code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , "tf_padding" ) ) self.parent.assertTrue(hasattr(snake_case , "depth_multiplier" ) ) class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :List[str] , snake_case :Dict=13 , snake_case :Optional[int]=3 , snake_case :Any=32 , snake_case :Any=0.25 , snake_case :Union[str, Any]=8 , snake_case :List[Any]=8 , snake_case :List[Any]=6 , snake_case :Dict=32 , snake_case :Dict=True , snake_case :Optional[Any]=True , snake_case :Tuple=True , snake_case :Tuple="relu6" , snake_case :List[Any]=1_280 , snake_case :Optional[Any]=0.1 , snake_case :int=0.02 , snake_case :Optional[Any]=True , snake_case :List[str]=True , snake_case :List[str]=10 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Union[str, Any] = parent A_ : Tuple = batch_size A_ : str = num_channels A_ : Tuple = image_size A_ : List[str] = depth_multiplier A_ : str = depth_divisible_by A_ : Union[str, Any] = min_depth A_ : Optional[int] = expand_ratio A_ : Dict = tf_padding A_ : List[str] = output_stride A_ : Tuple = first_layer_is_expansion A_ : Optional[Any] = finegrained_output A_ : Dict = hidden_act A_ : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) A_ : Tuple = classifier_dropout_prob A_ : List[Any] = use_labels A_ : Tuple = is_training A_ : Optional[int] = num_labels A_ : Tuple = initializer_range A_ : Union[str, Any] = scope def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Optional[Any] = None A_ : Optional[int] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.num_labels ) A_ : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :str , snake_case :List[str] , snake_case :str , snake_case :Dict ): '''simple docstring''' A_ : List[Any] = MobileNetVaModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : Any = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[int] , snake_case :Optional[int] , snake_case :Optional[Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : Dict = MobileNetVaForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : List[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :int , snake_case :Dict , snake_case :int , snake_case :List[Any] ): '''simple docstring''' A_ : Tuple = self.num_labels A_ : List[str] = MobileNetVaForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() A_ : Any = model(snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) A_ : Union[str, Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Any = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ : Any = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Any = MobileNetVaModelTester(self ) A_ : List[str] = MobileNetVaConfigTester(self , config_class=snake_case , has_text_modality=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Tuple = model_class(snake_case ) A_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Any = [*signature.parameters.keys()] A_ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' def check_hidden_states_output(snake_case :List[Any] , snake_case :Union[str, Any] , snake_case :str ): A_ : int = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): A_ : Dict = model(**self._prepare_for_class(snake_case , snake_case ) ) A_ : Union[str, Any] = outputs.hidden_states A_ : List[str] = 16 self.assertEqual(len(snake_case ) , snake_case ) A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Any = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Dict = True check_hidden_states_output(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = MobileNetVaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Union[str, Any]: A_ : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Dict = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(snake_case ) A_ : int = self.default_image_processor A_ : Optional[Any] = prepare_img() A_ : Union[str, Any] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**snake_case ) # verify the logits A_ : Optional[int] = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[Any] = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) A_ : Tuple = model.to(snake_case ) A_ : str = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) A_ : Tuple = prepare_img() A_ : str = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[Any] = model(**snake_case ) A_ : Any = outputs.logits # verify the logits A_ : Any = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , snake_case ) A_ : Tuple = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case , atol=1e-4 ) )
300
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , lowercase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList(lowercase ) def A ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : Union[torch.Tensor, float, int] , lowercase : torch.Tensor , lowercase : List[torch.tensor] , lowercase : List[float] , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[torch.Tensor] = None , lowercase : Optional[Dict[str, Any]] = None , lowercase : bool = False , lowercase : bool = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowercase , lowercase , self.nets ) ): _snake_case , _snake_case = controlnet( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) # merge samples if i == 0: _snake_case , _snake_case = down_samples, mid_sample else: _snake_case = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase , lowercase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A ( self : Dict , lowercase : Union[str, os.PathLike] , lowercase : bool = True , lowercase : Callable = None , lowercase : bool = False , lowercase : Optional[str] = None , ): '''simple docstring''' _snake_case = 0 _snake_case = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase , is_main_process=lowercase , save_function=lowercase , safe_serialization=lowercase , variant=lowercase , ) idx += 1 _snake_case = model_path_to_save + f'''_{idx}''' @classmethod def A ( cls : Any , lowercase : Optional[Union[str, os.PathLike]] , **lowercase : List[str] ): '''simple docstring''' _snake_case = 0 _snake_case = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _snake_case = pretrained_model_path while os.path.isdir(lowercase ): _snake_case = ControlNetModel.from_pretrained(lowercase , **lowercase ) controlnets.append(lowercase ) idx += 1 _snake_case = pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(lowercase )} controlnets loaded from {pretrained_model_path}.''' ) if len(lowercase ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(lowercase )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(lowercase )
282
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class snake_case_ ( __A ): __A : Dict = (DDIMParallelScheduler,) __A : int = (("eta", 0.0), ("num_inference_steps", 50)) def __UpperCamelCase ( self : Optional[Any] , **lowercase_ : str ) -> Union[str, Any]: lowercase__ : Dict = { "num_train_timesteps": 10_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowercase_ ) return config def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[Any] ) -> int: lowercase__ : Any = self.scheduler_classes[0] lowercase__ : Any = self.get_scheduler_config(**lowercase_ ) lowercase__ : Optional[int] = scheduler_class(**lowercase_ ) lowercase__ , lowercase__ : Any = 10, 0.0 lowercase__ : List[str] = self.dummy_model() lowercase__ : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for t in scheduler.timesteps: lowercase__ : List[Any] = model(lowercase_ , lowercase_ ) lowercase__ : str = scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def __UpperCamelCase ( self : str ) -> Dict: for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) lowercase__ : List[str] = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config(steps_offset=1 ) lowercase__ : List[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def __UpperCamelCase ( self : List[str] ) -> Dict: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def __UpperCamelCase ( self : str ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def __UpperCamelCase ( self : int ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> List[str]: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: for t in [1, 10, 49]: self.check_over_forward(time_step=lowercase_ ) def __UpperCamelCase ( self : int ) -> List[Any]: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=lowercase_ , num_inference_steps=lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[Any]: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase_ , eta=lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Optional[int] = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1E-5 def __UpperCamelCase ( self : Tuple ) -> Dict: lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Optional[int] = self.get_scheduler_config() lowercase__ : str = scheduler_class(**lowercase_ ) lowercase__ , lowercase__ : Dict = 10, 0.0 scheduler.set_timesteps(lowercase_ ) lowercase__ : int = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : Optional[Any] = self.dummy_sample_deter + 0.1 lowercase__ : int = self.dummy_sample_deter - 0.1 lowercase__ : Any = samplea.shape[0] lowercase__ : Any = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase__ : List[Any] = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ ) lowercase__ : Any = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase__ : List[Any] = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase_ ) lowercase__ : Union[str, Any] = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : List[str] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def __UpperCamelCase ( self : List[str] ) -> Dict: lowercase__ : Dict = self.full_loop() lowercase__ : Dict = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def __UpperCamelCase ( self : List[str] ) -> Tuple: lowercase__ : List[str] = self.full_loop(prediction_type="v_prediction" ) lowercase__ : List[str] = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : str = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 lowercase__ : Optional[Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) lowercase__ : int = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def __UpperCamelCase ( self : List[Any] ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 lowercase__ : List[Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) lowercase__ : str = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
1
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : int = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" ) if "model" in sd.keys(): lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] # pop unnecessary weights lowerCAmelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowerCAmelCase : Any = sd.pop(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowerCAmelCase : Dict = sd[key] # We split QKV in separate Q,K,V lowerCAmelCase : Optional[Any] = key.replace(".qkv_proj." , ".q_proj." ) lowerCAmelCase : str = key.replace(".qkv_proj." , ".k_proj." ) lowerCAmelCase : Tuple = key.replace(".qkv_proj." , ".v_proj." ) lowerCAmelCase : List[str] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = torch.split(SCREAMING_SNAKE_CASE , depth // 3 , dim=0 ) lowerCAmelCase : List[Any] = q lowerCAmelCase : str = k lowerCAmelCase : Any = v del sd[key] return sd @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' lowerCAmelCase : Any = load_checkpoint(SCREAMING_SNAKE_CASE ) if config is not None: lowerCAmelCase : Optional[Any] = OPTConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Optional[int] = OPTConfig() lowerCAmelCase : Any = OPTModel(SCREAMING_SNAKE_CASE ).half().eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check results Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') lowerCAmelCase__ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
108
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
78
0
def SCREAMING_SNAKE_CASE ( lowercase_ = 50 ) -> int: """simple docstring""" A__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
231
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : str = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
231
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever A_ : Dict = logging.getLogger(__name__) class _a (A__ ): '''simple docstring''' def __init__( self , A__ , A__ , A__ , A__=None ): super().__init__( A__ , question_encoder_tokenizer=A__ , generator_tokenizer=A__ , index=A__ , init_retrieval=A__ , ) A__ : int = None def __A ( self , A__ ): logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually A__ : Optional[int] = self._infer_socket_ifname() # avoid clash with the NCCL port A__ : Dict = str(distributed_port + 1 ) A__ : Tuple = dist.new_group(ranks=A__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __A ( self ): return dist.get_rank(group=self.process_group ) == 0 def __A ( self , A__ , A__ , A__=torch.floataa ): A__ : Optional[Any] = torch.empty(A__ , dtype=A__ ) dist.scatter(A__ , src=0 , scatter_list=A__ , group=self.process_group ) return target_tensor def __A ( self ): A__ : List[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names A__ : Dict = next((addr for addr in addrs if addr.startswith("""e""" )) , A__ ) return ifname def __A ( self , A__ , A__ ): # single GPU training if not dist.is_initialized(): A__ , A__ : int = self._main_retrieve(A__ , A__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A__ ) # distributed training A__ : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic A__ : Optional[Any] = None if self._is_main(): A__ : str = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(A__ )] dist.gather(torch.tensor(A__ ) , dst=0 , gather_list=A__ , group=self.process_group ) # scatter logic A__ : Union[str, Any] = question_hidden_states.shape[0] A__ : Union[str, Any] = [] A__ : Optional[int] = [] if self._is_main(): assert len(A__ ) == world_size A__ , A__ : str = self._main_retrieve(torch.cat(A__ ).numpy() , A__ ) A__ , A__ : Tuple = torch.tensor(A__ ), torch.tensor(A__ ) A__ : List[Any] = self._chunk_tensor(A__ , A__ ) A__ : Tuple = self._chunk_tensor(A__ , A__ ) A__ : str = self._scattered(A__ , [n_queries, n_docs] , target_type=torch.intaa ) A__ : List[Any] = self._scattered(A__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A__ )
192
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a_ : List[Any] = get_logger(__name__) class _snake_case ( enum.Enum ): _lowercase : Any = '''all_checks''' _lowercase : str = '''basic_checks''' _lowercase : str = '''no_checks''' class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None): if expected_checksums is None: logger.info('Unable to verify checksums.') return if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise ExpectedMoreDownloadedFiles(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise UnexpectedDownloadedFile(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) SCREAMING_SNAKE_CASE = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE = ' for ' + verification_name if verification_name is not None else '' if len(_UpperCAmelCase) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error') logger.info('All the checksums matched successfully' + for_verification_name) class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass class _snake_case ( A__ ): pass def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if expected_splits is None: logger.info('Unable to verify splits sizes.') return if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise ExpectedMoreSplits(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) if len(set(_UpperCAmelCase) - set(_UpperCAmelCase)) > 0: raise UnexpectedSplits(str(set(_UpperCAmelCase) - set(_UpperCAmelCase))) SCREAMING_SNAKE_CASE = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_UpperCAmelCase) > 0: raise NonMatchingSplitsSizesError(str(_UpperCAmelCase)) logger.info('All the splits matched successfully.') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = True): if record_checksum: SCREAMING_SNAKE_CASE = shaaaa() with open(_UpperCAmelCase , 'rb') as f: for chunk in iter(lambda: f.read(1 << 20) , B''): m.update(_UpperCAmelCase) SCREAMING_SNAKE_CASE = m.hexdigest() else: SCREAMING_SNAKE_CASE = None return {"num_bytes": os.path.getsize(_UpperCAmelCase), "checksum": checksum} def lowerCamelCase__ (_UpperCAmelCase): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
137
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : Tuple = logging.get_logger(__name__) def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ): """simple docstring""" UpperCamelCase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase : Tuple = '''''' else: UpperCamelCase : Any = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase : List[str] = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) UpperCamelCase : Any = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase : int = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase : str = in_proj_bias[: config.hidden_size] UpperCamelCase : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase : List[Any] = in_proj_bias[-config.hidden_size :] def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : int = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Union[str, Any] = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = val def a ( ): """simple docstring""" UpperCamelCase : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase : Optional[int] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any]=True ): """simple docstring""" UpperCamelCase : Tuple = ViTConfig() # patch_size if model_name[-1] == "8": UpperCamelCase : Any = 8 # set labels if required if not base_model: UpperCamelCase : List[Any] = 1_0_0_0 UpperCamelCase : str = '''huggingface/label-files''' UpperCamelCase : Any = '''imagenet-1k-id2label.json''' UpperCamelCase : Any = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase : int = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCamelCase : Any = idalabel UpperCamelCase : int = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCamelCase : Tuple = 3_8_4 UpperCamelCase : Dict = 1_5_3_6 UpperCamelCase : int = 1_2 UpperCamelCase : Optional[Any] = 6 # load original model from torch hub UpperCamelCase : List[str] = torch.hub.load('''facebookresearch/dino:main''' , SCREAMING_SNAKE_CASE_ ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase : Tuple = original_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model if base_model: UpperCamelCase : Optional[Any] = ViTModel(SCREAMING_SNAKE_CASE_ , add_pooling_layer=SCREAMING_SNAKE_CASE_ ).eval() else: UpperCamelCase : List[Any] = ViTForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by ViTImageProcessor UpperCamelCase : str = ViTImageProcessor() UpperCamelCase : Optional[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCamelCase : Union[str, Any] = encoding['''pixel_values'''] UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) if base_model: UpperCamelCase : Optional[Any] = original_model(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: UpperCamelCase : str = original_model(SCREAMING_SNAKE_CASE_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) __UpperCAmelCase : List[str] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
370
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Union[str, Any] = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
315
0
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase = 13 , UpperCamelCase = 64 , UpperCamelCase = 2 , UpperCamelCase = 3 , UpperCamelCase = 3 , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = 128 , UpperCamelCase=[16, 32, 64, 128] , UpperCamelCase = 7 , UpperCamelCase = 4 , UpperCamelCase = 37 , UpperCamelCase = "gelu" , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 10 , UpperCamelCase = 0.02 , UpperCamelCase = 2 , UpperCamelCase = 1 , UpperCamelCase = 128 , UpperCamelCase = [2, 2, 2, 2] , UpperCamelCase = 2 , UpperCamelCase = 2 , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = encoder_stride lowerCamelCase_ = num_attention_outputs lowerCamelCase_ = embed_dim lowerCamelCase_ = embed_dim + 1 lowerCamelCase_ = resolution lowerCamelCase_ = depths lowerCamelCase_ = hidden_sizes lowerCamelCase_ = dim lowerCamelCase_ = mlp_expansion_ratio def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerModel(config=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowerCamelCase = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerModelTester(self ) lowerCamelCase_ = ConfigTester( self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) if hasattr(self.model_tester , "encoder_seq_length" ): lowerCamelCase_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowerCamelCase_ = seq_length * self.model_tester.chunk_length else: lowerCamelCase_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCamelCase_ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCamelCase , (list, tuple) ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "decoder_seq_length" , UpperCamelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEfficientFormerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "encoder_seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "key_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "chunk_length" , UpperCamelCase ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowerCamelCase_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def snake_case ( self ): """simple docstring""" # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCamelCase_ = model_class(UpperCamelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCamelCase_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCamelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCamelCase_ = model(UpperCamelCase ) self.assertTrue(outputs_dict is not None ) def __snake_case ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="tf" ) # forward pass lowerCamelCase_ = model(**UpperCamelCase , training=UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="tf" ) # forward pass lowerCamelCase_ = model(**UpperCamelCase , training=UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
55
'''simple docstring''' import copy import re class A__ : A__ = 'hp' A__ = {} A__ = None @classmethod def A ( cls : Optional[Any] , _a : Optional[Any] , _a : Any ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =prefix _SCREAMING_SNAKE_CASE =defaults cls.build_naming_info() @staticmethod def A ( _a : Optional[Any] , _a : List[Any] ) -> Any: '''simple docstring''' if len(_a ) == 0: return "" _SCREAMING_SNAKE_CASE =None if any(char.isdigit() for char in word ): raise Exception(f"Parameters should not contain numbers: '{word}' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_a ) + 1 ): _SCREAMING_SNAKE_CASE =word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE =prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_a : str ): _SCREAMING_SNAKE_CASE ='' while integer != 0: _SCREAMING_SNAKE_CASE =chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s _SCREAMING_SNAKE_CASE =0 while True: _SCREAMING_SNAKE_CASE =word + '#' + int_to_alphabetic(_a ) if sword in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE =sword break _SCREAMING_SNAKE_CASE =short_word _SCREAMING_SNAKE_CASE =word return short_word @staticmethod def A ( _a : Optional[Any] , _a : int ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =param_name.split('_' ) _SCREAMING_SNAKE_CASE =[TrialShortNamer.shortname_for_word(_a , _a ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _SCREAMING_SNAKE_CASE =['', '_'] for separator in separators: _SCREAMING_SNAKE_CASE =separator.join(_a ) if shortname not in info["reverse_short_param"]: _SCREAMING_SNAKE_CASE =shortname _SCREAMING_SNAKE_CASE =param_name return shortname return param_name @staticmethod def A ( _a : Dict , _a : int ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TrialShortNamer.shortname_for_key(_a , _a ) _SCREAMING_SNAKE_CASE =short_name _SCREAMING_SNAKE_CASE =param_name @classmethod def A ( cls : Optional[int] ) -> Tuple: '''simple docstring''' if cls.NAMING_INFO is not None: return _SCREAMING_SNAKE_CASE ={ 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } _SCREAMING_SNAKE_CASE =list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_a , _a ) _SCREAMING_SNAKE_CASE =info @classmethod def A ( cls : List[Any] , _a : int ) -> int: '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None _SCREAMING_SNAKE_CASE =[copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _SCREAMING_SNAKE_CASE =cls.NAMING_INFO['short_param'][k] if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =1 if v else 0 _SCREAMING_SNAKE_CASE ='' if isinstance(_a , (int, float) ) else '-' _SCREAMING_SNAKE_CASE =f"{key}{sep}{v}" name.append(_a ) return "_".join(_a ) @classmethod def A ( cls : Optional[Any] , _a : List[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =repr[len(cls.PREFIX ) + 1 :] if repr == "": _SCREAMING_SNAKE_CASE =[] else: _SCREAMING_SNAKE_CASE =repr.split('_' ) _SCREAMING_SNAKE_CASE ={} for value in values: if "-" in value: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =value.split('-' ) else: _SCREAMING_SNAKE_CASE =re.sub('[0-9.]' , '' , _a ) _SCREAMING_SNAKE_CASE =float(re.sub('[^0-9.]' , '' , _a ) ) _SCREAMING_SNAKE_CASE =cls.NAMING_INFO['reverse_short_param'][p_k] _SCREAMING_SNAKE_CASE =p_v for k in cls.DEFAULTS: if k not in parameters: _SCREAMING_SNAKE_CASE =cls.DEFAULTS[k] return parameters
47
0
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase__ ( lowercase ): def __init__( self : Optional[Any] ,*lowerCamelCase__ : Any ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : str=None ,**lowerCamelCase__ : List[Any] ): '''simple docstring''' super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Any = eval_examples _UpperCamelCase : Optional[int] = post_process_function def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Optional[Dataset] = None ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Optional[List[str]] = None ,lowerCamelCase__ : str = "eval" ,**lowerCamelCase__ : Any ,): '''simple docstring''' _UpperCamelCase : Optional[int] = gen_kwargs.copy() _UpperCamelCase : int = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) _UpperCamelCase : Union[str, Any] = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) _UpperCamelCase : str = gen_kwargs _UpperCamelCase : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset _UpperCamelCase : Tuple = self.get_eval_dataloader(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : Dict = self.compute_metrics _UpperCamelCase : str = None _UpperCamelCase : Optional[int] = time.time() _UpperCamelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCamelCase : Any = eval_loop( lowerCamelCase__ ,description='Evaluation' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=lowerCamelCase__ ,metric_key_prefix=lowerCamelCase__ ,) finally: _UpperCamelCase : Optional[int] = compute_metrics _UpperCamelCase : str = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowerCamelCase__ ,lowerCamelCase__ ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _UpperCamelCase : int = self.post_process_function(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : int = self.compute_metrics(lowerCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): _UpperCamelCase : List[Any] = metrics.pop(lowerCamelCase__ ) metrics.update(output.metrics ) else: _UpperCamelCase : Tuple = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _UpperCamelCase : Union[str, Any] = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,lowerCamelCase__ ) return metrics def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Dict=None ,lowerCamelCase__ : str = "test" ,**lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : int = gen_kwargs.copy() _UpperCamelCase : List[Any] = self.get_test_dataloader(lowerCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : str = self.compute_metrics _UpperCamelCase : int = None _UpperCamelCase : int = time.time() _UpperCamelCase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCamelCase : Optional[Any] = eval_loop( lowerCamelCase__ ,description='Prediction' ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=lowerCamelCase__ ,metric_key_prefix=lowerCamelCase__ ,) finally: _UpperCamelCase : Tuple = compute_metrics _UpperCamelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowerCamelCase__ ,lowerCamelCase__ ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) ) if self.post_process_function is None or self.compute_metrics is None: return output _UpperCamelCase : Dict = self.post_process_function(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,'predict' ) _UpperCamelCase : Optional[Any] = self.compute_metrics(lowerCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): _UpperCamelCase : Dict = metrics.pop(lowerCamelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=lowerCamelCase__ )
353
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = DanceDiffusionPipeline lowercase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase__ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } lowercase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : str = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=16000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=lowerCamelCase__ ,use_timestep_embedding=lowerCamelCase__ ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _UpperCamelCase : int = IPNDMScheduler() _UpperCamelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int=0 ): '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): _UpperCamelCase : Union[str, Any] = torch.manual_seed(lowerCamelCase__ ) else: _UpperCamelCase : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCamelCase : str = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : List[str] = self.get_dummy_components() _UpperCamelCase : int = DanceDiffusionPipeline(**lowerCamelCase__ ) _UpperCamelCase : List[str] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCamelCase : List[Any] = pipe(**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = output.audios _UpperCamelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCamelCase : Dict = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = torch_device _UpperCamelCase : Dict = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _UpperCamelCase : str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = pipe(generator=lowerCamelCase__ ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _UpperCamelCase : Optional[int] = output.audios _UpperCamelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase : Tuple = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = torch_device _UpperCamelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _UpperCamelCase : Any = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = pipe(generator=lowerCamelCase__ ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _UpperCamelCase : Any = output.audios _UpperCamelCase : str = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase : Any = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
236
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (DDIMParallelScheduler,) a__ = (("eta", 0.0), ("num_inference_steps", 50)) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , **lowercase__ ) -> str: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = 10, 0.0 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for t in scheduler.timesteps: __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> List[str]: for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase__ ) __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(steps_offset=1 ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowerCAmelCase_ (self ) -> str: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase__ , beta_end=lowercase__ ) def lowerCAmelCase_ (self ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase__ ) def lowerCAmelCase_ (self ) -> int: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: self.check_over_configs(thresholding=lowercase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , ) def lowerCAmelCase_ (self ) -> Dict: for t in [1, 10, 49]: self.check_over_forward(time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Dict: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowercase__ , num_inference_steps=lowercase__ ) def lowerCAmelCase_ (self ) -> int: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase__ , eta=lowercase__ ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def lowerCAmelCase_ (self ) -> Tuple: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = 10, 0.0 scheduler.set_timesteps(lowercase__ ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = self.dummy_sample_deter + 0.1 __UpperCAmelCase = self.dummy_sample_deter - 0.1 __UpperCAmelCase = samplea.shape[0] __UpperCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) __UpperCAmelCase = torch.arange(lowercase__ )[0:3, None].repeat(1 , lowercase__ ) __UpperCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __UpperCAmelCase = scheduler.batch_step_no_noise(lowercase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase__ ) __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def lowerCAmelCase_ (self ) -> int: # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase = self.full_loop(set_alpha_to_one=lowercase__ , beta_start=0.01 ) __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def lowerCAmelCase_ (self ) -> Any: # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase = self.full_loop(set_alpha_to_one=lowercase__ , beta_start=0.01 ) __UpperCAmelCase = torch.sum(torch.abs(lowercase__ ) ) __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __lowercase ( lowerCamelCase : Union[str, Any] ): return 1 / (1 + np.exp(-z )) def __lowercase ( lowerCamelCase : Any , lowerCamelCase : Dict ): return (-y * np.log(lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : List[Any] ): UpperCamelCase_ : Optional[int] = np.dot(lowerCamelCase , lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(lowerCamelCase ) ) ) def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple=70000 ): UpperCamelCase_ : int = np.zeros(x.shape[1] ) for iterations in range(lowerCamelCase ): UpperCamelCase_ : str = np.dot(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = sigmoid_function(lowerCamelCase ) UpperCamelCase_ : Optional[int] = np.dot(x.T , h - y ) / y.size UpperCamelCase_ : int = theta - alpha * gradient # updating the weights UpperCamelCase_ : Dict = np.dot(lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : List[Any] = sigmoid_function(lowerCamelCase ) UpperCamelCase_ : Optional[int] = cost_function(lowerCamelCase , lowerCamelCase ) if iterations % 100 == 0: print(F"loss: {j} \t" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a_ = datasets.load_iris() a_ = iris.data[:, :2] a_ = (iris.target != 0) * 1 a_ = 0.1 a_ = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def __lowercase ( lowerCamelCase : Tuple ): return sigmoid_function( np.dot(lowerCamelCase , lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a_) , (a_)) = (x[:, 0].min(), x[:, 0].max()) ((a_) , (a_)) = (x[:, 1].min(), x[:, 1].max()) ((a_) , (a_)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a_ = np.c_[xxa.ravel(), xxa.ravel()] a_ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
356
def __lowercase ( lowerCamelCase : list[int] ): if not numbers: return 0 if not isinstance(lowerCamelCase , (list, tuple) ) or not all( isinstance(lowerCamelCase , lowerCamelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) UpperCamelCase_ : Optional[Any] = numbers[0] for i in range(1 , len(lowerCamelCase ) ): # update the maximum and minimum subarray products UpperCamelCase_ : Tuple = numbers[i] if number < 0: UpperCamelCase_, UpperCamelCase_ : List[str] = min_till_now, max_till_now UpperCamelCase_ : List[str] = max(lowerCamelCase , max_till_now * number ) UpperCamelCase_ : Dict = min(lowerCamelCase , min_till_now * number ) # update the maximum product found till now UpperCamelCase_ : List[str] = max(lowerCamelCase , lowerCamelCase ) return max_prod
50
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A = 16 _A = 32 def lowerCamelCase__ ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 ): """simple docstring""" lowerCAmelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(__lowerCAmelCase : str ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowerCAmelCase : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ = 8 else: lowerCAmelCase_ = None return tokenizer.pad( __lowerCAmelCase , padding="longest" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase ) lowerCAmelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config["lr"] lowerCAmelCase_ = int(config["num_epochs"] ) lowerCAmelCase_ = int(config["seed"] ) lowerCAmelCase_ = int(config["batch_size"] ) lowerCAmelCase_ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase_ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase_ = MAX_GPU_BATCH_SIZE set_seed(__lowerCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ = model(**__lowerCAmelCase ) lowerCAmelCase_ = outputs.loss lowerCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ = model(**__lowerCAmelCase ) lowerCAmelCase_ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) lowerCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __lowerCAmelCase ) def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
231
from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Dict ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : int ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : List[str] , **__lowerCAmelCase : int ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[Any] ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : Dict , **__lowerCAmelCase : Any ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Dict ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) def lowerCamelCase__ ( *__lowerCAmelCase : int , **__lowerCAmelCase : Any ): """simple docstring""" requires_backends(__lowerCAmelCase , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class _lowerCAmelCase ( metaclass=__a ): _lowercase =['''torch'''] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def __a ( cls , *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: requires_backends(cls , ["torch"] )
231
1
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _lowerCamelCase( lowercase__ ) -> List[Tuple[int, ...]]: '''simple docstring''' __lowercase= [] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for v in tree.values(): shapes.extend(_fetch_dims(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple[int, ...]: '''simple docstring''' __lowercase= [] for d in reversed(UpperCamelCase__ ): idx.append(flat_idx % d ) __lowercase= flat_idx // d return tuple(reversed(UpperCamelCase__ ) ) @torch.jit.ignore def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , ) -> List[Tuple[slice, ...]]: '''simple docstring''' def reduce_edge_list(lowercase__ ) -> None: __lowercase= True for i in range(len(UpperCamelCase__ ) ): __lowercase= -1 * (i + 1) l[reversed_idx] &= tally __lowercase= l[reversed_idx] if start_edges is None: __lowercase= [s == 0 for s in start] reduce_edge_list(UpperCamelCase__ ) if end_edges is None: __lowercase= [e == (d - 1) for e, d in zip(UpperCamelCase__ , UpperCamelCase__ )] reduce_edge_list(UpperCamelCase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(UpperCamelCase__ ) == 0: return [()] elif len(UpperCamelCase__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __lowercase= [] __lowercase= [] # Dimensions common to start and end can be selected directly for s, e in zip(UpperCamelCase__ , UpperCamelCase__ ): if s == e: path_list.append(slice(UpperCamelCase__ , s + 1 ) ) else: break __lowercase= tuple(UpperCamelCase__ ) __lowercase= len(UpperCamelCase__ ) # start == end, and we're done if divergence_idx == len(UpperCamelCase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase= start[divergence_idx] return tuple( path + (slice(UpperCamelCase__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase= end[divergence_idx] return tuple( path + (slice(UpperCamelCase__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowercase= end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> torch.Tensor: '''simple docstring''' __lowercase= t.shape[:no_batch_dims] __lowercase= list(_flat_idx_to_idx(UpperCamelCase__ , UpperCamelCase__ ) ) # _get_minimal_slice_set is inclusive __lowercase= list(_flat_idx_to_idx(flat_end - 1 , UpperCamelCase__ ) ) # Get an ordered list of slices to perform __lowercase= _get_minimal_slice_set( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) __lowercase= [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = False , lowercase__ = None , lowercase__ = False , ) -> Any: '''simple docstring''' if not (len(UpperCamelCase__ ) > 0): raise ValueError('Must provide at least one input' ) __lowercase= [shape[:no_batch_dims] for shape in _fetch_dims(UpperCamelCase__ )] __lowercase= tuple([max(UpperCamelCase__ ) for s in zip(*UpperCamelCase__ )] ) def _prep_inputs(lowercase__ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowercase= t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowercase= t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __lowercase= t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowercase= tensor_tree_map(_prep_inputs , UpperCamelCase__ ) __lowercase= None if _out is not None: __lowercase= tensor_tree_map(lambda lowercase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __lowercase= 1 for d in orig_batch_dims: flat_batch_dim *= d __lowercase= flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase__ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowercase= 0 __lowercase= prepped_outputs for _ in range(UpperCamelCase__ ): # Chunk the input if not low_mem: __lowercase= _select_chunk else: __lowercase= partial( _chunk_slice , flat_start=UpperCamelCase__ , flat_end=min(UpperCamelCase__ , i + chunk_size ) , no_batch_dims=len(UpperCamelCase__ ) , ) __lowercase= tensor_tree_map(UpperCamelCase__ , UpperCamelCase__ ) # Run the layer on the chunk __lowercase= layer(**UpperCamelCase__ ) # Allocate space for the output if out is None: __lowercase= tensor_tree_map(lambda lowercase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , UpperCamelCase__ ) # Put the chunk in its pre-allocated space if isinstance(UpperCamelCase__ , UpperCamelCase__ ): def assign(lowercase__ , lowercase__ ) -> None: for k, v in da.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): assign(UpperCamelCase__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowercase= da[k] assign(UpperCamelCase__ , UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): for xa, xa in zip(UpperCamelCase__ , UpperCamelCase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowercase= xa elif isinstance(UpperCamelCase__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowercase= output_chunk else: raise ValueError('Not supported' ) i += chunk_size __lowercase= tensor_tree_map(lambda lowercase__ : t.view(orig_batch_dims + t.shape[1:] ) , UpperCamelCase__ ) return out class A : def __init__(self , lowerCAmelCase = 5_1_2 , ): __lowercase= max_chunk_size __lowercase= None __lowercase= None def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowercase= [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowercase= [c for c in candidates if c > min_chunk_size] __lowercase= [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowerCAmelCase ) -> bool: try: with torch.no_grad(): fn(*__lowerCamelCase , chunk_size=__lowerCamelCase ) return True except RuntimeError: return False __lowercase= 0 __lowercase= len(__lowerCamelCase ) - 1 while i > min_viable_chunk_size_index: __lowercase= test_chunk_size(candidates[i] ) if not viable: __lowercase= (min_viable_chunk_size_index + i) // 2 else: __lowercase= i __lowercase= (i + len(__lowerCamelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= True for aa, aa in zip(__lowerCamelCase , __lowerCamelCase ): assert type(__lowerCamelCase ) == type(__lowerCamelCase ) if isinstance(__lowerCamelCase , (list, tuple) ): consistent &= self._compare_arg_caches(__lowerCamelCase , __lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __lowercase= [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase : x[0] )] __lowercase= [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase : x[0] )] consistent &= self._compare_arg_caches(__lowerCamelCase , __lowerCamelCase ) else: consistent &= aa == aa return consistent def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= True __lowercase= tree_map(lambda lowerCAmelCase : a.shape if isinstance(__lowerCamelCase , torch.Tensor ) else a , __lowerCamelCase , __lowerCamelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__lowerCamelCase ) __lowercase= self._compare_arg_caches(self.cached_arg_data , __lowerCamelCase ) else: # Otherwise, we can reuse the precomputed value __lowercase= False if not consistent: __lowercase= self._determine_favorable_chunk_size( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) __lowercase= arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
367
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
0
from collections.abc import Sequence def lowerCAmelCase_ ( snake_case_,snake_case_ ): return sum(c * (x**i) for i, c in enumerate(_snake_case ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Any = 0.0 for coeff in reversed(_snake_case ): _A : Any = result * x + coeff return result if __name__ == "__main__": _snake_case = (0.0, 0.0, 5.0, 9.3, 7.0) _snake_case = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
26
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _snake_case ( _snake_case : int = 8 ) -> str: '''simple docstring''' _A = ascii_letters + digits + punctuation return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' i -= len(_snake_case ) _A = i // 3 _A = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _A = ( chars_incl + random(_snake_case , quotient + remainder ) + random(_snake_case , _snake_case ) + random(_snake_case , _snake_case ) ) _A = list(_snake_case ) shuffle(_snake_case ) return "".join(_snake_case ) # random is a generalised function for letters, characters and numbers def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] ) -> int: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : Any , _snake_case : str ) -> Dict: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : Union[str, Any] , _snake_case : int ) -> int: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : str , _snake_case : int = 8 ) -> bool: '''simple docstring''' if len(_snake_case ) < min_length: # Your Password must be at least 8 characters long return False _A = any(char in ascii_uppercase for char in password ) _A = any(char in ascii_lowercase for char in password ) _A = any(char in digits for char in password ) _A = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = int(input('Please indicate the max length of your password: ' ).strip() ) _A = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_snake_case ) ) print( 'Alternative Password generated:' , alternative_password_generator(_snake_case , _snake_case ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
356
"""simple docstring""" from __future__ import annotations import time import numpy as np a = [8, 5, 9, 7] a = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : list[int] , _UpperCAmelCase : list[list[int]] , _UpperCAmelCase : list[list[int]] , ): _A = claim_vector _A = allocated_resources_table _A = maximum_claim_table def lowerCAmelCase_ ( self : Tuple ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase_ ( self : Tuple ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase_ ( self : List[Any] ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase_ ( self : List[Any] ): return {self.__need().index(_UpperCAmelCase ): i for i in self.__need()} def lowerCAmelCase_ ( self : List[str] , **_UpperCAmelCase : int ): _A = self.__need() _A = self.__allocated_resources_table _A = self.__available_resources() _A = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: _A = False for each_need in need_list: _A = True for index, need in enumerate(_UpperCAmelCase ): if need > available_resources[index]: _A = False break if execution: _A = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _A = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_UpperCAmelCase ) # update available/freed resources stack _A = np.array(_UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_UpperCAmelCase ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def lowerCAmelCase_ ( self : Union[str, Any] ): print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(_UpperCAmelCase ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(_UpperCAmelCase ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_UpperCAmelCase ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
271
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __lowerCAmelCase : List[Any] = logging.getLogger(__name__) class snake_case__ (_UpperCamelCase ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None ) -> List[Any]: a = self.layer[current_layer](__lowerCamelCase , __lowerCamelCase , head_mask[current_layer] ) a = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Tuple ) -> str: super().__init__(__lowerCamelCase ) a = BertEncoderWithPabee(__lowerCamelCase ) self.init_weights() a = 0 a = 0 a = 0 a = 0 def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[str] ) -> List[str]: a = threshold def __UpperCAmelCase ( self : int , __lowerCamelCase : Tuple ) -> Any: a = patience def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: a = 0 a = 0 def __UpperCAmelCase ( self : List[str] ) -> List[str]: a = self.inference_layers_num / self.inference_instances_num a = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(__lowerCamelCase ) @add_start_docstrings_to_model_forward(__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : int=None , __lowerCamelCase : int=None , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : int=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : int=None , __lowerCamelCase : Any=False , ) -> Optional[Any]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: a = input_ids.size() elif inputs_embeds is not None: a = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) a = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: a = torch.ones(__lowerCamelCase , device=__lowerCamelCase ) if token_type_ids is None: a = torch.zeros(__lowerCamelCase , dtype=torch.long , device=__lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. a = self.get_extended_attention_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: a , a , a = encoder_hidden_states.size() a = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: a = torch.ones(__lowerCamelCase , device=__lowerCamelCase ) a = self.invert_attention_mask(__lowerCamelCase ) else: a = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] a = self.get_head_mask(__lowerCamelCase , self.config.num_hidden_layers ) a = self.embeddings( input_ids=__lowerCamelCase , position_ids=__lowerCamelCase , token_type_ids=__lowerCamelCase , inputs_embeds=__lowerCamelCase ) a = embedding_output if self.training: a = [] for i in range(self.config.num_hidden_layers ): a = self.encoder.adaptive_forward( __lowerCamelCase , current_layer=__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase ) a = self.pooler(__lowerCamelCase ) a = output_layers[i](output_dropout(__lowerCamelCase ) ) res.append(__lowerCamelCase ) elif self.patience == 0: # Use all layers for inference a = self.encoder( __lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) a = self.pooler(encoder_outputs[0] ) a = [output_layers[self.config.num_hidden_layers - 1](__lowerCamelCase )] else: a = 0 a = None a = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 a = self.encoder.adaptive_forward( __lowerCamelCase , current_layer=__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase ) a = self.pooler(__lowerCamelCase ) a = output_layers[i](__lowerCamelCase ) if regression: a = logits.detach() if patient_result is not None: a = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: a = 0 else: a = logits.detach().argmax(dim=1 ) if patient_result is not None: a = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(__lowerCamelCase ) ): patient_counter += 1 else: a = 0 a = logits if patient_counter == self.patience: break a = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Any ) -> Union[str, Any]: super().__init__(__lowerCamelCase ) a = config.num_labels a = BertModelWithPabee(__lowerCamelCase ) a = nn.Dropout(config.hidden_dropout_prob ) a = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Any=None , ) -> Optional[int]: a = self.bert( input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , position_ids=__lowerCamelCase , head_mask=__lowerCamelCase , inputs_embeds=__lowerCamelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) a = (logits[-1],) if labels is not None: a = None a = 0 for ix, logits_item in enumerate(__lowerCamelCase ): if self.num_labels == 1: # We are doing regression a = MSELoss() a = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: a = CrossEntropyLoss() a = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: a = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 a = (total_loss / total_weights,) + outputs return outputs
107
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :List[str] = "" for word_or_phrase in separated: if not isinstance(lowerCamelCase, lowerCamelCase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
236
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = BlenderbotSmallConfig SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 'gelu' def __init__( self : Any ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=13 ,__lowerCamelCase : str=7 ,__lowerCamelCase : Optional[int]=True ,__lowerCamelCase : Tuple=False ,__lowerCamelCase : Tuple=99 ,__lowerCamelCase : Dict=32 ,__lowerCamelCase : Dict=2 ,__lowerCamelCase : Optional[Any]=4 ,__lowerCamelCase : Union[str, Any]=37 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Optional[int]=0.1 ,__lowerCamelCase : str=20 ,__lowerCamelCase : List[str]=2 ,__lowerCamelCase : Dict=1 ,__lowerCamelCase : List[Any]=0 ,): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) a = tf.concat([input_ids, eos_tensor] ,axis=1 ) a = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) a = prepare_blenderbot_small_inputs_dict(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[str] ): '''simple docstring''' a = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder() a = inputs_dict['''input_ids'''] a = input_ids[:1, :] a = inputs_dict['''attention_mask'''][:1, :] a = inputs_dict['''head_mask'''] a = 1 # first forward pass a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,head_mask=__lowerCamelCase ,use_cache=__lowerCamelCase ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) ,config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] ,axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase )[0] a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=None, snake_case_=None, snake_case_=None, ) -> Any: """simple docstring""" if attention_mask is None: a = tf.cast(tf.math.not_equal(snake_case_, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase_ ( a_ , a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = TFBlenderbotSmallModelTester(self ) a = ConfigTester(self ,config_class=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_tokenizers @require_tf class lowerCamelCase_ ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] SCREAMING_SNAKE_CASE_ = 'facebook/blenderbot_small-90M' @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.tokenizer(self.src_text ,return_tensors='''tf''' ) a = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ,use_cache=__lowerCamelCase ,) a = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=__lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
350
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = '''''' for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return data[1:] + data[0] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" a = '''''' for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: """simple docstring""" a = int('''0b''' + data[0] + data[-1], 2 ) a = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = message[:4] a = message[4:] a = apply_table(snake_case_, snake_case_ ) a = xor(snake_case_, snake_case_ ) a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741 a = apply_sbox(snake_case_, temp[4:] ) a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741 a = '''0''' * (2 - len(snake_case_ )) + r a = apply_table(l + r, snake_case_ ) a = xor(snake_case_, snake_case_ ) return temp + right if __name__ == "__main__": UpperCamelCase__ : int = input("""Enter 10 bit key: """) UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """) UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ : Optional[int] = [2, 4, 3, 1] UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table) UpperCamelCase__ : str = temp[:5] UpperCamelCase__ : List[Any] = temp[5:] UpperCamelCase__ : Dict = left_shift(left) UpperCamelCase__ : Any = left_shift(right) UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : int = left_shift(right) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : Dict = left_shift(right) UpperCamelCase__ : List[str] = apply_table(left + right, pa_table) # encryption UpperCamelCase__ : Tuple = apply_table(message, IP) UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4] UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Tuple = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP) UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4] UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
330
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _snake_case = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase ( datasets.BuilderConfig ): _a = None _a = "utf-8" _a = None _a = None _a = True # deprecated _a = None # deprecated _a = 1_0 << 2_0 # 10MB _a = None class lowercase ( datasets.ArrowBasedBuilder ): _a = JsonConfig def a__ ( self ) -> Optional[int]: if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) _A : Optional[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def a__ ( self , _a ) -> Optional[int]: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _A : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _A : Optional[Any] = data_files if isinstance(_a , _a ): _A : List[Any] = [files] _A : Optional[Any] = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _A : Any = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _A : Tuple = [files] _A : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"""files""": files} ) ) return splits def a__ ( self , _a ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _A : str = self.config.features.arrow_schema.field(_a ).type _A : int = pa_table.append_column(_a , pa.array([None] * len(_a ) , type=_a ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _A : int = table_cast(_a , self.config.features.arrow_schema ) return pa_table def a__ ( self , _a ) -> Dict: for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A : Optional[Any] = json.load(_a ) # We keep only the field we are interested in _A : Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_a , (list, tuple) ): _A : Any = set().union(*[row.keys() for row in dataset] ) _A : List[Any] = {col: [row.get(_a ) for row in dataset] for col in keys} else: _A : int = dataset _A : Union[str, Any] = pa.Table.from_pydict(_a ) yield file_idx, self._cast_table(_a ) # If the file has one json object per line else: with open(_a , """rb""" ) as f: _A : Any = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _A : Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) _A : List[str] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: _A : Optional[int] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_a ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _A : Union[str, Any] = batch.decode(self.config.encoding , errors=_a ).encode("""utf-8""" ) try: while True: try: _A : List[str] = paj.read_json( io.BytesIO(_a ) , read_options=paj.ReadOptions(block_size=_a ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_a , pa.ArrowInvalid ) and "straddling" not in str(_a ) or block_size > len(_a ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(_a )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A : str = json.load(_a ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_a , _a ): # list is the only sequence type supported in JSON try: _A : List[str] = set().union(*[row.keys() for row in dataset] ) _A : Optional[Any] = {col: [row.get(_a ) for row in dataset] for col in keys} _A : int = pa.Table.from_pydict(_a ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_a ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) batch_idx += 1
26
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->int: '''simple docstring''' A__ = jnp.ones((batch_size, length)) / length return scores def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = None A__ = 20 A__ = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase__) # tweak scores to not be uniform anymore A__ = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch A__ = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax A__ = jax.nn.softmax(UpperCAmelCase__ , axis=-1) A__ = FlaxTemperatureLogitsWarper(temperature=0.5) A__ = FlaxTemperatureLogitsWarper(temperature=1.3) A__ = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__) , axis=-1) A__ = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = None A__ = 10 A__ = 2 # create ramp distribution A__ = np.broadcast_to(np.arange(UpperCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() A__ = ramp_logits[1:, : vocab_size // 2] + vocab_size A__ = FlaxTopKLogitsWarper(3) A__ = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case A__ = 5 A__ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) A__ = np.broadcast_to(np.arange(UpperCAmelCase__)[None, :] , (batch_size, length)).copy() A__ = top_k_warp_safety_check(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: '''simple docstring''' A__ = None A__ = 10 A__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) A__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) A__ = FlaxTopPLogitsWarper(0.8) A__ = np.exp(top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 A__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3)) # check edge cases with negative and extreme logits A__ = np.broadcast_to(np.arange(UpperCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme A__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept A__ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) A__ = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' A__ = 20 A__ = 4 A__ = 0 A__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__) # check that min length is applied at length 5 A__ = ids_tensor((batch_size, 20) , vocab_size=20) A__ = 5 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''')]) # check that min length is not applied anymore at length 15 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = 15 A__ = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertFalse(jnp.isinf(UpperCAmelCase__).any()) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ = 20 A__ = 4 A__ = 0 A__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__) # check that all scores are -inf except the bos_token_id score A__ = ids_tensor((batch_size, 1) , vocab_size=20) A__ = 1 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 A__ = 3 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertFalse(jnp.isinf(UpperCAmelCase__).any()) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = 20 A__ = 4 A__ = 0 A__ = 5 A__ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached A__ = ids_tensor((batch_size, 4) , vocab_size=20) A__ = 4 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached A__ = 3 A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) self.assertFalse(jnp.isinf(UpperCAmelCase__).any()) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: '''simple docstring''' A__ = 4 A__ = 10 A__ = 15 A__ = 2 A__ = 1 A__ = 15 # dummy input_ids and scores A__ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__) A__ = input_ids.copy() A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = scores.copy() # instantiate all dist processors A__ = FlaxTemperatureLogitsWarper(temperature=0.5) A__ = FlaxTopKLogitsWarper(3) A__ = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors A__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__) A__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__) A__ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__) A__ = 10 # no processor list A__ = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) # with processor list A__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) A__ = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' A__ = 4 A__ = 10 A__ = 15 A__ = 2 A__ = 1 A__ = 15 # dummy input_ids and scores A__ = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__) A__ = input_ids.copy() A__ = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__) A__ = scores.copy() # instantiate all dist processors A__ = FlaxTemperatureLogitsWarper(temperature=0.5) A__ = FlaxTopKLogitsWarper(3) A__ = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors A__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__) A__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__) A__ = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__) A__ = 10 # no processor list def run_no_processor_list(UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str]): A__ = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) A__ = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) return scores # with processor list def run_processor_list(UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple): A__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) A__ = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__) return scores A__ = jax.jit(UpperCAmelCase__) A__ = jax.jit(UpperCAmelCase__) A__ = jitted_run_no_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) A__ = jitted_run_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
231
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Union[str, Any] = """▁""" _lowerCamelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : str = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } _lowerCamelCase : List[str] = { """google/pegasus-xsum""": 512, } _lowerCamelCase : int = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str="<pad>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Union[str, Any]="<mask_2>" , UpperCAmelCase__ : List[str]="<mask_1>" , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=103 , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Dict , ) ->None: '''simple docstring''' A__ = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase__)}, but is""" f""" {type(UpperCAmelCase__)}""") A__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase__) , self.offset - 1) ] if len(set(UpperCAmelCase__)) != len(UpperCAmelCase__): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") A__ = additional_special_tokens_extended else: A__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset)] A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token_sent=UpperCAmelCase__ , offset=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = mask_token_sent A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase__) # add special tokens to encoder dict A__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, }) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1)}) A__ = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return len(self.sp_model) + self.offset def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict[str, int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : int , UpperCAmelCase__ : Optional[int]) ->Optional[int]: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A__ = self.sp_model.piece_to_id(UpperCAmelCase__) return sp_id + self.offset def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : int) ->str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A__ = self.sp_model.IdToPiece(index - self.offset) return token def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = [] A__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__) + token A__ = [] else: current_sub_tokens.append(UpperCAmelCase__) out_string += self.sp_model.decode(UpperCAmelCase__) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=False) ->Union[str, Any]: '''simple docstring''' return 1 def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' A__ = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List , UpperCAmelCase__ : Optional[List] = None , UpperCAmelCase__ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase__) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase__) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,)
231
1
from manim import * class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: a_ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) a_ : List[Any] = Rectangle(height=0.25 , width=0.25 ) a_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a_ : str = [mem.copy() for i in range(6 )] a_ : Tuple = [mem.copy() for i in range(6 )] a_ : Any = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Optional[Any] = VGroup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Optional[Any] = Text('CPU' , font_size=2_4 ) a_ : Any = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = [mem.copy() for i in range(4 )] a_ : List[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Any = Text('GPU' , font_size=2_4 ) a_ : Optional[Any] = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) gpu.move_to([-1, -1, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = [mem.copy() for i in range(6 )] a_ : List[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : List[str] = Text('Model' , font_size=2_4 ) a_ : int = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) model.move_to([3, -1.0, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Dict = [] a_ : str = [] a_ : int = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): rect.set_stroke(SCREAMING_SNAKE_CASE__ ) a_ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=SCREAMING_SNAKE_CASE__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=SCREAMING_SNAKE_CASE__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=SCREAMING_SNAKE_CASE__ , buff=0.0 ) self.add(SCREAMING_SNAKE_CASE__ ) model_cpu_arr.append(SCREAMING_SNAKE_CASE__ ) self.add(*SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) a_ : Tuple = [mem.copy() for i in range(6 )] a_ : Union[str, Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Dict = Text('Loaded Checkpoint' , font_size=2_4 ) a_ : str = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : Dict = [] a_ : Optional[int] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : Union[str, Any] = fill.copy().set_fill(SCREAMING_SNAKE_CASE__ , opacity=0.7 ) target.move_to(SCREAMING_SNAKE_CASE__ ) ckpt_arr.append(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(SCREAMING_SNAKE_CASE__ ) self.add(*SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) a_ : List[str] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a_ : Optional[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(SCREAMING_SNAKE_CASE__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(SCREAMING_SNAKE_CASE__ ) a_ : str = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) a_ : List[Any] = [meta_mem.copy() for i in range(6 )] a_ : Optional[Any] = [meta_mem.copy() for i in range(6 )] a_ : int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Optional[int] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Tuple = VGroup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) a_ : Dict = Text('Disk' , font_size=2_4 ) a_ : Optional[Any] = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ , run_time=3 ) , Write(SCREAMING_SNAKE_CASE__ , run_time=1 ) , Create(SCREAMING_SNAKE_CASE__ , run_time=1 ) ) a_ : List[Any] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : List[str] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(SCREAMING_SNAKE_CASE__ , run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE__ ) self.play(FadeOut(SCREAMING_SNAKE_CASE__ ) ) a_ : Optional[Any] = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ , run_time=3 ) ) self.play( FadeOut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) , ) self.wait()
32
'''simple docstring''' def __UpperCAmelCase ( A : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : int = gray_code_sequence_string(A ) # # convert them to integers for i in range(len(A ) ): UpperCAmelCase_ : List[str] = int(sequence[i] , 2 ) return sequence def __UpperCAmelCase ( A : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : List[str] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = '''0''' + smaller_sequence[i] sequence.append(A ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Dict = '''1''' + smaller_sequence[i] sequence.append(A ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
304
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a: Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __a: Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
214
'''simple docstring''' def __UpperCamelCase ( ): lowercase__ : Any = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowercase__ : Any = 6 lowercase__ : Optional[Any] = 1 lowercase__ : int = 1901 lowercase__ : List[str] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowercase__ : Any = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] if month > 12: year += 1 lowercase__ : Dict = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
214
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Optional[int] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Union[str, Any] = num_labels UpperCAmelCase : Any = num_choices UpperCAmelCase : str = scope UpperCAmelCase : str = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCAmelCase : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple = OpenAIGPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = OpenAIGPTLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple = OpenAIGPTDoubleHeadsModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : str = self.num_labels UpperCAmelCase : Optional[int] = OpenAIGPTForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Any = config_and_inputs UpperCAmelCase : Dict = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowerCAmelCase : Union[str, Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowerCAmelCase : int = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = inputs_dict["""labels"""] UpperCAmelCase : List[Any] = inputs_dict["""labels"""] UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = OpenAIGPTModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , n_embd=37 ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = OpenAIGPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) # the president is UpperCAmelCase : Optional[int] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase : List[Any] = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() , _SCREAMING_SNAKE_CASE )
109
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowerCAmelCase = TypeVar("""T""") class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ,_a : T ): '''simple docstring''' _a : List[str] = data _a : Node[T] | None = None def __str__( self : Dict ): '''simple docstring''' return F"""{self.data}""" class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' _a : Node[T] | None = None def __iter__( self : str ): '''simple docstring''' _a : Tuple = self.top while node: yield node.data _a : int = node.next def __str__( self : str ): '''simple docstring''' return "->".join([str(_a ) for item in self] ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(tuple(iter(self ) ) ) def __lowercase ( self : str ): '''simple docstring''' return self.top is None def __lowercase ( self : List[Any] ,_a : T ): '''simple docstring''' _a : int = Node(_a ) if not self.is_empty(): _a : Optional[Any] = self.top _a : List[str] = node def __lowercase ( self : Tuple ): '''simple docstring''' if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top ,_a ) _a : List[Any] = self.top _a : int = self.top.next return pop_node.data def __lowercase ( self : List[str] ): '''simple docstring''' if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
271
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'cvt' def __init__( self : str , snake_case : Optional[Any]=3 , snake_case : Tuple=[7, 3, 3] , snake_case : Optional[int]=[4, 2, 2] , snake_case : Dict=[2, 1, 1] , snake_case : Any=[64, 192, 384] , snake_case : Any=[1, 3, 6] , snake_case : Dict=[1, 2, 10] , snake_case : int=[4.0, 4.0, 4.0] , snake_case : int=[0.0, 0.0, 0.0] , snake_case : List[Any]=[0.0, 0.0, 0.0] , snake_case : Union[str, Any]=[0.0, 0.0, 0.1] , snake_case : Dict=[True, True, True] , snake_case : List[Any]=[False, False, True] , snake_case : str=["dw_bn", "dw_bn", "dw_bn"] , snake_case : Union[str, Any]=[3, 3, 3] , snake_case : Union[str, Any]=[1, 1, 1] , snake_case : Union[str, Any]=[2, 2, 2] , snake_case : Optional[int]=[1, 1, 1] , snake_case : Union[str, Any]=[1, 1, 1] , snake_case : List[str]=0.02 , snake_case : int=1e-12 , **snake_case : str , ): '''simple docstring''' super().__init__(**snake_case ) A__ : int = num_channels A__ : Dict = patch_sizes A__ : Any = patch_stride A__ : Union[str, Any] = patch_padding A__ : Any = embed_dim A__ : str = num_heads A__ : Optional[int] = depth A__ : int = mlp_ratio A__ : Dict = attention_drop_rate A__ : Optional[Any] = drop_rate A__ : Any = drop_path_rate A__ : int = qkv_bias A__ : Dict = cls_token A__ : Any = qkv_projection_method A__ : Tuple = kernel_qkv A__ : List[Any] = padding_kv A__ : Any = stride_kv A__ : Optional[int] = padding_q A__ : List[str] = stride_q A__ : Any = initializer_range A__ : Any = layer_norm_eps
365
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ): '''simple docstring''' A__ : Union[str, Any] = parent A__ : Optional[Any] = batch_size A__ : Dict = seq_length A__ : str = is_training A__ : Tuple = use_input_mask A__ : Dict = use_token_type_ids A__ : Dict = use_labels A__ : int = vocab_size A__ : List[str] = hidden_size A__ : Union[str, Any] = num_hidden_layers A__ : int = num_attention_heads A__ : List[str] = intermediate_size A__ : int = hidden_act A__ : str = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : Any = max_position_embeddings A__ : Optional[int] = type_vocab_size A__ : int = type_sequence_label_size A__ : Optional[Any] = initializer_range A__ : int = num_labels A__ : Optional[int] = num_choices A__ : Optional[int] = scope def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = None if self.use_input_mask: A__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = None if self.use_token_type_ids: A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : List[str] = None A__ : Union[str, Any] = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.get_config() A__ : List[str] = 300 return config def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Tuple = self.prepare_config_and_inputs() A__ : List[str] = True A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ): '''simple docstring''' A__ : List[str] = MraModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A__ : List[str] = model(snake_case , token_type_ids=snake_case ) A__ : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ): '''simple docstring''' A__ : Dict = True A__ : Optional[Any] = MraModel(snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , ) A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : Dict = MraForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Optional[Any] = MraForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Union[str, Any] = MraForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ): '''simple docstring''' A__ : List[str] = self.num_choices A__ : str = MraForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Dict = config_and_inputs A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = () def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[Any] = MraModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : List[str] = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : Any ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : str = MraModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip(reason="""MRA does not output attentions""" ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : List[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case ) A__ : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Dict = 5_0265 A__ : List[str] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : List[Any] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Union[str, Any] = 5_0265 A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : Optional[int] = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
296
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
340
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
1
import doctest from collections import deque import numpy as np class lowercase__ : def __init__( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4] def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = len(self.first_signal ) SCREAMING_SNAKE_CASE__ = len(self.second_signal ) SCREAMING_SNAKE_CASE__ = max(UpperCAmelCase_ , UpperCAmelCase_ ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE__ = [[0] * max_length for i in range(UpperCAmelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = deque(self.second_signal ) rotated_signal.rotate(UpperCAmelCase_ ) for j, item in enumerate(UpperCAmelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE__ = np.matmul(np.transpose(UpperCAmelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCAmelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
169
import math def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCamelCase_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
169
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): """simple docstring""" lowerCAmelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase_ = model_name.find("patch" ) lowerCAmelCase_ = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) lowerCAmelCase_ = XCLIPVisionConfig(patch_size=__lowerCAmelCase , num_frames=__lowerCAmelCase ) if "large" in model_name: lowerCAmelCase_ = 768 lowerCAmelCase_ = 3072 lowerCAmelCase_ = 12 lowerCAmelCase_ = 1024 lowerCAmelCase_ = 4096 lowerCAmelCase_ = 16 lowerCAmelCase_ = 24 lowerCAmelCase_ = 768 lowerCAmelCase_ = 3072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = 336 lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(__lowerCAmelCase , __lowerCAmelCase ) if "large" in model_name: lowerCAmelCase_ = 768 return config def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] ): """simple docstring""" if name == "token_embedding.weight": lowerCAmelCase_ = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": lowerCAmelCase_ = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: lowerCAmelCase_ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase_ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase_ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase_ = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): lowerCAmelCase_ = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase_ = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: lowerCAmelCase_ = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase_ = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": lowerCAmelCase_ = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): lowerCAmelCase_ = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: lowerCAmelCase_ = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: lowerCAmelCase_ = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: lowerCAmelCase_ = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: lowerCAmelCase_ = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: lowerCAmelCase_ = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase_ = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: lowerCAmelCase_ = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": lowerCAmelCase_ = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): lowerCAmelCase_ = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): lowerCAmelCase_ = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def lowerCamelCase__ ( __lowerCAmelCase : int , __lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(__lowerCAmelCase ) if "attn.in_proj" in key: lowerCAmelCase_ = key.split("." ) if key.startswith("visual" ): lowerCAmelCase_ = key_split[3] lowerCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[ :dim ] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[ -dim: ] else: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] elif key.startswith("mit" ): lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = rename_key(__lowerCAmelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase_ = val.T lowerCAmelCase_ = val return orig_state_dict def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" if num_frames == 8: lowerCAmelCase_ = "eating_spaghetti_8_frames.npy" elif num_frames == 16: lowerCAmelCase_ = "eating_spaghetti.npy" elif num_frames == 32: lowerCAmelCase_ = "eating_spaghetti_32_frames.npy" lowerCAmelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=__lowerCAmelCase , repo_type="dataset" , ) lowerCAmelCase_ = np.load(__lowerCAmelCase ) return list(__lowerCAmelCase ) def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Any=False ): """simple docstring""" lowerCAmelCase_ = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } lowerCAmelCase_ = model_to_url[model_name] lowerCAmelCase_ = 8 if "16-frames" in model_name: lowerCAmelCase_ = 16 elif "shot" in model_name: lowerCAmelCase_ = 32 lowerCAmelCase_ = get_xclip_config(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ = XCLIPModel(__lowerCAmelCase ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase_ = "pytorch_model.bin" gdown.cached_download(__lowerCAmelCase , __lowerCAmelCase , quiet=__lowerCAmelCase ) lowerCAmelCase_ = torch.load(__lowerCAmelCase , map_location="cpu" )["model"] else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase )["model"] lowerCAmelCase_ = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ = XCLIPModel(__lowerCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase_ = 336 if model_name == "xclip-large-patch14-16-frames" else 224 lowerCAmelCase_ = VideoMAEImageProcessor(size=__lowerCAmelCase ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase_ = XCLIPProcessor(image_processor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) lowerCAmelCase_ = prepare_video(__lowerCAmelCase ) lowerCAmelCase_ = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=__lowerCAmelCase , return_tensors="pt" , padding=__lowerCAmelCase ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase_ = model(**__lowerCAmelCase ) # Verify outputs lowerCAmelCase_ = outputs.logits_per_video lowerCAmelCase_ = logits_per_video.softmax(dim=1 ) print("Probs:" , __lowerCAmelCase ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase_ = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase_ = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase_ = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase_ = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase_ = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase_ = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase_ = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase_ = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase_ = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase_ = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase_ = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase_ = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase_ = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase_ = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"""Model name {model_name} not supported""" ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(__lowerCAmelCase , organization="nielsr" ) processor.push_to_hub(__lowerCAmelCase , organization="nielsr" ) slow_tokenizer.push_to_hub(__lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _A = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
231
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def lowerCamelCase__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ): """simple docstring""" lowerCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def lowerCamelCase__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ = "" else: lowerCAmelCase_ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ = in_proj_bias[: config.hidden_size] lowerCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): """simple docstring""" lowerCAmelCase_ = dct.pop(__lowerCAmelCase ) lowerCAmelCase_ = val def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = DeiTConfig() # all deit models have fine-tuned heads lowerCAmelCase_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase_ = 1000 lowerCAmelCase_ = "huggingface/label-files" lowerCAmelCase_ = "imagenet-1k-id2label.json" lowerCAmelCase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) lowerCAmelCase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = int(deit_name[-6:-4] ) lowerCAmelCase_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): lowerCAmelCase_ = 192 lowerCAmelCase_ = 768 lowerCAmelCase_ = 12 lowerCAmelCase_ = 3 elif deit_name[9:].startswith("small" ): lowerCAmelCase_ = 384 lowerCAmelCase_ = 1536 lowerCAmelCase_ = 12 lowerCAmelCase_ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): lowerCAmelCase_ = 1024 lowerCAmelCase_ = 4096 lowerCAmelCase_ = 24 lowerCAmelCase_ = 16 # load original model from timm lowerCAmelCase_ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ = timm_model.state_dict() lowerCAmelCase_ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCAmelCase_ = DeiTForImageClassificationWithTeacher(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCAmelCase_ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCAmelCase_ = DeiTImageProcessor(size=__lowerCAmelCase , crop_size=config.image_size ) lowerCAmelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCAmelCase_ = encoding["pixel_values"] lowerCAmelCase_ = model(__lowerCAmelCase ) lowerCAmelCase_ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _A = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
231
1
from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , __A : int ): snake_case__ : Union[str, Any] = order # a_{0} ... a_{k} snake_case__ : Union[str, Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} snake_case__ : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] snake_case__ : str = [0.0] * self.order # y[n-1] ... y[n-k] snake_case__ : Optional[Any] = [0.0] * self.order def _lowercase ( self : Dict , __A : list[float] , __A : list[float] ): if len(_lowerCamelCase ) < self.order: snake_case__ : Any = [1.0, *a_coeffs] if len(_lowerCamelCase ) != self.order + 1: snake_case__ : List[Any] = ( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(_lowerCamelCase )}''' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != self.order + 1: snake_case__ : Union[str, Any] = ( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(_lowerCamelCase )}''' ) raise ValueError(_lowerCamelCase ) snake_case__ : Tuple = a_coeffs snake_case__ : str = b_coeffs def _lowercase ( self : Tuple , __A : float ): snake_case__ : Any = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) snake_case__ : str = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] snake_case__ : Optional[Any] = self.input_history[:-1] snake_case__ : List[str] = self.output_history[:-1] snake_case__ : Tuple = sample snake_case__ : Tuple = result return result
354
__lowerCamelCase : Optional[int] = """Tobias Carryer""" from time import time class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : List[Any] , __A : Optional[int] , __A : List[str] , __A : Dict=int(time() ) ): # noqa: B008 snake_case__ : List[Any] = multiplier snake_case__ : Optional[int] = increment snake_case__ : Optional[int] = modulo snake_case__ : Union[str, Any] = seed def _lowercase ( self : str ): snake_case__ : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __lowerCamelCase : int = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
286
0
from collections import defaultdict from math import gcd def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 1_500_000 ): '''simple docstring''' lowercase__ : defaultdict = defaultdict(SCREAMING_SNAKE_CASE_ ) lowercase__ : Dict = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , SCREAMING_SNAKE_CASE_ , 2 ): if gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) > 1: continue lowercase__ : Optional[Any] = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE_ , limit + 1 , SCREAMING_SNAKE_CASE_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
214
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (__snake_case ): def __init__( self , *a , **a): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , a , ) super().__init__(*a , **a)
214
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if len(UpperCAmelCase_ ) <= 1: return lst UpperCAmelCase : List[str] = 1 while i < len(UpperCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCAmelCase : Optional[int] = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCAmelCase : str = 1 return lst if __name__ == "__main__": lowercase__ = input("Enter numbers separated by a comma:\n").strip() lowercase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
360
'''simple docstring''' # Lint as: python3 import itertools import os import re lowercase__ = re.compile(r"([A-Z]+)([A-Z][a-z])") lowercase__ = re.compile(r"([a-z\d])([A-Z])") lowercase__ = re.compile(r"(?<!_)_(?!_)") lowercase__ = re.compile(r"(_{2,})") lowercase__ = r"^\w+(\.\w+)*$" lowercase__ = r"<>:/\|?*" def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _uppercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) UpperCAmelCase : str = _lowercase_uppercase_re.sub(R'\1_\2' , UpperCAmelCase_ ) return name.lower() def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = _single_underscore_re.split(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = [_multiple_underscores_re.split(UpperCAmelCase_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCAmelCase_ ) if n != '' ) def UpperCamelCase( UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if os.path.basename(UpperCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , UpperCAmelCase_ ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(UpperCAmelCase_ )}-{split}""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): UpperCAmelCase : Dict = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) if filetype_suffix: prefix += F""".{filetype_suffix}""" UpperCAmelCase : Optional[int] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) return F"""{filepath}*""" def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None ): UpperCAmelCase : Optional[int] = filename_prefix_for_split(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if shard_lengths: UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) UpperCAmelCase : List[str] = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(UpperCAmelCase_ )] if filetype_suffix: UpperCAmelCase : Dict = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: UpperCAmelCase : Optional[Any] = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
280
0
from collections.abc import Callable class _snake_case : def __init__( self , _a = None ): __magic_name__ : int = [] # Stores indexes of each item for supporting updates and deletion. __magic_name__ : List[str] = {} # Stores current size of heap. __magic_name__ : Optional[int] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __magic_name__ : Optional[int] = key or (lambda _a : x) def SCREAMING_SNAKE_CASE ( self , _a ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Any = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ , __magic_name__ : Optional[Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __magic_name__ , __magic_name__ : str = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self , _a , _a ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : List[Any] = self._left(lowerCamelCase__ ) __magic_name__ : Any = self._right(lowerCamelCase__ ) __magic_name__ : str = i if left is not None and not self._cmp(lowerCamelCase__ , lowerCamelCase__ ): __magic_name__ : str = left if right is not None and not self._cmp(lowerCamelCase__ , lowerCamelCase__ ): __magic_name__ : List[str] = right return valid_parent def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : int = self._parent(lowerCamelCase__ ) while parent is not None and not self._cmp(lowerCamelCase__ , lowerCamelCase__ ): self._swap(lowerCamelCase__ , lowerCamelCase__ ) __magic_name__ , __magic_name__ : Union[str, Any] = parent, self._parent(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Union[str, Any] = self._get_valid_parent(lowerCamelCase__ ) while valid_parent != index: self._swap(lowerCamelCase__ , lowerCamelCase__ ) __magic_name__ , __magic_name__ : Optional[int] = valid_parent, self._get_valid_parent(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): if item not in self.pos_map: return __magic_name__ : Optional[Any] = self.pos_map[item] __magic_name__ : List[Any] = [item, self.key(lowerCamelCase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCamelCase__ ) self._heapify_down(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self , _a ): if item not in self.pos_map: return __magic_name__ : Optional[Any] = self.pos_map[item] del self.pos_map[item] __magic_name__ : Union[str, Any] = self.arr[self.size - 1] __magic_name__ : int = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCamelCase__ ) self._heapify_down(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Optional[Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowerCamelCase__ )] ) else: __magic_name__ : Tuple = [item, self.key(lowerCamelCase__ )] __magic_name__ : List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCAmelCase_ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
281
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "table-transformer" __snake_case : Union[str, Any] = ["past_key_values"] __snake_case : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : Optional[int]=100 ,lowerCamelCase__ : List[Any]=6 ,lowerCamelCase__ : Dict=2048 ,lowerCamelCase__ : List[Any]=8 ,lowerCamelCase__ : Dict=6 ,lowerCamelCase__ : Dict=2048 ,lowerCamelCase__ : Any=8 ,lowerCamelCase__ : Optional[int]=0.0 ,lowerCamelCase__ : int=0.0 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Optional[int]="relu" ,lowerCamelCase__ : Tuple=256 ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : Tuple=0.0 ,lowerCamelCase__ : List[Any]=0.02 ,lowerCamelCase__ : int=1.0 ,lowerCamelCase__ : List[str]=False ,lowerCamelCase__ : Optional[Any]="sine" ,lowerCamelCase__ : List[str]="resnet50" ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : List[str]=False ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : Dict=5 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : Union[str, Any]=1 ,lowerCamelCase__ : str=1 ,lowerCamelCase__ : Any=5 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : str=0.1 ,**lowerCamelCase__ : List[str] ,) -> Optional[int]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase__ ) # set timm attributes to None SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = None, None, None SCREAMING_SNAKE_CASE = use_timm_backbone SCREAMING_SNAKE_CASE = backbone_config SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_queries SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = init_xavier_std SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = auxiliary_loss SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = backbone SCREAMING_SNAKE_CASE = use_pretrained_backbone SCREAMING_SNAKE_CASE = dilation # Hungarian matcher SCREAMING_SNAKE_CASE = class_cost SCREAMING_SNAKE_CASE = bbox_cost SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE = mask_loss_coefficient SCREAMING_SNAKE_CASE = dice_loss_coefficient SCREAMING_SNAKE_CASE = bbox_loss_coefficient SCREAMING_SNAKE_CASE = giou_loss_coefficient SCREAMING_SNAKE_CASE = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase__ ,**lowerCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.d_model class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> float: '''simple docstring''' return 1e-5 @property def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: '''simple docstring''' return 12
296
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( _lowerCAmelCase ): A = ['''image_processor''', '''tokenizer'''] A = '''Pix2StructImageProcessor''' A = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Tuple = False super().__init__(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __call__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 2048, SCREAMING_SNAKE_CASE_ = 0, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: UpperCAmelCase_: Optional[Any] = self.tokenizer UpperCAmelCase_: Optional[Any] = self.tokenizer( text=SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, stride=SCREAMING_SNAKE_CASE_, pad_to_multiple_of=SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, return_overflowing_tokens=SCREAMING_SNAKE_CASE_, return_special_tokens_mask=SCREAMING_SNAKE_CASE_, return_offsets_mapping=SCREAMING_SNAKE_CASE_, return_token_type_ids=SCREAMING_SNAKE_CASE_, return_length=SCREAMING_SNAKE_CASE_, verbose=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values UpperCAmelCase_: Union[str, Any] = self.image_processor( SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, max_patches=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) else: # add pixel_values and bbox UpperCAmelCase_: Any = self.image_processor( SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, max_patches=SCREAMING_SNAKE_CASE_, header_text=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) if text is not None and not self.image_processor.is_vqa: UpperCAmelCase_: int = self.tokenizer( text=SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, stride=SCREAMING_SNAKE_CASE_, pad_to_multiple_of=SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, return_overflowing_tokens=SCREAMING_SNAKE_CASE_, return_special_tokens_mask=SCREAMING_SNAKE_CASE_, return_offsets_mapping=SCREAMING_SNAKE_CASE_, return_token_type_ids=SCREAMING_SNAKE_CASE_, return_length=SCREAMING_SNAKE_CASE_, verbose=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) if "attention_mask" in text_encoding: UpperCAmelCase_: Optional[Any] = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: UpperCAmelCase_: List[str] = text_encoding.pop("""input_ids""" ) else: UpperCAmelCase_: Tuple = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE_ ) return encoding_image_processor def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Any: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) @property def __snake_case (self ) -> List[str]: UpperCAmelCase_: Dict = self.tokenizer.model_input_names UpperCAmelCase_: Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
82
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a : Optional[int] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } a : Any = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int=False ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: int = create_model( """HTSAT-tiny""" , """roberta""" , lowerCAmelCase__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowerCAmelCase__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" UpperCAmelCase_: List[Any] = {} UpperCAmelCase_: Optional[Any] = r""".*sequential.(\d+).*""" UpperCAmelCase_: str = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_: Optional[int] = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_: int = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_: Dict = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(lowerCAmelCase__ )//3}.linear.' ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_: int = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_: Optional[Any] = 1 if projecton_layer == 0 else 2 UpperCAmelCase_: Tuple = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_: str = value UpperCAmelCase_: Optional[int] = mixed_qkv.size(0 ) // 3 UpperCAmelCase_: Optional[int] = mixed_qkv[:qkv_dim] UpperCAmelCase_: List[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_: int = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_: str = query_layer UpperCAmelCase_: List[Any] = key_layer UpperCAmelCase_: str = value_layer else: UpperCAmelCase_: Tuple = value return model_state_dict def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: List[Any]=False ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_: Optional[Any] = clap_model.state_dict() UpperCAmelCase_: Optional[Any] = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_: Dict = ClapConfig() UpperCAmelCase_: Tuple = enable_fusion UpperCAmelCase_: int = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') a : Optional[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
82
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[int] = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] _lowerCAmelCase : str = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
169
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _lowerCAmelCase : int = get_logger(__name__) _lowerCAmelCase : Any = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _UpperCamelCase : @add_start_docstrings(lowerCamelCase ) def __call__( self :Tuple , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _UpperCamelCase : @add_start_docstrings(lowerCamelCase ) def __call__( self :Union[str, Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _UpperCamelCase ( lowerCAmelCase ): @add_start_docstrings(lowerCamelCase ) def __call__( self :List[Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int , **lowerCamelCase :str ) -> jnp.ndarray: for processor in self: UpperCAmelCase__ = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) UpperCAmelCase__ = processor(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) else: UpperCAmelCase__ = processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :str , lowerCamelCase :float ) -> Tuple: if not isinstance(lowerCamelCase , lowerCamelCase ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) UpperCAmelCase__ = temperature def __call__( self :int , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = scores / self.temperature return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[int] , lowerCamelCase :float , lowerCamelCase :float = -float("Inf" ) , lowerCamelCase :int = 1 ) -> Union[str, Any]: if not isinstance(lowerCamelCase , lowerCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(lowerCamelCase , lowerCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) UpperCAmelCase__ = top_p UpperCAmelCase__ = filter_value UpperCAmelCase__ = min_tokens_to_keep def __call__( self :Tuple , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ , UpperCAmelCase__ = lax.top_k(lowerCamelCase , scores.shape[-1] ) UpperCAmelCase__ = jnp.full_like(lowerCamelCase , self.filter_value ) UpperCAmelCase__ = jax.nn.softmax(lowerCamelCase , axis=-1 ).cumsum(axis=-1 ) UpperCAmelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCAmelCase__ = jnp.roll(lowerCamelCase , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase ) # min tokens to keep UpperCAmelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase ) UpperCAmelCase__ = jnp.where(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jax.lax.sort_key_val(lowerCamelCase , lowerCamelCase )[-1] return next_scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Union[str, Any] , lowerCamelCase :int , lowerCamelCase :float = -float("Inf" ) , lowerCamelCase :int = 1 ) -> List[str]: if not isinstance(lowerCamelCase , lowerCamelCase ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) UpperCAmelCase__ = max(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = filter_value def __call__( self :Optional[int] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ , UpperCAmelCase__ = scores.shape UpperCAmelCase__ = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCAmelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check UpperCAmelCase__ , UpperCAmelCase__ = lax.top_k(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.broadcast_to((jnp.arange(lowerCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCAmelCase__ = topk_scores.flatten() UpperCAmelCase__ = topk_indices.flatten() + shift UpperCAmelCase__ = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase ) UpperCAmelCase__ = next_scores_flat.reshape(lowerCamelCase , lowerCamelCase ) return next_scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Any , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = bos_token_id def __call__( self :Optional[int] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase__ = 1 - jnp.bool_(cur_len - 1 ) UpperCAmelCase__ = jnp.where(lowerCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Tuple , lowerCamelCase :int , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = max_length UpperCAmelCase__ = eos_token_id def __call__( self :Union[str, Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCAmelCase__ = jnp.where(lowerCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[Any] , lowerCamelCase :int , lowerCamelCase :int ) -> Tuple: if not isinstance(lowerCamelCase , lowerCamelCase ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(lowerCamelCase , lowerCamelCase ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) UpperCAmelCase__ = min_length UpperCAmelCase__ = eos_token_id def __call__( self :int , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied UpperCAmelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCAmelCase__ = jnp.where(lowerCamelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :int , lowerCamelCase :List[str] , lowerCamelCase :str ) -> Any: UpperCAmelCase__ = list(lowerCamelCase ) UpperCAmelCase__ = begin_index def __call__( self :Union[str, Any] , lowerCamelCase :Union[str, Any] , lowerCamelCase :List[str] , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCAmelCase__ = jnp.where(lowerCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :List[Any] , lowerCamelCase :list ) -> Tuple: UpperCAmelCase__ = list(lowerCamelCase ) def __call__( self :Optional[Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :List[Any] , lowerCamelCase :List[str] ) -> Union[str, Any]: UpperCAmelCase__ = dict(lowerCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCAmelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCAmelCase__ = force_token_array.at[index].set(lowerCamelCase ) UpperCAmelCase__ = jnp.intaa(lowerCamelCase ) def __call__( self :Optional[int] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: def _force_token(lowerCamelCase :str ): UpperCAmelCase__ = scores.shape[0] UpperCAmelCase__ = self.force_token_array[generation_idx] UpperCAmelCase__ = jnp.ones_like(lowerCamelCase , dtype=scores.dtype ) * -float("inf" ) UpperCAmelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCAmelCase__ = lax.dynamic_update_slice(lowerCamelCase , lowerCamelCase , (0, current_token) ) return new_scores UpperCAmelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCamelCase ) , lambda: scores , ) , ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[Any] , lowerCamelCase :List[Any] , lowerCamelCase :Optional[int] , lowerCamelCase :Tuple ) -> Dict: UpperCAmelCase__ = generate_config.eos_token_id UpperCAmelCase__ = generate_config.no_timestamps_token_id UpperCAmelCase__ = generate_config.no_timestamps_token_id + 1 UpperCAmelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase , "max_initial_timestamp_index" ): UpperCAmelCase__ = generate_config.max_initial_timestamp_index else: UpperCAmelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCAmelCase__ = model_config.vocab_size def __call__( self :List[str] , lowerCamelCase :str , lowerCamelCase :int , lowerCamelCase :Any ) -> Union[str, Any]: # suppress <|notimestamps|> which is handled by without_timestamps UpperCAmelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(lowerCamelCase :int , lowerCamelCase :Union[str, Any] ): UpperCAmelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCamelCase , ) UpperCAmelCase__ = jnp.where((cur_len - self.begin_index) < 2 , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCamelCase , lowerCamelCase , ) return jnp.where( lowerCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , lowerCamelCase , ) UpperCAmelCase__ = jax.vmap(lowerCamelCase )(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where(cur_len == self.begin_index , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCamelCase , ) UpperCAmelCase__ = self.timestamp_begin + self.max_initial_timestamp_index UpperCAmelCase__ = jnp.where( lowerCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , lowerCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCAmelCase__ = jax.nn.log_softmax(lowerCamelCase , axis=-1 ) def handle_cumulative_probs(lowerCamelCase :Optional[int] , lowerCamelCase :Optional[Any] ): UpperCAmelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCAmelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , lowerCamelCase , ) UpperCAmelCase__ = jax.vmap(lowerCamelCase )(lowerCamelCase , lowerCamelCase ) return scores
169
1
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( _lowercase , unittest.TestCase ): a = XLMTokenizer a = False def lowerCamelCase_ ( self: Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCamelCase__ : List[str] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowerCamelCase__ : Optional[int] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowerCamelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Any ): lowerCamelCase__ : Union[str, Any] = """lower newer""" lowerCamelCase__ : int = """lower newer""" return input_text, output_text def lowerCamelCase_ ( self: str ): lowerCamelCase__ : str = XLMTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase__ : Optional[int] = """lower""" lowerCamelCase__ : List[Any] = ["""low""", """er</w>"""] lowerCamelCase__ : Dict = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase__ : List[Any] = tokens + ["""<unk>"""] lowerCamelCase__ : Union[str, Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Optional[Any] = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) lowerCamelCase__ : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) lowerCamelCase__ : str = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
354
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _A : Union[str, Any] =8 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> Tuple: lowerCamelCase__ : List[str] = x.device lowerCamelCase__ : Any = (x * 255).int().clamp(0 , 255 ) lowerCamelCase__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase ) lowerCamelCase__ : int = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b c h w -> b c 1 h w""" ) lowerCamelCase__ : Tuple = ((x & mask) != 0).float() lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """b c d h w -> b (c d) h w""" ) lowerCamelCase__ : Optional[int] = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> List[Any]: lowerCamelCase__ : List[Any] = x.device lowerCamelCase__ : Dict = (x > 0).int() lowerCamelCase__ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa ) lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b (c d) h w -> b c d h w""" , d=8 ) lowerCamelCase__ : List[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 0.0 , UpperCamelCase = True , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCamelCase__ : Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[timestep] lowerCamelCase__ : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCamelCase__ : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCamelCase__ : Dict = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : Optional[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCamelCase__ : Tuple = self._get_variance(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Optional[int] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCamelCase__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCamelCase__ : Dict = model_output.device if torch.is_tensor(UpperCamelCase ) else """cpu""" lowerCamelCase__ : str = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise lowerCamelCase__ : int = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase="epsilon" , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: lowerCamelCase__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: lowerCamelCase__ : List[str] = None # 1. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[t] lowerCamelCase__ : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCamelCase__ : str = 1 - alpha_prod_t lowerCamelCase__ : List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCamelCase__ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCamelCase__ : Optional[Any] = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowerCamelCase__ : str = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : List[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : Tuple = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCamelCase__ : Tuple = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase__ : Optional[Any] = 0 if t > 0: lowerCamelCase__ : Optional[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device ) lowerCamelCase__ : str = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise lowerCamelCase__ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) class _lowercase ( _lowercase ): def __init__( self: List[str] , UpperCamelCase__: UNetaDConditionModel , UpperCamelCase__: Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase__: Optional[float] = 1.0 , ): super().__init__() lowerCamelCase__ : Optional[int] = bit_scale lowerCamelCase__ : List[Any] = ( ddim_bit_scheduler_step if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self: Union[str, Any] , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 50 , UpperCamelCase__: Optional[torch.Generator] = None , UpperCamelCase__: Optional[int] = 1 , UpperCamelCase__: Optional[str] = "pil" , UpperCamelCase__: bool = True , **UpperCamelCase__: int , ): lowerCamelCase__ : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCamelCase__ , ) lowerCamelCase__ : Union[str, Any] = decimal_to_bits(UpperCamelCase__ ) * self.bit_scale lowerCamelCase__ : Union[str, Any] = latents.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCamelCase__ : Tuple = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Any = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample lowerCamelCase__ : Dict = bits_to_decimal(UpperCamelCase__ ) if output_type == "pil": lowerCamelCase__ : int = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
129
0
"""simple docstring""" def UpperCAmelCase__ ( ): """simple docstring""" return 1 def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(_UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(_UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(_UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(_UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(_UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase = 200 ): """simple docstring""" return two_pound(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
286
"""simple docstring""" def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" A_ : str = False if num < 0: A_ : Dict = True A_ : Union[str, Any] = -num A_ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_UpperCAmelCase ) for e in binary ) return "0b" + "".join(str(_UpperCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
286
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'roberta' def __init__( self : Optional[int] , lowercase_ : Dict=5_0265 , lowercase_ : Optional[int]=768 , lowercase_ : int=12 , lowercase_ : Dict=12 , lowercase_ : int=3072 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : str=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Any=512 , lowercase_ : List[Any]=2 , lowercase_ : Dict=0.0_2 , lowercase_ : str=1e-12 , lowercase_ : List[Any]=1 , lowercase_ : str=0 , lowercase_ : Optional[Any]=2 , lowercase_ : List[str]="absolute" , lowercase_ : int=True , lowercase_ : Any=None , **lowercase_ : Any , ): super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCamelCase__ : str =vocab_size UpperCamelCase__ : Any =hidden_size UpperCamelCase__ : int =num_hidden_layers UpperCamelCase__ : Optional[int] =num_attention_heads UpperCamelCase__ : Optional[int] =hidden_act UpperCamelCase__ : str =intermediate_size UpperCamelCase__ : List[Any] =hidden_dropout_prob UpperCamelCase__ : List[str] =attention_probs_dropout_prob UpperCamelCase__ : int =max_position_embeddings UpperCamelCase__ : Any =type_vocab_size UpperCamelCase__ : List[Any] =initializer_range UpperCamelCase__ : Dict =layer_norm_eps UpperCamelCase__ : Dict =position_embedding_type UpperCamelCase__ : List[str] =use_cache UpperCamelCase__ : Tuple =classifier_dropout class __a ( snake_case__ ): """simple docstring""" @property def _lowerCAmelCase ( self : List[str] ): if self.task == "multiple-choice": UpperCamelCase__ : Dict ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase__ : Optional[Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
157
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _SCREAMING_SNAKE_CASE : List[Any] = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) _SCREAMING_SNAKE_CASE : Tuple = """|""".join(sys.argv[1:]) _SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(rF'''^({joined_dirs}).*?\.py$''') _SCREAMING_SNAKE_CASE : str = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
157
1
'''simple docstring''' class a_ : def __init__( self , snake_case_ ): _lowerCAmelCase : Tuple = set_counts _lowerCAmelCase : Union[str, Any] = max(_A ) _lowerCAmelCase : List[str] = len(_A ) _lowerCAmelCase : Union[str, Any] = [1] * num_sets _lowerCAmelCase : int = list(range(_A ) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.get_parent(_A ) _lowerCAmelCase : Dict = self.get_parent(_A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : int = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _lowerCAmelCase : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Optional[int] = src_parent _lowerCAmelCase : Optional[Any] = self.set_counts[src_parent] _lowerCAmelCase : List[str] = max(self.max_set , _A ) return True def __UpperCamelCase ( self , snake_case_ ): if self.parents[disj_set] == disj_set: return disj_set _lowerCAmelCase : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
309
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _SCREAMING_SNAKE_CASE ( a , a ) -> Optional[Any]: __A : Any = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __A : str = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __A : Optional[int] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=a , output_all_encodings=a , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , a ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __A : Union[str, Any] = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __A : Any = os.path.join(get_home_dir() , 'models' ) __A : List[Any] = _load_vocab(a , a , a , cls=a ) __A : Dict = nlp.model.BERTModel( a , len(a ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=a , use_token_type_embed=a , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=a , use_decoder=a , ) original_bort.load_parameters(a , cast_dtype=a , ignore_extra=a ) __A : Union[str, Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 __A : Any = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(a ), } __A : int = BertConfig.from_dict(a ) __A : Union[str, Any] = BertForMaskedLM(a ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(a ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(a , a ): __A : Tuple = hf_param.shape __A : str = to_torch(params[gluon_param] ) __A : Union[str, Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param __A : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __A : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __A : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __A : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __A : Tuple = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __A : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __A : BertSelfAttention = layer.attention.self __A : Optional[Any] = check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) __A : Optional[int] = check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) __A : Union[str, Any] = check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) __A : Optional[Any] = check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) __A : Union[str, Any] = check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) __A : Optional[int] = check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output __A : BertSelfOutput = layer.attention.output __A : Tuple = check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) __A : int = check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) __A : List[Any] = check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) __A : str = check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate __A : BertIntermediate = layer.intermediate __A : int = check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) __A : List[Any] = check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output __A : BertOutput = layer.output __A : List[Any] = check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) __A : Dict = check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) __A : Optional[int] = check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) __A : Dict = check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __A : Any = RobertaTokenizer.from_pretrained('roberta-base' ) __A : List[str] = tokenizer.encode_plus(a )['input_ids'] # Get gluon output __A : List[str] = mx.nd.array([input_ids] ) __A : Union[str, Any] = original_bort(inputs=a , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(a ) __A : Optional[Any] = BertModel.from_pretrained(a ) hf_bort_model.eval() __A : Tuple = tokenizer.encode_plus(a , return_tensors='pt' ) __A : Any = hf_bort_model(**a )[0] __A : Union[str, Any] = output_gluon[0].asnumpy() __A : Tuple = output_hf[0].detach().numpy() __A : int = np.max(np.abs(hf_layer - gluon_layer ) ).item() __A : int = np.allclose(a , a , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , a ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase : Dict = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
280
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase_ : Any = random.Random() def _A ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ): """simple docstring""" if rng is None: a =global_rng a =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=400 , __A=2000 , __A=10 , __A=160 , __A=8 , __A=0.0 , __A=4000 , __A=False , __A=True , ) -> Optional[Any]: a =parent a =batch_size a =min_seq_length a =max_seq_length a =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a =padding_value a =sampling_rate a =return_attention_mask a =do_normalize a =feature_size a =chunk_length a =hop_length def SCREAMING_SNAKE_CASE ( self ) -> str: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self , __A=False , __A=False ) -> str: def _flatten(__A ): return list(itertools.chain(*__A ) ) if equal_length: a =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a =[np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = WhisperFeatureExtractor if is_speech_available() else None def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =WhisperFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) a =self.feature_extraction_class.from_pretrained(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =os.path.join(__A , '''feat_extract.json''' ) feat_extract_first.to_json_file(__A ) a =self.feature_extraction_class.from_json_file(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] # Test feature size a =feature_extractor(__A , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a =feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features a =feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test batched a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a =[floats_list((1, x) )[0] for x in (800, 800, 800)] a =np.asarray(__A ) a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test truncation required a =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] a =[x[: feature_extractor.n_samples] for x in speech_inputs] a =[np.asarray(__A ) for speech_input in speech_inputs_truncated] a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: import torch a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =np.random.rand(100 , 32 ).astype(np.floataa ) a =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict: a =load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a =ds.sort('''id''' ).select(range(__A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self ) -> Any: # fmt: off a =torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on a =self._load_datasamples(1 ) a =WhisperFeatureExtractor() a =feature_extractor(__A , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __A , atol=1E-4 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =self._load_datasamples(1 )[0] a =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue a =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__A )[0] self.assertTrue(np.all(np.mean(__A ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A ) - 1 ) < 1E-3 ) )
215
"""simple docstring""" from __future__ import annotations class __A : """simple docstring""" def __init__( self , __A = 0 ) -> Dict: a =key def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> list[str]: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> list[str]: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE ( self , __A , __A = 0 ) -> str: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a ='''''' for ch in content: ans += chr(ord(__A ) ^ key ) return ans def SCREAMING_SNAKE_CASE ( self , __A , __A = 0 ) -> str: assert isinstance(__A , __A ) and isinstance(__A , __A ) a =key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned a ='''''' for ch in content: ans += chr(ord(__A ) ^ key ) return ans def SCREAMING_SNAKE_CASE ( self , __A , __A = 0 ) -> bool: assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__A , __A ) ) except OSError: return False return True def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> bool: assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__A , __A ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
215
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = emb.weight.shape _lowerCAmelCase = nn.Linear(snake_case , snake_case , bias=snake_case ) _lowerCAmelCase = emb.weight.data return lin_layer def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = torch.load(snake_case , map_location="""cpu""" ) _lowerCAmelCase = Namespace(**checkpoint["""cfg"""]["""model"""] ) _lowerCAmelCase = checkpoint["""model"""] remove_ignore_keys_(snake_case ) _lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] _lowerCAmelCase = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} _lowerCAmelCase = XGLMConfig( vocab_size=snake_case , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _lowerCAmelCase = XGLMForCausalLM(snake_case ) _lowerCAmelCase = model.load_state_dict(snake_case , strict=snake_case ) print(snake_case ) _lowerCAmelCase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") A__ = parser.parse_args() A__ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
82
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = AudioLDMPipeline __lowerCamelCase = TEXT_TO_AUDIO_PARAMS __lowerCamelCase = TEXT_TO_AUDIO_BATCH_PARAMS __lowerCamelCase = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_snake_case , ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _lowerCAmelCase = ClapTextModelWithProjection(_snake_case ) _lowerCAmelCase = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) _lowerCAmelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_snake_case , ) _lowerCAmelCase = SpeechTaHifiGan(_snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def snake_case ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_snake_case ) else: _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) _lowerCAmelCase = prompt_embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * ["""this is a negative prompt"""] _lowerCAmelCase = negative_prompt _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = [] for p in [prompt, negative_prompt]: _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) embeds.append(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = """egg cracking""" _lowerCAmelCase = audioldm_pipe(**_snake_case , negative_prompt=_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = audioldm_pipe.vocoder.config.sampling_rate _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.016 _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.032 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = ["""hey"""] _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape assert audio_shape == (1, 256) _lowerCAmelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _lowerCAmelCase = SpeechTaHifiGan(_snake_case ).to(_snake_case ) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def snake_case ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case ) def snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ) @slow class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , _snake_case , _snake_case="cpu" , _snake_case=torch.floataa , _snake_case=0 ): """simple docstring""" _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = np.random.RandomState(_snake_case ).standard_normal((1, 8, 128, 16) ) _lowerCAmelCase = torch.from_numpy(_snake_case ).to(device=_snake_case , dtype=_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = 25 _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[77230:77240] _lowerCAmelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[27780:27790] _lowerCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
82
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCAmelCase_ : def __init__( self : Optional[Any] , UpperCAmelCase__ : Any , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = 1_3 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 9_9 lowerCAmelCase = 3_2 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 3_7 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_1_2 lowerCAmelCase = 1_6 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def __UpperCAmelCase ( self : List[Any] ) -> str: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Optional[Any] ) -> Any: ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> Tuple: lowerCAmelCase = TFEsmModel(config=UpperCAmelCase__ ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(UpperCAmelCase__ ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) -> int: lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=UpperCAmelCase__ ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(UpperCAmelCase__ ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase = TFEsmForMaskedLM(config=UpperCAmelCase__ ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any ) -> Optional[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=UpperCAmelCase__ ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Tuple = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase : Dict = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False def __UpperCAmelCase ( self : Optional[int] ) -> Dict: lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : Any ) -> Tuple: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> str: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip('Protein models do not support embedding resizing.' ) def __UpperCAmelCase ( self : Any ) -> Optional[Any]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def __UpperCAmelCase ( self : Any ) -> Any: pass def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(UpperCAmelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for k, v in name.items(): assert isinstance(UpperCAmelCase__ , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(UpperCAmelCase__ )[0] lowerCAmelCase = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , UpperCAmelCase__ ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def __UpperCAmelCase ( self : Dict ) -> List[Any]: lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) lowerCAmelCase = model(UpperCAmelCase__ )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
55
'''simple docstring''' def a_ ( lowerCamelCase : float ): return 10 - x * x def a_ ( lowerCamelCase : float , lowerCamelCase : float ): # Bolzano theory in order to find if there is a root between a and b if equation(lowerCamelCase ) * equation(lowerCamelCase ) >= 0: raise ValueError('Wrong space!' ) lowerCAmelCase = a while (b - a) >= 0.01: # Find middle point lowerCAmelCase = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase ) * equation(lowerCamelCase ) < 0: lowerCAmelCase = c else: lowerCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
55
1
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict ) -> Any: __a = UniSpeechSatForSequenceClassification.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__ ) __a = downstream_dict['''projector.weight'''] __a = downstream_dict['''projector.bias'''] __a = downstream_dict['''model.post_net.linear.weight'''] __a = downstream_dict['''model.post_net.linear.bias'''] return model def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any: __a = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__ ) __a = downstream_dict['''model.linear.weight'''] __a = downstream_dict['''model.linear.bias'''] return model def lowercase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> str: __a = UniSpeechSatForXVector.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__ ) __a = downstream_dict['''connector.weight'''] __a = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __a = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __a = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __a = downstream_dict['''objective.W'''] return model @torch.no_grad() def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ) -> int: __a = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) __a = checkpoint['''Downstream'''] __a = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) __a = WavaVecaFeatureExtractor.from_pretrained( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __a = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __a = convert_classification(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) elif arch.endswith('''ForAudioFrameClassification''' ): __a = convert_diarization(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) elif arch.endswith('''ForXVector''' ): __a = convert_xvector(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __a = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCAmelCase__ ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") lowercase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
45
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : int =logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Any = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } lowerCAmelCase__ : List[str] = self.dummy_input return init_dict, inputs_dict class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Optional[Any] = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (4, 32, 32) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return (4, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model_accelerate.to(__lowerCamelCase ) model_accelerate.eval() lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : Dict = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model_accelerate(__lowerCamelCase ,__lowerCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase__ , lowerCAmelCase__ : Tuple = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ,low_cpu_mem_usage=__lowerCamelCase ) model_normal_load.to(__lowerCamelCase ) model_normal_load.eval() lowerCAmelCase__ : List[Any] = model_normal_load(__lowerCamelCase ,__lowerCamelCase )['''sample'''] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : str = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) ) class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ,__lowerCamelCase=(32, 32) ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowerCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.dummy_input lowerCAmelCase__ : Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = noise lowerCAmelCase__ : Union[str, Any] = model(**__lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : List[Any] = (2_56, 2_56) lowerCAmelCase__ : str = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Dict = 3 lowerCAmelCase__ : str = (32, 32) lowerCAmelCase__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass
129
0
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : float , __UpperCamelCase : float ): """simple docstring""" if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(__a ) * abs(__a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
365
"""simple docstring""" import os from pathlib import Path def lowerCAmelCase (): """simple docstring""" from torch.utils.cpp_extension import load __UpperCamelCase =Path(__UpperCamelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' __UpperCamelCase =[ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , __UpperCamelCase , with_cuda=__UpperCamelCase , extra_include_paths=[str(__UpperCamelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
85
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _UpperCamelCase ( *snake_case__ ) -> Optional[int]: if not isinstance(snake_case__, snake_case__ ): __UpperCAmelCase : Tuple = list(snake_case__ ) for i in range(len(snake_case__ ) ): __UpperCAmelCase : str = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _UpperCamelCase ( snake_case__ ) -> bool: __UpperCAmelCase : Union[str, Any] = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(snake_case__, snake_case__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _UpperCamelCase ( snake_case__ = None, snake_case__ = 128 ) -> List[str]: if function is None: return functools.partial(snake_case__, starting_batch_size=snake_case__ ) __UpperCAmelCase : Dict = starting_batch_size def decorator(*snake_case__, **snake_case__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __UpperCAmelCase : List[Any] = list(inspect.signature(snake_case__ ).parameters.keys() ) # Guard against user error if len(snake_case__ ) < (len(snake_case__ ) + 1): __UpperCAmelCase : Optional[int] = ", ".join([f'''{arg}={value}''' for arg, value in zip(params[1:], args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(snake_case__, *snake_case__, **snake_case__ ) except Exception as e: if should_reduce_batch_size(snake_case__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
157
import numpy as np def _UpperCamelCase ( snake_case__ ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def _UpperCamelCase ( snake_case__ ) -> np.ndarray: return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
157
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : List[str] = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
58
0
'''simple docstring''' from math import factorial def snake_case_ ( lowerCAmelCase_ = 20 )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _UpperCAmelCase : Dict = n // 2 return int(factorial(lowerCAmelCase_ ) / (factorial(lowerCAmelCase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: A_ : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
215
'''simple docstring''' from __future__ import annotations import queue class lowercase : """simple docstring""" def __init__( self ,a_ ) -> str: _UpperCAmelCase : Optional[Any] = data _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Union[str, Any] = None def snake_case_ ( )-> TreeNode: '''simple docstring''' print("""\n********Press N to stop entering at any point of time********\n""" ) _UpperCAmelCase : Any = input("""Enter the value of the root node: """ ).strip().lower() _UpperCAmelCase : queue.Queue = queue.Queue() _UpperCAmelCase : List[str] = TreeNode(int(lowerCAmelCase_ ) ) q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : str = q.get() _UpperCAmelCase : Any = F'''Enter the left node of {node_found.data}: ''' _UpperCAmelCase : Union[str, Any] = input(lowerCAmelCase_ ).strip().lower() or """n""" if check == "n": return tree_node _UpperCAmelCase : List[str] = TreeNode(int(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = left_node q.put(lowerCAmelCase_ ) _UpperCAmelCase : Dict = F'''Enter the right node of {node_found.data}: ''' _UpperCAmelCase : Tuple = input(lowerCAmelCase_ ).strip().lower() or """n""" if check == "n": return tree_node _UpperCAmelCase : Any = TreeNode(int(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = right_node q.put(lowerCAmelCase_ ) raise def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : Dict = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : queue.Queue = queue.Queue() q.put(lowerCAmelCase_ ) while not q.empty(): _UpperCAmelCase : Optional[int] = [] while not q.empty(): _UpperCAmelCase : Optional[int] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = n.left # end of while means current node doesn't have left child _UpperCAmelCase : int = stack.pop() # start to traverse its right child _UpperCAmelCase : Any = n.right def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase : list[TreeNode] = [] _UpperCAmelCase : Optional[Any] = node while n or stack: while n: stack.append(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = n.left _UpperCAmelCase : Union[str, Any] = stack.pop() print(n.data , end=""",""" ) _UpperCAmelCase : Any = n.right def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not node: return _UpperCAmelCase ,_UpperCAmelCase : str = [], [] _UpperCAmelCase : Dict = node stacka.append(lowerCAmelCase_ ) while stacka: # to find the reversed order of post order, store it in stack2 _UpperCAmelCase : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowerCAmelCase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def snake_case_ ( lowerCAmelCase_ = "" , lowerCAmelCase_=50 , lowerCAmelCase_="*" )-> str: '''simple docstring''' if not s: return "\n" + width * char _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = divmod(width - len(lowerCAmelCase_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) A_ : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
215
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __a = None __a = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __a = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __a: """simple docstring""" lowerCAmelCase = True lowerCAmelCase = None # Automatically constructed lowerCAmelCase = '''PIL.Image.Image''' lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase = field(default='''Image''' , init=_a , repr=_a ) def __call__( self ) -> Optional[Any]: return self.pa_type def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[int] = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: UpperCAmelCase_ : str = {} UpperCAmelCase_ : List[str] = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : int = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : int = path.split('''::''' )[-1] try: UpperCAmelCase_ : str = string_to_dict(_SCREAMING_SNAKE_CASE ,config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase_ : Optional[Any] = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: UpperCAmelCase_ : Any = None with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ,use_auth_token=_SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ : List[str] = BytesIO(f.read() ) UpperCAmelCase_ : Optional[int] = PIL.Image.open(bytes_ ) else: UpperCAmelCase_ : Dict = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase_ : Union[str, Any] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) UpperCAmelCase_ : int = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : Tuple = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : int = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCAmelCase_ : str = storage.field('''bytes''' ) else: UpperCAmelCase_ : Union[str, Any] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCAmelCase_ : List[str] = storage.field('''path''' ) else: UpperCAmelCase_ : List[Any] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Any = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase_ : Optional[Any] = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Any = pa.StructArray.from_arrays( [bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ) as f: UpperCAmelCase_ : List[Any] = f.read() return bytes_ UpperCAmelCase_ : Dict = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) UpperCAmelCase_ : Union[str, Any] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,) UpperCAmelCase_ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def lowerCamelCase__ ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ : Optional[Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ : List[str] = image.format else: UpperCAmelCase_ : int = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if hasattr(_lowercase , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) UpperCAmelCase_ : int = array.dtype UpperCAmelCase_ : Optional[Any] = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER UpperCAmelCase_ : str = dtype.kind UpperCAmelCase_ : int = dtype.itemsize UpperCAmelCase_ : Optional[int] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ : str = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ : Dict = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ : Optional[int] = dtype_byteorder + dtype_kind + str(_lowercase ) UpperCAmelCase_ : Dict = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCAmelCase_ : Dict = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: UpperCAmelCase_ : List[Any] = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): UpperCAmelCase_ : List[str] = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase_ : Union[str, Any] = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
366
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
235
0
'''simple docstring''' import numpy class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ = numpy.zeros(output_array.shape ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self ): """simple docstring""" lowerCamelCase_ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" for iteration in range(1 , iterations + 1 ): lowerCamelCase_ = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = input_arr lowerCamelCase_ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __snake_case ( UpperCAmelCase_ : numpy.ndarray ): return 1 / (1 + numpy.exp(-value )) def __snake_case ( UpperCAmelCase_ : numpy.ndarray ): return (value) * (1 - (value)) def __snake_case ( ): lowerCamelCase_ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ = TwoHiddenLayerNeuralNetwork( input_array=UpperCAmelCase_ , output_array=UpperCAmelCase_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=UpperCAmelCase_ , iterations=10 , give_loss=UpperCAmelCase_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
55
'''simple docstring''' a_ : str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ a_ : Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] a_ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
55
1
"""simple docstring""" def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(__a , __a ) or number < 0: raise ValueError("Input must be a non-negative integer" ) a__ : Any =0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
350
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = (PNDMScheduler,) _lowercase : str = (("""num_inference_steps""", 50),) def _lowercase ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Dict ={ "num_train_timesteps": 1_0_0_0, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowercase ( self , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : Optional[int] =dict(self.forward_default_kwargs ) a__ : Tuple =kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) a__ : List[str] =self.dummy_sample a__ : List[str] =0.1 * sample a__ : str =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a__ : int =self.get_scheduler_config(**lowerCAmelCase__ ) a__ : Union[str, Any] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals a__ : Any =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) a__ : List[Any] =scheduler_class.from_pretrained(lowerCAmelCase__ ) new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals a__ : str =dummy_past_residuals[:] a__ : Any =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Dict =new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a__ : Optional[int] =scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Union[str, Any] =new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowercase ( self ) -> int: '''simple docstring''' pass def _lowercase ( self , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ : Optional[int] =dict(self.forward_default_kwargs ) a__ : List[str] =kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) a__ : List[str] =self.dummy_sample a__ : int =0.1 * sample a__ : Tuple =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a__ : Dict =self.get_scheduler_config() a__ : List[str] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) a__ : Dict =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) a__ : Dict =scheduler_class.from_pretrained(lowerCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) a__ : Optional[int] =dummy_past_residuals[:] a__ : Optional[Any] =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : List[Any] =new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a__ : List[str] =scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Any =new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowercase ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Union[str, Any] =self.scheduler_classes[0] a__ : Optional[Any] =self.get_scheduler_config(**lowerCAmelCase__ ) a__ : Any =scheduler_class(**lowerCAmelCase__ ) a__ : int =1_0 a__ : Union[str, Any] =self.dummy_model() a__ : Optional[int] =self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): a__ : List[Any] =model(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[Any] =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): a__ : int =model(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int =scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample return sample def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : str =dict(self.forward_default_kwargs ) a__ : Tuple =kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) for scheduler_class in self.scheduler_classes: a__ : Union[str, Any] =self.get_scheduler_config() a__ : List[str] =scheduler_class(**lowerCAmelCase__ ) a__ : List[Any] =self.dummy_sample a__ : Dict =0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase__ , "set_timesteps" ): scheduler.set_timesteps(lowerCAmelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase__ , "set_timesteps" ): a__ : int =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a__ : Tuple =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a__ : str =dummy_past_residuals[:] a__ : List[Any] =scheduler.step_prk(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : int =scheduler.step_prk(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) a__ : List[str] =scheduler.step_plms(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample a__ : Dict =scheduler.step_plms(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase ( self ) -> Tuple: '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase__ ) a__ : Optional[Any] =self.scheduler_classes[0] a__ : Tuple =self.get_scheduler_config(steps_offset=1 ) a__ : Optional[Any] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def _lowercase ( self ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' for t in [1, 5, 1_0]: self.check_over_forward(time_step=lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=lowerCAmelCase__ ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Dict =2_7 for scheduler_class in self.scheduler_classes: a__ : Tuple =self.dummy_sample a__ : Dict =0.1 * sample a__ : Dict =self.get_scheduler_config() a__ : int =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): a__ : Any =scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): a__ : List[Any] =self.scheduler_classes[0] a__ : Dict =self.get_scheduler_config() a__ : Tuple =scheduler_class(**lowerCAmelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =self.full_loop() a__ : str =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Optional[Any] =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =self.full_loop(prediction_type="v_prediction" ) a__ : int =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Optional[int] =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Tuple =self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) a__ : str =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Dict =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Dict =self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) a__ : Union[str, Any] =torch.sum(torch.abs(lowerCAmelCase__ ) ) a__ : Union[str, Any] =torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
148
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = AutoConfig.from_pretrained(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": SCREAMING_SNAKE_CASE_: str = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": SCREAMING_SNAKE_CASE_: Any = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE_: Any = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): SCREAMING_SNAKE_CASE_: int = f"layers_{str(_UpperCAmelCase )}" # Self-Attention SCREAMING_SNAKE_CASE_: Optional[int] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] SCREAMING_SNAKE_CASE_: int = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] SCREAMING_SNAKE_CASE_: Dict = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] SCREAMING_SNAKE_CASE_: str = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE_: int = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization SCREAMING_SNAKE_CASE_: Any = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: SCREAMING_SNAKE_CASE_: int = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] SCREAMING_SNAKE_CASE_: Optional[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: SCREAMING_SNAKE_CASE_: Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] SCREAMING_SNAKE_CASE_: Dict = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization SCREAMING_SNAKE_CASE_: Dict = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning SCREAMING_SNAKE_CASE_: List[str] = flax_model.params["encoder"]["block"][str(_UpperCAmelCase )]["layer"] SCREAMING_SNAKE_CASE_: Any = tax_attention_key SCREAMING_SNAKE_CASE_: str = tax_attention_out SCREAMING_SNAKE_CASE_: Union[str, Any] = tax_attention_query SCREAMING_SNAKE_CASE_: Optional[int] = tax_attention_value SCREAMING_SNAKE_CASE_: Any = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE_: Optional[Any] = tax_global_layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_: Any = tax_mlp_wi_a SCREAMING_SNAKE_CASE_: Any = tax_mlp_wi_a else: SCREAMING_SNAKE_CASE_: Optional[int] = tax_mlp_wi SCREAMING_SNAKE_CASE_: str = tax_mlp_wo SCREAMING_SNAKE_CASE_: int = tax_mlp_layer_norm SCREAMING_SNAKE_CASE_: int = flax_model_encoder_layer_block # Only for layer 0: SCREAMING_SNAKE_CASE_: Tuple = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T SCREAMING_SNAKE_CASE_: List[str] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": SCREAMING_SNAKE_CASE_: List[Any] = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T SCREAMING_SNAKE_CASE_: Any = tax_encoder_global_rel_embedding # Assigning SCREAMING_SNAKE_CASE_: List[str] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] SCREAMING_SNAKE_CASE_: Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): SCREAMING_SNAKE_CASE_: int = f"layers_{str(_UpperCAmelCase )}" # Self-Attention SCREAMING_SNAKE_CASE_: str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] SCREAMING_SNAKE_CASE_: List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] SCREAMING_SNAKE_CASE_: List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] SCREAMING_SNAKE_CASE_: Optional[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization SCREAMING_SNAKE_CASE_: int = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention SCREAMING_SNAKE_CASE_: List[Any] = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] SCREAMING_SNAKE_CASE_: Any = tax_enc_dec_attention_module["key"]["kernel"] SCREAMING_SNAKE_CASE_: int = tax_enc_dec_attention_module["out"]["kernel"] SCREAMING_SNAKE_CASE_: Tuple = tax_enc_dec_attention_module["query"]["kernel"] SCREAMING_SNAKE_CASE_: List[str] = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization SCREAMING_SNAKE_CASE_: Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: SCREAMING_SNAKE_CASE_: Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] SCREAMING_SNAKE_CASE_: Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: SCREAMING_SNAKE_CASE_: int = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] SCREAMING_SNAKE_CASE_: int = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization SCREAMING_SNAKE_CASE_: Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning SCREAMING_SNAKE_CASE_: List[str] = flax_model.params["decoder"]["block"][str(_UpperCAmelCase )]["layer"] SCREAMING_SNAKE_CASE_: Optional[int] = tax_attention_key SCREAMING_SNAKE_CASE_: Optional[Any] = tax_attention_out SCREAMING_SNAKE_CASE_: List[Any] = tax_attention_query SCREAMING_SNAKE_CASE_: Optional[int] = tax_attention_value SCREAMING_SNAKE_CASE_: List[Any] = tax_pre_attention_layer_norm SCREAMING_SNAKE_CASE_: Optional[int] = tax_enc_dec_attention_key SCREAMING_SNAKE_CASE_: List[Any] = tax_enc_dec_attention_out SCREAMING_SNAKE_CASE_: List[Any] = tax_enc_dec_attention_query SCREAMING_SNAKE_CASE_: Optional[Any] = tax_enc_dec_attention_value SCREAMING_SNAKE_CASE_: int = tax_cross_layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_: Optional[int] = tax_mlp_wi_a SCREAMING_SNAKE_CASE_: Any = tax_mlp_wi_a else: SCREAMING_SNAKE_CASE_: Any = tax_mlp_wi SCREAMING_SNAKE_CASE_: Optional[Any] = tax_mlp_wo SCREAMING_SNAKE_CASE_: Optional[int] = txa_mlp_layer_norm SCREAMING_SNAKE_CASE_: Optional[Any] = flax_model_decoder_layer_block # Decoder Normalization SCREAMING_SNAKE_CASE_: Optional[int] = tax_model["target"]["decoder"]["decoder_norm"]["scale"] SCREAMING_SNAKE_CASE_: Any = txa_decoder_norm # Only for layer 0: SCREAMING_SNAKE_CASE_: Tuple = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T SCREAMING_SNAKE_CASE_: Any = tax_decoder_rel_embedding # Token Embeddings SCREAMING_SNAKE_CASE_: Dict = tax_model["target"]["token_embedder"]["embedding"] SCREAMING_SNAKE_CASE_: Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: SCREAMING_SNAKE_CASE_: Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_UpperCAmelCase ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) lowerCAmelCase : List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
13
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase_( snake_case : Callable ): '''simple docstring''' @wraps(snake_case ) def _inner_fn(*snake_case : Optional[int] , **snake_case : List[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
85
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs SCREAMING_SNAKE_CASE_: Dict =imread(r'digital_image_processing/image_data/lena_small.jpg') SCREAMING_SNAKE_CASE_: Optional[int] =cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = cn.convert_to_negative(_UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCamelCase , 1_10 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' UpperCAmelCase_ = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() UpperCAmelCase_ = canny.canny(_UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' assert gg.gaussian_filter(_UpperCamelCase , 5 , sigma=0.9 ).all() def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) UpperCAmelCase_ = conv.img_convolve(_UpperCamelCase , _UpperCamelCase ).astype(_UpperCamelCase ) assert res.any() def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' assert med.median_filter(_UpperCamelCase , 3 ).any() def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = sob.sobel_filter(_UpperCamelCase ) assert grad.any() and theta.any() def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = sp.make_sepia(_UpperCamelCase , 20 ) assert sepia.all() def lowerCAmelCase_ ( snake_case_ : str = "digital_image_processing/image_data/lena_small.jpg" ) -> str: '''simple docstring''' UpperCAmelCase_ = bs.Burkes(imread(_UpperCamelCase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase_ ( snake_case_ : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = rs.NearestNeighbour(imread(_UpperCamelCase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. UpperCAmelCase_ = imread(_UpperCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = image[x_coordinate][y_coordinate] UpperCAmelCase_ = lbp.get_neighbors_pixel( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image UpperCAmelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): UpperCAmelCase_ = lbp.local_binary_value(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert lbp_image.any()
359
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE_: List[str] =get_logger() SCREAMING_SNAKE_CASE_: Optional[dict] =None class __A ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__(self : List[Any] , __a : Optional[int]=None , __a : Any=None , **__a : Dict ): super().__init__(features=__a ) import jax from jaxlib.xla_client import Device if isinstance(__a , __a ): raise ValueError( f"""Expected {device} to be a `str` not {type(__a )}, as `jaxlib.xla_extension.Device` """ "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) UpperCAmelCase_ = device if isinstance(__a , __a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) UpperCAmelCase_ = str(jax.devices()[0] ) UpperCAmelCase_ = jnp_array_kwargs @staticmethod def _lowercase (): import jax return {str(__a ): device for device in jax.devices()} def _lowercase (self : str , __a : Tuple ): import jax import jax.numpy as jnp if isinstance(__a , __a ) and column: if all( isinstance(__a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__a , axis=0 ) return column def _lowercase (self : Any , __a : Optional[int] ): import jax import jax.numpy as jnp if isinstance(__a , (str, bytes, type(__a )) ): return value elif isinstance(__a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase_ = {} if isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase_ = {"dtype": jnp.intaa} else: UpperCAmelCase_ = {"dtype": jnp.intaa} elif isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase_ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__a , PIL.Image.Image ): UpperCAmelCase_ = np.asarray(__a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__a , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase (self : int , __a : Any ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__a , "__array__" ) and not isinstance(__a , jax.Array ): UpperCAmelCase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) elif isinstance(__a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) return self._tensorize(__a ) def _lowercase (self : Union[str, Any] , __a : dict ): return map_nested(self._recursive_tensorize , __a , map_list=__a ) def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_row(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_row(__a ) return self.recursive_tensorize(__a ) def _lowercase (self : Tuple , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_column(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_column(__a , pa_table.column_names[0] ) UpperCAmelCase_ = self.recursive_tensorize(__a ) UpperCAmelCase_ = self._consolidate(__a ) return column def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_batch(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_batch(__a ) UpperCAmelCase_ = self.recursive_tensorize(__a ) for column_name in batch: UpperCAmelCase_ = self._consolidate(batch[column_name] ) return batch
106
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
113
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowercase_ = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") lowercase_ , lowercase_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") lowercase_ = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: lowercase_ = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowercase_ = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
58
0
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [False] * len(UpperCamelCase__ ) snake_case_ = [] queue.append(UpperCamelCase__ ) snake_case_ = True while queue: snake_case_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCamelCase__ ) snake_case_ = True snake_case_ = u return visited[t] def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [-1] * (len(UpperCamelCase__ )) snake_case_ = 0 while bfs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): snake_case_ = float('Inf' ) snake_case_ = sink while s != source: # Find the minimum value in select path snake_case_ = min(UpperCamelCase__ , graph[parent[s]][s] ) snake_case_ = parent[s] max_flow += path_flow snake_case_ = sink while v != source: snake_case_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case_ = parent[v] return max_flow _UpperCAmelCase : int = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _UpperCAmelCase , _UpperCAmelCase : str = 0, 5 print(ford_fulkerson(graph, source, sink))
200
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Tuple = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
200
1
def a__ ( _UpperCamelCase : float ): return 10 - x * x def a__ ( _UpperCamelCase : float ,_UpperCamelCase : float ): if equation(__a ) * equation(__a ) >= 0: raise ValueError('''Wrong space!''' ) __lowerCamelCase = a while (b - a) >= 0.01: # Find middle point __lowerCamelCase = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: __lowerCamelCase = c else: __lowerCamelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
330
a__ = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
235
0
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder A: str = "base_with_context" def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : str ): UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) UpperCAmelCase : Any = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=UpperCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase : List[Any] = weights[F"layers_{lyr_num}"] UpperCAmelCase : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) UpperCAmelCase : Optional[Any] = ly_weight["""attention"""] UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] ): UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) UpperCAmelCase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=UpperCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase : int = weights[F"layers_{lyr_num}"] UpperCAmelCase : List[str] = ly_weight["""attention"""] UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) UpperCAmelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) UpperCAmelCase : str = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) UpperCAmelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def _snake_case ( UpperCamelCase : int , UpperCamelCase : Tuple ): UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) UpperCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) UpperCAmelCase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=UpperCamelCase ) UpperCAmelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): UpperCAmelCase : Dict = weights[F"layers_{lyr_num}"] UpperCAmelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) UpperCAmelCase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) UpperCAmelCase : Union[str, Any] = ly_weight["""self_attention"""] UpperCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) UpperCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) UpperCAmelCase : Union[str, Any] = ly_weight["""MultiHeadDotProductAttention_0"""] UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) UpperCAmelCase : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) UpperCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) UpperCAmelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) UpperCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) UpperCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) UpperCAmelCase : str = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) UpperCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def _snake_case ( UpperCamelCase : Optional[int] ): UpperCAmelCase : Dict = checkpoints.load_tax_checkpoint(args.checkpoint_path ) UpperCAmelCase : int = jnp.tree_util.tree_map(onp.array , UpperCamelCase ) UpperCAmelCase : Any = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] UpperCAmelCase : str = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) UpperCAmelCase : Tuple = inference.parse_training_gin_file(UpperCamelCase , UpperCamelCase ) UpperCAmelCase : str = inference.InferenceModel(args.checkpoint_path , UpperCamelCase ) UpperCAmelCase : Optional[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) UpperCAmelCase : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) UpperCAmelCase : Tuple = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) UpperCAmelCase : Union[str, Any] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) UpperCAmelCase : Dict = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , UpperCamelCase ) UpperCAmelCase : int = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , UpperCamelCase ) UpperCAmelCase : Dict = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , UpperCamelCase ) UpperCAmelCase : Dict = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) UpperCAmelCase : Tuple = SpectrogramDiffusionPipeline( notes_encoder=UpperCamelCase , continuous_encoder=UpperCamelCase , decoder=UpperCamelCase , scheduler=UpperCamelCase , melgan=UpperCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": A: Optional[int] = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) A: Dict = parser.parse_args() main(args)
76
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : List[str]=[] ): UpperCAmelCase : List[Any] = size[0] - overlap_pixels * 2 UpperCAmelCase : Dict = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase : Union[str, Any] = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 UpperCAmelCase : Any = np.pad(UpperCamelCase , mode="""linear_ramp""" , pad_width=UpperCamelCase , end_values=0 ) if "l" in remove_borders: UpperCAmelCase : Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase : Optional[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase : Any = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase : str = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): return max(UpperCamelCase , min(UpperCamelCase , UpperCamelCase ) ) def _snake_case ( UpperCamelCase : [int] , UpperCamelCase : [int] , UpperCamelCase : [int] ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _snake_case ( UpperCamelCase : [int] , UpperCamelCase : int , UpperCamelCase : [int] ): UpperCAmelCase : Optional[Any] = list(UpperCamelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase : List[str] = clamp_rect(UpperCamelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Dict ): UpperCAmelCase : Dict = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(UpperCamelCase , (original_slice, 0) ) return result def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] ): UpperCAmelCase : List[Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase : List[Any] = tile.crop(UpperCamelCase ) return tile def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] ): UpperCAmelCase : Union[str, Any] = n % d return n - divisor class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 350 , ) -> List[Any]: '''simple docstring''' super().__init__( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , low_res_scheduler=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , max_noise_level=_SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : List[str] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCAmelCase : Any = add_overlap_rect(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , image.size ) UpperCAmelCase : int = image.crop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase : Dict = translated_slice_x - (original_image_slice / 2) UpperCAmelCase : Optional[int] = max(0 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = squeeze_tile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = to_input.size UpperCAmelCase : Dict = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCAmelCase : Optional[Any] = super(_SCREAMING_SNAKE_CASE , self ).__call__(image=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).images[0] UpperCAmelCase : int = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : Union[str, Any] = unsqueeze_tile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : int = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCAmelCase : Any = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=_SCREAMING_SNAKE_CASE ) , mode="""L""" , ) final_image.paste( _SCREAMING_SNAKE_CASE , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , _SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 75 , _SCREAMING_SNAKE_CASE = 9.0 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 32 , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase : List[str] = math.ceil(image.size[0] / tile_size ) UpperCAmelCase : Optional[Any] = math.ceil(image.size[1] / tile_size ) UpperCAmelCase : Tuple = tcx * tcy UpperCAmelCase : Any = 0 for y in range(_SCREAMING_SNAKE_CASE ): for x in range(_SCREAMING_SNAKE_CASE ): self._process_tile( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prompt=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , noise_level=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def _snake_case ( ): # Run a demo UpperCAmelCase : Tuple = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase : int = StableDiffusionTiledUpscalePipeline.from_pretrained(UpperCamelCase , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase : Any = pipe.to("""cuda""" ) UpperCAmelCase : Optional[int] = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(UpperCamelCase : List[str] ): print(F"progress: {obj['progress']:.4f}" ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCAmelCase : Any = pipe(image=UpperCamelCase , prompt="""Black font, white background, vector""" , noise_level=40 , callback=UpperCamelCase ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
76
1
from collections.abc import Callable import numpy as np def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase_ = np.zeros((n + 1,) ) lowerCamelCase_ = ya lowerCamelCase_ = xa for k in range(lowerCamelCase__ ): lowerCamelCase_ = y[k] + step_size * ode_func(lowerCamelCase__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 13 , SCREAMING_SNAKE_CASE = 64 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE=[16, 32, 64, 128] , SCREAMING_SNAKE_CASE = 7 , SCREAMING_SNAKE_CASE = 4 , SCREAMING_SNAKE_CASE = 37 , SCREAMING_SNAKE_CASE = "gelu" , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE = [2, 2, 2, 2] , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 2 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : List[str] = image_size snake_case : int = patch_size snake_case : int = num_channels snake_case : Any = is_training snake_case : int = use_labels snake_case : Optional[Any] = hidden_size snake_case : str = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : Dict = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : List[Any] = type_sequence_label_size snake_case : Optional[Any] = initializer_range snake_case : Any = encoder_stride snake_case : Tuple = num_attention_outputs snake_case : Dict = embed_dim snake_case : Optional[Any] = embed_dim + 1 snake_case : Any = resolution snake_case : int = depths snake_case : int = hidden_sizes snake_case : int = dim snake_case : Tuple = mlp_expansion_ratio def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Optional[int] = None if self.use_labels: snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : str = TFEfficientFormerModel(config=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = self.type_sequence_label_size snake_case : Tuple = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case : Tuple = 1 snake_case : Any = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE ) snake_case : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Tuple = config_and_inputs snake_case : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): a__ : Dict = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a__ : int = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a__ : int = False a__ : List[str] = False a__ : Union[str, Any] = False a__ : Optional[Any] = False a__ : str = False def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = TFEfficientFormerModelTester(self ) snake_case : Dict = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : str = model_class(SCREAMING_SNAKE_CASE ) snake_case : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[int] = [*signature.parameters.keys()] snake_case : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) if hasattr(self.model_tester , "encoder_seq_length" ): snake_case : List[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: snake_case : Optional[int] = seq_length * self.model_tester.chunk_length else: snake_case : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: snake_case : List[Any] = outputs.decoder_hidden_states self.asseretIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "decoder_seq_length" , SCREAMING_SNAKE_CASE ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" snake_case : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : str = TFEfficientFormerModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : str = True snake_case : Tuple = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = getattr(self.model_tester , "key_length" , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "chunk_length" , SCREAMING_SNAKE_CASE ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): snake_case : Optional[int] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: snake_case : Optional[int] = True snake_case : List[Any] = False snake_case : Optional[int] = True snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Tuple = True snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model snake_case : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes snake_case : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=SCREAMING_SNAKE_CASE ) for key, val in model.input_signature.items() if key in model.dummy_inputs } snake_case : Any = model(SCREAMING_SNAKE_CASE ) self.assertTrue(outputs_dict is not None ) def UpperCamelCase__ ( ): snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) snake_case : List[Any] = self.default_image_processor snake_case : Optional[Any] = prepare_img() snake_case : int = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass snake_case : Union[str, Any] = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # verify the logits snake_case : int = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) snake_case : Dict = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) snake_case : int = self.default_image_processor snake_case : List[Any] = prepare_img() snake_case : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass snake_case : Any = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # verify the logits snake_case : Any = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[Any] = MgpstrTokenizer UpperCamelCase : int = False UpperCamelCase : int = {} UpperCamelCase : List[str] = False def __A ( self ) -> int: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on lowerCamelCase = dict(zip(_A , range(len(_A ) ) ) ) lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) def __A ( self , **A ) -> Optional[int]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def __A ( self , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = 'tester' lowerCamelCase = 'tester' return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __A ( self ) -> List[Any]: '''simple docstring''' pass def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCamelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowerCamelCase = tokenizer.encode([special_token] , add_special_tokens=_A ) self.assertEqual(len(_A ) , 1 ) lowerCamelCase = tokenizer.decode(_A , skip_special_tokens=_A ) self.assertTrue(special_token not in decoded ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCamelCase = self.get_input_output_texts(_A ) lowerCamelCase = tokenizer.tokenize(_A ) lowerCamelCase = tokenizer.convert_tokens_to_ids(_A ) lowerCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) lowerCamelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertNotEqual(len(_A ) , 0 ) lowerCamelCase = tokenizer.decode(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(text_a.replace(""" """ , """""" ) , _A ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __A ( self ) -> Optional[int]: '''simple docstring''' pass
356
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(A , A ) def __A ( self , **A ) -> Optional[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> List[Any]: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> Optional[int]: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **A ) def __A ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCamelCase = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = self.get_image_processor() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase = self.get_image_processor(do_normalize=A , padding_value=1.0 ) lowerCamelCase = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = image_processor(A , return_tensors="""np""" ) lowerCamelCase = processor(images=A , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = processor(text=A ) lowerCamelCase = tokenizer(A , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase = processor.batch_decode(A ) lowerCamelCase = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
66
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=1_3 , UpperCamelCase__ : Dict=7 , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Dict=False , UpperCamelCase__ : int=True , UpperCamelCase__ : List[str]=9_9 , UpperCamelCase__ : Optional[int]=3_2 , UpperCamelCase__ : int=5 , UpperCamelCase__ : str=4 , UpperCamelCase__ : int=3_7 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : int=5_1_2 , UpperCamelCase__ : List[Any]=1_6 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Optional[Any]=0.0_2 , UpperCamelCase__ : str=3 , UpperCamelCase__ : int=4 , UpperCamelCase__ : Optional[int]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def A ( self : str ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Tuple ): """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = DistilBertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = DistilBertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = DistilBertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = DistilBertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = DistilBertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.num_choices UpperCamelCase = DistilBertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def A ( self : Tuple ): """simple docstring""" UpperCamelCase = DistilBertModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , dim=3_7 ) def A ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase__ ) @slow def A ( self : Tuple ): """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = DistilBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @slow @require_torch_gpu def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return UpperCamelCase = True UpperCamelCase = model_class(config=UpperCamelCase__ ) UpperCamelCase = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = torch.jit.trace( UpperCamelCase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , 'traced_model.pt' ) ) UpperCamelCase = torch.jit.load(os.path.join(UpperCamelCase__ , 'traced_model.pt' ) , map_location=UpperCamelCase__ ) loaded(inputs_dict['input_ids'].to(UpperCamelCase__ ) , inputs_dict['attention_mask'].to(UpperCamelCase__ ) ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : str ): """simple docstring""" UpperCamelCase = DistilBertModel.from_pretrained('distilbert-base-uncased' ) UpperCamelCase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] UpperCamelCase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 ) )
28
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __UpperCamelCase : Optional[Any] = '''scheduler_config.json''' class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 1 lowercase__ = 2 lowercase__ = 3 lowercase__ = 4 lowercase__ = 5 @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = SCHEDULER_CONFIG_NAME lowercase__ = ["dtype"] lowercase__ = [] lowercase__ = True @classmethod def __lowerCAmelCase ( cls : List[Any] ,lowercase_ : Dict[str, Any] = None ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[int]=False ,**lowercase_ : Any ,): lowerCAmelCase__ ,lowerCAmelCase__ : Dict = cls.load_config( pretrained_model_name_or_path=lowercase_ ,subfolder=lowercase_ ,return_unused_kwargs=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = cls.from_config(lowercase_ ,return_unused_kwargs=lowercase_ ,**lowercase_ ) if hasattr(lowercase_ ,'''create_state''' ) and getattr(lowercase_ ,'''has_state''' ,lowercase_ ): lowerCAmelCase__ : List[Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __lowerCAmelCase ( self : Tuple ,lowercase_ : Union[str, os.PathLike] ,lowercase_ : bool = False ,**lowercase_ : str ): self.save_config(save_directory=lowercase_ ,push_to_hub=lowercase_ ,**lowercase_ ) @property def __lowerCAmelCase ( self : List[str] ): return self._get_compatibles() @classmethod def __lowerCAmelCase ( cls : List[Any] ): lowerCAmelCase__ : Tuple = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase__ : Tuple = importlib.import_module(__name__.split('''.''' )[0] ) lowerCAmelCase__ : Union[str, Any] = [ getattr(lowercase_ ,lowercase_ ) for c in compatible_classes_str if hasattr(lowercase_ ,lowercase_ ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( A_ , A_ ): assert len(A_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A_ ) - x.ndim) ) , A_ ) def __SCREAMING_SNAKE_CASE ( A_ , A_=0.999 , A_=jnp.floataa ): def alpha_bar(A_ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowerCAmelCase__ : Optional[Any] = [] for i in range(A_ ): lowerCAmelCase__ : str = i / num_diffusion_timesteps lowerCAmelCase__ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(A_ ) / alpha_bar(A_ ) , A_ ) ) return jnp.array(A_ , dtype=A_ ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,lowercase_ : List[Any] ): lowerCAmelCase__ : Optional[int] = scheduler.config if config.trained_betas is not None: lowerCAmelCase__ : Any = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCAmelCase__ : Union[str, Any] = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : int = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : List[Any] = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) lowerCAmelCase__ : str = 1.0 - betas lowerCAmelCase__ : Union[str, Any] = jnp.cumprod(lowercase_ ,axis=0 ) return cls( alphas=lowercase_ ,betas=lowercase_ ,alphas_cumprod=lowercase_ ,) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Any = state.alphas_cumprod lowerCAmelCase__ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase__ : Tuple = sqrt_alpha_prod.flatten() lowerCAmelCase__ : str = broadcast_to_shape_from_left(A_ , original_samples.shape ) lowerCAmelCase__ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase__ : Optional[Any] = sqrt_one_minus_alpha_prod.flatten() lowerCAmelCase__ : Optional[int] = broadcast_to_shape_from_left(A_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) lowerCAmelCase__ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) lowerCAmelCase__ : Union[str, Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
106
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ : Tuple = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ : Dict = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ : Any = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } lowerCAmelCase_ : str = { '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } lowerCAmelCase_ : Optional[int] = { '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } lowerCAmelCase_ : Optional[int] = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase_ : Optional[int] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase_ : List[str] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class UpperCamelCase_ ( a_ ): _A : List[str] = VOCAB_FILES_NAMES _A : str = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A : Dict = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _A : Optional[int] = DPRContextEncoderTokenizer class UpperCamelCase_ ( a_ ): _A : Optional[int] = VOCAB_FILES_NAMES _A : Optional[int] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A : Any = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : int = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _A : str = DPRQuestionEncoderTokenizer lowerCAmelCase_ : Optional[int] = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCAmelCase_ : List[str] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCAmelCase_ : List[str] = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a_ ) class UpperCamelCase_ : def __call__( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = None , snake_case__ = None , snake_case__ = None , **snake_case__ , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) elif titles is None or texts is None: UpperCAmelCase = titles if texts is None else texts return super().__call__( snake_case__ , snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) UpperCAmelCase = titles if not isinstance(snake_case__ , snake_case__ ) else [titles] UpperCAmelCase = texts if not isinstance(snake_case__ , snake_case__ ) else [texts] UpperCAmelCase = len(snake_case__ ) UpperCAmelCase = questions if not isinstance(snake_case__ , snake_case__ ) else [questions] * n_passages assert len(snake_case__ ) == len( snake_case__ ), f'''There should be as many titles than texts but got {len(snake_case__ )} titles and {len(snake_case__ )} texts.''' UpperCAmelCase = super().__call__(snake_case__ , snake_case__ , padding=snake_case__ , truncation=snake_case__ )["""input_ids"""] UpperCAmelCase = super().__call__(snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ )["""input_ids"""] UpperCAmelCase = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case__ , snake_case__ ) ] } if return_attention_mask is not False: UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase = attention_mask return self.pad(snake_case__ , padding=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = 16 , snake_case__ = 64 , snake_case__ = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" UpperCAmelCase = reader_input["""input_ids"""] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = reader_output[:3] UpperCAmelCase = len(snake_case__ ) UpperCAmelCase = sorted(range(snake_case__ ) , reverse=snake_case__ , key=relevance_logits.__getitem__ ) UpperCAmelCase = [] for doc_id in sorted_docs: UpperCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase = len(snake_case__ ) UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case__ , top_spans=snake_case__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case__ , start_index=snake_case__ , end_index=snake_case__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> List[DPRSpanPrediction]: """simple docstring""" UpperCAmelCase = [] for start_index, start_score in enumerate(snake_case__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase = sorted(snake_case__ , key=lambda snake_case__ : x[1] , reverse=snake_case__ ) UpperCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' UpperCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a_ ) class UpperCamelCase_ ( a_ , a_ ): _A : int = VOCAB_FILES_NAMES _A : Dict = READER_PRETRAINED_VOCAB_FILES_MAP _A : int = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION _A : Dict = ['input_ids', 'attention_mask'] _A : Optional[Any] = DPRReaderTokenizer
371
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return (data["data"], data["target"]) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase , lowerCAmelCase ) # Predict target for test data UpperCAmelCase = xgb.predict(lowerCAmelCase ) UpperCAmelCase = predictions.reshape(len(lowerCAmelCase ) , 1 ) return predictions def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = fetch_california_housing() UpperCAmelCase , UpperCAmelCase = data_handling(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_test_split( lowerCAmelCase , lowerCAmelCase , test_size=0.25 , random_state=1 ) UpperCAmelCase = xgboost(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase , lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowerCAmelCase , lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
248
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowercase__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Tuple = StableUnCLIPImgaImgPipeline A_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS A_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ : List[Any] = frozenset([] ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = 32 _SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components _SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Tuple = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : str = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : int = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : int = AutoencoderKL() _SCREAMING_SNAKE_CASE : Dict = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def UpperCAmelCase_ ( self , __snake_case , __snake_case=0 , __snake_case=True ): if str(__snake_case ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(__snake_case ) else: _SCREAMING_SNAKE_CASE : int = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: _SCREAMING_SNAKE_CASE : Optional[Any] = input_image * 0.5 + 0.5 _SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _SCREAMING_SNAKE_CASE : List[Any] = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() _SCREAMING_SNAKE_CASE : Dict = StableUnCLIPImgaImgPipeline(**__snake_case ) _SCREAMING_SNAKE_CASE : Dict = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) _SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(__snake_case ) inputs.update({"""image_embeds""": None} ) _SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**__snake_case ).images _SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE : Dict = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase_ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) _SCREAMING_SNAKE_CASE : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) _SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(__snake_case , """anime turle""" , generator=__snake_case , output_type="""np""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) _SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE : Any = pipe(__snake_case , """anime turle""" , generator=__snake_case , output_type="""np""" ) _SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE : int = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE : List[Any] = pipe( __snake_case , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
200
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__ ( _snake_case ): '''simple docstring''' A_ : UNetaDModel A_ : ScoreSdeVeScheduler def __init__( self , __snake_case , __snake_case ): super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self , __snake_case = 1 , __snake_case = 2000 , __snake_case = None , __snake_case = "pil" , __snake_case = True , **__snake_case , ): _SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.sample_size _SCREAMING_SNAKE_CASE : Optional[Any] = (batch_size, 3, img_size, img_size) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet _SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma _SCREAMING_SNAKE_CASE : Any = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): _SCREAMING_SNAKE_CASE : Any = self.unet(__snake_case , __snake_case ).sample _SCREAMING_SNAKE_CASE : Any = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step _SCREAMING_SNAKE_CASE : Union[str, Any] = model(__snake_case , __snake_case ).sample _SCREAMING_SNAKE_CASE : Tuple = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = output.prev_sample, output.prev_sample_mean _SCREAMING_SNAKE_CASE : Tuple = sample_mean.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE : str = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
200
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "linear" __magic_name__ = "cosine" __magic_name__ = "cosine_with_restarts" __magic_name__ = "polynomial" __magic_name__ = "constant" __magic_name__ = "constant_with_warmup" __magic_name__ = "piecewise_constant" def lowercase (_A , _A = -1 ): """simple docstring""" return LambdaLR(_A , lambda _A : 1 , last_epoch=_A ) def lowercase (_A , _A , _A = -1 ): """simple docstring""" def lr_lambda(_A ): if current_step < num_warmup_steps: return float(_A ) / float(max(1.0 , _A ) ) return 1.0 return LambdaLR(_A , _A , last_epoch=_A ) def lowercase (_A , _A , _A = -1 ): """simple docstring""" _lowerCAmelCase : Tuple = {} _lowerCAmelCase : List[Any] = step_rules.split(',' ) for rule_str in rule_list[:-1]: _lowerCAmelCase , _lowerCAmelCase : int = rule_str.split(':' ) _lowerCAmelCase : int = int(_A ) _lowerCAmelCase : str = float(_A ) _lowerCAmelCase : Optional[Any] = value _lowerCAmelCase : List[Any] = float(rule_list[-1] ) def create_rules_function(_A , _A ): def rule_func(_A ) -> float: _lowerCAmelCase : List[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _lowerCAmelCase : Dict = create_rules_function(_A , _A ) return LambdaLR(_A , _A , last_epoch=_A ) def lowercase (_A , _A , _A , _A=-1 ): """simple docstring""" def lr_lambda(_A ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_A , _A , _A ) def lowercase (_A , _A , _A , _A = 0.5 , _A = -1 ): """simple docstring""" def lr_lambda(_A ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) _lowerCAmelCase : Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_A ) * 2.0 * progress )) ) return LambdaLR(_A , _A , _A ) def lowercase (_A , _A , _A , _A = 1 , _A = -1 ): """simple docstring""" def lr_lambda(_A ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) _lowerCAmelCase : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_A ) * progress) % 1.0) )) ) return LambdaLR(_A , _A , _A ) def lowercase (_A , _A , _A , _A=1E-7 , _A=1.0 , _A=-1 ): """simple docstring""" _lowerCAmelCase : Optional[int] = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(_A ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _lowerCAmelCase : List[str] = lr_init - lr_end _lowerCAmelCase : Optional[int] = num_training_steps - num_warmup_steps _lowerCAmelCase : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps _lowerCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_A , _A , _A ) lowerCAmelCase : List[str] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowercase (_A , _A , _A = None , _A = None , _A = None , _A = 1 , _A = 1.0 , _A = -1 , ): """simple docstring""" _lowerCAmelCase : str = SchedulerType(_A ) _lowerCAmelCase : Optional[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_A , last_epoch=_A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_A , step_rules=_A , last_epoch=_A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_A , num_warmup_steps=_A , last_epoch=_A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , num_cycles=_A , last_epoch=_A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , power=_A , last_epoch=_A , ) return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , last_epoch=_A )
25
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): a_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right a_ = 12_8022 a_ = 12_8028 @require_sentencepiece class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MaMaaaTokenizer lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] SCREAMING_SNAKE_CASE : str = dict(zip(a , range(len(a ) ) ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = Path(self.tmpdirname ) save_json(a , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a , save_dir / VOCAB_FILES_NAMES["spm_file"] ) SCREAMING_SNAKE_CASE : List[str] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : str , **a : Dict ) -> List[Any]: """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **a ) def __UpperCamelCase ( self : List[str] , a : List[str] ) -> Any: """simple docstring""" return ( "This is a test", "This is a test", ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = "</s>" SCREAMING_SNAKE_CASE : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[Any] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(a ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [2, 3, 4, 5, 6] , ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_string(a ) self.assertEqual(a , "This is a test" ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ ='facebook/m2m100_418M' lowerCamelCase__ =[ 'In my opinion, there are two levels of response from the French government.', 'NSA Affair Emphasizes Complete Lack of Debate on Intelligence', ] lowerCamelCase__ =[ 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', ] # fmt: off lowerCamelCase__ =[EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __UpperCamelCase ( cls : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 1 return cls def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 12_8063 ) def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.tokenizer.get_vocab() self.assertEqual(len(a ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , a ) def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "en" SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" self.assertIn(a , self.tokenizer.all_special_ids ) # fmt: off SCREAMING_SNAKE_CASE : Union[str, Any] = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(a ) SCREAMING_SNAKE_CASE : int = MaMaaaTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.lang_token_to_id , a ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "en" SCREAMING_SNAKE_CASE : List[Any] = "fr" SCREAMING_SNAKE_CASE : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a , return_tensors="pt" ) SCREAMING_SNAKE_CASE : int = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: SCREAMING_SNAKE_CASE : List[str] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) SCREAMING_SNAKE_CASE : Any = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) SCREAMING_SNAKE_CASE : int = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(a ) , { # en_XX, A, test, EOS "input_ids": [[12_8022, 58, 4183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 12_8006, } , )
76
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a): # initialize config if "resnet-50" in model_name: SCREAMING_SNAKE_CASE : int = ResNetConfig.from_pretrained("microsoft/resnet-50") elif "resnet-101" in model_name: SCREAMING_SNAKE_CASE : int = ResNetConfig.from_pretrained("microsoft/resnet-101") else: raise ValueError("Model name should include either resnet50 or resnet101") SCREAMING_SNAKE_CASE : str = DetrConfig(use_timm_backbone=_a , backbone_config=_a) # set label attributes SCREAMING_SNAKE_CASE : List[str] = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE : Union[str, Any] = 250 else: SCREAMING_SNAKE_CASE : Union[str, Any] = 91 SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : Union[str, Any] = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE : Optional[Any] = json.load(open(hf_hub_download(_a , _a , repo_type="dataset") , "r")) SCREAMING_SNAKE_CASE : int = {int(_a): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : List[Any] = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCamelCase__ ( _a): # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE : Union[str, Any] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight")) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight")) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias")) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean")) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var")) # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", )) # 3 convs for i in range(3): rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", )) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", )) # fmt: on for i in range(config.encoder_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight", )) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight", )) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", )) rename_keys.append( ( f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", )) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ]) return rename_keys def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : str = state_dict.pop(_a) SCREAMING_SNAKE_CASE : int = val def lowerCamelCase__ ( _a , _a=False): SCREAMING_SNAKE_CASE : Optional[Any] = "" if is_panoptic: SCREAMING_SNAKE_CASE : Optional[int] = "detr." # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight") SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE : int = in_proj_bias[:256] SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[256:512] SCREAMING_SNAKE_CASE : str = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight") SCREAMING_SNAKE_CASE : str = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias[:256] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE : Any = in_proj_bias[256:512] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight") SCREAMING_SNAKE_CASE : int = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE : Tuple = in_proj_weight_cross_attn[:256, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias_cross_attn[:256] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight_cross_attn[256:512, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias_cross_attn[256:512] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight_cross_attn[-256:, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias_cross_attn[-256:] def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(requests.get(_a , stream=_a).raw) return im @torch.no_grad() def lowerCamelCase__ ( _a , _a=None , _a=False): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = get_detr_config(_a) # load original model from torch hub SCREAMING_SNAKE_CASE : Union[str, Any] = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f"Converting model {model_name}...") SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=_a).eval() SCREAMING_SNAKE_CASE : Tuple = detr.state_dict() # rename keys for src, dest in create_rename_keys(_a): if is_panoptic: SCREAMING_SNAKE_CASE : List[str] = "detr." + src rename_key(_a , _a , _a) # query, key and value matrices need special treatment read_in_q_k_v(_a , is_panoptic=_a) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE : List[Any] = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr") and not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor") ): SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Union[str, Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Optional[int] = val elif key.startswith("bbox_attention") or key.startswith("mask_head"): continue else: SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : List[Any] = val else: if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"): SCREAMING_SNAKE_CASE : Any = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Any = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE : int = DetrForSegmentation(_a) if is_panoptic else DetrForObjectDetection(_a) model.load_state_dict(_a) model.eval() # verify our conversion on an image SCREAMING_SNAKE_CASE : int = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE : Optional[int] = DetrImageProcessor(format=_a) SCREAMING_SNAKE_CASE : List[str] = processor(images=prepare_img() , return_tensors="pt") SCREAMING_SNAKE_CASE : Any = encoding["pixel_values"] SCREAMING_SNAKE_CASE : Optional[Any] = detr(_a) SCREAMING_SNAKE_CASE : Any = model(_a) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4) print("Looks ok!") if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") Path(_a).mkdir(exist_ok=_a) model.save_pretrained(_a) processor.save_pretrained(_a) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub...") model.push_to_hub(f"nielsr/{model_name}") processor.push_to_hub(f"nielsr/{model_name}") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') a_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
76
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
261
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _A = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _A = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _A = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } _A = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } _A = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } _A = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } _A = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } _A = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } _A = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = VOCAB_FILES_NAMES A__ : List[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[str] = VOCAB_FILES_NAMES A__ : str = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ : Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _A = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) _A = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) _A = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(__SCREAMING_SNAKE_CASE ) class lowercase_ : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: UpperCamelCase_ = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) UpperCamelCase_ = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] UpperCamelCase_ = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] UpperCamelCase_ = len(__UpperCamelCase ) UpperCamelCase_ = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( f'''There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.''' ) UpperCamelCase_ = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["""input_ids"""] UpperCamelCase_ = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["""input_ids"""] UpperCamelCase_ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: UpperCamelCase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCamelCase_ = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1_6 , __UpperCamelCase = 6_4 , __UpperCamelCase = 4 , ): """simple docstring""" UpperCamelCase_ = reader_input["""input_ids"""] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = reader_output[:3] UpperCamelCase_ = len(__UpperCamelCase ) UpperCamelCase_ = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) UpperCamelCase_ = [] for doc_id in sorted_docs: UpperCamelCase_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCamelCase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCamelCase_ = sequence_ids.index(self.pad_token_id ) else: UpperCamelCase_ = len(__UpperCamelCase ) UpperCamelCase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCamelCase_ = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) UpperCamelCase_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) UpperCamelCase_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): A__ : str = VOCAB_FILES_NAMES A__ : List[str] = READER_PRETRAINED_VOCAB_FILES_MAP A__ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[str] = READER_PRETRAINED_INIT_CONFIGURATION A__ : Tuple = ["""input_ids""", """attention_mask"""]
261
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : str = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
93
"""simple docstring""" import math class lowerCamelCase : '''simple docstring''' def lowerCAmelCase_ ( self: Tuple , snake_case: list[list[float]] , snake_case: list[int] ) -> int: snake_case_ :Any = 0.0 snake_case_ :Tuple = 0.0 for i in range(len(snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self: Optional[int] , snake_case: list[list[int | float]] , snake_case: list[int] , snake_case: int , snake_case: float ) -> list[list[int | float]]: for i in range(len(snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def A_ ( ): '''simple docstring''' snake_case_ :Dict = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case_ :List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case_ :Optional[Any] = SelfOrganizingMap() snake_case_ :Dict = 3 snake_case_ :Dict = 0.5 for _ in range(_lowercase ): for j in range(len(_lowercase ) ): # training sample snake_case_ :List[Any] = training_samples[j] # Compute the winning vector snake_case_ :Optional[int] = self_organizing_map.get_winner(_lowercase, _lowercase ) # Update the winning vector snake_case_ :List[str] = self_organizing_map.update(_lowercase, _lowercase, _lowercase, _lowercase ) # classify test sample snake_case_ :str = [0, 0, 0, 1] snake_case_ :List[Any] = self_organizing_map.get_winner(_lowercase, _lowercase ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
66
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__:int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE__:int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def _lowerCamelCase( a , a , a ): __a = state_dict.pop(a_ ) __a = val def _lowerCamelCase( a ): __a = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __a = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) __a = value else: __a = value return new_state_dict def _lowerCamelCase( a , a=False ): __a = "" if is_panoptic: __a = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __a = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __a = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __a = in_proj_weight[:2_5_6, :] __a = in_proj_bias[:2_5_6] __a = in_proj_weight[2_5_6:5_1_2, :] __a = in_proj_bias[2_5_6:5_1_2] __a = in_proj_weight[-2_5_6:, :] __a = in_proj_bias[-2_5_6:] def _lowerCamelCase( ): __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def _lowerCamelCase( a , a ): __a = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __a = "resnet101" if "dc5" in model_name: __a = True __a = "panoptic" in model_name if is_panoptic: __a = 2_5_0 else: __a = 9_1 __a = "huggingface/label-files" __a = "coco-detection-id2label.json" __a = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) ) __a = {int(a_ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} # load image processor __a = "coco_panoptic" if is_panoptic else "coco_detection" __a = ConditionalDetrImageProcessor(format=a_ ) # prepare image __a = prepare_img() __a = image_processor(images=a_ , return_tensors="pt" ) __a = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub __a = torch.hub.load("DeppMeng/ConditionalDETR" , a_ , pretrained=a_ ).eval() __a = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __a = "conditional_detr." + src rename_key(a_ , a_ , a_ ) __a = rename_backbone_keys(a_ ) # query, key and value matrices need special treatment read_in_q_k_v(a_ , is_panoptic=a_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __a = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): __a = state_dict.pop(a_ ) __a = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __a = state_dict.pop(a_ ) __a = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: __a = state_dict.pop(a_ ) __a = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __a = state_dict.pop(a_ ) __a = val # finally, create HuggingFace model and load state dict __a = ConditionalDetrForSegmentation(a_ ) if is_panoptic else ConditionalDetrForObjectDetection(a_ ) model.load_state_dict(a_ ) model.eval() model.push_to_hub(repo_id=a_ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion __a = conditional_detr(a_ ) __a = model(a_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Any = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) SCREAMING_SNAKE_CASE__:Union[str, Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
364
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller SCREAMING_SNAKE_CASE__:List[str] = 3 def _lowerCamelCase( a ): print("Generating primitive root of p" ) while True: __a = random.randrange(3 , a ) if pow(a , 2 , a ) == 1: continue if pow(a , a , a ) == 1: continue return g def _lowerCamelCase( a ): print("Generating prime p..." ) __a = rabin_miller.generate_large_prime(a ) # select large prime number. __a = primitive_root(a ) # one primitive root on modulo p. __a = random.randrange(3 , a ) # private_key -> have to be greater than 2 for safety. __a = cryptomath.find_mod_inverse(pow(a , a , a ) , a ) __a = (key_size, e_a, e_a, p) __a = (key_size, d) return public_key, private_key def _lowerCamelCase( a , a ): if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print("\nWARNING:" ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() __a , __a = generate_key(a ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , "w" ) as fo: fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , "w" ) as fo: fo.write(F"{private_key[0]},{private_key[1]}" ) def _lowerCamelCase( ): print("Making key files..." ) make_key_files("elgamal" , 2_0_4_8 ) print("Key files generation successful" ) if __name__ == "__main__": main()
268
0
"""simple docstring""" import re from filelock import FileLock try: import nltk lowerCAmelCase__ : Optional[int] = True except (ImportError, ModuleNotFoundError): lowerCAmelCase__ : int = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def a_ ( lowerCamelCase ): re.sub('<n>' , '' , a__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(a__ ) )
98
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__(a_ ): """simple docstring""" def __init__( self , *_lowercase , _lowercase=None , _lowercase=None , **_lowercase ) -> Optional[Any]: super().__init__(*_lowercase , **_lowercase ) a_ : Optional[int] = eval_examples a_ : Tuple = post_process_function def UpperCamelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase = "eval" ) -> Union[str, Any]: a_ : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset a_ : List[str] = self.get_eval_dataloader(_lowercase ) a_ : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a_ : Optional[int] = self.compute_metrics a_ : List[str] = None a_ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Any = time.time() try: a_ : Union[str, Any] = eval_loop( _lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Dict = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a_ : List[Any] = self.post_process_function(_lowercase , _lowercase , output.predictions ) a_ : Optional[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : List[str] = metrics.pop(_lowercase ) metrics.update(output.metrics ) else: a_ : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a_ : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowercase ) return metrics def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase = "test" ) -> str: a_ : Tuple = self.get_test_dataloader(_lowercase ) # Temporarily disable metric computation, we will do it in the loop here. a_ : List[Any] = self.compute_metrics a_ : int = None a_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Union[str, Any] = time.time() try: a_ : List[str] = eval_loop( _lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Optional[Any] = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a_ : Optional[int] = self.post_process_function(_lowercase , _lowercase , output.predictions , """predict""" ) a_ : List[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : int = metrics.pop(_lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowercase )
248
0
from functools import lru_cache @lru_cache def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
366
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' for i in range(len(A__ ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(A__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
29
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ : List[str] = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
"""simple docstring""" UpperCAmelCase__ : Any = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase__ : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase__ : Optional[int] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
25
1
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _a ( _lowerCAmelCase ): # to overwrite at feature extractactor specific tests A = None A = None @property def __snake_case (self ) -> List[str]: return self.feat_extract_tester.prepare_feat_extract_dict() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: List[str] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, """feature_size""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, """sampling_rate""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, """padding_value""" ) ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase_: str = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_: str = feat_extract.model_input_names[0] UpperCAmelCase_: Dict = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) for x, y in zip(SCREAMING_SNAKE_CASE_, processed_features[input_name] ) ) ) UpperCAmelCase_: Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = BatchFeature({input_name: speech_inputs}, tensor_type="""np""" ) UpperCAmelCase_: List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase_: str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_: Any = feat_extract.model_input_names[0] UpperCAmelCase_: Dict = BatchFeature({input_name: speech_inputs}, tensor_type="""pt""" ) UpperCAmelCase_: Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase_: Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_: Dict = feat_extract.model_input_names[0] UpperCAmelCase_: str = BatchFeature({input_name: speech_inputs}, tensor_type="""tf""" ) UpperCAmelCase_: Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase_: str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_=False ) -> Tuple: def _inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Dict = len(input[0] ) for input_slice in input[1:]: if len(SCREAMING_SNAKE_CASE_ ) != length: return False return True def _inputs_are_equal(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): return False for input_slice_a, input_slice_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): if not np.allclose(np.asarray(SCREAMING_SNAKE_CASE_ ), np.asarray(SCREAMING_SNAKE_CASE_ ), atol=1E-3 ): return False return True UpperCAmelCase_: List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_: Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(numpify=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = feat_extract.model_input_names[0] UpperCAmelCase_: Any = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_: int = self.feat_extract_tester.seq_length_diff UpperCAmelCase_: Tuple = self.feat_extract_tester.max_seq_length + pad_diff UpperCAmelCase_: Optional[int] = self.feat_extract_tester.min_seq_length UpperCAmelCase_: List[str] = self.feat_extract_tester.batch_size UpperCAmelCase_: int = self.feat_extract_tester.feature_size # test padding for List[int] + numpy UpperCAmelCase_: List[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = input_a[input_name] UpperCAmelCase_: Optional[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""longest""" ) UpperCAmelCase_: Dict = input_a[input_name] UpperCAmelCase_: Tuple = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=len(speech_inputs[-1] ) ) UpperCAmelCase_: Tuple = input_a[input_name] UpperCAmelCase_: Any = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""longest""", return_tensors="""np""" ) UpperCAmelCase_: Dict = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(SCREAMING_SNAKE_CASE_ ): feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""max_length""" )[input_name] UpperCAmelCase_: int = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=SCREAMING_SNAKE_CASE_, return_tensors="""np""" ) UpperCAmelCase_: Union[str, Any] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase_: str = feat_extract.pad(SCREAMING_SNAKE_CASE_, pad_to_multiple_of=10 ) UpperCAmelCase_: Dict = input_a[input_name] UpperCAmelCase_: Any = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""longest""", pad_to_multiple_of=10 ) UpperCAmelCase_: str = input_a[input_name] UpperCAmelCase_: str = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", pad_to_multiple_of=10, max_length=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = input_a[input_name] UpperCAmelCase_: List[Any] = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", pad_to_multiple_of=10, max_length=SCREAMING_SNAKE_CASE_, return_tensors="""np""", ) UpperCAmelCase_: List[Any] = input_a[input_name] self.assertTrue(all(len(SCREAMING_SNAKE_CASE_ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Optional[int] = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(SCREAMING_SNAKE_CASE_ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2], (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct UpperCAmelCase_: List[Any] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def __snake_case (self, SCREAMING_SNAKE_CASE_=False ) -> Tuple: def _inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Dict = len(input[0] ) for input_slice in input[1:]: if len(SCREAMING_SNAKE_CASE_ ) != length: return False return True def _inputs_are_equal(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): return False for input_slice_a, input_slice_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): if not np.allclose(np.asarray(SCREAMING_SNAKE_CASE_ ), np.asarray(SCREAMING_SNAKE_CASE_ ), atol=1E-3 ): return False return True UpperCAmelCase_: Dict = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_: str = self.feat_extract_tester.prepare_inputs_for_common(numpify=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = feat_extract.model_input_names[0] UpperCAmelCase_: Optional[int] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest UpperCAmelCase_: List[Any] = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=len(speech_inputs[0] ), truncation=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = input_a[input_name] UpperCAmelCase_: Any = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=len(speech_inputs[0] ) ) UpperCAmelCase_: Union[str, Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) # truncate to smallest with np UpperCAmelCase_: int = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=len(speech_inputs[0] ), return_tensors="""np""", truncation=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Optional[int] = input_a[input_name] UpperCAmelCase_: List[Any] = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=len(speech_inputs[0] ), return_tensors="""np""" ) UpperCAmelCase_: List[str] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) # truncate to middle UpperCAmelCase_: List[str] = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=len(speech_inputs[1] ), truncation=SCREAMING_SNAKE_CASE_, return_tensors="""np""", ) UpperCAmelCase_: Any = input_a[input_name] UpperCAmelCase_: List[str] = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=len(speech_inputs[1] ), truncation=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = input_a[input_name] UpperCAmelCase_: Optional[Any] = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=len(speech_inputs[1] ), return_tensors="""np""" ) UpperCAmelCase_: int = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(SCREAMING_SNAKE_CASE_ ): feat_extract.pad(SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(SCREAMING_SNAKE_CASE_ ): feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""longest""", truncation=SCREAMING_SNAKE_CASE_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(SCREAMING_SNAKE_CASE_ ): feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""longest""", truncation=SCREAMING_SNAKE_CASE_ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(SCREAMING_SNAKE_CASE_ ): feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""max_length""", truncation=SCREAMING_SNAKE_CASE_ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase_: List[Any] = 12 UpperCAmelCase_: str = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=len(speech_inputs[0] ), pad_to_multiple_of=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Any = input_a[input_name] UpperCAmelCase_: Dict = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=len(speech_inputs[0] ), pad_to_multiple_of=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Optional[int] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of UpperCAmelCase_: Optional[Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: UpperCAmelCase_: List[Any] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> List[Any]: self._check_padding(numpify=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Dict: self._check_padding(numpify=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: self._check_truncation(numpify=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Any: self._check_truncation(numpify=SCREAMING_SNAKE_CASE_ ) @require_torch def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_: int = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase_: int = feat_extract.model_input_names[0] UpperCAmelCase_: Dict = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_: str = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""longest""", return_tensors="""np""" )[input_name] UpperCAmelCase_: Optional[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""longest""", return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def __snake_case (self ) -> int: UpperCAmelCase_: Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_: Tuple = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase_: Tuple = feat_extract.model_input_names[0] UpperCAmelCase_: List[str] = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_: Optional[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""longest""", return_tensors="""np""" )[input_name] UpperCAmelCase_: Tuple = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""longest""", return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Dict = self.feat_extract_dict UpperCAmelCase_: str = True UpperCAmelCase_: List[Any] = self.feature_extraction_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase_: str = [len(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] UpperCAmelCase_: List[Any] = feat_extract.model_input_names[0] UpperCAmelCase_: Dict = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_: int = feat_extract.pad(SCREAMING_SNAKE_CASE_, padding="""longest""", return_tensors="""np""" ) self.assertIn("""attention_mask""", SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(processed.attention_mask.shape ), list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist(), SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_: Union[str, Any] = self.feat_extract_dict UpperCAmelCase_: str = True UpperCAmelCase_: Union[str, Any] = self.feature_extraction_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase_: Any = [len(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] UpperCAmelCase_: Dict = feat_extract.model_input_names[0] UpperCAmelCase_: Dict = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_: Dict = min(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = feat_extract.pad( SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, return_tensors="""np""" ) self.assertIn("""attention_mask""", SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ), [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist(), [max_length for x in speech_inputs] )
82
from __future__ import annotations def lowerCAmelCase_ (lowerCAmelCase__: list[int | float] , lowerCAmelCase__: int , lowerCAmelCase__: int ): """simple docstring""" if len(lowerCAmelCase__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(lowerCAmelCase__ ) or left < -len(lowerCAmelCase__ ) or right >= len(lowerCAmelCase__ ) or right < -len(lowerCAmelCase__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] UpperCAmelCase_: int = (left + right) >> 1 # the middle UpperCAmelCase_: List[Any] = find_max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # find max in range[left, mid] UpperCAmelCase_: Any = find_max(lowerCAmelCase__ , mid + 1 , lowerCAmelCase__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
82
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case__ ( unittest.TestCase ): @property def a__ ( self ): torch.manual_seed(0 ) __a = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def a__ ( self ): __a = self.dummy_uncond_unet __a = ScoreSdeVeScheduler() __a = ScoreSdeVePipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) sde_ve.to(lowerCamelCase ) sde_ve.set_progress_bar_config(disable=lowerCamelCase ) __a = torch.manual_seed(0 ) __a = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=lowerCamelCase ).images __a = torch.manual_seed(0 ) __a = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=lowerCamelCase , return_dict=lowerCamelCase )[ 0 ] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class snake_case__ ( unittest.TestCase ): def a__ ( self ): __a = "google/ncsnpp-church-256" __a = UNetaDModel.from_pretrained(lowerCamelCase ) __a = ScoreSdeVeScheduler.from_pretrained(lowerCamelCase ) __a = ScoreSdeVePipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) sde_ve.to(lowerCamelCase ) sde_ve.set_progress_bar_config(disable=lowerCamelCase ) __a = torch.manual_seed(0 ) __a = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=lowerCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __a = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
261
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__:int = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): _snake_case : Optional[int] = """upernet""" def __init__( self , lowerCamelCase=None , lowerCamelCase=512 , lowerCamelCase=0.02 , lowerCamelCase=[1, 2, 3, 6] , lowerCamelCase=True , lowerCamelCase=0.4 , lowerCamelCase=384 , lowerCamelCase=256 , lowerCamelCase=1 , lowerCamelCase=False , lowerCamelCase=255 , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __a = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __a = backbone_config.get("model_type" ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(lowerCamelCase ) __a = backbone_config __a = hidden_size __a = initializer_range __a = pool_scales __a = use_auxiliary_head __a = auxiliary_loss_weight __a = auxiliary_in_channels __a = auxiliary_channels __a = auxiliary_num_convs __a = auxiliary_concat_input __a = loss_ignore_index def a__ ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.__class__.model_type return output
261
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Any = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "audio-spectrogram-transformer" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=16 , snake_case__=True , snake_case__=10 , snake_case__=10 , snake_case__=1024 , snake_case__=128 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = patch_size _lowerCAmelCase : Dict = qkv_bias _lowerCAmelCase : Any = frequency_stride _lowerCAmelCase : List[Any] = time_stride _lowerCAmelCase : Any = max_length _lowerCAmelCase : Optional[Any] = num_mel_bins
25
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : Union[str, Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: _lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Any = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : List[str] = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: _lowerCAmelCase : Union[str, Any] = trim_offsets _lowerCAmelCase : Optional[int] = True if changes_to_apply: _lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def a ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value _lowerCAmelCase : Tuple = value def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = -1 A__ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c A__ = (n * n - 2 * a * n) // (2 * n - 2 * a) A__ = n - a - b if c * c == (a * a + b * b): A__ = a * b * c if candidate >= product: A__ = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
7
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCamelCase_ : def __init__( self : str ) -> Dict: UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : int = "" UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[Any] = 256 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : List[str] = 0 def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict ) -> Optional[Any]: UpperCAmelCase_ : Dict = cva.imread(lowerCAmelCase_ , 0 ) UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.img ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCAmelCase_ : List[Any] = np.sum(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : List[Any] = x[i] / self.k self.sk += prk UpperCAmelCase_ : Optional[Any] = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase_ : Any = int(last % last ) UpperCAmelCase_ : List[str] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase_ : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase_ : Any = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase_ : Tuple = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCamelCase_ = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') lowerCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
268
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] ="vision-encoder-decoder" UpperCamelCase__ : Optional[int] =True def __init__( self :Dict , **_lowercase :Optional[int]) -> Tuple: super().__init__(**_lowercase) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}") UpperCAmelCase_ = kwargs.pop('''encoder''') UpperCAmelCase_ = encoder_config.pop('''model_type''') UpperCAmelCase_ = kwargs.pop('''decoder''') UpperCAmelCase_ = decoder_config.pop('''model_type''') UpperCAmelCase_ = AutoConfig.for_model(_lowercase , **_lowercase) UpperCAmelCase_ = AutoConfig.for_model(_lowercase , **_lowercase) UpperCAmelCase_ = True @classmethod def __a ( cls :List[Any] , _lowercase :PretrainedConfig , _lowercase :PretrainedConfig , **_lowercase :List[str]) -> PretrainedConfig: logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') UpperCAmelCase_ = True UpperCAmelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowercase) def __a ( self :List[Any]) -> Any: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.encoder.to_dict() UpperCAmelCase_ = self.decoder.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =version.parse("1.11" ) @property def __a ( self :int) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4 @property def __a ( self :Optional[int]) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}}) class a_ ( _snake_case ): @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase_ = OrderedDict() UpperCAmelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} UpperCAmelCase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} UpperCAmelCase_ = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def __a ( self :Union[str, Any] , _lowercase :"PreTrainedTokenizerBase" , _lowercase :int = -1 , _lowercase :int = -1 , _lowercase :bool = False , _lowercase :Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch UpperCAmelCase_ = OrderedDict() UpperCAmelCase_ = super().generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase) UpperCAmelCase_ , UpperCAmelCase_ = dummy_input['''input_ids'''].shape UpperCAmelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCAmelCase_ = dummy_input.pop('''input_ids''') UpperCAmelCase_ = dummy_input.pop('''attention_mask''') UpperCAmelCase_ = torch.zeros(_lowercase) return common_inputs class a_ ( _snake_case ): @property def __a ( self :str) -> None: pass def __a ( self :Dict , _lowercase :PretrainedConfig) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowercase) def __a ( self :Any , _lowercase :PretrainedConfig , _lowercase :PretrainedConfig , _lowercase :str = "default") -> OnnxConfig: UpperCAmelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowercase , _lowercase)
344
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
1
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _lowerCAmelCase = remove_duplicates(key.upper() ) _lowerCAmelCase = len(snake_case ) # First fill cipher with key characters _lowerCAmelCase = {alphabet[i]: char for i, char in enumerate(snake_case )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(snake_case ) , 26 ): _lowerCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _lowerCAmelCase = alphabet[i - offset] _lowerCAmelCase = char return cipher_alphabet def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" return "".join(cipher_map.get(snake_case , snake_case ) for ch in message.upper() ) def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(snake_case , snake_case ) for ch in message.upper() ) def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = input("""Enter message to encode or decode: """ ).strip() _lowerCAmelCase = input("""Enter keyword: """ ).strip() _lowerCAmelCase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: _lowerCAmelCase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) _lowerCAmelCase = create_cipher_map(snake_case ) print(func(snake_case , snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
82
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : Tuple = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) UpperCAmelCase_ : Tuple = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__snake_case ) ), } , features=__snake_case , ) return dataset @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __UpperCAmelCase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt' UpperCAmelCase_ : Tuple = FILE_CONTENT with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' import bza UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' UpperCAmelCase_ : str = bytes(__snake_case , 'utf-8' ) with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) UpperCAmelCase_ : Dict = bytes(__snake_case , 'utf-8' ) with gzip.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lza.frame.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : List[Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__snake_case , 'w' ) as archive: archive.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' import tarfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' import lzma UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' UpperCAmelCase_ : Any = bytes(__snake_case , 'utf-8' ) with lzma.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' import zipfile UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' UpperCAmelCase_ : List[str] = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.xml' UpperCAmelCase_ : List[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__snake_case , 'w' ) as f: f.write(__snake_case ) return filename __UpperCAmelCase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __UpperCAmelCase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __UpperCAmelCase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __UpperCAmelCase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = datasets.Dataset.from_dict(__snake_case ) UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: UpperCAmelCase_ : List[Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Tuple = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__snake_case , 'w' , newline='' ) as f: UpperCAmelCase_ : Optional[Any] = csv.DictWriter(__snake_case , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any ): '''simple docstring''' import bza UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__snake_case , 'rb' ) as f: UpperCAmelCase_ : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__snake_case , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : int , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) UpperCAmelCase_ : Dict = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__snake_case , 'wb' ) as f: UpperCAmelCase_ : List[Any] = pq.ParquetWriter(__snake_case , schema=__snake_case ) UpperCAmelCase_ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]} , schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Optional[int] = {'data': DATA} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) UpperCAmelCase_ : Tuple = {'data': DATA_DICT_OF_LISTS} with open(__snake_case , 'w' ) as f: json.dump(__snake_case , __snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__snake_case , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' import gzip UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : int , __snake_case : Any ): '''simple docstring''' import gzip UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__snake_case , 'rb' ) as orig_file: with gzip.open(__snake_case , 'wb' ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) f.add(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.join('nested' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ['0', '1', '2', '3'] UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ['0', '1', '2', '3'] UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = ['0', '1', '2', '3'] UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__snake_case , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) f.write(__snake_case , arcname=os.path.join('main_dir' , os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename('unsupported.ext' ) ) f.write(__snake_case , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(__snake_case ) return path @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowercase__ ( ): '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__snake_case , 'w' ) as f: f.write(__snake_case , arcname=os.path.basename(__snake_case ) ) f.write(__snake_case , arcname=os.path.basename(__snake_case ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowercase__ ( __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
29
0
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm a : str = 2048 a : Union[str, Any] = 4096 a : Tuple = 42 a : List[Any] = os.environ.pop("""PROCESS_TRAIN""", """false""") a : List[Any] = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def lowercase__(A ) ->Tuple: """simple docstring""" def choose_first(A , A=False ): assert isinstance(A , A ) if len(A ) == 1: lowercase__ : int= answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowercase__ : Union[str, Any]= {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a lowercase__ : Dict= {"id": example["id"]} lowercase__ : Tuple= example["annotations"] lowercase__ : Any= annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: lowercase__ : Dict= ["yes"] if 1 in yes_no_answer else ["no"] lowercase__ : Optional[Any]= [] lowercase__ : List[Any]= [] lowercase__ : Optional[int]= ["<cls>"] else: lowercase__ : Optional[Any]= ["short"] lowercase__ : Optional[int]= choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available lowercase__ : List[str]= ["long"] lowercase__ : Union[str, Any]= choose_first(annotation["long_answer"] , is_long_answer=A ) lowercase__ : int= [] answer.update(A ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: lowercase__ : List[str]= True else: lowercase__ : str= False lowercase__ : Optional[int]= ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , A ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def lowercase__(A , A=False ) ->Tuple: """simple docstring""" lowercase__ : str= _get_single_answer(A ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowercase__ : Tuple= example["document"]["tokens"] lowercase__ : Tuple= [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(A ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowercase__ : Optional[int]= ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 lowercase__ : Dict= example["document"]["tokens"] lowercase__ : Dict= answer["start_token"] lowercase__ : str= answer["end_token"] lowercase__ : List[Any]= [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowercase__ : List[Any]= " ".join(context[start_token:end_token] ) # checking above code if assertion: lowercase__ : Dict= doc["is_html"][answer["start_token"] : answer["end_token"]] lowercase__ : Union[str, Any]= doc["token"][answer["start_token"] : answer["end_token"]] lowercase__ : str= " ".join([old[i] for i in range(len(A ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , A , end="\n" ) print("Old:" , A , end="\n\n" ) return { "context": " ".join(A ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowercase__(A , A , A=2_048 , A=4_096 , A=True ) ->str: """simple docstring""" lowercase__ : Any= get_context_and_ans(A , assertion=A ) lowercase__ : Union[str, Any]= out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowercase__ : int= tokenizer(example["question"]["text"] , out["context"] ).input_ids lowercase__ : List[Any]= input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowercase__ : Optional[int]= [] lowercase__ : List[str]= [] lowercase__ : Dict= input_ids[:q_len] lowercase__ : str= range(A , len(A ) , max_length - doc_stride ) for i in doc_start_indices: lowercase__ : List[Any]= i + max_length - q_len lowercase__ : Dict= input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(A ), "end_token": [-100] * len(A ), "category": category, }, } lowercase__ : List[str]= out["context"].split() lowercase__ : Optional[Any]= splitted_context[answer["end_token"]] lowercase__ : Optional[Any]= len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=A , ).input_ids ) lowercase__ : Optional[Any]= len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=A ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowercase__ : List[str]= len(tokenizer(A , add_special_tokens=A ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowercase__ : Optional[int]= input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive lowercase__ : int= answer["start_token"] lowercase__ : int= answer["end_token"] if assertion: lowercase__ : Dict= tokenizer.decode(A ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , A , end="\n\n" ) if len(A ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowercase__ : Union[str, Any]= input_ids[:q_len] lowercase__ : List[Any]= range(A , len(A ) , max_length - doc_stride ) lowercase__ : Optional[Any]= [] lowercase__ : Dict= [] lowercase__ : List[Any]= [] lowercase__ : Optional[int]= [] # null, yes, no, long, short for i in doc_start_indices: lowercase__ : str= i + max_length - q_len lowercase__ : Union[str, Any]= input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowercase__ : str= start_token - i + q_len lowercase__ : str= end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: lowercase__ : List[Any]= -100 lowercase__ : Any= -100 answers_category.append("null" ) lowercase__ : Optional[int]= inputs[-1][start_token : end_token + 1] answers_start_token.append(A ) answers_end_token.append(A ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(A ) ) print("Old:" , tokenizer.decode(A ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowercase__(A , A , A=2_048 , A=4_096 , A=False ) ->Optional[int]: """simple docstring""" lowercase__ : Union[str, Any]= get_strided_contexts_and_ans( A , A , doc_stride=A , max_length=A , assertion=A , ) return example def lowercase__(A , A ) ->int: """simple docstring""" with jsonlines.open(A , "a" ) as writer: for example in tqdm(A , total=len(A ) , desc="Saving samples ... " ): lowercase__ : Any= example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer a : int = load_dataset("""natural_questions""") a : Tuple = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") a : int = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] a : Tuple = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } a : Union[str, Any] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) a : List[Any] = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) a : Any = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
150
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[str] = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
150
1
def _UpperCAmelCase ( snake_case ): """simple docstring""" return str(snake_case ) == str(snake_case )[::-1] def _UpperCAmelCase ( snake_case ): """simple docstring""" return int(snake_case ) + int(str(snake_case )[::-1] ) def _UpperCAmelCase ( snake_case = 1_00_00 ): """simple docstring""" _lowerCAmelCase = [] for num in range(1 , snake_case ): _lowerCAmelCase = 0 _lowerCAmelCase = num while iterations < 50: _lowerCAmelCase = sum_reverse(snake_case ) iterations += 1 if is_palindrome(snake_case ): break else: lychrel_nums.append(snake_case ) return len(snake_case ) if __name__ == "__main__": print(f"{solution() = }")
82
from math import isqrt, loga def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case , snake_case ): _lowerCAmelCase = False return [i for i in range(2 , snake_case ) if is_prime[i]] def _UpperCAmelCase ( snake_case = 80_08_00 , snake_case = 80_08_00 ): """simple docstring""" _lowerCAmelCase = degree * loga(snake_case ) _lowerCAmelCase = int(snake_case ) _lowerCAmelCase = calculate_prime_numbers(snake_case ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
82
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __UpperCamelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: for attribute in key.split('.' ): snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value elif weight_type == "running_mean": snake_case_ = value elif weight_type == "running_var": snake_case_ = value elif weight_type == "num_batches_tracked": snake_case_ = value elif weight_type == "inv_freq": snake_case_ = value else: snake_case_ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): snake_case_ = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(UpperCAmelCase )[0].split('.' )[-2] snake_case_ = mapped_key.replace('*' , UpperCAmelCase ) if "pos_bias_u" in name: snake_case_ = None elif "pos_bias_v" in name: snake_case_ = None elif "weight_g" in name: snake_case_ = 'weight_g' elif "weight_v" in name: snake_case_ = 'weight_v' elif "bias" in name: snake_case_ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = 'weight' elif "running_mean" in name: snake_case_ = 'running_mean' elif "inv_freq" in name: snake_case_ = 'inv_freq' elif "running_var" in name: snake_case_ = 'running_var' elif "num_batches_tracked" in name: snake_case_ = 'num_batches_tracked' else: snake_case_ = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = full_name.split('conv_layers.' )[-1] snake_case_ = name.split('.' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True ) -> Tuple: if config_path is not None: snake_case_ = WavaVecaConformerConfig.from_pretrained(UpperCAmelCase , hidden_act='swish' ) else: snake_case_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: snake_case_ = 'rotary' if is_finetuned: if dict_path: snake_case_ = Dictionary.load(UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ = target_dict.pad_index snake_case_ = target_dict.bos_index snake_case_ = target_dict.eos_index snake_case_ = len(target_dict.symbols ) snake_case_ = os.path.join(UpperCAmelCase , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase ) ) return os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) snake_case_ = target_dict.indices # fairseq has the <pad> and <s> switched snake_case_ = 0 snake_case_ = 1 with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase , UpperCAmelCase ) snake_case_ = WavaVecaCTCTokenizer( UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase , ) snake_case_ = True if config.feat_extract_norm == 'layer' else False snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) snake_case_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) snake_case_ = WavaVecaConformerForCTC(UpperCAmelCase ) else: snake_case_ = WavaVecaConformerForPreTraining(UpperCAmelCase ) if is_finetuned: snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: snake_case_ = argparse.Namespace(task='audio_pretraining' ) snake_case_ = fairseq.tasks.setup_task(UpperCAmelCase ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase ) snake_case_ = model[0].eval() recursively_load_weights(UpperCAmelCase , UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __UpperCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
312
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
1
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCAmelCase__ : Union[str, Any] = logging.getLogger(__name__) def lowercase_ ( _snake_case ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = False ,): SCREAMING_SNAKE_CASE__ : List[Any] = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE__ : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) SCREAMING_SNAKE_CASE__ : int = [] # custom device map if isinstance(_snake_case ,_snake_case ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE__ : Optional[int] = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE__ : int = get_keys_to_not_convert(_snake_case ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Dict = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_snake_case ) # compatibility with peft SCREAMING_SNAKE_CASE__ : Any = load_in_abit SCREAMING_SNAKE_CASE__ : Any = load_in_abit SCREAMING_SNAKE_CASE__ : Tuple = get_parameter_device(_snake_case ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) SCREAMING_SNAKE_CASE__ : int = replace_with_bnb_layers(_snake_case ,_snake_case ,modules_to_not_convert=_snake_case ) # convert param to the right dtype SCREAMING_SNAKE_CASE__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE__ : Tuple = name.replace(""".weight""" ,"""""" ).replace(""".bias""" ,"""""" ) SCREAMING_SNAKE_CASE__ : Dict = getattr(_snake_case ,_snake_case ,_snake_case ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_snake_case ): param.to(_snake_case ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE__ : Dict = replace_with_bnb_layers( _snake_case ,_snake_case ,modules_to_not_convert=_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = get_quantized_model_device_map( _snake_case ,_snake_case ,_snake_case ,max_memory=_snake_case ,no_split_module_classes=_snake_case ,) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : Optional[Any] = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( _snake_case ,_snake_case ,_snake_case ,dtype=bnb_quantization_config.torch_dtype ,offload_folder=_snake_case ,offload_state_dict=_snake_case ,keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules ,offload_abit_bnb=load_in_abit and offload ,) return dispatch_model(_snake_case ,device_map=_snake_case ,offload_dir=_snake_case ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ): if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ : int = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(_snake_case ,_snake_case ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = special_dtypes SCREAMING_SNAKE_CASE__ : Optional[Any] = no_split_module_classes SCREAMING_SNAKE_CASE__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE__ : int = get_balanced_memory( _snake_case ,low_zero=(device_map == """balanced_low_0""") ,max_memory=_snake_case ,**_snake_case ,) SCREAMING_SNAKE_CASE__ : Optional[Any] = max_memory SCREAMING_SNAKE_CASE__ : str = infer_auto_device_map(_snake_case ,**_snake_case ) if isinstance(_snake_case ,_snake_case ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE__ : Tuple = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE__ : Optional[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def lowercase_ ( _snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ): if modules_to_not_convert is None: SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = _replace_with_bnb_layers( _snake_case ,_snake_case ,_snake_case ,_snake_case ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def lowercase_ ( _snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,): SCREAMING_SNAKE_CASE__ : Tuple = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Any = [] current_key_name.append(_snake_case ) if isinstance(_snake_case ,nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE__ : Tuple = """.""".join(_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE__ : List[str] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ : Tuple = bnb.nn.LinearabitLt( module.in_features ,module.out_features ,module.bias is not None ,has_fpaa_weights=_snake_case ,threshold=bnb_quantization_config.llm_inta_threshold ,) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ : Dict = bnb.nn.Linearabit( module.in_features ,module.out_features ,module.bias is not None ,bnb_quantization_config.bnb_abit_compute_dtype ,compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant ,quant_type=bnb_quantization_config.bnb_abit_quant_type ,) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) SCREAMING_SNAKE_CASE__ : str = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = module.bias.data bnb_module.requires_grad_(_snake_case ) setattr(_snake_case ,_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = _replace_with_bnb_layers( _snake_case ,_snake_case ,_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase_ ( _snake_case ): # Create a copy of the model with init_empty_weights(): SCREAMING_SNAKE_CASE__ : Any = deepcopy(_snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE__ : Tuple = find_tied_parameters(_snake_case ) # For compatibility with Accelerate < 0.18 if isinstance(_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Tuple = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : List[str] = sum(_snake_case ,[] ) SCREAMING_SNAKE_CASE__ : Dict = len(_snake_case ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Optional[int] = False if hasattr(_snake_case ,"""base_model_prefix""" ): SCREAMING_SNAKE_CASE__ : Dict = not hasattr(_snake_case ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : Optional[Any] = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : List[str] = set(_snake_case ) - set(_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = list(set(_snake_case ) ) + list(_snake_case ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Tuple = [""".weight""", """.bias"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Union[str, Any] = name.replace(_snake_case ,"""""" ) filtered_module_names.append(_snake_case ) return filtered_module_names def lowercase_ ( _snake_case ): for m in model.modules(): if isinstance(_snake_case ,bnb.nn.Linearabit ): return True return False def lowercase_ ( _snake_case ): return next(parameter.parameters() ).device def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(_snake_case ,_snake_case ,0 ,dtype=_snake_case ,value=_snake_case ) SCREAMING_SNAKE_CASE__ : str = param_name SCREAMING_SNAKE_CASE__ : Dict = model if "." in tensor_name: SCREAMING_SNAKE_CASE__ : Any = tensor_name.split(""".""" ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : List[str] = getattr(_snake_case ,_snake_case ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_module SCREAMING_SNAKE_CASE__ : List[Any] = splits[-1] # offload weights SCREAMING_SNAKE_CASE__ : List[Any] = False offload_weight(module._parameters[tensor_name] ,_snake_case ,_snake_case ,index=_snake_case ) if hasattr(module._parameters[tensor_name] ,"""SCB""" ): offload_weight( module._parameters[tensor_name].SCB ,param_name.replace("""weight""" ,"""SCB""" ) ,_snake_case ,index=_snake_case ,) else: offload_weight(_snake_case ,_snake_case ,_snake_case ,index=_snake_case ) offload_weight(_snake_case ,param_name.replace("""weight""" ,"""SCB""" ) ,_snake_case ,index=_snake_case ) set_module_tensor_to_device(_snake_case ,_snake_case ,"""meta""" ,dtype=_snake_case ,value=torch.empty(*param.size() ) )
25
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def lowercase_ ( _snake_case ,_snake_case ,_snake_case = None ): SCREAMING_SNAKE_CASE__ : Dict = tesseract_config if tesseract_config is not None else """""" # apply OCR SCREAMING_SNAKE_CASE__ : List[Any] = to_pil_image(_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = pil_image.size SCREAMING_SNAKE_CASE__ : Tuple = pytesseract.image_to_data(_snake_case ,lang=_snake_case ,output_type="""dict""" ,config=_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE__ : Union[str, Any] = [idx for idx, word in enumerate(_snake_case ) if not word.strip()] SCREAMING_SNAKE_CASE__ : Dict = [word for idx, word in enumerate(_snake_case ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : List[str] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Tuple = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : int = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ : Tuple = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE__ : List[Any] = [] for x, y, w, h in zip(_snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = [x, y, x + w, y + h] actual_boxes.append(_snake_case ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE__ : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_snake_case ,_snake_case ,_snake_case ) ) assert len(_snake_case ) == len(_snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[int] = ['''pixel_values'''] def __init__(self , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "" , **SCREAMING_SNAKE_CASE__ , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else {"""height""": 2_24, """width""": 2_24} SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = do_resize SCREAMING_SNAKE_CASE__ : Any = size SCREAMING_SNAKE_CASE__ : List[Any] = resample SCREAMING_SNAKE_CASE__ : Dict = apply_ocr SCREAMING_SNAKE_CASE__ : List[str] = ocr_lang SCREAMING_SNAKE_CASE__ : Tuple = tesseract_config def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE__ : Any = (size["""height"""], size["""width"""]) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : Optional[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE__ : Optional[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE__ : Dict = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE__ : Optional[int] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Dict = [] for image in images: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = apply_tesseract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) words_batch.append(SCREAMING_SNAKE_CASE__ ) boxes_batch.append(SCREAMING_SNAKE_CASE__ ) if do_resize: SCREAMING_SNAKE_CASE__ : Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [flip_channel_order(SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE__ : Optional[Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=SCREAMING_SNAKE_CASE__ ) if apply_ocr: SCREAMING_SNAKE_CASE__ : List[Any] = words_batch SCREAMING_SNAKE_CASE__ : List[str] = boxes_batch return data
25
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Tuple = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""bridgetower_vision_model""" def __init__( self , __a=7_68 , __a=12 , __a=3 , __a=16 , __a=2_88 , __a=1 , __a=1e-0_5 , __a=False , __a=True , __a=False , **__a , ): super().__init__(**__a ) __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = image_size __lowerCAmelCase = initializer_factor __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = stop_gradient __lowerCAmelCase = share_layernorm __lowerCAmelCase = remove_last_layer @classmethod def snake_case ( cls , __a , **__a ): __lowerCAmelCase , __lowerCAmelCase = cls.get_config_dict(__a , **__a ) if config_dict.get("model_type" ) == "bridgetower": __lowerCAmelCase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] ="""bridgetower_text_model""" def __init__( self , __a=5_02_65 , __a=7_68 , __a=12 , __a=12 , __a=1 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_14 , __a=1 , __a=1e-0_5 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , **__a , ): super().__init__(**__a ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = initializer_factor __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id @classmethod def snake_case ( cls , __a , **__a ): __lowerCAmelCase , __lowerCAmelCase = cls.get_config_dict(__a , **__a ) if config_dict.get("model_type" ) == "bridgetower": __lowerCAmelCase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] ="""bridgetower""" def __init__( self , __a=True , __a="gelu" , __a=7_68 , __a=1 , __a=1e-0_5 , __a=False , __a="add" , __a=12 , __a=6 , __a=False , __a=False , __a=None , __a=None , **__a , ): # TODO: remove this once the Hub files are updated. __lowerCAmelCase = kwargs.pop("text_config_dict" , __a ) __lowerCAmelCase = kwargs.pop("vision_config_dict" , __a ) super().__init__(**__a ) __lowerCAmelCase = share_cross_modal_transformer_layers __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_size __lowerCAmelCase = initializer_factor __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = share_link_tower_layers __lowerCAmelCase = link_tower_type __lowerCAmelCase = num_attention_heads __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = tie_word_embeddings __lowerCAmelCase = init_layernorm_from_vision_encoder if text_config is None: __lowerCAmelCase = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: __lowerCAmelCase = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) __lowerCAmelCase = BridgeTowerTextConfig(**__a ) __lowerCAmelCase = BridgeTowerVisionConfig(**__a ) @classmethod def snake_case ( cls , __a , __a , **__a ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def snake_case ( self ): __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = self.text_config.to_dict() __lowerCAmelCase = self.vision_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
355
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset A : Any = "bert-base-cased" A : Any = "google/pegasus-xsum" A : Union[str, Any] = [" Sam ate lunch today.", "Sams lunch ingredients."] A : Union[str, Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] A : Optional[int] = "patrickvonplaten/t5-tiny-random" A : int = "sshleifer/bart-tiny-random" A : Optional[int] = "sshleifer/tiny-mbart" A : Any = "sshleifer/tiny-marian-en-de" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "\n".join(_UpperCamelCase ) Path(_UpperCamelCase ).open("w" ).writelines(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(_UpperCamelCase , f"{split}.source" ) , _UpperCamelCase ) _dump_articles(os.path.join(_UpperCamelCase , f"{split}.target" ) , _UpperCamelCase ) return tmp_dir class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowerCAmelCase , __lowerCAmelCase = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , src_lang=__a , tgt_lang=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__a , __a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowerCAmelCase = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __lowerCAmelCase = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __lowerCAmelCase = 4 __lowerCAmelCase = LegacySeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=20 , max_target_length=__a , ) __lowerCAmelCase = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def snake_case ( self ): __lowerCAmelCase = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowerCAmelCase = tmp_dir.joinpath("train.source" ).open().readlines() __lowerCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__a , __a , 1_28 , __a ) __lowerCAmelCase = {x.name for x in tmp_dir.iterdir()} __lowerCAmelCase = {x.name for x in save_dir.iterdir()} __lowerCAmelCase = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__a ) < len(__a ) assert len(__a ) == 1 assert len(packed_examples[0] ) == sum(len(__a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def snake_case ( self ): if not FAIRSEQ_AVAILABLE: return __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=64 ) __lowerCAmelCase = 64 __lowerCAmelCase = ds.make_dynamic_sampler(__a , required_batch_size_multiple=__a ) __lowerCAmelCase = [len(__a ) for x in batch_sampler] assert len(set(__a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__a ) == len(__a ) # no dropped or added examples __lowerCAmelCase = DataLoader(__a , batch_sampler=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = [] __lowerCAmelCase = [] for batch in data_loader: __lowerCAmelCase = batch["input_ids"].shape __lowerCAmelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowerCAmelCase = np.product(batch["input_ids"].shape ) num_src_per_batch.append(__a ) if num_src_tokens > (max_tokens * 1.1): failures.append(__a ) assert num_src_per_batch[0] == max(__a ) if failures: raise AssertionError(f"too many tokens in {len(__a )} batches" ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset(max_len=5_12 ) __lowerCAmelCase = 2 __lowerCAmelCase = ds.make_sortish_sampler(__a , shuffle=__a ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 ) __lowerCAmelCase = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 , sampler=__a ) __lowerCAmelCase = tokenizer.pad_token_id def count_pad_tokens(__a , __a="input_ids" ): return [batch[k].eq(__a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__a , k="labels" ) ) < sum(count_pad_tokens(__a , k="labels" ) ) assert sum(count_pad_tokens(__a ) ) < sum(count_pad_tokens(__a ) ) assert len(__a ) == len(__a ) def snake_case ( self , __a=10_00 , __a=1_28 ): if os.getenv("USE_REAL_DATA" , __a ): __lowerCAmelCase = "examples/seq2seq/wmt_en_ro" __lowerCAmelCase = max_len * 2 * 64 if not Path(__a ).joinpath("train.len" ).exists(): save_len_file(__a , __a ) else: __lowerCAmelCase = "examples/seq2seq/test_data/wmt_en_ro" __lowerCAmelCase = max_len * 4 save_len_file(__a , __a ) __lowerCAmelCase = AutoTokenizer.from_pretrained(__a ) __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=__a , type_path="train" , max_source_length=__a , max_target_length=__a , n_obs=__a , ) return ds, max_tokens, tokenizer def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_dataset() __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__a ) ) __lowerCAmelCase = set(DistributedSortishSampler(__a , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__a ) ) assert idsa.intersection(__a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def snake_case ( self , __a ): __lowerCAmelCase = AutoTokenizer.from_pretrained(__a , use_fast=__a ) if tok_name == MBART_TINY: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowerCAmelCase = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) __lowerCAmelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__a ) == 1 if tok_name == BART_TINY else len(__a ) == 0
259
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCamelCase = Features({"""audio""": Audio()} ) UpperCamelCase = Features({"""transcription""": Value("""string""" )} ) UpperCamelCase = "audio" UpperCamelCase = "transcription" def __magic_name__ ( self : Union[str, Any], __A : str ): if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column], __A ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) UpperCAmelCase : List[Any] = copy.deepcopy(self ) UpperCAmelCase : str = self.input_schema.copy() UpperCAmelCase : Tuple = features[self.audio_column] UpperCAmelCase : List[str] = input_schema return task_template @property def __magic_name__ ( self : List[Any] ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
336
def a__ ( UpperCAmelCase : int ) -> int: UpperCAmelCase : list[list[int]] = [[0 for _ in range(UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowerCamelCase : List[Any] = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowerCamelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
336
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): try: with open(_A , "rb" ) as flax_state_f: A : List[str] = from_bytes(_A , flax_state_f.read() ) except UnpicklingError as e: try: with open(_A ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_A , _A ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights A : Tuple = flatten_dict(jax.tree_util.tree_map(lambda _lowerCamelCase : x.dtype == jnp.bfloataa , _A ) ).values() if any(_A ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) A : int = jax.tree_util.tree_map( lambda _lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _A ) A : str = '' A : Optional[int] = flatten_dict(_A , sep="." ) A : Optional[Any] = pt_model.state_dict() # keep track of unexpected & missing keys A : int = [] A : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A : Union[str, Any] = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A : List[Any] = flax_key_tuple_array[:-1] + ['weight'] A : Optional[int] = jnp.transpose(_A , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A : str = flax_key_tuple_array[:-1] + ['weight'] A : int = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A : List[str] = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(_A ): A : Dict = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) A : List[Any] = '.'.join(_A ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict A : List[Any] = np.asarray(_A ) if not isinstance(_A , np.ndarray ) else flax_tensor A : Union[str, Any] = torch.from_numpy(_A ) # remove from missing keys missing_keys.remove(_A ) else: # weight is not expected by PyTorch model unexpected_keys.append(_A ) pt_model.load_state_dict(_A ) # re-transform missing_keys to list A : Any = list(_A ) if len(_A ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(_A ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) return pt_model
358
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowerCamelCase_ ( _A ,_A ): '''simple docstring''' a__ = "resnet" a__ = ["basic", "bottleneck"] def __init__( self : Tuple , __lowerCamelCase : int=3 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , __lowerCamelCase : Tuple=[3, 4, 6, 3] , __lowerCamelCase : Optional[Any]="bottleneck" , __lowerCamelCase : Dict="relu" , __lowerCamelCase : Tuple=False , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple , ) -> Optional[Any]: super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) A : Any = num_channels A : Union[str, Any] = embedding_size A : Any = hidden_sizes A : List[str] = depths A : Union[str, Any] = layer_type A : Any = hidden_act A : Any = downsample_in_first_stage A : Any = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(__lowerCamelCase ) + 1 )] A , A : int = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> float: return 1e-3
256
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split('.' ): snake_case = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: snake_case = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(_UpperCamelCase )[0].split('.' )[-2] snake_case = mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: snake_case = 'weight_g' elif "weight_v" in name: snake_case = 'weight_v' elif "weight" in name: snake_case = 'weight' elif "bias" in name: snake_case = 'bias' else: snake_case = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: """simple docstring""" snake_case = full_name.split('conv_layers.' )[-1] snake_case = name.split('.' ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Any , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Any=None , _UpperCamelCase : Union[str, Any]=True ) -> List[Any]: """simple docstring""" if config_path is not None: snake_case = HubertConfig.from_pretrained(_UpperCamelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(_UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(_UpperCamelCase , 'vocab.json' ) if not os.path.isdir(_UpperCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCamelCase ) ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _UpperCamelCase ) snake_case = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCamelCase , ) snake_case = True if config.feat_extract_norm == 'layer' else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) snake_case = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) snake_case = HubertForCTC(_UpperCamelCase ) else: snake_case = HubertModel(_UpperCamelCase ) if is_finetuned: snake_case ,snake_case ,snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: snake_case ,snake_case ,snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
150
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def lowerCAmelCase__ ( _UpperCamelCase : Iterable[str] , _UpperCamelCase : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" snake_case = iter(_UpperCamelCase ) while True: snake_case = tuple(itertools.islice(_UpperCamelCase , _UpperCamelCase ) ) if not chunk: return yield chunk def lowerCAmelCase__ ( _UpperCamelCase : str ) -> str: """simple docstring""" snake_case = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) snake_case = '' if len(_UpperCamelCase ) < 2: return dirty for i in range(len(_UpperCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_UpperCamelCase ) & 1: clean += "X" return clean def lowerCAmelCase__ ( _UpperCamelCase : str ) -> list[str]: """simple docstring""" snake_case = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler snake_case = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_UpperCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_UpperCamelCase ) return table def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" snake_case = generate_table(_UpperCamelCase ) snake_case = prepare_input(_UpperCamelCase ) snake_case = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_UpperCamelCase , 2 ): snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: """simple docstring""" snake_case = generate_table(_UpperCamelCase ) snake_case = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_UpperCamelCase , 2 ): snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) snake_case ,snake_case = divmod(table.index(_UpperCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
150
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __snake_case :Optional[int] = logging.get_logger(__name__) def __snake_case ( _UpperCAmelCase ): __a = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __a = MaskFormerConfig(backbone_config=_UpperCAmelCase ) __a = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __a = 847 __a = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __a = 150 __a = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __a = 171 __a = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __a = 133 __a = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __a = 19 __a = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __a = 65 __a = '''mapillary-vistas-id2label.json''' __a = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} return config def __snake_case ( _UpperCAmelCase ): __a = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.layers.{i}.downsample.reduction.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.layers.{i}.downsample.norm.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'sem_seg_head.adapter_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', f'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', f'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', f'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', f'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.weight', f'mask_embedder.{i}.0.weight') ) rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.bias', f'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = dct.pop(_UpperCAmelCase ) __a = val def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __a = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __a = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __a = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __a = in_proj_weight[:dim, :] __a = in_proj_bias[: dim] __a = in_proj_weight[ dim : dim * 2, : ] __a = in_proj_bias[ dim : dim * 2 ] __a = in_proj_weight[ -dim :, : ] __a = in_proj_bias[-dim :] # fmt: on def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): # fmt: off __a = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __a = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __a = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __a = in_proj_weight[: hidden_size, :] __a = in_proj_bias[:config.hidden_size] __a = in_proj_weight[hidden_size : hidden_size * 2, :] __a = in_proj_bias[hidden_size : hidden_size * 2] __a = in_proj_weight[-hidden_size :, :] __a = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __a = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __a = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __a = in_proj_weight[: hidden_size, :] __a = in_proj_bias[:config.hidden_size] __a = in_proj_weight[hidden_size : hidden_size * 2, :] __a = in_proj_bias[hidden_size : hidden_size * 2] __a = in_proj_weight[-hidden_size :, :] __a = in_proj_bias[-hidden_size :] # fmt: on def __snake_case ( ): __a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ): __a = get_maskformer_config(_UpperCAmelCase ) # load original state_dict with open(_UpperCAmelCase , '''rb''' ) as f: __a = pickle.load(_UpperCAmelCase ) __a = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __a = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # update to torch tensors for key, value in state_dict.items(): __a = torch.from_numpy(_UpperCAmelCase ) # load 🤗 model __a = MaskFormerForInstanceSegmentation(_UpperCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_UpperCAmelCase , param.shape ) __a , __a = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_UpperCAmelCase ) == 0, f'Unexpected keys: {unexpected_keys}' # verify results __a = prepare_img() if "vistas" in model_name: __a = 65 elif "cityscapes" in model_name: __a = 65535 else: __a = 255 __a = True if '''ade''' in model_name else False __a = MaskFormerImageProcessor(ignore_index=_UpperCAmelCase , reduce_labels=_UpperCAmelCase ) __a = image_processor(_UpperCAmelCase , return_tensors='''pt''' ) __a = model(**_UpperCAmelCase ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __a = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) image_processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": __snake_case :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __snake_case :str = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
131
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): def get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) -> str: __a = [] __a = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __a = int(max(0 , i - limit ) ) __a = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) __a = f'{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}' return "".join(_UpperCAmelCase ) # matching characters __a = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) __a = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) __a = len(_UpperCAmelCase ) # transposition __a = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: __a = 0.0 else: __a = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __a = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
131
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class __lowerCAmelCase ( snake_case_): _a = "efficientformer" def __init__( self: List[Any] , _lowerCAmelCase: List[int] = [3, 2, 6, 4] , _lowerCAmelCase: List[int] = [48, 96, 2_24, 4_48] , _lowerCAmelCase: List[bool] = [True, True, True, True] , _lowerCAmelCase: int = 4_48 , _lowerCAmelCase: int = 32 , _lowerCAmelCase: int = 4 , _lowerCAmelCase: int = 7 , _lowerCAmelCase: int = 5 , _lowerCAmelCase: int = 8 , _lowerCAmelCase: int = 4 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 16 , _lowerCAmelCase: int = 3 , _lowerCAmelCase: int = 3 , _lowerCAmelCase: int = 3 , _lowerCAmelCase: int = 2 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: float = 1e-5 , _lowerCAmelCase: str = "gelu" , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: float = 1e-1_2 , _lowerCAmelCase: int = 2_24 , _lowerCAmelCase: float = 1e-0_5 , **_lowerCAmelCase: Optional[Any] , ): super().__init__(**_A ) lowercase :Dict = hidden_act lowercase :Union[str, Any] = hidden_dropout_prob lowercase :Tuple = hidden_sizes lowercase :Dict = num_hidden_layers lowercase :Any = num_attention_heads lowercase :Optional[Any] = initializer_range lowercase :Optional[Any] = layer_norm_eps lowercase :List[Any] = patch_size lowercase :int = num_channels lowercase :str = depths lowercase :Union[str, Any] = mlp_expansion_ratio lowercase :str = downsamples lowercase :Any = dim lowercase :int = key_dim lowercase :Any = attention_ratio lowercase :Union[str, Any] = resolution lowercase :Union[str, Any] = pool_size lowercase :Union[str, Any] = downsample_patch_size lowercase :Union[str, Any] = downsample_stride lowercase :str = downsample_pad lowercase :Optional[Any] = drop_path_rate lowercase :Any = num_metaad_blocks lowercase :Tuple = distillation lowercase :List[Any] = use_layer_scale lowercase :str = layer_scale_init_value lowercase :List[Any] = image_size lowercase :Any = batch_norm_eps
236
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCamelCase ( _A : bytes , _A : int ) ->np.array: """simple docstring""" lowerCamelCase_ =f'{sampling_rate}' lowerCamelCase_ ="""1""" lowerCamelCase_ ="""f32le""" lowerCamelCase_ =[ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(_A , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCamelCase_ =ffmpeg_process.communicate(_A ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error lowerCamelCase_ =output_stream[0] lowerCamelCase_ =np.frombuffer(_A , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def __UpperCamelCase ( _A : int , _A : float , _A : str = "f32le" , ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =f'{sampling_rate}' lowerCamelCase_ ="""1""" if format_for_conversion == "s16le": lowerCamelCase_ =2 elif format_for_conversion == "f32le": lowerCamelCase_ =4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) lowerCamelCase_ =platform.system() if system == "Linux": lowerCamelCase_ ="""alsa""" lowerCamelCase_ ="""default""" elif system == "Darwin": lowerCamelCase_ ="""avfoundation""" lowerCamelCase_ =""":0""" elif system == "Windows": lowerCamelCase_ ="""dshow""" lowerCamelCase_ ="""default""" lowerCamelCase_ =[ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] lowerCamelCase_ =int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCamelCase_ =_ffmpeg_stream(_A , _A ) for item in iterator: yield item def __UpperCamelCase ( _A : int , _A : float , _A : Optional[int] = None , _A : Optional[Union[Tuple[float, float], float]] = None , _A : str = "f32le" , ) ->Dict: """simple docstring""" if stream_chunk_s is not None: lowerCamelCase_ =stream_chunk_s else: lowerCamelCase_ =chunk_length_s lowerCamelCase_ =ffmpeg_microphone(_A , _A , format_for_conversion=_A ) if format_for_conversion == "s16le": lowerCamelCase_ =np.intaa lowerCamelCase_ =2 elif format_for_conversion == "f32le": lowerCamelCase_ =np.floataa lowerCamelCase_ =4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: lowerCamelCase_ =chunk_length_s / 6 lowerCamelCase_ =int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_A , (int, float) ): lowerCamelCase_ =[stride_length_s, stride_length_s] lowerCamelCase_ =int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCamelCase_ =int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCamelCase_ =datetime.datetime.now() lowerCamelCase_ =datetime.timedelta(seconds=_A ) for item in chunk_bytes_iter(_A , _A , stride=(stride_left, stride_right) , stream=_A ): # Put everything back in numpy scale lowerCamelCase_ =np.frombuffer(item["""raw"""] , dtype=_A ) lowerCamelCase_ =( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) lowerCamelCase_ =sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCamelCase ( _A : Any , _A : int , _A : Tuple[int, int] , _A : bool = False ) ->Dict: """simple docstring""" lowerCamelCase_ =B"""""" lowerCamelCase_ , lowerCamelCase_ =stride if stride_left + stride_right >= chunk_len: raise ValueError( f'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) lowerCamelCase_ =0 for raw in iterator: acc += raw if stream and len(_A ) < chunk_len: lowerCamelCase_ =(_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_A ) >= chunk_len: # We are flushing the accumulator lowerCamelCase_ =(_stride_left, stride_right) lowerCamelCase_ ={"""raw""": acc[:chunk_len], """stride""": stride} if stream: lowerCamelCase_ =False yield item lowerCamelCase_ =stride_left lowerCamelCase_ =acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_A ) > stride_left: lowerCamelCase_ ={"""raw""": acc, """stride""": (_stride_left, 0)} if stream: lowerCamelCase_ =False yield item def __UpperCamelCase ( _A : Dict , _A : int ) ->int: """simple docstring""" lowerCamelCase_ =2**24 # 16Mo try: with subprocess.Popen(_A , stdout=subprocess.PIPE , bufsize=_A ) as ffmpeg_process: while True: lowerCamelCase_ =ffmpeg_process.stdout.read(_A ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
49
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCamelCase ( _A : NDArray[floataa] , _A : NDArray[floataa] , _A : list[int] , _A : int , ) ->list[float]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =coefficient_matrix.shape lowerCamelCase_ , lowerCamelCase_ =constant_matrix.shape if rowsa != colsa: lowerCamelCase_ =f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_A ) if colsa != 1: lowerCamelCase_ =f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_A ) if rowsa != rowsa: lowerCamelCase_ =( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_A ) if len(_A ) != rowsa: lowerCamelCase_ =( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(_A )} and {rowsa}' ) raise ValueError(_A ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowerCamelCase_ =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase_ , lowerCamelCase_ =table.shape strictly_diagonally_dominant(_A ) # Iterates the whole matrix for given number of times for _ in range(_A ): lowerCamelCase_ =[] for row in range(_A ): lowerCamelCase_ =0 for col in range(_A ): if col == row: lowerCamelCase_ =table[row][col] elif col == cols - 1: lowerCamelCase_ =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase_ =(temp + val) / denom new_val.append(_A ) lowerCamelCase_ =new_val return [float(_A ) for i in new_val] def __UpperCamelCase ( _A : NDArray[floataa] ) ->bool: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =table.shape lowerCamelCase_ =True for i in range(0 , _A ): lowerCamelCase_ =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
49
1
import math def A_ ( a = 1_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = sum(i * i for i in range(1 , n + 1 ) ) SCREAMING_SNAKE_CASE_ : List[str] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
253
def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): # Return True if there is node that has not iterated. UpperCamelCase :Tuple = [False] * len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = [] queue.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = True while queue: UpperCamelCase :Optional[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = True UpperCamelCase :Optional[int] = u return visited[t] def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ): # This array is filled by BFS and to store path UpperCamelCase :Optional[int] = [-1] * (len(SCREAMING_SNAKE_CASE__ )) UpperCamelCase :Optional[int] = 0 while bfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Dict = float('''Inf''' ) UpperCamelCase :str = sink while s != source: # Find the minimum value in select path UpperCamelCase :Optional[Any] = min(SCREAMING_SNAKE_CASE__ , graph[parent[s]][s] ) UpperCamelCase :Any = parent[s] max_flow += path_flow UpperCamelCase :Tuple = sink while v != source: UpperCamelCase :List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase :Any = parent[v] return max_flow __snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __snake_case , __snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
259
0
import tensorflow as tf from ...tf_utils import shape_list class snake_case__ (tf.keras.layers.Layer ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=1 , __lowercase=False , **__lowercase ) -> str: """simple docstring""" super().__init__(**__lowerCamelCase ) a__ : Tuple = vocab_size a__ : Tuple = d_embed a__ : Any = d_proj a__ : Optional[int] = cutoffs + [vocab_size] a__ : Optional[int] = [0] + self.cutoffs a__ : Union[str, Any] = div_val a__ : List[str] = self.cutoffs[0] a__ : Tuple = len(self.cutoffs ) - 1 a__ : Union[str, Any] = self.shortlist_size + self.n_clusters a__ : int = keep_order a__ : Dict = [] a__ : Dict = [] def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" if self.n_clusters > 0: a__ : Dict = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=__lowerCamelCase , name="""cluster_weight""" ) a__ : Dict = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=__lowerCamelCase , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: a__ : Dict = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F'''out_projs_._{i}''' , ) self.out_projs.append(__lowerCamelCase ) else: self.out_projs.append(__lowerCamelCase ) a__ : List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F'''out_layers_._{i}_._weight''' , ) a__ : List[Any] = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): a__ : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] a__ : Tuple = self.d_embed // (self.div_val**i) a__ : Tuple = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F'''out_projs_._{i}''' ) self.out_projs.append(__lowerCamelCase ) a__ : Optional[int] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F'''out_layers_._{i}_._weight''' , ) a__ : Union[str, Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=__lowerCamelCase , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(__lowerCamelCase ) @staticmethod def SCREAMING_SNAKE_CASE__( __lowercase , __lowercase , __lowercase , __lowercase=None ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = x if proj is not None: a__ : Tuple = tf.einsum("""ibd,ed->ibe""" , __lowerCamelCase , __lowerCamelCase ) return tf.einsum("""ibd,nd->ibn""" , __lowerCamelCase , __lowerCamelCase ) + b @staticmethod def SCREAMING_SNAKE_CASE__( __lowercase , __lowercase ) -> List[Any]: """simple docstring""" a__ : Dict = shape_list(__lowerCamelCase ) a__ : Dict = tf.range(lp_size[0] , dtype=target.dtype ) a__ : Optional[Any] = tf.stack([r, target] , 1 ) return tf.gather_nd(__lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase=True , __lowercase=False ) -> Optional[Any]: """simple docstring""" a__ : Optional[int] = 0 if self.n_clusters == 0: a__ : List[str] = self._logit(__lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: a__ : Optional[int] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__lowerCamelCase , logits=__lowerCamelCase ) a__ : Dict = tf.nn.log_softmax(__lowerCamelCase , axis=-1 ) else: a__ : Union[str, Any] = shape_list(__lowerCamelCase ) a__ : Optional[int] = [] a__ : Tuple = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): a__ : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: a__ : Tuple = (target >= l_idx) & (target < r_idx) a__ : Union[str, Any] = tf.where(__lowerCamelCase ) a__ : Tuple = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) - l_idx if self.div_val == 1: a__ : Optional[Any] = self.out_layers[0][0][l_idx:r_idx] a__ : Optional[int] = self.out_layers[0][1][l_idx:r_idx] else: a__ : Optional[int] = self.out_layers[i][0] a__ : int = self.out_layers[i][1] if i == 0: a__ : str = tf.concat([cur_W, self.cluster_weight] , 0 ) a__ : Tuple = tf.concat([cur_b, self.cluster_bias] , 0 ) a__ : Union[str, Any] = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[0] ) a__ : List[str] = tf.nn.log_softmax(__lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: a__ : Optional[Any] = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) a__ : str = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) else: a__ : str = self._logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.out_projs[i] ) a__ : Dict = tf.nn.log_softmax(__lowerCamelCase ) a__ : str = self.cutoffs[0] + i - 1 # No probability for the head cluster a__ : Optional[Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__lowerCamelCase ) if target is not None: a__ : List[Any] = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) a__ : Any = tf.boolean_mask(__lowerCamelCase , __lowerCamelCase ) a__ : Dict = self._gather_logprob(__lowerCamelCase , __lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__lowerCamelCase , -cur_logprob , shape_list(__lowerCamelCase ) ) a__ : Union[str, Any] = tf.concat(__lowerCamelCase , axis=-1 ) if target is not None: if return_mean: a__ : List[Any] = tf.reduce_mean(__lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__lowerCamelCase , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
368
from __future__ import annotations def lowerCAmelCase_ ( _lowercase : float , _lowercase : float , _lowercase : float , ) -> tuple[str, float]: """simple docstring""" if (stress, tangential_force, area).count(0) != 1: raise ValueError("""You cannot supply more or less than 2 values""") elif stress < 0: raise ValueError("""Stress cannot be negative""") elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""") elif area < 0: raise ValueError("""Area cannot be negative""") elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
266
0
from __future__ import annotations import time import numpy as np __A = [8, 5, 9, 7] __A = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __A = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> None: '''simple docstring''' __lowerCamelCase = claim_vector __lowerCamelCase = allocated_resources_table __lowerCamelCase = maximum_claim_table def lowercase_ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowercase_ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowercase_ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(lowerCamelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowercase_ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(lowerCamelCase__ ): i for i in self.__need()} def lowercase_ ( self , **lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = self.__need() __lowerCamelCase = self.__allocated_resources_table __lowerCamelCase = self.__available_resources() __lowerCamelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __lowerCamelCase = False for each_need in need_list: __lowerCamelCase = True for index, need in enumerate(lowerCamelCase__ ): if need > available_resources[index]: __lowerCamelCase = False break if execution: __lowerCamelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCamelCase = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(lowerCamelCase__ ) # update available/freed resources stack __lowerCamelCase = np.array(lowerCamelCase__ ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(lowerCamelCase__ ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def lowercase_ ( self ) -> List[Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(lowerCamelCase__ ) + 1}""" + ' '.join(f"""{it:>8}""" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(lowerCamelCase__ ) + 1}""" + ' '.join(f"""{it:>8}""" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(lowerCamelCase__ ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(lowerCamelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
90
"""simple docstring""" def lowercase ( a__ : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase = len(a__ ) while cur > 1: # Find the maximum number in arr _UpperCamelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCamelCase = arr[mi::-1] + arr[mi + 1 : len(a__ )] # Reverse whole list _UpperCamelCase = arr[cur - 1 :: -1] + arr[cur : len(a__ )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
256
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowercase__ ( __snake_case : str ): UpperCAmelCase_ : Optional[int] = analyze_text(__snake_case ) UpperCAmelCase_ : Tuple = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase_ : Optional[Any] = sum(single_char_strings.values() ) # one length string UpperCAmelCase_ : Optional[int] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase_ : int = single_char_strings[ch] UpperCAmelCase_ : Tuple = my_str / all_sum my_fir_sum += prob * math.loga(__snake_case ) # entropy formula. # print entropy print(F"{round(-1 * my_fir_sum ):.1f}" ) # two len string UpperCAmelCase_ : List[Any] = sum(two_char_strings.values() ) UpperCAmelCase_ : Any = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase_ : Dict = cha + cha if sequence in two_char_strings: UpperCAmelCase_ : List[str] = two_char_strings[sequence] UpperCAmelCase_ : Dict = int(__snake_case ) / all_sum my_sec_sum += prob * math.loga(__snake_case ) # print second entropy print(F"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(F"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def lowercase__ ( __snake_case : str ): UpperCAmelCase_ : int = Counter() # type: ignore UpperCAmelCase_ : Optional[int] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__snake_case ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowercase__ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
145
0
def lowerCamelCase_ ( _a , _a = 0 ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = length or len(_a ) lowerCAmelCase__ : List[str] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = list_data[i + 1], list_data[i] lowerCAmelCase__ : Optional[int] = True return list_data if not swapped else bubble_sort(_a , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
131
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=13 , _SCREAMING_SNAKE_CASE : Tuple=32 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : List[Any]=3 , _SCREAMING_SNAKE_CASE : str=16 , _SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 2, 1] , _SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 4] , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : Optional[int]=2.0 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Dict=0.0 , _SCREAMING_SNAKE_CASE : str=0.0 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : Tuple="gelu" , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : List[Any]=0.02 , _SCREAMING_SNAKE_CASE : Any=1E-5 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Any=10 , _SCREAMING_SNAKE_CASE : Union[str, Any]=8 , )-> Dict: lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : Optional[Any] = depths lowerCAmelCase__ : Tuple = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : List[str] = mlp_ratio lowerCAmelCase__ : str = qkv_bias lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Tuple = use_absolute_embeddings lowerCAmelCase__ : int = patch_norm lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Any = scope lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : Any = encoder_stride def UpperCAmelCase__( self : str )-> Optional[int]: lowerCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self : Optional[int] )-> str: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> int: lowerCAmelCase__ : Union[str, Any] = SwinvaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : List[str] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> List[Any]: lowerCAmelCase__ : Optional[int] = SwinvaForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Dict = SwinvaForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : Tuple = self.type_sequence_label_size lowerCAmelCase__ : Optional[Any] = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__( self : Tuple )-> str: lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( _lowercase , _lowercase , unittest.TestCase): _a : str = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _a : Tuple = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _a : List[str] = False _a : int = False _a : Optional[int] = False _a : Optional[Any] = False def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : Tuple = SwinvaModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) def UpperCAmelCase__( self : str )-> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__( self : Optional[int] )-> Optional[Any]: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase__( self : Optional[Any] )-> Dict: pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase__( self : Tuple )-> Optional[int]: pass def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = True for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[str] = outputs.attentions lowerCAmelCase__ : Union[str, Any] = len(self.model_tester.depths ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = config.window_size**2 lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase__ : int = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowerCAmelCase__ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase__ : str = 2 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[Any] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] )-> Tuple: lowerCAmelCase__ : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Any = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.hidden_states lowerCAmelCase__ : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length lowerCAmelCase__ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase__ : Dict = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reshaped_hidden_states[0].shape lowerCAmelCase__ : Tuple = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__( self : Tuple )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Tuple = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Optional[Any] )-> int: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = SwinvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Dict = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _a ( unittest.TestCase): @cached_property def UpperCAmelCase__( self : Tuple )-> Optional[Any]: return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ : Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase__ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
131
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Dict = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
from math import isqrt def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = False return [i for i in range(2 , __UpperCamelCase ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**8 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = calculate_prime_numbers(max_number // 2 ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
204
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __snake_case :Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name def __snake_case ( _UpperCAmelCase ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_UpperCAmelCase ): return ext raise Exception( f'Unable to determine file format from file extension {path}. ' f'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def __snake_case ( _UpperCAmelCase ): __a = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __a = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format __a = PipelineDataFormat.from_str( format=_UpperCAmelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(_UpperCAmelCase , _UpperCAmelCase ) class _A ( __UpperCAmelCase ): def __init__( self : int , __SCREAMING_SNAKE_CASE : Pipeline , __SCREAMING_SNAKE_CASE : PipelineDataFormat): '''simple docstring''' __a = nlp __a = reader @staticmethod def _lowerCamelCase ( __SCREAMING_SNAKE_CASE : ArgumentParser): '''simple docstring''' __a = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''') run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''') run_parser.add_argument('''--input''' , type=__SCREAMING_SNAKE_CASE , help='''Path to the file to use for inference''') run_parser.add_argument('''--output''' , type=__SCREAMING_SNAKE_CASE , help='''Path to the file that will be used post to write results.''') run_parser.add_argument('''--model''' , type=__SCREAMING_SNAKE_CASE , help='''Name or path to the model to instantiate.''') run_parser.add_argument('''--config''' , type=__SCREAMING_SNAKE_CASE , help='''Name or path to the model\'s config to instantiate.''') run_parser.add_argument( '''--tokenizer''' , type=__SCREAMING_SNAKE_CASE , help='''Name of the tokenizer to use. (default: same as the model name)''') run_parser.add_argument( '''--column''' , type=__SCREAMING_SNAKE_CASE , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=__SCREAMING_SNAKE_CASE , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=__SCREAMING_SNAKE_CASE , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''') run_parser.set_defaults(func=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a , __a = self._nlp, [] for entry in self._reader: __a = nlp(**__SCREAMING_SNAKE_CASE) if self._reader.is_multi_columns else nlp(__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): outputs.append(__SCREAMING_SNAKE_CASE) else: outputs += output # Saving data if self._nlp.binary_output: __a = self._reader.save_binary(__SCREAMING_SNAKE_CASE) logger.warning(F'Current pipeline requires output to be in binary format, saving at {binary_path}') else: self._reader.save(__SCREAMING_SNAKE_CASE)
49
from collections import defaultdict def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = first_str.lower().strip() __a = second_str.lower().strip() # Remove whitespace __a = first_str.replace(''' ''' , '''''' ) __a = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False # Default values for count should be 0 __a = defaultdict(_UpperCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_UpperCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __snake_case :Any = input('''Enter the first string ''').strip() __snake_case :int = input('''Enter the second string ''').strip() __snake_case :int = check_anagrams(input_a, input_b) print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
49
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''mra''' def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=1 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="absolute" , _UpperCAmelCase=4 , _UpperCAmelCase="full" , _UpperCAmelCase=0 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __a : Any = vocab_size __a : Tuple = max_position_embeddings __a : Union[str, Any] = hidden_size __a : Dict = num_hidden_layers __a : Tuple = num_attention_heads __a : Optional[Any] = intermediate_size __a : Dict = hidden_act __a : List[str] = hidden_dropout_prob __a : List[Any] = attention_probs_dropout_prob __a : List[Any] = initializer_range __a : Optional[int] = type_vocab_size __a : Union[str, Any] = layer_norm_eps __a : int = position_embedding_type __a : Optional[Any] = block_per_row __a : Any = approx_mode __a : Optional[Any] = initial_prior_first_n_blocks __a : List[Any] = initial_prior_diagonal_n_blocks
188
"""simple docstring""" def __A ( a_ :int = 1_00_00_00) -> int: __a : Tuple = [i - 1 for i in range(limit + 1)] for i in range(2 , limit + 1): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , a_): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1]) if __name__ == "__main__": print(solution())
188
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters a_ : Optional[Any] = False a_ : int = False def __snake_case ( UpperCAmelCase_ : Namespace ): return TrainCommand(UpperCAmelCase_ ) class snake_case ( lowercase ): """simple docstring""" @staticmethod def snake_case ( UpperCamelCase ): """simple docstring""" lowerCamelCase_ = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=UpperCamelCase , required=UpperCamelCase , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=UpperCamelCase , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=UpperCamelCase , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=UpperCamelCase , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=UpperCamelCase , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=UpperCamelCase , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=UpperCamelCase , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=UpperCamelCase , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=UpperCamelCase , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=UpperCamelCase , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=UpperCamelCase , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=UpperCamelCase , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=UpperCamelCase , default=1e-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=UpperCamelCase ) def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = logging.get_logger("transformers-cli/training" ) lowerCamelCase_ = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=UpperCamelCase ) lowerCamelCase_ = args.output lowerCamelCase_ = args.column_label lowerCamelCase_ = args.column_text lowerCamelCase_ = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": lowerCamelCase_ = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) lowerCamelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCamelCase_ = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) lowerCamelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCamelCase_ = args.validation_split lowerCamelCase_ = args.train_batch_size lowerCamelCase_ = args.valid_batch_size lowerCamelCase_ = args.learning_rate lowerCamelCase_ = args.adam_epsilon def snake_case ( self ): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def snake_case ( self ): """simple docstring""" raise NotImplementedError def snake_case ( self ): """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
55
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any], _lowerCamelCase : int, _lowerCamelCase : List[Any]=7, _lowerCamelCase : int=3, _lowerCamelCase : Optional[Any]=18, _lowerCamelCase : Any=30, _lowerCamelCase : str=4_00, _lowerCamelCase : int=True, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : str=True, ): '''simple docstring''' __A = size if size is not None else {'''height''': 18, '''width''': 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = apply_ocr def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = LayoutLMvaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''apply_ocr''' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 18, '''width''': 18} ) __A = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'''height''': 42, '''width''': 42} ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, Image.Image ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) self.assertIsInstance(encoding.words, _lowerCamelCase ) self.assertIsInstance(encoding.boxes, _lowerCamelCase ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase, numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase, torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' # with apply_OCR = True __A = LayoutLMvaImageProcessor() from datasets import load_dataset __A = load_dataset('''hf-internal-testing/fixtures_docvqa''', split='''test''' ) __A = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ), len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __A = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __A = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, _lowerCamelCase ) self.assertListEqual(encoding.boxes, _lowerCamelCase ) # with apply_OCR = False __A = LayoutLMvaImageProcessor(apply_ocr=_lowerCamelCase ) __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24) )
266
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowercase : List[Any] = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Dict=None ): require_version(deps[pkg] , snake_case_ )
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Tuple = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
0
from __future__ import annotations from math import pi, sqrt def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
176
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __a = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : int = 1_4 ) -> None: """simple docstring""" if group not in primes: raise ValueError("Unsupported Group" ) _UpperCAmelCase : Union[str, Any] = primes[group]["prime"] _UpperCAmelCase : List[Any] = primes[group]["generator"] _UpperCAmelCase : str = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCAmelCase__ )[2:] def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(lowerCAmelCase__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = int(lowerCAmelCase__ , base=1_6 ) if not self.is_valid_public_key(lowerCAmelCase__ ): raise ValueError("Invalid public key" ) _UpperCAmelCase : Optional[Any] = pow(lowerCAmelCase__ , self.__private_key , self.prime ) return shaaaa(str(lowerCAmelCase__ ).encode() ).hexdigest() @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCAmelCase__ , (prime - 1) // 2 , lowerCAmelCase__ ) == 1 ) @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 1_4 ) -> str: """simple docstring""" _UpperCAmelCase : Any = int(lowerCAmelCase__ , base=1_6 ) _UpperCAmelCase : List[Any] = int(lowerCAmelCase__ , base=1_6 ) _UpperCAmelCase : str = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("Invalid public key" ) _UpperCAmelCase : Tuple = pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return shaaaa(str(lowerCAmelCase__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
145
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCamelCase : Any = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __UpperCamelCase : List[str] = {'''facebook/blenderbot-3B''': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Union[str, Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowerCAmelCase__ : List[str] = bs[:] lowerCAmelCase__ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(A_ ) cs.append(2**8 + n ) n += 1 lowerCAmelCase__ : Tuple = [chr(A_ ) for n in cs] return dict(zip(A_ , A_ ) ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Any = set() lowerCAmelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ : str = char return pairs class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self : str ,lowercase_ : List[Any] ,lowercase_ : int ,lowercase_ : List[str]="replace" ,lowercase_ : Dict="<s>" ,lowercase_ : Any="</s>" ,lowercase_ : Dict="</s>" ,lowercase_ : List[Any]="<s>" ,lowercase_ : Any="<unk>" ,lowercase_ : Dict="<pad>" ,lowercase_ : Union[str, Any]="<mask>" ,lowercase_ : Optional[Any]=False ,**lowercase_ : List[Any] ,): lowerCAmelCase__ : Optional[Any] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else bos_token lowerCAmelCase__ : List[Any] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else eos_token lowerCAmelCase__ : Optional[int] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else sep_token lowerCAmelCase__ : Optional[int] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else cls_token lowerCAmelCase__ : List[str] = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else unk_token lowerCAmelCase__ : Tuple = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : Dict = AddedToken(lowercase_ ,lstrip=lowercase_ ,rstrip=lowercase_ ) if isinstance(lowercase_ ,lowercase_ ) else mask_token super().__init__( errors=lowercase_ ,bos_token=lowercase_ ,eos_token=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,cls_token=lowercase_ ,pad_token=lowercase_ ,mask_token=lowercase_ ,add_prefix_space=lowercase_ ,**lowercase_ ,) with open(lowercase_ ,encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ : Optional[int] = json.load(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ : str = errors # how to handle errors in decoding lowerCAmelCase__ : Tuple = bytes_to_unicode() lowerCAmelCase__ : Any = {v: k for k, v in self.byte_encoder.items()} with open(lowercase_ ,encoding='''utf-8''' ) as merges_handle: lowerCAmelCase__ : List[str] = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ : Dict = dict(zip(lowercase_ ,range(len(lowercase_ ) ) ) ) lowerCAmelCase__ : str = {} lowerCAmelCase__ : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ : str = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCAmelCase ( self : Optional[int] ): return len(self.encoder ) def __lowerCAmelCase ( self : Optional[Any] ): return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ): if token in self.cache: return self.cache[token] lowerCAmelCase__ : Optional[Any] = tuple(lowercase_ ) lowerCAmelCase__ : Optional[Any] = get_pairs(lowercase_ ) if not pairs: return token while True: lowerCAmelCase__ : Any = min(lowercase_ ,key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = bigram lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Dict = 0 while i < len(lowercase_ ): try: lowerCAmelCase__ : List[str] = word.index(lowercase_ ,lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ : List[str] = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ : str = tuple(lowercase_ ) lowerCAmelCase__ : int = new_word if len(lowercase_ ) == 1: break else: lowerCAmelCase__ : Any = get_pairs(lowercase_ ) lowerCAmelCase__ : Optional[Any] = ''' '''.join(lowercase_ ) lowerCAmelCase__ : List[Any] = word return word def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Any ): lowerCAmelCase__ : Union[str, Any] = [] for token in re.findall(self.pat ,lowercase_ ): lowerCAmelCase__ : Optional[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(''' ''' ) ) return bpe_tokens def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Union[str, Any] ): return self.encoder.get(lowercase_ ,self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Dict ): return self.decoder.get(lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Optional[int] ): lowerCAmelCase__ : Tuple = ''''''.join(lowercase_ ) lowerCAmelCase__ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' ,errors=self.errors ) return text def __lowerCAmelCase ( self : Tuple ,lowercase_ : str ,lowercase_ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ : str = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : List[Any] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowercase_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowercase_ ,ensure_ascii=lowercase_ ) + '''\n''' ) lowerCAmelCase__ : str = 0 with open(lowercase_ ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase__ : Optional[Any] = token_index writer.write(''' '''.join(lowercase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self : List[Any] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ,lowercase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ ,token_ids_a=lowercase_ ,already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): lowerCAmelCase__ : Optional[Any] = [self.sep_token_id] lowerCAmelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : int ,lowercase_ : List[Any] ,lowercase_ : str=False ,**lowercase_ : int ): lowerCAmelCase__ : Union[str, Any] = kwargs.pop('''add_prefix_space''' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()): lowerCAmelCase__ : List[str] = ''' ''' + text return (text, kwargs) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : List[int] ,lowercase_ : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : "Conversation" ): lowerCAmelCase__ : List[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowercase_ ) lowerCAmelCase__ : Optional[Any] = ''' '''.join(lowercase_ ) lowerCAmelCase__ : List[Any] = self.encode(lowercase_ ) if len(lowercase_ ) > self.model_max_length: lowerCAmelCase__ : List[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
74
"""simple docstring""" import qiskit def __SCREAMING_SNAKE_CASE ( A_ = 2 ): lowerCAmelCase__ : int = qubits # Using Aer's simulator lowerCAmelCase__ : str = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register lowerCAmelCase__ : str = qiskit.QuantumCircuit(A_ , A_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , A_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , A_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(A_ ) ) , list(range(A_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCAmelCase__ : List[Any] = qiskit.execute(A_ , A_ , shots=10_00 ) return job.result().get_counts(A_ ) if __name__ == "__main__": print(F'''Total count for various states are: {quantum_entanglement(3)}''')
74
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int ) -> list: '''simple docstring''' _UpperCAmelCase = int(__lowercase ) if n_element < 1: _UpperCAmelCase = ValueError("a should be a positive number" ) raise my_error _UpperCAmelCase = [1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (0, 0, 0) _UpperCAmelCase = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Any = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') __SCREAMING_SNAKE_CASE :Tuple = hamming(int(n)) print('''-----------------------------------------------------''') print(F"The list with nth numbers is: {hamming_numbers}") print('''-----------------------------------------------------''')
22
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : str = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
204
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) snake_case_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Tuple , a__ : Optional[int] , a__ : Dict , a__ : Optional[Any]=None , a__ : int=None ): """simple docstring""" __snake_case = self.layer[current_layer](a__ , a__ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , _UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , a__ : int ): """simple docstring""" super().__init__(a__ ) __snake_case = BertEncoderWithPabee(a__ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def a (self : List[str] , a__ : Optional[Any] ): """simple docstring""" __snake_case = threshold def a (self : Tuple , a__ : Union[str, Any] ): """simple docstring""" __snake_case = patience def a (self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def a (self : Tuple ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(a__ ) @add_start_docstrings_to_model_forward(a__ ) def a (self : Optional[Any] , a__ : Dict=None , a__ : int=None , a__ : str=None , a__ : List[Any]=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Tuple=None , a__ : str=None , a__ : Dict=None , a__ : Any=None , a__ : Optional[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a__ , device=a__ ) if token_type_ids is None: __snake_case = torch.zeros(a__ , dtype=torch.long , device=a__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a__ , a__ , a__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a__ , device=a__ ) __snake_case = self.invert_attention_mask(a__ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a__ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a__ , position_ids=a__ , token_type_ids=a__ , inputs_embeds=a__ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a__ , current_layer=a__ , attention_mask=a__ , head_mask=a__ ) __snake_case = self.pooler(a__ ) __snake_case = output_layers[i](output_dropout(a__ ) ) res.append(a__ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a__ , attention_mask=a__ , head_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a__ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a__ , current_layer=a__ , attention_mask=a__ , head_mask=a__ ) __snake_case = self.pooler(a__ ) __snake_case = output_layers[i](a__ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a__ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , _UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Any , a__ : Union[str, Any] ): """simple docstring""" super().__init__(a__ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a__ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a__ ) def a (self : List[Any] , a__ : Dict=None , a__ : Any=None , a__ : List[str]=None , a__ : Tuple=None , a__ : Optional[Any]=None , a__ : Union[str, Any]=None , a__ : str=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a__ , attention_mask=a__ , token_type_ids=a__ , position_ids=a__ , head_mask=a__ , inputs_embeds=a__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a__ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
352
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : int , *a__ : List[Any] , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[Any] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : List[str] ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : int , **a__ : int ): """simple docstring""" return {}, {}, {} def a (self : Optional[int] , a__ : Optional[int] ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : List[Any] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
238
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =tempfile.mkdtemp() # fmt: off a__ =['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on a__ =dict(zip(lowercase_, range(len(lowercase_ ) ) ) ) a__ =['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] a__ ={'''unk_token''': '''<unk>'''} a__ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) a__ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) a__ ={ '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } a__ =os.path.join(self.tmpdirname, lowercase_ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(lowercase_, lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> List[str]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname, pad_token='''!''', **lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> Tuple: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname, pad_token='''!''', **lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> Dict: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname, **lowercase_ ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" a__ =[np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] a__ =[Image.fromarray(np.moveaxis(lowercase_, 0, -1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" a__ =self.get_tokenizer() a__ =self.get_rust_tokenizer() a__ =self.get_image_processor() a__ =OwlViTProcessor(tokenizer=lowercase_, image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) a__ =OwlViTProcessor.from_pretrained(self.tmpdirname, use_fast=lowercase_ ) a__ =OwlViTProcessor(tokenizer=lowercase_, image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) a__ =OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowercase_ ) self.assertIsInstance(processor_fast.tokenizer, lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowercase_ ) self.assertIsInstance(processor_fast.image_processor, lowercase_ ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =OwlViTProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ =self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) a__ =self.get_image_processor(do_normalize=lowercase_ ) a__ =OwlViTProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=lowercase_ ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowercase_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowercase_ ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =OwlViTProcessor(tokenizer=lowercase_, image_processor=lowercase_ ) a__ =self.prepare_image_inputs() a__ =image_processor(lowercase_, return_tensors='''np''' ) a__ =processor(images=lowercase_, return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1E-2 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =OwlViTProcessor(tokenizer=lowercase_, image_processor=lowercase_ ) a__ ='''lower newer''' a__ =processor(text=lowercase_, return_tensors='''np''' ) a__ =tokenizer(lowercase_, return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist(), encoded_processor[key][0].tolist() ) def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =OwlViTProcessor(tokenizer=lowercase_, image_processor=lowercase_ ) a__ ='''lower newer''' a__ =self.prepare_image_inputs() a__ =processor(text=lowercase_, images=lowercase_ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" a__ ='''google/owlvit-base-patch32''' a__ =OwlViTProcessor.from_pretrained(lowercase_ ) a__ =['''cat''', '''nasa badge'''] a__ =processor(text=lowercase_ ) a__ =16 self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape, (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ ='''google/owlvit-base-patch32''' a__ =OwlViTProcessor.from_pretrained(lowercase_ ) a__ =[['''cat''', '''nasa badge'''], ['''person''']] a__ =processor(text=lowercase_ ) a__ =16 a__ =len(lowercase_ ) a__ =max([len(lowercase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape, (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" a__ ='''google/owlvit-base-patch32''' a__ =OwlViTProcessor.from_pretrained(lowercase_ ) a__ =['''cat''', '''nasa badge'''] a__ =processor(text=lowercase_ ) a__ =16 a__ =inputs['''input_ids'''] a__ =[ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape, (2, seq_length) ) self.assertListEqual(list(input_ids[0] ), predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ), predicted_ids[1] ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =OwlViTProcessor(tokenizer=lowercase_, image_processor=lowercase_ ) a__ =self.prepare_image_inputs() a__ =self.prepare_image_inputs() a__ =processor(images=lowercase_, query_images=lowercase_ ) self.assertListEqual(list(inputs.keys() ), ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.get_image_processor() a__ =self.get_tokenizer() a__ =OwlViTProcessor(tokenizer=lowercase_, image_processor=lowercase_ ) a__ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ =processor.batch_decode(lowercase_ ) a__ =tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_, lowercase_ )
188
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, **lowercase_ ) -> Dict: """simple docstring""" super().__init__(**lowercase_ ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self, lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" return super().__call__(lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> int: """simple docstring""" a__ ={} if "candidate_labels" in kwargs: a__ =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: a__ =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _UpperCAmelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a sound of {}." ) -> Union[str, Any]: """simple docstring""" if isinstance(lowercase_, lowercase_ ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png a__ =requests.get(lowercase_ ).content else: with open(lowercase_, '''rb''' ) as f: a__ =f.read() if isinstance(lowercase_, lowercase_ ): a__ =ffmpeg_read(lowercase_, self.feature_extractor.sampling_rate ) if not isinstance(lowercase_, np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) a__ =self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='''pt''' ) a__ =candidate_labels a__ =[hypothesis_template.format(lowercase_ ) for x in candidate_labels] a__ =self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ ) a__ =[text_inputs] return inputs def _UpperCAmelCase ( self, lowercase_ ) -> str: """simple docstring""" a__ =model_inputs.pop('''candidate_labels''' ) a__ =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0], lowercase_ ): a__ =text_inputs[0] else: # Batching case. a__ =text_inputs[0][0] a__ =self.model(**lowercase_, **lowercase_ ) a__ ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def _UpperCAmelCase ( self, lowercase_ ) -> Any: """simple docstring""" a__ =model_outputs.pop('''candidate_labels''' ) a__ =model_outputs['''logits'''][0] if self.framework == "pt": a__ =logits.softmax(dim=0 ) a__ =probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) a__ =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] ) ] return result
188
1
'''simple docstring''' def __lowerCamelCase ( A__ , A__ ) -> list[str]: """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(A__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
249
'''simple docstring''' def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ , A__ ) -> int: """simple docstring""" if index == r: for j in range(A__ ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCamelCase = arr[i] combination_util(A__ , A__ , A__ , index + 1 , A__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(A__ , A__ , A__ , A__ , A__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __lowerCamelCase ( A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" # A temporary array to store all combination one by one UpperCamelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(A__ , A__ , A__ , 0 , A__ , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowerCamelCase : Optional[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
249
1
"""simple docstring""" def _A ( UpperCamelCase_ : Optional[int]) -> Any: '''simple docstring''' if n == 1 or not isinstance(_UpperCamelCase, _UpperCamelCase): return 0 elif n == 2: return 1 else: __lowercase = [0, 1] for i in range(2, n + 1): sequence.append(sequence[i - 1] + sequence[i - 2]) return sequence[n] def _A ( UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' __lowercase = 0 __lowercase = 2 while digits < n: index += 1 __lowercase = len(str(fibonacci(_UpperCamelCase))) return index def _A ( UpperCamelCase_ : List[Any] = 1000) -> Optional[Any]: '''simple docstring''' return fibonacci_digits_index(_UpperCamelCase) if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A__ ( _lowerCamelCase): A_ : Optional[int] = 'poolformer' def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[64, 1_28, 3_20, 5_12] , _SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , _SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[2, 1, 1, 1] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : int = num_channels __lowerCAmelCase : str = patch_size __lowerCAmelCase : Optional[Any] = stride __lowerCAmelCase : Optional[int] = padding __lowerCAmelCase : List[Any] = pool_size __lowerCAmelCase : int = hidden_sizes __lowerCAmelCase : str = mlp_ratio __lowerCAmelCase : Optional[int] = depths __lowerCAmelCase : str = patch_sizes __lowerCAmelCase : str = strides __lowerCAmelCase : Optional[int] = num_encoder_blocks __lowerCAmelCase : Any = drop_path_rate __lowerCAmelCase : Any = hidden_act __lowerCAmelCase : Dict = use_layer_scale __lowerCAmelCase : Union[str, Any] = layer_scale_init_value __lowerCAmelCase : Dict = initializer_range super().__init__(**_SCREAMING_SNAKE_CASE ) class A__ ( _lowerCamelCase): A_ : List[str] = version.parse('1.11') @property def __lowerCamelCase ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): return 2E-3
86
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class a_ : '''simple docstring''' UpperCAmelCase_ = None def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict) lowerCAmelCase__ = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowercase__) def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = os.path.join(lowercase__ , 'feat_extract.json') feat_extract_first.to_json_file(lowercase__) lowerCAmelCase__ = self.feature_extraction_class.from_json_file(lowercase__) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = feat_extract_first.save_pretrained(lowercase__)[0] check_json_file_has_correct_format(lowercase__) lowerCAmelCase__ = self.feature_extraction_class.from_pretrained(lowercase__) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = self.feature_extraction_class() self.assertIsNotNone(lowercase__)
119
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
119
1