local/path' A__ = extract_path_from_uri(lowercase_ ) assert dataset_path == new_dataset_path def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: A__ = is_remote_filesystem(lowercase_ ) assert is_remote is True A__ = fsspec.filesystem("file" ) A__ = is_remote_filesystem(lowercase_ ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: A__ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} A__ = input_paths[compression_fs_class.protocol] if input_path is None: A__ = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowercase_ ) A__ = fsspec.filesystem(compression_fs_class.protocol , fo=lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) A__ = os.path.basename(lowercase_ ) A__ = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(lowercase_ , "r" , encoding="utf-8" ) as f, open(lowercase_ , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: A__ = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} A__ = compressed_file_paths[protocol] A__ = 'dataset.jsonl' A__ = f"""{protocol}://{member_file_path}::{compressed_file_path}""" A__ = fsspec.get_fs_token_paths(lowercase_ ) assert fs.isfile(lowercase_ ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: A__ = hf_api.dataset_info(lowercase_ , token=lowercase_ ) A__ = HfFileSystem(repo_info=lowercase_ , token=lowercase_ ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(lowercase_ ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: A__ = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowercase_ , lowercase_ , clobber=lowercase_ ) with pytest.warns(lowercase_ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowercase_ ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
356
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=10_00 ) -> Optional[Any]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd A__ = n - 1 A__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) A__ = 0 while count < prec: A__ = random.randint(2 , n - 1 ) A__ = bin_exp_mod(lowercase_ , lowercase_ , lowercase_ ) if b != 1: A__ = True for _ in range(lowercase_ ): if b == n - 1: A__ = False break A__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
230
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCamelCase__ ( a , a ) -> Union[str, Any]: _A: List[Any] = checkpoint _A: Tuple = {} _A: Dict = vae_state_dict["""encoder.conv_in.weight"""] _A: Optional[Any] = vae_state_dict["""encoder.conv_in.bias"""] _A: Dict = vae_state_dict["""encoder.conv_out.weight"""] _A: Union[str, Any] = vae_state_dict["""encoder.conv_out.bias"""] _A: List[Any] = vae_state_dict["""encoder.norm_out.weight"""] _A: Tuple = vae_state_dict["""encoder.norm_out.bias"""] _A: Dict = vae_state_dict["""decoder.conv_in.weight"""] _A: Tuple = vae_state_dict["""decoder.conv_in.bias"""] _A: Optional[int] = vae_state_dict["""decoder.conv_out.weight"""] _A: Optional[int] = vae_state_dict["""decoder.conv_out.bias"""] _A: Optional[Any] = vae_state_dict["""decoder.norm_out.weight"""] _A: Union[str, Any] = vae_state_dict["""decoder.norm_out.bias"""] _A: Optional[int] = vae_state_dict["""quant_conv.weight"""] _A: int = vae_state_dict["""quant_conv.bias"""] _A: Union[str, Any] = vae_state_dict["""post_quant_conv.weight"""] _A: Any = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only _A: int = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) _A: Optional[Any] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only _A: Dict = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) _A: Optional[int] = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } for i in range(__lowerCamelCase ): _A: List[Any] = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: _A: Optional[Any] = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) _A: int = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) _A: Optional[int] = renew_vae_resnet_paths(__lowerCamelCase ) _A: Optional[Any] = {"""old""": f"""down.{i}.block""", """new""": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) _A: Tuple = [key for key in vae_state_dict if """encoder.mid.block""" in key] _A: Optional[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): _A: Dict = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] _A: Tuple = renew_vae_resnet_paths(__lowerCamelCase ) _A: Tuple = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) _A: List[Any] = [key for key in vae_state_dict if """encoder.mid.attn""" in key] _A: str = renew_vae_attention_paths(__lowerCamelCase ) _A: List[str] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) for i in range(__lowerCamelCase ): _A: Optional[Any] = num_up_blocks - 1 - i _A: Union[str, Any] = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: _A: int = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] _A: Dict = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] _A: Dict = renew_vae_resnet_paths(__lowerCamelCase ) _A: Optional[Any] = {"""old""": f"""up.{block_id}.block""", """new""": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) _A: Tuple = [key for key in vae_state_dict if """decoder.mid.block""" in key] _A: Union[str, Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): _A: Dict = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] _A: List[Any] = renew_vae_resnet_paths(__lowerCamelCase ) _A: int = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) _A: Dict = [key for key in vae_state_dict if """decoder.mid.attn""" in key] _A: List[Any] = renew_vae_attention_paths(__lowerCamelCase ) _A: List[str] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) return new_checkpoint def lowerCamelCase__ ( a , a , ) -> Union[str, Any]: # Only support V1 _A: Optional[int] = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) _A: Optional[int] = io.BytesIO(r.content ) _A: Dict = OmegaConf.load(__lowerCamelCase ) _A: str = 5_12 _A: Any = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open _A: List[Any] = {} with safe_open(__lowerCamelCase , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): _A: str = f.get_tensor(__lowerCamelCase ) else: _A: Optional[int] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase )["""state_dict"""] # Convert the VAE model. _A: Optional[int] = create_vae_diffusers_config(__lowerCamelCase , image_size=__lowerCamelCase ) _A: Union[str, Any] = custom_convert_ldm_vae_checkpoint(__lowerCamelCase , __lowerCamelCase ) _A: Optional[int] = AutoencoderKL(**__lowerCamelCase ) vae.load_state_dict(__lowerCamelCase ) vae.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') UpperCAmelCase__ : Optional[int] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
121
def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Tuple = [1] for i in range(2 , __lowerCamelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : str = list(range(__lowerCamelCase ) ) # Find permutation while factorials: __UpperCAmelCase : Any = factorials.pop() __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = divmod(__lowerCamelCase , __lowerCamelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
114
0
"""simple docstring""" def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : str = [] if len(_a ) == 1: return [nums.copy()] for _ in range(len(_a ) ): lowerCAmelCase__ : Tuple = nums.pop(0 ) lowerCAmelCase__ : Optional[int] = permute(_a ) for perm in permutations: perm.append(_a ) result.extend(_a ) nums.append(_a ) return result def lowerCamelCase_ ( _a ): """simple docstring""" def backtrack(_a ): if start == len(_a ) - 1: output.append(nums[:] ) else: for i in range(_a , len(_a ) ): lowerCAmelCase__ : Optional[Any] = nums[i], nums[start] backtrack(start + 1 ) lowerCAmelCase__ : Any = nums[i], nums[start] # backtrack lowerCAmelCase__ : Dict = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCamelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
356
class _a : def __init__( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] )-> Tuple: lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : int = None lowerCAmelCase__ : Union[str, Any] = graph self._normalize_graph(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = None def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Union[str, Any]: if sources is int: lowerCAmelCase__ : List[Any] = [sources] if sinks is int: lowerCAmelCase__ : Optional[Any] = [sinks] if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: return lowerCAmelCase__ : Union[str, Any] = sources[0] lowerCAmelCase__ : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(_SCREAMING_SNAKE_CASE ) > 1 or len(_SCREAMING_SNAKE_CASE ) > 1: lowerCAmelCase__ : List[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowerCAmelCase__ : Any = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowerCAmelCase__ : Optional[Any] = max_input_flow lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowerCAmelCase__ : str = max_input_flow lowerCAmelCase__ : Tuple = size - 1 def UpperCAmelCase__( self : Union[str, Any] )-> Union[str, Any]: if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : List[Any] )-> int: lowerCAmelCase__ : int = algorithm(self ) class _a : def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple )-> Union[str, Any]: lowerCAmelCase__ : Tuple = flow_network lowerCAmelCase__ : Dict = flow_network.verticesCount lowerCAmelCase__ : Optional[Any] = flow_network.sourceIndex lowerCAmelCase__ : Optional[Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowerCAmelCase__ : str = flow_network.graph lowerCAmelCase__ : Optional[int] = False def UpperCAmelCase__( self : List[str] )-> Dict: if not self.executed: self._algorithm() lowerCAmelCase__ : Any = True def UpperCAmelCase__( self : Optional[Any] )-> int: pass class _a ( _lowercase): def __init__( self : Any , _SCREAMING_SNAKE_CASE : List[Any] )-> Union[str, Any]: super().__init__(_SCREAMING_SNAKE_CASE ) # use this to save your result lowerCAmelCase__ : Dict = -1 def UpperCAmelCase__( self : Any )-> Optional[Any]: if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class _a ( _lowercase): def __init__( self : Any , _SCREAMING_SNAKE_CASE : List[str] )-> List[str]: super().__init__(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = [[0] * self.verticies_count for i in range(self.verticies_count )] lowerCAmelCase__ : Optional[Any] = [0] * self.verticies_count lowerCAmelCase__ : str = [0] * self.verticies_count def UpperCAmelCase__( self : Any )-> List[Any]: lowerCAmelCase__ : Optional[Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowerCAmelCase__ : Any = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowerCAmelCase__ : str = 0 while i < len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Union[str, Any] = vertices_list[i] lowerCAmelCase__ : Any = self.heights[vertex_index] self.process_vertex(_SCREAMING_SNAKE_CASE ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Optional[Any] = 0 else: i += 1 lowerCAmelCase__ : Optional[Any] = sum(self.preflow[self.source_index] ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Optional[int]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.relabel(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Union[str, Any]: lowerCAmelCase__ : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Any )-> Optional[int]: lowerCAmelCase__ : Optional[int] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowerCAmelCase__ : List[Any] = self.heights[to_index] if min_height is not None: lowerCAmelCase__ : Optional[Any] = min_height + 1 if __name__ == "__main__": lowerCamelCase = [0] lowerCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowerCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowerCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowerCamelCase = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
211
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __lowerCamelCase ( __A , unittest.TestCase): """simple docstring""" UpperCamelCase__ = BertJapaneseTokenizer UpperCamelCase__ = False UpperCamelCase__ = True def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'こんにちは、世界。 \nこんばんは、世界。' _UpperCAmelCase = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.get_input_output_texts(_UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) return text, ids def UpperCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(_UpperCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(_UpperCamelCase ) _UpperCAmelCase = 'こんにちは、世界。\nこんばんは、世界。' _UpperCAmelCase = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _UpperCAmelCase = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_UpperCamelCase , 'wb' ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , 'rb' ) as handle: _UpperCAmelCase = pickle.load(_UpperCamelCase ) _UpperCAmelCase = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCamelCase ( self ): """simple docstring""" try: _UpperCAmelCase = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCamelCase ( self ): """simple docstring""" try: _UpperCAmelCase = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MecabTokenizer(do_lower_case=_UpperCamelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def UpperCamelCase ( self ): """simple docstring""" try: _UpperCAmelCase = MecabTokenizer( do_lower_case=_UpperCamelCase , normalize_text=_UpperCamelCase , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MecabTokenizer(normalize_text=_UpperCamelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(_UpperCamelCase ) _UpperCAmelCase = 'こんにちは、世界。\nこんばんは、世界。' _UpperCAmelCase = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _UpperCAmelCase = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_UpperCamelCase , 'wb' ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , 'rb' ) as handle: _UpperCAmelCase = pickle.load(_UpperCamelCase ) _UpperCAmelCase = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @require_sudachi def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = SudachiTokenizer(do_lower_case=_UpperCamelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = SudachiTokenizer(normalize_text=_UpperCamelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = SudachiTokenizer(trim_whitespace=_UpperCamelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(_UpperCamelCase ) _UpperCAmelCase = 'こんにちは、世界。\nこんばんは、世界。' _UpperCAmelCase = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _UpperCAmelCase = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_UpperCamelCase , 'wb' ) as handle: pickle.dump(_UpperCamelCase , _UpperCamelCase ) with open(_UpperCamelCase , 'rb' ) as handle: _UpperCAmelCase = pickle.load(_UpperCamelCase ) _UpperCAmelCase = tokenizer_new.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @require_jumanpp def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = JumanppTokenizer(do_lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = JumanppTokenizer(normalize_text=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = JumanppTokenizer(trim_whitespace=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] _UpperCAmelCase = {} for i, token in enumerate(_UpperCamelCase ): _UpperCAmelCase = i _UpperCAmelCase = WordpieceTokenizer(vocab=_UpperCamelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) _UpperCAmelCase = tokenizer.subword_tokenizer _UpperCAmelCase = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(_UpperCamelCase , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) _UpperCAmelCase = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(_UpperCamelCase , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) _UpperCAmelCase = tokenizer.encode('ありがとう。' , add_special_tokens=_UpperCamelCase ) _UpperCAmelCase = tokenizer.encode('どういたしまして。' , add_special_tokens=_UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowerCamelCase ( __A , unittest.TestCase): """simple docstring""" UpperCamelCase__ = BertJapaneseTokenizer UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **_UpperCamelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'こんにちは、世界。 \nこんばんは、世界。' _UpperCAmelCase = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) _UpperCAmelCase = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( _UpperCamelCase , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _UpperCAmelCase = {} for i, token in enumerate(_UpperCamelCase ): _UpperCAmelCase = i _UpperCAmelCase = CharacterTokenizer(vocab=_UpperCamelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) _UpperCAmelCase = tokenizer.encode('ありがとう。' , add_special_tokens=_UpperCamelCase ) _UpperCAmelCase = tokenizer.encode('どういたしまして。' , add_special_tokens=_UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 'cl-tohoku/bert-base-japanese' _UpperCAmelCase = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(_UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) _UpperCAmelCase = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(_UpperCamelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
39
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
0
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = (KDPMaDiscreteScheduler,) SCREAMING_SNAKE_CASE__ :int = 10 def __SCREAMING_SNAKE_CASE ( self : Any , **__a : Dict ) -> int: _UpperCamelCase : Tuple = { "num_train_timesteps": 1100, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__a ) return config def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> str: for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: _UpperCamelCase : Tuple = self.scheduler_classes[0] _UpperCamelCase : Union[str, Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCamelCase : List[Any] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase : Any = self.dummy_model() _UpperCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase : List[str] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase : List[str] = scheduler.scale_model_input(__a , __a ) _UpperCamelCase : str = model(__a , __a ) _UpperCamelCase : Optional[int] = scheduler.step(__a , __a , __a ) _UpperCamelCase : Tuple = output.prev_sample _UpperCamelCase : int = torch.sum(torch.abs(__a ) ) _UpperCamelCase : List[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.00_02 ) < 1e-3 def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: if torch_device == "mps": return _UpperCamelCase : Tuple = self.scheduler_classes[0] _UpperCamelCase : int = self.get_scheduler_config() _UpperCamelCase : str = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase : List[str] = self.dummy_model() _UpperCamelCase : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase : List[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) _UpperCamelCase : str = model(__a , __a ) _UpperCamelCase : Any = scheduler.step(__a , __a , __a ) _UpperCamelCase : int = output.prev_sample _UpperCamelCase : Tuple = torch.sum(torch.abs(__a ) ) _UpperCamelCase : Any = torch.mean(torch.abs(__a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: if torch_device == "mps": return _UpperCamelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCamelCase : List[str] = self.get_scheduler_config() _UpperCamelCase : Optional[Any] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) _UpperCamelCase : Union[str, Any] = self.dummy_model() _UpperCamelCase : Dict = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase : Dict = scheduler.scale_model_input(__a , __a ) _UpperCamelCase : Optional[Any] = model(__a , __a ) _UpperCamelCase : Union[str, Any] = scheduler.step(__a , __a , __a ) _UpperCamelCase : Optional[int] = output.prev_sample _UpperCamelCase : int = torch.sum(torch.abs(__a ) ) _UpperCamelCase : str = torch.mean(torch.abs(__a ) ) if str(__a ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3
310
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
1
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = [] _A , _A : int = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _A : List[Any] = result + left + right return input_list def lowerCAmelCase_ ( snake_case_ ): if len(snake_case_ ) <= 1: return input_list _A : Dict = list(snake_case_ ) # iteration for two-way merging _A : Union[str, Any] = 2 while p <= len(snake_case_ ): # getting low, high and middle value for merge-sort of single list for i in range(0,len(snake_case_ ),snake_case_ ): _A : Tuple = i _A : Optional[Any] = i + p - 1 _A : Optional[int] = (low + high + 1) // 2 _A : Dict = merge(snake_case_,snake_case_,snake_case_,snake_case_ ) # final merge of last two parts if p * 2 >= len(snake_case_ ): _A : Dict = i _A : str = merge(snake_case_,0,snake_case_,len(snake_case_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() if user_input == "": _snake_case = [] else: _snake_case = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
26
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _UpperCAmelCase = """sshleifer/bart-tiny-random""" _UpperCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self ): """simple docstring""" return AutoConfig.from_pretrained(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : Tuple = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : int = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : str = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=lowercase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : List[str] = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaises(lowercase ): create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=lowercase , d=lowercase )
140
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class _a ( _lowercase , _lowercase): _a : Optional[Any] = '''resnet''' _a : int = ['''basic''', '''bottleneck'''] def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=3 , _SCREAMING_SNAKE_CASE : List[Any]=64 , _SCREAMING_SNAKE_CASE : Union[str, Any]=[256, 512, 1024, 2048] , _SCREAMING_SNAKE_CASE : Any=[3, 4, 6, 3] , _SCREAMING_SNAKE_CASE : str="bottleneck" , _SCREAMING_SNAKE_CASE : Union[str, Any]="relu" , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : str=None , **_SCREAMING_SNAKE_CASE : List[str] , )-> List[str]: super().__init__(**_SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : List[Any] = embedding_size lowerCAmelCase__ : Tuple = hidden_sizes lowerCAmelCase__ : Union[str, Any] = depths lowerCAmelCase__ : Tuple = layer_type lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : int = downsample_in_first_stage lowerCAmelCase__ : int = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(_SCREAMING_SNAKE_CASE ) + 1 )] lowerCAmelCase__ : Any = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names ) class _a ( _lowercase): _a : Any = version.parse('''1.11''') @property def UpperCAmelCase__( self : Tuple )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__( self : Optional[int] )-> float: return 1E-3
351
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase_ ( _a ): """simple docstring""" def wrapper(*_a , **_a ): lowerCAmelCase__ : List[str] = timeit.default_timer() lowerCAmelCase__ : List[Any] = func(*_a , **_a ) lowerCAmelCase__ : Any = timeit.default_timer() - starttime return delta lowerCAmelCase__ : Any = func.__name__ return wrapper def lowerCamelCase_ ( _a , _a=100 , _a=None ): """simple docstring""" lowerCAmelCase__ : str = [] lowerCAmelCase__ : str = seq_shapes or {} for i in range(_a ): lowerCAmelCase__ : List[str] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_a , _ArrayXD ): lowerCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_a , datasets.Value ): if v.dtype == "string": lowerCAmelCase__ : Dict = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCAmelCase__ : Any = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_a , datasets.Sequence ): while isinstance(_a , datasets.Sequence ): lowerCAmelCase__ : Optional[int] = v.feature lowerCAmelCase__ : str = seq_shapes[k] lowerCAmelCase__ : Any = np.random.rand(*_a ).astype(v.dtype ) lowerCAmelCase__ : int = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase_ ( _a , _a , _a=100 , _a=None ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = generate_examples(_a , num_examples=_a , seq_shapes=_a ) with ArrowWriter(features=_a , path=_a ) as writer: for key, record in dummy_data: lowerCAmelCase__ : Optional[int] = features.encode_example(_a ) writer.write(_a ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) lowerCAmelCase__ : List[Any] = datasets.Dataset.from_file(filename=_a , info=datasets.DatasetInfo(features=_a ) ) return dataset
211
0
"""simple docstring""" from __future__ import annotations import requests lowercase_ = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "new" , lowerCAmelCase__ : list | None = None ) -> dict: __a = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCAmelCase__ ) - valid_terms ) ): __a = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(lowerCAmelCase__ ) __a = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError __a = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCAmelCase__ )} __a = {} for id_ in range(lowerCAmelCase__ ): __a = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
45
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __lowerCamelCase ( lowerCamelCase__ : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCAmelCase : Optional[Any] = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class __lowercase ( a_ ): """simple docstring""" @staticmethod def __A ( A ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=A , required=A , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=A , required=A , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=A , required=A , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=A , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=A , default=A , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=A ) def __init__( self , A , A , A , A , A , *A , ) -> List[Any]: '''simple docstring''' lowerCamelCase = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(F'Loading model {model_type}' ) lowerCamelCase = model_type lowerCamelCase = tf_checkpoint lowerCamelCase = pytorch_dump_output lowerCamelCase = config lowerCamelCase = finetuning_task_name def __A ( self ) -> Union[str, Any]: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) if "ckpt" in self._tf_checkpoint.lower(): lowerCamelCase = self._tf_checkpoint lowerCamelCase = """""" else: lowerCamelCase = self._tf_checkpoint lowerCamelCase = """""" convert_transfo_xl_checkpoint_to_pytorch( A , self._config , self._pytorch_dump_output , A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
66
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Union[str, Any] = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class SCREAMING_SNAKE_CASE_ : pass
327
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } lowercase_ = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } lowercase_ = { "facebook/m2m100_418M": 1_024, } # fmt: off lowercase_ = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = ['input_ids', 'attention_mask'] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__(self , A , A , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<pad>" , A="<unk>" , A="m2m100" , A = None , A=8 , **A , ) -> None: """simple docstring""" _a = {} if sp_model_kwargs is None else sp_model_kwargs _a = language_codes _a = FAIRSEQ_LANGUAGE_CODES[language_codes] _a = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} _a = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A ) for lang_code in fairseq_language_code if self.get_lang_token(A ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A , tgt_lang=A , bos_token=A , eos_token=A , sep_token=A , unk_token=A , pad_token=A , language_codes=A , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A , **A , ) _a = vocab_file _a = load_json(A ) _a = {v: k for k, v in self.encoder.items()} _a = spm_file _a = load_spm(A , self.sp_model_kwargs ) _a = len(self.encoder ) _a = { self.get_lang_token(A ): self.encoder_size + i for i, lang_code in enumerate(A ) } _a = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A )} _a = {v: k for k, v in self.lang_token_to_id.items()} _a = src_lang if src_lang is not None else '''en''' _a = tgt_lang _a = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _a = num_madeup_words @property def a__ (self ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def a__ (self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def a__ (self , A ) -> None: """simple docstring""" _a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ (self , A ) -> List[str]: """simple docstring""" return self.sp_model.encode(A , out_type=A ) def a__ (self , A ) -> Union[str, Any]: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A , self.encoder[self.unk_token] ) def a__ (self , A ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A , self.unk_token ) def a__ (self , A ) -> Dict: """simple docstring""" _a = [] _a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token _a = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def a__ (self , A , A = None , A = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) _a = [1] * len(self.prefix_tokens ) _a = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A )) + suffix_ones return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones def a__ (self , A , A = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ (self ) -> Dict: """simple docstring""" _a = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Dict: """simple docstring""" _a = self.__dict__.copy() _a = None return state def __setstate__(self , A ) -> None: """simple docstring""" _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = load_spm(self.spm_file , self.sp_model_kwargs ) def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" _a = Path(A ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) _a = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _a = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , A ) if os.path.abspath(self.spm_file ) != os.path.abspath(A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A ) elif not os.path.isfile(self.spm_file ): with open(A , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(A ) return (str(A ), str(A )) def a__ (self , A , A = "en" , A = None , A = "ro" , **A , ) -> BatchEncoding: """simple docstring""" _a = src_lang _a = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A , A , **A ) def a__ (self , A , A , A , **A ) -> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _a = src_lang _a = self(A , add_special_tokens=A , **A ) _a = self.get_lang_id(A ) _a = tgt_lang_id return inputs def a__ (self ) -> Optional[Any]: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def a__ (self ) -> Tuple: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ (self , A ) -> None: """simple docstring""" _a = self.get_lang_token(A ) _a = self.lang_token_to_id[lang_token] _a = [self.cur_lang_id] _a = [self.eos_token_id] def a__ (self , A ) -> None: """simple docstring""" _a = self.get_lang_token(A ) _a = self.lang_token_to_id[lang_token] _a = [self.cur_lang_id] _a = [self.eos_token_id] def a__ (self , A ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def a__ (self , A ) -> int: """simple docstring""" _a = self.get_lang_token(A ) return self.lang_token_to_id[lang_token] def lowerCAmelCase (__A , __A): """simple docstring""" _a = sentencepiece.SentencePieceProcessor(**__A) spm.Load(str(__A)) return spm def lowerCAmelCase (__A): """simple docstring""" with open(__A , '''r''') as f: return json.load(__A) def lowerCAmelCase (__A , __A): """simple docstring""" with open(__A , '''w''') as f: json.dump(__A , __A , indent=2)
211
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase ( lowerCAmelCase__ : Dict ) -> Optional[int]: __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) __a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_55.0 __a = image[None].transpose(0 , 3 , 1 , 2 ) __a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ): if isinstance(_a , PIL.Image.Image ): __a = 1 elif isinstance(_a , torch.Tensor ): __a = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}''' ) if isinstance(_a , PIL.Image.Image ): __a = preprocess(_a ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) __a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(_a ).sample __a = torch.clamp(_a , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
11
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowerCamelCase (_a ): _lowercase = (KDPMaDiscreteScheduler,) _lowercase = 10 def snake_case_ ( self: Optional[int],**A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = { 'num_train_timesteps': 1100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**A_ ) return config def snake_case_ ( self: Dict ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def snake_case_ ( self: Dict ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1],[0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=A_,beta_end=A_ ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(A_,A_ ) __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = scheduler.step(A_,A_,A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1E-3 def snake_case_ ( self: int ): '''simple docstring''' if torch_device == "mps": return __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(A_,A_ ) __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = scheduler.step(A_,A_,A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 def snake_case_ ( self: Dict ): '''simple docstring''' if torch_device == "mps": return __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps,device=A_ ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.to(A_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCamelCase = scheduler.scale_model_input(A_,A_ ) __UpperCamelCase = model(A_,A_ ) __UpperCamelCase = scheduler.step(A_,A_,A_ ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(A_ ) ) __UpperCamelCase = torch.mean(torch.abs(A_ ) ) if str(A_ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3
310
import math def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: __UpperCamelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(_lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , _lowercase ): for _ in range(_lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
310
1
'''simple docstring''' import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _snake_case ( lowerCamelCase__ ): def __init__( self , a__ ) -> Any: '''simple docstring''' snake_case_ = data def __iter__( self ) -> Any: '''simple docstring''' for element in self.data: yield element def UpperCamelCase_( snake_case : List[str]=True ): '''simple docstring''' snake_case_ = Accelerator(even_batches=_A ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCamelCase_( snake_case : int , snake_case : int , snake_case : List[Any] , snake_case : Union[str, Any] = False ): '''simple docstring''' if iterable: snake_case_ = DummyIterableDataset(torch.as_tensor(range(_A ) ) ) else: snake_case_ = TensorDataset(torch.as_tensor(range(_A ) ) ) snake_case_ = DataLoader(_A , batch_size=_A ) snake_case_ = accelerator.prepare(_A ) return dl def UpperCamelCase_( snake_case : str , snake_case : Dict , snake_case : Tuple , snake_case : Any , snake_case : Any , ): '''simple docstring''' snake_case_ = create_dataloader(accelerator=_A , dataset_size=_A , batch_size=_A ) snake_case_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCamelCase_( ): '''simple docstring''' snake_case_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _A , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _A , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = create_accelerator(even_batches=_A ) verify_dataloader_batch_sizes( _A , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _A , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = create_accelerator(even_batches=_A ) snake_case_ = torch.nn.Linear(1 , 1 ) snake_case_ = accelerator.prepare(_A ) snake_case_ = create_dataloader(_A , dataset_size=3 , batch_size=1 ) snake_case_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_A ): snake_case_ = ddp_model(batch[0].float() ) snake_case_ = output.sum() loss.backward() batch_idxs.append(_A ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCamelCase_( snake_case : Union[str, Any] ): '''simple docstring''' with warnings.catch_warnings(record=_A ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , _A ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = True snake_case_ = False snake_case_ = create_accelerator(even_batches=_A ) snake_case_ = torch.nn.Linear(1 , 1 ) snake_case_ = accelerator.prepare(_A ) snake_case_ = create_dataloader(_A , dataset_size=3 , batch_size=1 ) snake_case_ = create_dataloader(_A , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_A ): snake_case_ = train_dl.batch_sampler.even_batches snake_case_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCamelCase_( ): '''simple docstring''' snake_case_ = True snake_case_ = False snake_case_ = create_accelerator(even_batches=_A ) snake_case_ = torch.nn.Linear(1 , 1 ) snake_case_ = accelerator.prepare(_A ) create_dataloader(_A , dataset_size=3 , batch_size=1 , iterable=_A ) snake_case_ = create_dataloader(_A , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_A ): snake_case_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCamelCase_( ): '''simple docstring''' snake_case_ = create_accelerator() snake_case_ = torch.nn.Linear(1 , 1 ) snake_case_ = accelerator.prepare(_A ) create_dataloader(_A , dataset_size=3 , batch_size=1 , iterable=_A ) with warnings.catch_warnings(record=_A ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_A ): pass assert issubclass(w[-1].category , _A ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) snake_case_ = accelerator.state.distributed_type snake_case_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_A ) snake_case_ = original_state if __name__ == "__main__": main()
357
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _SCREAMING_SNAKE_CASE : List[Any] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } _SCREAMING_SNAKE_CASE : Any = "▁" class _snake_case ( lowercase_ ): lowerCAmelCase_ : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Tuple = ["input_ids", "attention_mask"] def __init__( self , a__ , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__ = None , **a__ , ) -> None: '''simple docstring''' snake_case_ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) snake_case_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case_ = len(self.sp_model ) - 1 snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , a__ , a__ = None , a__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , a__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(a__ , out_type=a__ ) def lowerCAmelCase__ ( self , a__ ) -> int: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(a__ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a__ ) def lowerCAmelCase__ ( self , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = [] snake_case_ = "" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(a__ ) snake_case_ = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def __getstate__( self ) -> Dict: '''simple docstring''' snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self , a__ ) -> str: '''simple docstring''' snake_case_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
92
0
import argparse import datetime def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]: lowerCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } lowerCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__A ) < 1_1: raise ValueError('''Must be 10 characters long''' ) # Get month lowerCAmelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError('''Month must be between 1 - 12''' ) lowerCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day lowerCAmelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator lowerCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year lowerCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation lowerCAmelCase = datetime.date(int(__A ) , int(__A ) , int(__A ) ) # Start math if m <= 2: lowerCAmelCase = y - 1 lowerCAmelCase = m + 1_2 # maths var lowerCAmelCase = int(str(__A )[:2] ) lowerCAmelCase = int(str(__A )[2:] ) lowerCAmelCase = int(2.6 * m - 5.39 ) lowerCAmelCase = int(c / 4 ) lowerCAmelCase = int(k / 4 ) lowerCAmelCase = int(d + k ) lowerCAmelCase = int(t + u + v + x ) lowerCAmelCase = int(z - (2 * c) ) lowerCAmelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response lowerCAmelCase = f"Your date {date_input}, is a {days[str(__A )]}!" return response if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : str = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) lowercase__ : Union[str, Any] = parser.parse_args() zeller(args.date_input)
338
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'gptj' __lowerCamelCase : List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , A=50_400 , A=2_048 , A=4_096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1E-5 , A=0.02 , A=True , A=50_256 , A=50_256 , A=False , **A , ) -> Tuple: """simple docstring""" _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class __A ( A ): '''simple docstring''' def __init__(self , A , A = "default" , A = None , A = False , ) -> List[str]: """simple docstring""" super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , '''pad_token_id''' , A ): # TODO: how to do that better? _a = 0 @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(A , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a__ (self ) -> int: """simple docstring""" return self._config.n_layer @property def a__ (self ) -> int: """simple docstring""" return self._config.n_head def a__ (self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: """simple docstring""" _a = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def a__ (self ) -> int: """simple docstring""" return 13
211
0
'''simple docstring''' from math import factorial a_ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def a_ ( __snake_case : List[Any] ) -> str: """simple docstring""" if not isinstance(A_ , A_ ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(A_ ) ) def a_ ( __snake_case : List[Any] = 60 , __snake_case : int = 100_0000 ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ) or not isinstance(A_ , A_ ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length lowerCamelCase_ =0 # the cached sizes of the previous chains lowerCamelCase_ ={} for start_chain_element in range(1 , A_ ): # The temporary set will contain the elements of the chain lowerCamelCase_ =set() lowerCamelCase_ =0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase_ =start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(A_ ) chain_set_length += 1 lowerCamelCase_ =digit_factorial_sum(A_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase_ =chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
357
'''simple docstring''' a_ : List[Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a_ : list[bool | None] = [None] * 10_00_00_00 a_ : List[Any] = True a_ : Optional[Any] = False def a_ ( __snake_case : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase_ =chain(next_number(__snake_case ) ) lowerCamelCase_ =number_chain while number < 1000_0000: lowerCamelCase_ =number_chain number *= 10 return number_chain def a_ ( __snake_case : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
6
0
"""simple docstring""" __a = [0, 2, 4, 6, 8] __a = [1, 3, 5, 7, 9] def A_ ( _lowercase, _lowercase, _lowercase, _lowercase ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case_ :Union[str, Any] = 0 for digit in range(10 ): snake_case_ :Any = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _lowercase, _lowercase ) return result snake_case_ :int = 0 for digita in range(10 ): snake_case_ :Optional[int] = digita if (remainder + digita) % 2 == 0: snake_case_ :int = ODD_DIGITS else: snake_case_ :Dict = EVEN_DIGITS for digita in other_parity_digits: snake_case_ :List[str] = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _lowercase, _lowercase, ) return result def A_ ( _lowercase = 9 ): '''simple docstring''' snake_case_ :Any = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_lowercase, 0, [0] * length, _lowercase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
66
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = os.path.join(args.tf_model_dir, """parameters.json""" ) snake_case_ :Any = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(""".pt""" ): snake_case_ :Optional[int] = args.output + """.pt""" snake_case_ :List[str] = OrderedDict() with tf.device("""/CPU:0""" ): snake_case_ :Dict = tf.train.load_checkpoint(args.tf_model_dir ) snake_case_ :str = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case_ :List[Any] = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): snake_case_ :Any = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): snake_case_ :Optional[int] = 8 snake_case_ :List[str] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case_ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :List[str] = torch.tensor(_lowercase ) elif key_name.startswith("""model/moe""" ): snake_case_ :Tuple = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player snake_case_ :Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/softmlp/kernel""" ): snake_case_ :List[Any] = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player snake_case_ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): snake_case_ :Dict = key_name[-9:-7] for i in range(16 ): snake_case_ :str = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) snake_case_ :Tuple = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/mlp""" ): snake_case_ :Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p1/bias""" ): snake_case_ :List[Any] = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player snake_case_ :str = vnp.copy() # same because it is one dimensional snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/kernel""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/bias""" ): snake_case_ :Dict = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player snake_case_ :Any = vnp.copy() # same because it is one dimensional snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/ln""" ): snake_case_ :Union[str, Any] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ :str = """model.blocks.%d.feed_forward.norm.bias""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :int = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): snake_case_ :Dict = """model.blocks.%d.feed_forward.norm.weight""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.startswith("""model/att""" ): snake_case_ :List[str] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): snake_case_ :Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case_ :Dict = state[:, 0, :, :] snake_case_ :int = state[:, 1, :, :] snake_case_ :List[str] = state[:, 2, :, :] snake_case_ :str = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Any = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Optional[int] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :int = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player snake_case_ :int = torch.tensor(_lowercase ) snake_case_ :Optional[Any] = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player snake_case_ :Dict = torch.tensor(_lowercase ) snake_case_ :Dict = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player snake_case_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/o/kernel""" ): snake_case_ :str = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player snake_case_ :str = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ :Any = torch.tensor(_lowercase ) elif key_name.startswith("""model/an""" ): snake_case_ :Optional[int] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ :Any = """model.blocks.%d.self_attn.norm.bias""" % player snake_case_ :Optional[int] = vnp.copy() # same because it is one dimensional snake_case_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): snake_case_ :Union[str, Any] = """model.blocks.%d.self_attn.norm.weight""" % player snake_case_ :Dict = vnp.copy() # same because it is one dimensional snake_case_ :Optional[int] = torch.tensor(_lowercase ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): snake_case_ :List[Any] = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] snake_case_ :Optional[Any] = """model.%s.weight""" % nlayer snake_case_ :Any = vnp.copy() # same in embedded snake_case_ :List[Any] = torch.tensor(_lowercase ) if key_name.startswith("""model/wte""" ): snake_case_ :Tuple = """lm_head.weight""" snake_case_ :List[str] = vnp.copy() # same in embedded snake_case_ :List[Any] = torch.tensor(_lowercase ) elif key_name.startswith("""model/wob""" ): snake_case_ :str = """final_logits_bias""" snake_case_ :Any = vnp.copy() # same in embedded snake_case_ :List[Any] = state.reshape((1, -1) ) snake_case_ :Union[str, Any] = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": snake_case_ :str = """model.last_project.weight""" snake_case_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ :int = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": snake_case_ :Optional[int] = """model.last_project.bias""" snake_case_ :Tuple = vnp.copy() # same because it is one dimensional snake_case_ :Any = torch.tensor(_lowercase ) torch.save(_lowercase, args.output ) if __name__ == "__main__": __a = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __a = parser.parse_args() convert_tf_gptsan_to_pt(args)
66
1
'''simple docstring''' from __future__ import annotations def a ( __a , __a , __a , __a ) -> int: '''simple docstring''' UpperCamelCase__ :Optional[int] = [] UpperCamelCase__ , UpperCamelCase__ :Dict = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCamelCase__ :int = result + left + right return input_list def a ( __a ) -> List[Any]: '''simple docstring''' if len(__a ) <= 1: return input_list UpperCamelCase__ :Any = list(__a ) # iteration for two-way merging UpperCamelCase__ :int = 2 while p <= len(__a ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__a ) , __a ): UpperCamelCase__ :str = i UpperCamelCase__ :Optional[Any] = i + p - 1 UpperCamelCase__ :Optional[int] = (low + high + 1) // 2 UpperCamelCase__ :int = merge(__a , __a , __a , __a ) # final merge of last two parts if p * 2 >= len(__a ): UpperCamelCase__ :Dict = i UpperCamelCase__ :Optional[Any] = merge(__a , 0 , __a , len(__a ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __snake_case = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": __snake_case = [] else: __snake_case = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
358
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __snake_case = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase ( A__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = PRETRAINED_INIT_CONFIGURATION _a = ['input_ids', 'attention_mask'] _a = DistilBertTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_="[UNK]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[PAD]" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): UpperCamelCase__ :int = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) UpperCamelCase__ :Optional[Any] = do_lower_case UpperCamelCase__ :Optional[Any] = strip_accents UpperCamelCase__ :List[Any] = tokenize_chinese_chars UpperCamelCase__ :Any = normalizer_class(**UpperCamelCase_ ) UpperCamelCase__ :int = do_lower_case def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :List[str] = [self.sep_token_id] UpperCamelCase__ :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
219
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = MBartTokenizer __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it _A : List[str] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) _A : Union[str, Any] = vocab_file _A : int = False if not self.vocab_file else True _A : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) _A : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(__lowerCamelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _A : Optional[int] = src_lang if src_lang is not None else "en_XX" _A : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang) _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : str = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Tuple = self.convert_tokens_to_ids(__lowerCamelCase) _A : Dict = tgt_lang_id return inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Any = src_lang _A : int = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = [] _A : List[str] = [self.eos_token_id, self.cur_lang_code] _A : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens) _A : str = self.convert_ids_to_tokens(self.suffix_tokens) _A : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Optional[int] = self.convert_tokens_to_ids(__lowerCamelCase) _A : List[Any] = [] _A : str = [self.eos_token_id, self.cur_lang_code] _A : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _A : int = self.convert_ids_to_tokens(self.suffix_tokens) _A : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase): copyfile(self.vocab_file , __lowerCamelCase) return (out_vocab_file,)
11
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( A_ ): def __init__( self : Tuple , snake_case_ : int , snake_case_ : int , snake_case_ : float , **snake_case_ : Dict ) -> Union[str, Any]: '''simple docstring''' A__ = feature_size A__ = sampling_rate A__ = padding_value A__ = kwargs.pop("padding_side" , "right" ) A__ = kwargs.pop("return_attention_mask" , snake_case_ ) super().__init__(**snake_case_ ) def __magic_name__ ( self : Dict , snake_case_ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , snake_case_ : Union[bool, str, PaddingStrategy] = True , snake_case_ : Optional[int] = None , snake_case_ : bool = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: '''simple docstring''' if isinstance(snake_case_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): A__ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) A__ = processed_features[self.model_input_names[0]] A__ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(snake_case_ ) == 0: if return_attention_mask: A__ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch A__ = required_input[0] if isinstance(snake_case_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. A__ = 0 while len(required_input[index] ) == 0: index += 1 if index < len(snake_case_ ): A__ = required_input[index][0] if return_tensors is None: if is_tf_tensor(snake_case_ ): A__ = "tf" elif is_torch_tensor(snake_case_ ): A__ = "pt" elif isinstance(snake_case_ , (int, float, list, tuple, np.ndarray) ): A__ = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(snake_case_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): A__ = to_numpy(snake_case_ ) else: A__ = [to_numpy(snake_case_ ) for v in value] # Convert padding_strategy in PaddingStrategy A__ = self._get_padding_strategies(padding=snake_case_ , max_length=snake_case_ ) A__ = processed_features[self.model_input_names[0]] A__ = len(snake_case_ ) if not all(len(snake_case_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) A__ = [] for i in range(snake_case_ ): A__ = {k: v[i] for k, v in processed_features.items()} # truncation A__ = self._truncate( snake_case_ , max_length=snake_case_ , pad_to_multiple_of=snake_case_ , truncation=snake_case_ , ) truncated_inputs.append(snake_case_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length A__ = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) A__ = PaddingStrategy.MAX_LENGTH A__ = {} for i in range(snake_case_ ): # padding A__ = self._pad( truncated_inputs[i] , max_length=snake_case_ , padding_strategy=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , ) for key, value in outputs.items(): if key not in batch_outputs: A__ = [] if value.dtype is np.dtype(np.floataa ): A__ = value.astype(np.floataa ) batch_outputs[key].append(snake_case_ ) return BatchFeature(snake_case_ , tensor_type=snake_case_ ) def __magic_name__ ( self : Optional[int] , snake_case_ : Union[Dict[str, np.ndarray], BatchFeature] , snake_case_ : Optional[int] = None , snake_case_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , ) -> dict: '''simple docstring''' A__ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: A__ = len(snake_case_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A__ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A__ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(snake_case_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: A__ = np.ones(len(snake_case_ ) , dtype=np.intaa ) if needs_to_be_padded: A__ = max_length - len(snake_case_ ) if self.padding_side == "right": if return_attention_mask: A__ = np.pad( processed_features["attention_mask"] , (0, difference) ) A__ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) A__ = np.pad( snake_case_ , snake_case_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: A__ = np.pad( processed_features["attention_mask"] , (difference, 0) ) A__ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) A__ = np.pad( snake_case_ , snake_case_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def __magic_name__ ( self : Optional[int] , snake_case_ : Union[Dict[str, np.ndarray], BatchFeature] , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , ) -> Any: '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) A__ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A__ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A__ = len(snake_case_ ) > max_length if needs_to_be_truncated: A__ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: A__ = processed_features["attention_mask"][:max_length] return processed_features def __magic_name__ ( self : str , snake_case_ : Optional[int]=False , snake_case_ : Dict=None ) -> List[str]: '''simple docstring''' if padding is not False: if padding is True: A__ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(snake_case_ , snake_case_ ): A__ = PaddingStrategy(snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): A__ = padding else: A__ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
230
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( A_ ): lowercase__ = ['''image_processor''', '''tokenizer'''] lowercase__ = '''ViTImageProcessor''' lowercase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=None , **snake_case_ : Optional[Any] ) -> List[str]: '''simple docstring''' A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case_ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case_ , snake_case_ ) def __call__( self : int , snake_case_ : Union[str, Any]=None , snake_case_ : int=None , snake_case_ : Dict=None , snake_case_ : int=None , **snake_case_ : List[str] ) -> Union[str, Any]: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: A__ = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if visual_prompt is not None: A__ = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if images is not None: A__ = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if visual_prompt is not None and images is not None: A__ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: A__ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: A__ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def __magic_name__ ( self : Tuple , *snake_case_ : List[str] , **snake_case_ : Optional[int] ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __magic_name__ ( self : Optional[Any] , *snake_case_ : Any , **snake_case_ : List[Any] ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def __magic_name__ ( self : int ) -> Optional[int]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case_ , ) return self.image_processor_class @property def __magic_name__ ( self : int ) -> int: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case_ , ) return self.image_processor
230
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" a :Any = UniSpeechSatForSequenceClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) a :Tuple = downstream_dict['''projector.weight'''] a :List[Any] = downstream_dict['''projector.bias'''] a :Optional[int] = downstream_dict['''model.post_net.linear.weight'''] a :Union[str, Any] = downstream_dict['''model.post_net.linear.bias'''] return model def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): """simple docstring""" a :List[str] = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) a :Dict = downstream_dict['''model.linear.weight'''] a :Any = downstream_dict['''model.linear.bias'''] return model def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" a :Optional[int] = UniSpeechSatForXVector.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) a :Tuple = downstream_dict['''connector.weight'''] a :int = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a :Optional[int] = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] a :str = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] a :List[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] a :str = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] a :int = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] a :List[Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] a :str = downstream_dict['''objective.W'''] return model @torch.no_grad() def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any ): """simple docstring""" a :Dict = torch.load(UpperCAmelCase_ , map_location='''cpu''' ) a :List[str] = checkpoint['''Downstream'''] a :Optional[Any] = UniSpeechSatConfig.from_pretrained(UpperCAmelCase_ ) a :Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ ) a :Dict = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): a :str = convert_classification(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): a :Dict = convert_diarization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif arch.endswith('''ForXVector''' ): a :List[str] = convert_xvector(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: a :Union[str, Any] = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') snake_case : Optional[int] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
94
class a__ ( snake_case__ ): pass class a__ ( snake_case__ ): pass class a__ : def __init__( self ): """simple docstring""" __lowerCAmelCase = [ [], [], [], ] def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(_A ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self ): """simple docstring""" return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class a__ : def __init__( self ): """simple docstring""" __lowerCAmelCase = [] def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if len(self.queue ) == 1_0_0: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.queue: raise UnderFlowError("The queue is empty" ) else: __lowerCAmelCase = min(self.queue ) self.queue.remove(_A ) return data def __str__( self ): """simple docstring""" return str(self.queue ) def _a ( ): __lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(SCREAMING_SNAKE_CASE_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(SCREAMING_SNAKE_CASE_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _a ( ): __lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(SCREAMING_SNAKE_CASE_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(SCREAMING_SNAKE_CASE_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
92
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = "x" ,UpperCamelCase_ = 10**-10 ,UpperCamelCase_ = 1 ,): """simple docstring""" snake_case = symbols(UpperCamelCase__ ) snake_case = lambdify(UpperCamelCase__ ,UpperCamelCase__ ) snake_case = lambdify(UpperCamelCase__ ,diff(UpperCamelCase__ ,UpperCamelCase__ ) ) snake_case = starting_point while True: if diff_function(UpperCamelCase__ ) != 0: snake_case = prev_guess - multiplicity * func(UpperCamelCase__ ) / diff_function( UpperCamelCase__ ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess snake_case = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}''') # Find value of e print( "The root of log(y) - 1 = 0 is ", f'''{newton_raphson('log(y) - 1', 2, variable='y')}''', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f'''{newton_raphson('exp(x) - 1', 10, precision=0.005)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
367
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : Dict = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
213
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowercase = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : int ,**A_ : Any ) -> Any: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A = deprecated_arg[3:] A = not kwargs.pop(A_ ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) A = kwargs.pop('tpu_name' ,self.tpu_name ) A = kwargs.pop('device_idx' ,self.device_idx ) A = kwargs.pop('eager_mode' ,self.eager_mode ) A = kwargs.pop('use_xla' ,self.use_xla ) super().__init__(**A_ ) _lowerCamelCase: str = field( default=_lowercase , metadata={'''help''': '''Name of TPU'''} , ) _lowerCamelCase: int = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) _lowerCamelCase: bool = field(default=_lowercase , metadata={'''help''': '''Benchmark models in eager model.'''} ) _lowerCamelCase: bool = field( default=_lowercase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,['tf'] ) A = None if self.tpu: try: if self.tpu_name: A = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: A = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: A = None return tpu @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) A = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,'GPU' ) A = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] ,'GPU' ) # disable GPU A = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: requires_backends(self ,['tf'] ) return self._setup_tpu is not None @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> "tf.distribute.Strategy": requires_backends(self ,['tf'] ) return self._setup_strategy @property def _SCREAMING_SNAKE_CASE ( self : int ) -> str: requires_backends(self ,['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: requires_backends(self ,['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _SCREAMING_SNAKE_CASE ( self : str ) -> bool: return self.n_gpu > 0
74
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 - _cos) / 2 __a = 1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = (1 + _cos) / 2 __a = -1 - _cos __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = _sin / 2 __a = 0 __a = -ba __a = 1 + alpha __a = -2 * _cos __a = 1 - alpha __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ = 1 / sqrt(2 ) ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 1 - alpha __a = -2 * _cos __a = 1 + alpha __a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = 1 + alpha * big_a __a = -2 * _cos __a = 1 - alpha * big_a __a = 1 + alpha / big_a __a = -2 * _cos __a = 1 - alpha / big_a __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (pmc + aaa) __a = 2 * big_a * mpc __a = big_a * (pmc - aaa) __a = ppmc + aaa __a = -2 * pmpc __a = ppmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 1 / sqrt(2 ) , ) -> IIRFilter: __a = tau * frequency / samplerate __a = sin(a__ ) __a = cos(a__ ) __a = _sin / (2 * q_factor) __a = 10 ** (gain_db / 40) __a = (big_a + 1) - (big_a - 1) * _cos __a = (big_a + 1) + (big_a - 1) * _cos __a = (big_a - 1) - (big_a + 1) * _cos __a = (big_a - 1) + (big_a + 1) * _cos __a = 2 * sqrt(a__ ) * alpha __a = big_a * (ppmc + aaa) __a = -2 * big_a * pmpc __a = big_a * (ppmc - aaa) __a = pmc + aaa __a = 2 * mpc __a = pmc - aaa __a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
6
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = ['''image_processor''', '''tokenizer'''] lowerCAmelCase :Optional[int] = '''BridgeTowerImageProcessor''' lowerCAmelCase :List[str] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCamelCase , _lowerCamelCase): super().__init__(_lowerCamelCase , _lowerCamelCase) def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCAmelCase__ : List[str] = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) # add pixel_values + pixel_mask UpperCAmelCase__ : Optional[Any] = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , do_normalize=_lowerCamelCase , do_center_crop=_lowerCamelCase , **_lowerCamelCase) encoding.update(_lowerCamelCase) return encoding def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase) @property def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.tokenizer.model_input_names UpperCAmelCase__ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
283
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = ['''image_processor''', '''tokenizer'''] lowerCAmelCase :Optional[int] = '''BridgeTowerImageProcessor''' lowerCAmelCase :List[str] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCamelCase , _lowerCamelCase): super().__init__(_lowerCamelCase , _lowerCamelCase) def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCAmelCase__ : List[str] = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) # add pixel_values + pixel_mask UpperCAmelCase__ : Optional[Any] = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , do_normalize=_lowerCamelCase , do_center_crop=_lowerCamelCase , **_lowerCamelCase) encoding.update(_lowerCamelCase) return encoding def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase) @property def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.tokenizer.model_input_names UpperCAmelCase__ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
283
1
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): # Load configuration defined in the metadata file with open(_snake_case ) as metadata_file: SCREAMING_SNAKE_CASE__ : Dict = json.load(_snake_case ) SCREAMING_SNAKE_CASE__ : Dict = LukeConfig(use_entity_aware_attention=_snake_case ,**metadata["""model_config"""] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE__ : int = torch.load(_snake_case ,map_location="""cpu""" ) # Load the entity vocab file SCREAMING_SNAKE_CASE__ : Dict = load_entity_vocab(_snake_case ) SCREAMING_SNAKE_CASE__ : Dict = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE__ : int = AddedToken("""<ent>""" ,lstrip=_snake_case ,rstrip=_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AddedToken("""<ent2>""" ,lstrip=_snake_case ,rstrip=_snake_case ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(_snake_case ) with open(os.path.join(_snake_case ,LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) ,"""w""" ) as f: json.dump(_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : int = LukeTokenizer.from_pretrained(_snake_case ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE__ : Union[str, Any] = state_dict["""embeddings.word_embeddings.weight"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : str = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE__ : List[str] = f'''encoder.layer.{layer_index}.attention.self.''' SCREAMING_SNAKE_CASE__ : int = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ : List[str] = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE__ : Any = state_dict["""entity_embeddings.entity_embeddings.weight"""] SCREAMING_SNAKE_CASE__ : Dict = entity_emb[entity_vocab["""[MASK]"""]] SCREAMING_SNAKE_CASE__ : Optional[Any] = LukeModel(config=_snake_case ).eval() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = model.load_state_dict(_snake_case ,strict=_snake_case ) if not (len(_snake_case ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'''Missing keys {', '.join(_snake_case )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" f''' {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}''' ) # Check outputs SCREAMING_SNAKE_CASE__ : Dict = LukeTokenizer.from_pretrained(_snake_case ,task="""entity_classification""" ) SCREAMING_SNAKE_CASE__ : str = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = (39, 42) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer(_snake_case ,entity_spans=[span] ,add_prefix_space=_snake_case ,return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : Any = model(**_snake_case ) # Verify word hidden states if model_size == "large": SCREAMING_SNAKE_CASE__ : Any = torch.Size((1, 42, 1_024) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base SCREAMING_SNAKE_CASE__ : List[Any] = torch.Size((1, 42, 768) ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,_snake_case ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": SCREAMING_SNAKE_CASE__ : List[str] = torch.Size((1, 1, 1_024) ) SCREAMING_SNAKE_CASE__ : Any = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base SCREAMING_SNAKE_CASE__ : Dict = torch.Size((1, 1, 768) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,_snake_case ,atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(_snake_case ) ) model.save_pretrained(_snake_case ) def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : str = {} with open(_snake_case ,"""r""" ,encoding="""utf-8""" ) as f: for index, line in enumerate(_snake_case ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = line.rstrip().split("""\t""" ) SCREAMING_SNAKE_CASE__ : Dict = index return entity_vocab if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) UpperCAmelCase__ : Any = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
25
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ["pixel_values"] def __init__( self : Any , _lowercase : bool = True , _lowercase : int = 32 , _lowercase : Any=PILImageResampling.BILINEAR , _lowercase : bool = True , **_lowercase : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = size_divisor SCREAMING_SNAKE_CASE__ = resample super().__init__(**_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : int , _lowercase : int , _lowercase : Optional[ChannelDimension] = None , **_lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_image_size(_lowercase ) # Rounds the height and width down to the closest multiple of size_divisor SCREAMING_SNAKE_CASE__ = height // size_divisor * size_divisor SCREAMING_SNAKE_CASE__ = width // size_divisor * size_divisor SCREAMING_SNAKE_CASE__ = resize(_lowercase , (new_h, new_w) , resample=_lowercase , data_format=_lowercase , **_lowercase ) return image def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[ChannelDimension] = None , **_lowercase : str ): """simple docstring""" return rescale(image=_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Tuple , _lowercase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , _lowercase : Optional[bool] = None , _lowercase : Optional[int] = None , _lowercase : int=None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[TensorType, str]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Optional[int] , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = size_divisor if size_divisor is not None else self.size_divisor SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) SCREAMING_SNAKE_CASE__ = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(_lowercase ) for img in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(_lowercase , size_divisor=_lowercase , resample=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(_lowercase , scale=1 / 2_55 ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE__ = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
219
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __A : Dict = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) __A : Any = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) __A : str = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) __A : Optional[int] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) __A : Optional[Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) __A : Optional[int] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) __A : Tuple = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) _UpperCAmelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] _UpperCAmelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase ( _SCREAMING_SNAKE_CASE : int = 100 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize('''hand, expected''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [PokerHand(lowercase__ ) for hand in SORTED_HANDS] _UpperCAmelCase = poker_hands.copy() shuffle(lowercase__ ) _UpperCAmelCase = chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase ( ): '''simple docstring''' _UpperCAmelCase = PokerHand('''2C 4S AS 3D 5C''' ) _UpperCAmelCase = True _UpperCAmelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase ( ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = os.path.abspath(os.path.dirname(lowercase__ ) ) _UpperCAmelCase = os.path.join(lowercase__ , '''poker_hands.txt''' ) with open(lowercase__ ) as file_hand: for line in file_hand: _UpperCAmelCase = line[:14].strip() _UpperCAmelCase = line[15:].strip() _UpperCAmelCase = PokerHand(lowercase__ ), PokerHand(lowercase__ ) _UpperCAmelCase = player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 376
356
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin A__ = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Tuple = SpeechTaTokenizer __lowerCAmelCase : List[Any] = False __lowerCAmelCase : List[str] = True def __lowerCamelCase ( self :Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Tuple = SpeechTaTokenizer(__lowercase ) snake_case__ : Union[str, Any] = AddedToken('''<mask>''' ,lstrip=__lowercase ,rstrip=__lowercase ) snake_case__ : List[Any] = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :List[str] ,__lowercase :str ): snake_case__ : List[str] = '''this is a test''' snake_case__ : Dict = '''this is a test''' return input_text, output_text def __lowerCamelCase ( self :int ,__lowercase :List[Any] ,__lowercase :List[Any]=False ,__lowercase :Dict=2_0 ,__lowercase :Union[str, Any]=5 ): snake_case__ , snake_case__ : Union[str, Any] = self.get_input_output_texts(__lowercase ) snake_case__ : Any = tokenizer.encode(__lowercase ,add_special_tokens=__lowercase ) snake_case__ : List[str] = tokenizer.decode(__lowercase ,clean_up_tokenization_spaces=__lowercase ) return text, ids def __lowerCamelCase ( self :Dict ): snake_case__ : List[Any] = '''<pad>''' snake_case__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) ,__lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :List[str] ): snake_case__ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(vocab_keys[-4] ,'''œ''' ) self.assertEqual(vocab_keys[-2] ,'''<mask>''' ) self.assertEqual(vocab_keys[-1] ,'''<ctc_blank>''' ) self.assertEqual(len(__lowercase ) ,8_1 ) def __lowerCamelCase ( self :List[str] ): self.assertEqual(self.get_tokenizer().vocab_size ,7_9 ) def __lowerCamelCase ( self :List[Any] ): snake_case__ : Optional[int] = self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case__ : int = tokenizer.vocab_size snake_case__ : Any = len(__lowercase ) self.assertNotEqual(__lowercase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case__ : Dict = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] snake_case__ : str = tokenizer.add_tokens(__lowercase ) snake_case__ : Tuple = tokenizer.vocab_size snake_case__ : List[Any] = len(__lowercase ) self.assertNotEqual(__lowercase ,0 ) self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,len(__lowercase ) ) self.assertEqual(__lowercase ,all_size + len(__lowercase ) ) snake_case__ : int = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' ,add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) snake_case__ : List[str] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} snake_case__ : Union[str, Any] = tokenizer.add_special_tokens(__lowercase ) snake_case__ : Optional[Any] = tokenizer.vocab_size snake_case__ : List[str] = len(__lowercase ) self.assertNotEqual(__lowercase ,0 ) self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,len(__lowercase ) ) self.assertEqual(__lowercase ,all_size_a + len(__lowercase ) ) snake_case__ : Optional[int] = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' ,add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def __lowerCamelCase ( self :int ): pass def __lowerCamelCase ( self :Dict ): pass def __lowerCamelCase ( self :Tuple ): snake_case__ : str = self.get_tokenizer() snake_case__ : Dict = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(__lowercase ,[SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) ,[4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] ,) snake_case__ : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase ,[SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) snake_case__ : Tuple = tokenizer.convert_tokens_to_ids(__lowercase ) # fmt: off self.assertListEqual(__lowercase ,[4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on snake_case__ : Any = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase ,[SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def __lowerCamelCase ( self :Any ): # Use custom sequence because this tokenizer does not handle numbers. snake_case__ : Optional[Any] = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off snake_case__ : Tuple = { '''input_ids''': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase ,model_name='''microsoft/speecht5_asr''' ,revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' ,sequences=__lowercase ,)
230
from torch import nn class a ( nn.Module ): def __init__( self :Tuple ,__lowercase :Optional[int] ,__lowercase :int ): super().__init__() snake_case__ : Optional[Any] = class_size snake_case__ : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) snake_case__ : Dict = nn.Linear(__lowercase ,__lowercase ) def __lowerCamelCase ( self :str ,__lowercase :int ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) snake_case__ : Optional[Any] = self.mlp(__lowercase ) return logits
230
1
from math import factorial def SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int: """simple docstring""" return sum(int(lowercase_ ) for x in str(factorial(lowercase_ ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
358
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if "cls_token" in name: A__ = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: A__ = name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: A__ = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: A__ = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: A__ = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: A__ = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: A__ = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: A__ = name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: A__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: A__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: A__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: A__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: A__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: A__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: A__ = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: A__ = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: A__ = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: A__ = name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: A__ = name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split('''.''' ) A__ = int(key_split[1] ) if "decoder_blocks" in key: A__ = config.decoder_hidden_size A__ = '''decoder.decoder_layers.''' if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = config.hidden_size A__ = '''vit.encoder.layer.''' if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] elif "bias" in key: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = ViTMAEConfig() if "large" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 elif "huge" in checkpoint_url: A__ = 14 A__ = 1_280 A__ = 5_120 A__ = 32 A__ = 16 A__ = ViTMAEForPreTraining(lowercase_ ) A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' )['''model'''] A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() A__ = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) A__ = ViTMAEImageProcessor(size=config.image_size ) A__ = image_processor(images=lowercase_ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) A__ = model(**lowercase_ ) A__ = outputs.logits if "large" in checkpoint_url: A__ = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: A__ = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: A__ = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase_ , atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
231
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _a ( __a ): def __init__( self : str , lowercase : pyspark.sql.DataFrame , lowercase : Optional[NamedSplit] = None , lowercase : Optional[Features] = None , lowercase : bool = True , lowercase : str = None , lowercase : bool = False , lowercase : str = None , lowercase : bool = True , lowercase : str = "arrow" , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__( split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , **lowercase , ) UpperCAmelCase = load_from_cache_file UpperCAmelCase = file_format UpperCAmelCase = Spark( df=lowercase , features=lowercase , cache_dir=lowercase , working_dir=lowercase , **lowercase , ) def A ( self : List[str] ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCAmelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
34
"""simple docstring""" import argparse import struct import unittest class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : str = data # Initialize hash values lowercase_ : Optional[int] = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants lowercase_ : Tuple = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] lowercase_ : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def _UpperCAmelCase ( __UpperCamelCase ) -> bytes: '''simple docstring''' lowercase_ : str = B'\x80' + (B'\x00' * (63 - (len(__UpperCamelCase ) + 8) % 64)) lowercase_ : str = struct.pack('>Q' ,(len(__UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def _UpperCAmelCase ( self ) -> None: '''simple docstring''' lowercase_ : Optional[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase_ : Any = list(struct.unpack('>16L' ,__UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 48 lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowercase_ : str = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowercase_ : int = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowercase_ : Optional[Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression lowercase_ : Tuple = self.ror(__UpperCamelCase ,6 ) ^ self.ror(__UpperCamelCase ,11 ) ^ self.ror(__UpperCamelCase ,25 ) lowercase_ : Union[str, Any] = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) lowercase_ : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 lowercase_ : Optional[int] = self.ror(__UpperCamelCase ,2 ) ^ self.ror(__UpperCamelCase ,13 ) ^ self.ror(__UpperCamelCase ,22 ) lowercase_ : Optional[Any] = (a & b) ^ (a & c) ^ (b & c) lowercase_ : Any = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) lowercase_ : str = [a, b, c, d, e, f, g, h] # Modify final values lowercase_ : Dict = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] lowercase_ : Any = ''.join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> None: '''simple docstring''' import hashlib lowercase_ : Union[str, Any] = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(__UpperCamelCase ).hash ,hashlib.shaaaa(__UpperCamelCase ).hexdigest() ) def lowercase__( ): import doctest doctest.testmod() lowercase_ : Tuple = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) lowercase_ : Any = parser.parse_args() lowercase_ : int = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase_ : str = f.read() else: lowercase_ : Optional[int] = bytes(__SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaaa(__SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
213
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Tuple = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """luke""" def __init__( self , A_=50267 , A_=500000 , A_=768 , A_=256 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=True , A_=None , A_=1 , A_=0 , A_=2 , **A_ , )-> int: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = entity_vocab_size UpperCamelCase = hidden_size UpperCamelCase = entity_emb_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_entity_aware_attention UpperCamelCase = classifier_dropout
251
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """facebook/bart-large-mnli""" lowerCAmelCase_ = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) lowerCAmelCase_ = """text_classifier""" lowerCAmelCase_ = AutoTokenizer lowerCAmelCase_ = AutoModelForSequenceClassification lowerCAmelCase_ = ["""text""", ["""text"""]] lowerCAmelCase_ = ["""text"""] def UpperCAmelCase_ ( self )-> str: '''simple docstring''' super().setup() UpperCamelCase = self.model.config UpperCamelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): UpperCamelCase = int(A_ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCAmelCase_ ( self , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = labels return self.pre_processor( [text] * len(A_ ) , [F'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = outputs.logits UpperCamelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
251
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = "altclip_text_model" def __init__( self , __A=25_0002 , __A=1024 , __A=24 , __A=16 , __A=4096 , __A="gelu" , __A=0.1 , __A=0.1 , __A=514 , __A=1 , __A=0.02 , __A=0.02 , __A=1e-05 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=768 , **__A , ): """simple docstring""" super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) lowerCamelCase : Dict = vocab_size lowerCamelCase : List[str] = hidden_size lowerCamelCase : Union[str, Any] = num_hidden_layers lowerCamelCase : Any = num_attention_heads lowerCamelCase : Tuple = hidden_act lowerCamelCase : Optional[int] = intermediate_size lowerCamelCase : Dict = hidden_dropout_prob lowerCamelCase : Tuple = attention_probs_dropout_prob lowerCamelCase : Tuple = max_position_embeddings lowerCamelCase : List[Any] = type_vocab_size lowerCamelCase : List[str] = initializer_range lowerCamelCase : Any = initializer_factor lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Union[str, Any] = position_embedding_type lowerCamelCase : int = use_cache lowerCamelCase : Optional[int] = project_dim class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Any = "altclip_vision_model" def __init__( self , __A=768 , __A=3072 , __A=512 , __A=12 , __A=12 , __A=3 , __A=224 , __A=32 , __A="quick_gelu" , __A=1e-5 , __A=0.0 , __A=0.02 , __A=1.0 , **__A , ): """simple docstring""" super().__init__(**__A ) lowerCamelCase : Optional[Any] = hidden_size lowerCamelCase : List[Any] = intermediate_size lowerCamelCase : int = projection_dim lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : int = num_attention_heads lowerCamelCase : Optional[int] = num_channels lowerCamelCase : int = patch_size lowerCamelCase : List[Any] = image_size lowerCamelCase : Union[str, Any] = initializer_range lowerCamelCase : Union[str, Any] = initializer_factor lowerCamelCase : Optional[Any] = attention_dropout lowerCamelCase : Optional[int] = layer_norm_eps lowerCamelCase : Dict = hidden_act @classmethod def _snake_case ( cls , __A , **__A ): """simple docstring""" cls._set_token_in_kwargs(__A ) lowerCamelCase , lowerCamelCase : str = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": lowerCamelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__A , **__A ) class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : str = "altclip" __A : Union[str, Any] = True def __init__( self , __A=None , __A=None , __A=768 , __A=2.6592 , **__A ): """simple docstring""" lowerCamelCase : Any = kwargs.pop("text_config_dict" , __A ) lowerCamelCase : str = kwargs.pop("vision_config_dict" , __A ) super().__init__(**__A ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowerCamelCase : int = {} # This is the complete result when using `text_config_dict`. lowerCamelCase : List[str] = AltCLIPTextConfig(**__A ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowerCamelCase : int = ( F"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ F"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: lowerCamelCase : int = ( F"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ F"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(__A ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowerCamelCase : Union[str, Any] = {} # This is the complete result when using `vision_config_dict`. lowerCamelCase : int = AltCLIPVisionConfig(**__A ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowerCamelCase : str = { str(__A ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowerCamelCase : Union[str, Any] = ( F"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ F"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: lowerCamelCase : List[str] = ( F"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ F"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(__A ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowerCamelCase : List[str] = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: lowerCamelCase : List[str] = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) lowerCamelCase : List[Any] = AltCLIPTextConfig(**__A ) lowerCamelCase : Tuple = AltCLIPVisionConfig(**__A ) lowerCamelCase : Tuple = projection_dim lowerCamelCase : Tuple = logit_scale_init_value lowerCamelCase : Tuple = 1.0 @classmethod def _snake_case ( cls , __A , __A , **__A ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = copy.deepcopy(self.__dict__ ) lowerCamelCase : List[Any] = self.text_config.to_dict() lowerCamelCase : int = self.vision_config.to_dict() lowerCamelCase : Dict = self.__class__.model_type return output
283
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
283
1
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def a__ ( lowerCAmelCase__ ) -> Any: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowerCAmelCase__ ): return ext raise Exception( F"""Unable to determine file format from file extension {path}. """ F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Dict = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCAmelCase__ : List[str] = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format UpperCAmelCase__ : Optional[Any] = PipelineDataFormat.from_str( format=lowerCAmelCase__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowerCAmelCase__ , lowerCAmelCase__ ) class lowerCamelCase_ ( __a ): def __init__( self : List[Any] , _A : Pipeline , _A : PipelineDataFormat ): '''simple docstring''' UpperCAmelCase__ : Tuple = nlp UpperCAmelCase__ : Optional[int] = reader @staticmethod def lowercase_ ( _A : ArgumentParser ): '''simple docstring''' UpperCAmelCase__ : Dict = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''' ) run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''' ) run_parser.add_argument('''--input''' , type=_A , help='''Path to the file to use for inference''' ) run_parser.add_argument('''--output''' , type=_A , help='''Path to the file that will be used post to write results.''' ) run_parser.add_argument('''--model''' , type=_A , help='''Name or path to the model to instantiate.''' ) run_parser.add_argument('''--config''' , type=_A , help='''Name or path to the model\'s config to instantiate.''' ) run_parser.add_argument( '''--tokenizer''' , type=_A , help='''Name of the tokenizer to use. (default: same as the model name)''' ) run_parser.add_argument( '''--column''' , type=_A , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=_A , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=_A , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''' ) run_parser.set_defaults(func=_A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self._nlp, [] for entry in self._reader: UpperCAmelCase__ : Dict = nlp(**_A ) if self._reader.is_multi_columns else nlp(_A ) if isinstance(_A , _A ): outputs.append(_A ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCAmelCase__ : Any = self._reader.save_binary(_A ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(_A )
299
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
1
'''simple docstring''' _lowerCamelCase : List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> List[str]: """simple docstring""" # Return True if there is node that has not iterated. UpperCamelCase = [False] * len(A__ ) UpperCamelCase = [s] UpperCamelCase = True while queue: UpperCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A__ ) UpperCamelCase = True UpperCamelCase = u return visited[t] def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" UpperCamelCase = [-1] * (len(A__ )) UpperCamelCase = 0 UpperCamelCase = [] UpperCamelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(A__ , A__ , A__ , A__ ): UpperCamelCase = float('Inf' ) UpperCamelCase = sink while s != source: # Find the minimum value in select path UpperCamelCase = min(A__ , graph[parent[s]][s] ) UpperCamelCase = parent[s] max_flow += path_flow UpperCamelCase = sink while v != source: UpperCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase = parent[v] for i in range(len(A__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
28
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) UpperCAmelCase = """pytorch_model.bin""" UpperCAmelCase = """pytorch_model.bin.index.json""" UpperCAmelCase = """adapter_config.json""" UpperCAmelCase = """adapter_model.bin""" UpperCAmelCase = """adapter_model.safetensors""" UpperCAmelCase = """tf_model.h5""" UpperCAmelCase = """tf_model.h5.index.json""" UpperCAmelCase = """model.ckpt""" UpperCAmelCase = """flax_model.msgpack""" UpperCAmelCase = """flax_model.msgpack.index.json""" UpperCAmelCase = """model.safetensors""" UpperCAmelCase = """model.safetensors.index.json""" UpperCAmelCase = """config.json""" UpperCAmelCase = """preprocessor_config.json""" UpperCAmelCase = FEATURE_EXTRACTOR_NAME UpperCAmelCase = """generation_config.json""" UpperCAmelCase = """modelcard.json""" UpperCAmelCase = """▁""" UpperCAmelCase = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility UpperCAmelCase = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. UpperCAmelCase = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] UpperCAmelCase = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Optional[Any]: """simple docstring""" if version.parse(SCREAMING_SNAKE_CASE ) < version.parse(SCREAMING_SNAKE_CASE ): if "dev" in min_version: snake_case_ = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: snake_case_ = f'''This example requires a minimum version of {min_version},''' error_message += f''' but the version found is {__version__}.\n''' raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
353
# Function to print upper half of diamond (pyramid) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" for i in range(0 , SCREAMING_SNAKE_CASE ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Dict: """simple docstring""" for i in range(SCREAMING_SNAKE_CASE , 0 , -1 ): for _ in range(SCREAMING_SNAKE_CASE , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(SCREAMING_SNAKE_CASE ) # upper half reverse_floyd(SCREAMING_SNAKE_CASE ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") UpperCAmelCase = 1 while K: UpperCAmelCase = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) UpperCAmelCase = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
267
0