code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowerCamelCase : int ): UpperCamelCase :Tuple = order # a_{0} ... a_{k} UpperCamelCase :Dict = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCamelCase :str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCamelCase :List[str] = [0.0] * self.order # y[n-1] ... y[n-k] UpperCamelCase :List[Any] = [0.0] * self.order def _A ( self : Optional[Any] , __lowerCamelCase : list[float] , __lowerCamelCase : list[float] ): if len(__lowerCamelCase ) < self.order: UpperCamelCase :List[Any] = [1.0, *a_coeffs] if len(__lowerCamelCase ) != self.order + 1: UpperCamelCase :int = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != self.order + 1: UpperCamelCase :int = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) UpperCamelCase :Optional[Any] = a_coeffs UpperCamelCase :Dict = b_coeffs def _A ( self : List[str] , __lowerCamelCase : float ): UpperCamelCase :Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCamelCase :Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCamelCase :int = self.input_history[:-1] UpperCamelCase :str = self.output_history[:-1] UpperCamelCase :Optional[int] = sample UpperCamelCase :List[Any] = result return result
38
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(__magic_name__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) UpperCamelCase :int = QuantumRegister(__magic_name__ , """qr""" ) UpperCamelCase :str = ClassicalRegister(__magic_name__ , """cr""" ) UpperCamelCase :str = QuantumCircuit(__magic_name__ , __magic_name__ ) UpperCamelCase :List[Any] = number_of_qubits for i in range(__magic_name__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__magic_name__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __magic_name__ , __magic_name__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__magic_name__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__magic_name__ , __magic_name__ ) # simulate with 10000 shots UpperCamelCase :str = Aer.get_backend("""qasm_simulator""" ) UpperCamelCase :Dict = execute(__magic_name__ , __magic_name__ , shots=1_0000 ) return job.result().get_counts(__magic_name__ ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
38
1
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _lowerCAmelCase: """simple docstring""" @staticmethod def _a ( *_lowerCamelCase , **_lowerCamelCase ): pass def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Any =MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = DepthEstimationPipeline(model=_lowerCamelCase , image_processor=_lowerCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , _lowerCamelCase ) import datasets UpperCamelCase_: List[Any] = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) UpperCamelCase_: List[str] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , _lowerCamelCase , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _a ( self ): pass @slow @require_torch def _a ( self ): UpperCamelCase_: int = 'Intel/dpt-large' UpperCamelCase_: List[str] = pipeline('depth-estimation' , model=_lowerCamelCase ) UpperCamelCase_: List[Any] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) UpperCamelCase_: List[Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.6_6_2 ) @require_torch def _a ( self ): # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
353
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
292
0
from __future__ import annotations import pandas as pd def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = [0] * no_of_processes snake_case_ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_A ): snake_case_ = burst_time[i] snake_case_ = 0 snake_case_ = 0 snake_case_ = 999999999 snake_case_ = 0 snake_case_ = False # Process until all processes are completed while complete != no_of_processes: for j in range(_A ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: snake_case_ = remaining_time[j] snake_case_ = j snake_case_ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 snake_case_ = remaining_time[short] if minm == 0: snake_case_ = 999999999 if remaining_time[short] == 0: complete += 1 snake_case_ = False # Find finish time of current process snake_case_ = increment_time + 1 # Calculate waiting time snake_case_ = finish_time - arrival_time[short] snake_case_ = finar - burst_time[short] if waiting_time[short] < 0: snake_case_ = 0 # Increment time increment_time += 1 return waiting_time def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = [0] * no_of_processes for i in range(_A ): snake_case_ = burst_time[i] + waiting_time[i] return turn_around_time def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = 0 snake_case_ = 0 for i in range(_A ): snake_case_ = total_waiting_time + waiting_time[i] snake_case_ = total_turn_around_time + turn_around_time[i] print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") lowercase__ : Dict = int(input()) lowercase__ : Any = [0] * no_of_processes lowercase__ : Optional[int] = [0] * no_of_processes lowercase__ : int = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) lowercase__ , lowercase__ : Optional[int] = map(int, input().split()) lowercase__ : Optional[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowercase__ : Union[str, Any] = burst_time lowercase__ : List[str] = no_of_processes lowercase__ : Union[str, Any] = waiting_time lowercase__ : Optional[Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowercase__ : Tuple = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
187
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowercase__ : str = NewType("DataClass", Any) lowercase__ : Union[str, Any] = NewType("DataClassType", Any) def lowerCamelCase__ ( _A ): '''simple docstring''' if isinstance(_A , _A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {str(_A ): choice for choice in choices} return lambda _A : str_to_choice.get(_A , _A ) def lowerCamelCase__ ( *, _A = None , _A = None , _A = dataclasses.MISSING , _A = dataclasses.MISSING , _A = None , **_A , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls snake_case_ = {} if aliases is not None: snake_case_ = aliases if help is not None: snake_case_ = help return dataclasses.field(metadata=_A , default=_A , default_factory=_A , **_A ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = 42 def __init__( self : Optional[Any] , __lowercase : Union[DataClassType, Iterable[DataClassType]] , **__lowercase : Optional[int] ): """simple docstring""" if "formatter_class" not in kwargs: snake_case_ = ArgumentDefaultsHelpFormatter super().__init__(**__lowercase ) if dataclasses.is_dataclass(__lowercase ): snake_case_ = [dataclass_types] snake_case_ = list(__lowercase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowercase ) @staticmethod def snake_case__ ( __lowercase : ArgumentParser , __lowercase : dataclasses.Field ): """simple docstring""" snake_case_ = f"--{field.name}" snake_case_ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowercase ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) snake_case_ = kwargs.pop("aliases" , [] ) if isinstance(__lowercase , __lowercase ): snake_case_ = [aliases] snake_case_ = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(__lowercase , "UnionType" ) and isinstance(__lowercase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowercase ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f" Problem encountered in field '{field.name}'." ) if type(__lowercase ) not in field.type.__args__: # filter `str` in Union snake_case_ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] snake_case_ = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) snake_case_ = ( field.type.__args__[0] if isinstance(__lowercase , field.type.__args__[1] ) else field.type.__args__[1] ) snake_case_ = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) snake_case_ = {} if origin_type is Literal or (isinstance(field.type , __lowercase ) and issubclass(field.type , __lowercase )): if origin_type is Literal: snake_case_ = field.type.__args__ else: snake_case_ = [x.value for x in field.type] snake_case_ = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: snake_case_ = field.default else: snake_case_ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument snake_case_ = copy(__lowercase ) # Hack because type=bool in argparse does not behave as we want. snake_case_ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. snake_case_ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way snake_case_ = default # This tells argparse we accept 0 or 1 value after --field_name snake_case_ = "?" # This is the value that will get picked if we do --field_name (without value) snake_case_ = True elif isclass(__lowercase ) and issubclass(__lowercase , __lowercase ): snake_case_ = field.type.__args__[0] snake_case_ = "+" if field.default_factory is not dataclasses.MISSING: snake_case_ = field.default_factory() elif field.default is dataclasses.MISSING: snake_case_ = True else: snake_case_ = field.type if field.default is not dataclasses.MISSING: snake_case_ = field.default elif field.default_factory is not dataclasses.MISSING: snake_case_ = field.default_factory() else: snake_case_ = True parser.add_argument(__lowercase , *__lowercase , **__lowercase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): snake_case_ = False parser.add_argument(f"--no_{field.name}" , action="store_false" , dest=field.name , **__lowercase ) def snake_case__ ( self : List[str] , __lowercase : DataClassType ): """simple docstring""" if hasattr(__lowercase , "_argument_group_name" ): snake_case_ = self.add_argument_group(dtype._argument_group_name ) else: snake_case_ = self try: snake_case_ = get_type_hints(__lowercase ) except NameError: raise RuntimeError( f"Type resolution failed for {dtype}. Try declaring the class in global scope or " "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__lowercase ): snake_case_ = ".".join(map(__lowercase , sys.version_info[:3] ) ) raise RuntimeError( f"Type resolution failed for {dtype} on Python {python_version}. Try removing " "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(__lowercase ): if not field.init: continue snake_case_ = type_hints[field.name] self._parse_dataclass_field(__lowercase , __lowercase ) def snake_case__ ( self : Union[str, Any] , __lowercase : Union[str, Any]=None , __lowercase : Union[str, Any]=False , __lowercase : List[str]=True , __lowercase : int=None , __lowercase : Optional[int]=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): snake_case_ = [] if args_filename: args_files.append(Path(__lowercase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values snake_case_ = ArgumentParser() args_file_parser.add_argument(__lowercase , type=__lowercase , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) snake_case_ , snake_case_ = args_file_parser.parse_known_args(args=__lowercase ) snake_case_ = vars(__lowercase ).get(args_file_flag.lstrip("-" ) , __lowercase ) if cmd_args_file_paths: args_files.extend([Path(__lowercase ) for p in cmd_args_file_paths] ) snake_case_ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last snake_case_ = file_args + args if args is not None else file_args + sys.argv[1:] snake_case_ , snake_case_ = self.parse_known_args(args=__lowercase ) snake_case_ = [] for dtype in self.dataclass_types: snake_case_ = {f.name for f in dataclasses.fields(__lowercase ) if f.init} snake_case_ = {k: v for k, v in vars(__lowercase ).items() if k in keys} for k in keys: delattr(__lowercase , __lowercase ) snake_case_ = dtype(**__lowercase ) outputs.append(__lowercase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowercase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def snake_case__ ( self : int , __lowercase : Dict[str, Any] , __lowercase : bool = False ): """simple docstring""" snake_case_ = set(args.keys() ) snake_case_ = [] for dtype in self.dataclass_types: snake_case_ = {f.name for f in dataclasses.fields(__lowercase ) if f.init} snake_case_ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) snake_case_ = dtype(**__lowercase ) outputs.append(__lowercase ) if not allow_extra_keys and unused_keys: raise ValueError(f"Some keys are not used by the HfArgumentParser: {sorted(__lowercase )}" ) return tuple(__lowercase ) def snake_case__ ( self : List[Any] , __lowercase : str , __lowercase : bool = False ): """simple docstring""" with open(Path(__lowercase ) , encoding="utf-8" ) as open_json_file: snake_case_ = json.loads(open_json_file.read() ) snake_case_ = self.parse_dict(__lowercase , allow_extra_keys=__lowercase ) return tuple(__lowercase ) def snake_case__ ( self : int , __lowercase : str , __lowercase : bool = False ): """simple docstring""" snake_case_ = self.parse_dict(yaml.safe_load(Path(__lowercase ).read_text() ) , allow_extra_keys=__lowercase ) return tuple(__lowercase )
187
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str ) -> Any: __A : List[Any] = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) __A : Any = DetaConfig( backbone_config=__snake_case , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__snake_case , with_box_refine=__snake_case , two_stage=__snake_case , ) # set labels __A : Dict = 'huggingface/label-files' if "o365" in model_name: __A : List[Any] = 3_66 __A : str = 'object365-id2label.json' else: __A : Optional[int] = 91 __A : List[Any] = 'coco-detection-id2label.json' __A : str = num_labels __A : Any = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type='dataset' ) ) , 'r' ) ) __A : List[str] = {int(__snake_case ): v for k, v in idalabel.items()} __A : str = idalabel __A : Dict = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( __snake_case : str ) -> Union[str, Any]: __A : Union[str, Any] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any ) -> Optional[Any]: __A : Union[str, Any] = dct.pop(__snake_case ) __A : Tuple = val def _lowerCAmelCase ( __snake_case : Any , __snake_case : Union[str, Any] ) -> Optional[Any]: __A : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __A : Any = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __A : Dict = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) __A : Union[str, Any] = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __A : List[str] = in_proj_weight[:dim, :] __A : Dict = in_proj_bias[: dim] __A : int = in_proj_weight[ dim : dim * 2, : ] __A : Dict = in_proj_bias[ dim : dim * 2 ] __A : List[Any] = in_proj_weight[ -dim :, : ] __A : Dict = in_proj_bias[-dim :] # fmt: on def _lowerCAmelCase ( __snake_case : int , __snake_case : Dict ) -> List[Any]: # transformer decoder self-attention layers __A : Optional[int] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __A : Optional[int] = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __A : Any = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __A : int = in_proj_weight[:hidden_size, :] __A : Optional[int] = in_proj_bias[:hidden_size] __A : List[str] = in_proj_weight[ hidden_size : hidden_size * 2, : ] __A : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] __A : List[str] = in_proj_weight[-hidden_size:, :] __A : List[Any] = in_proj_bias[-hidden_size:] def _lowerCAmelCase ( ) -> Union[str, Any]: __A : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A : Tuple = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __snake_case : str , __snake_case : str , __snake_case : List[str] ) -> Tuple: __A : Optional[int] = get_deta_config(__snake_case ) # load original state dict if model_name == "deta-swin-large": __A : List[Any] = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": __A : Optional[Any] = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'Model name {model_name} not supported' ) __A : List[str] = torch.load(__snake_case , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__snake_case , param.shape ) # rename keys __A : int = create_rename_keys(__snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_swin_q_k_v(__snake_case , config.backbone_config ) read_in_decoder_q_k_v(__snake_case , __snake_case ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __A : int = state_dict.pop(__snake_case ) __A : List[Any] = val if "input_proj" in key: __A : Union[str, Any] = state_dict.pop(__snake_case ) __A : List[str] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __A : Optional[int] = state_dict.pop(__snake_case ) __A : Optional[int] = val # finally, create HuggingFace model and load state dict __A : str = DetaForObjectDetection(__snake_case ) model.load_state_dict(__snake_case ) model.eval() __A : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__snake_case ) # load image processor __A : Any = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image __A : Optional[int] = prepare_img() __A : List[str] = processor(images=__snake_case , return_tensors='pt' ) __A : List[Any] = encoding['pixel_values'] __A : Any = model(pixel_values.to(__snake_case ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __A : Any = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) __A : int = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": __A : str = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) __A : Union[str, Any] = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__snake_case ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__snake_case ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": lowercase__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase__ : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
190
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> int: if not isinstance(__snake_case , __snake_case ): __A : List[Any] = f'Input value of [number={number}] must be an integer' raise TypeError(__snake_case ) if number < 1: __A : Union[str, Any] = f'Input value of [number={number}] must be > 0' raise ValueError(__snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: __A : Optional[Any] = int(math.log(number // 3 , 2 ) ) + 2 __A : Union[str, Any] = [3, 5] __A : List[Any] = 2 __A : Optional[Any] = 3 for block in range(1 , __snake_case ): for _ in range(__snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowercase__ : str = 0 try: lowercase__ : List[str] = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
190
1
from __future__ import annotations import os from typing import Any import requests __UpperCamelCase : List[str] = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __UpperCamelCase : Dict = BASE_URL + """/user""" # https://github.com/settings/tokens __UpperCamelCase : Union[str, Any] = os.environ.get("""USER_TOKEN""", """""") def a_ ( _A ) -> dict[Any, Any]: """simple docstring""" snake_case__ = { 'Authorization': f'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(_A , headers=_A ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
307
import os def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = os.path.join(os.path.dirname(_A ) , 'num.txt' ) with open(_A ) as file_hand: return str(sum(int(_A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
307
1
_snake_case : List[Any] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) _snake_case : Union[str, Any] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : List[Any] ): '''simple docstring''' _a = from_type.lower().strip('''s''' ) _a = to_type.lower().strip('''s''' ) _a = UNIT_SYMBOL.get(A__ , A__ ) _a = UNIT_SYMBOL.get(A__ , A__ ) if from_sanitized not in METRIC_CONVERSION: _a = ( f'Invalid \'from_type\' value: {from_type!r}.\n' f'Conversion abbreviations are: {", ".join(A__ )}' ) raise ValueError(A__ ) if to_sanitized not in METRIC_CONVERSION: _a = ( f'Invalid \'to_type\' value: {to_type!r}.\n' f'Conversion abbreviations are: {", ".join(A__ )}' ) raise ValueError(A__ ) _a = METRIC_CONVERSION[from_sanitized] _a = METRIC_CONVERSION[to_sanitized] _a = 1 if from_exponent > to_exponent: _a = from_exponent - to_exponent else: _a = -(to_exponent - from_exponent) return value * pow(10 , A__ ) if __name__ == "__main__": from doctest import testmod testmod()
358
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case : int = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = ['YolosFeatureExtractor'] _snake_case : Optional[int] = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
179
0
"""simple docstring""" def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: SCREAMING_SNAKE_CASE__ = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: SCREAMING_SNAKE_CASE__ = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) SCREAMING_SNAKE_CASE__ = val return f[i][j] def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: SCREAMING_SNAKE_CASE__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: SCREAMING_SNAKE_CASE__ = dp[i - 1][w_] return dp[n][w_], dp def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) SCREAMING_SNAKE_CASE__ = len(lowercase_ ) if num_items != len(lowercase_ ): SCREAMING_SNAKE_CASE__ = ( """The number of weights must be the same as the number of values.\n""" f"""But got {num_items} weights and {len(lowercase_ )} values""" ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): SCREAMING_SNAKE_CASE__ = ( """All weights must be integers but got weight of """ f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(lowercase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) SCREAMING_SNAKE_CASE__ = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": A_ : str = [3, 2, 4, 4] A_ : Tuple = [4, 3, 2, 3] A_ : int = 4 A_ : Any = 6 A_ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] A_ : str = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 A_ : str = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
165
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
0
'''simple docstring''' import gc import threading import time import psutil import torch class UpperCamelCase__ : """simple docstring""" def __init__( self ): '''simple docstring''' _lowerCAmelCase : List[str] = psutil.Process() _lowerCAmelCase : int = False def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = -1 while True: _lowerCAmelCase : Tuple = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = True _lowerCAmelCase : Any = threading.Thread(target=self.peak_monitor ) _lowerCAmelCase : List[str] = True self.thread.start() def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase : List[str] = PeakCPUMemory() def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase : Any = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase : List[Any] = torch.cuda.memory_allocated(_lowerCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[int] = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase : str = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**2_0 _lowerCAmelCase : Optional[int] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase : Union[str, Any] = (torch.cuda.memory_allocated(_lowerCAmelCase ) - start_measures[str(_lowerCAmelCase )]) / 2**2_0 _lowerCAmelCase : List[Any] = (torch.cuda.max_memory_allocated(_lowerCAmelCase ) - start_measures[str(_lowerCAmelCase )]) / 2**2_0 return measures def lowercase (_A , _A ): """simple docstring""" print(f'{description}:' ) print(f'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(f'- GPU {i} allocated: {measures[str(_lowerCAmelCase )]:.2f}MiB' ) _lowerCAmelCase : Dict = measures[f'{i}-peak'] print(f'- GPU {i} peak: {peak:.2f}MiB' ) print(f'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(f'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
353
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
0
def A ( ): return 1 def A ( _lowercase ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def A ( _lowercase ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_lowercase ) def A ( _lowercase ): return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(_lowercase ) def A ( _lowercase ): return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(_lowercase ) def A ( _lowercase ): return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(_lowercase ) def A ( _lowercase ): return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(_lowercase ) def A ( _lowercase ): return 0 if x < 0 else two_pound(x - 200 ) + one_pound(_lowercase ) def A ( _lowercase = 200 ): return two_pound(_lowercase ) if __name__ == "__main__": print(solution(int(input().strip())))
182
"""simple docstring""" def A__ ( UpperCamelCase , UpperCamelCase = False ): if not isinstance(UpperCamelCase , UpperCamelCase ): A = F"Expected string as input, found {type(UpperCamelCase )}" raise ValueError(UpperCamelCase ) if not isinstance(UpperCamelCase , UpperCamelCase ): A = F"Expected boolean as use_pascal parameter, found {type(UpperCamelCase )}" raise ValueError(UpperCamelCase ) A = input_str.split("_" ) A = 0 if use_pascal else 1 A = words[start_index:] A = [word[0].upper() + word[1:] for word in words_to_capitalize] A = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
292
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def __lowerCamelCase ( a_ : Optional[int] , a_ : List[Any]=False ) -> List[str]: __SCREAMING_SNAKE_CASE :List[str] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __SCREAMING_SNAKE_CASE :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def __lowerCamelCase ( a_ : int , a_ : Union[str, Any] , a_ : Tuple=False ) -> Any: for i in range(config.num_hidden_layers ): if base_model: __SCREAMING_SNAKE_CASE :int = '''''' else: __SCREAMING_SNAKE_CASE :Optional[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __SCREAMING_SNAKE_CASE :Dict = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) __SCREAMING_SNAKE_CASE :Optional[int] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE :str = in_proj_weight[ : config.hidden_size, : ] __SCREAMING_SNAKE_CASE :Tuple = in_proj_bias[: config.hidden_size] __SCREAMING_SNAKE_CASE :List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE :Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __SCREAMING_SNAKE_CASE :Optional[int] = in_proj_weight[ -config.hidden_size :, : ] __SCREAMING_SNAKE_CASE :List[str] = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( a_ : List[Any] ) -> str: __SCREAMING_SNAKE_CASE :List[str] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE :Optional[Any] = dct.pop(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = val def __lowerCamelCase ( ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE :Optional[int] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( a_ : Tuple , a_ : Dict , a_ : Tuple=False ) -> Any: __SCREAMING_SNAKE_CASE :Any = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=lowerCamelCase__ , ) __SCREAMING_SNAKE_CASE :Dict = ViTHybridConfig(backbone_config=lowerCamelCase__ , image_size=3_84 , num_labels=10_00 ) __SCREAMING_SNAKE_CASE :Optional[Any] = False # load original model from timm __SCREAMING_SNAKE_CASE :Dict = timm.create_model(lowerCamelCase__ , pretrained=lowerCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __SCREAMING_SNAKE_CASE :Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Dict = create_rename_keys(lowerCamelCase__ , lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE :str = '''imagenet-1k-id2label.json''' __SCREAMING_SNAKE_CASE :str = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE :List[str] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE :Tuple = idalabel __SCREAMING_SNAKE_CASE :Optional[int] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": __SCREAMING_SNAKE_CASE :Optional[Any] = ViTHybridModel(lowerCamelCase__ ).eval() else: __SCREAMING_SNAKE_CASE :Union[str, Any] = ViTHybridForImageClassification(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) # create image processor __SCREAMING_SNAKE_CASE :Dict = create_transform(**resolve_data_config({} , model=lowerCamelCase__ ) ) __SCREAMING_SNAKE_CASE :Union[str, Any] = transform.transforms __SCREAMING_SNAKE_CASE :str = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } __SCREAMING_SNAKE_CASE :Any = ViTHybridImageProcessor( do_resize=lowerCamelCase__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCamelCase__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowerCamelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __SCREAMING_SNAKE_CASE :Tuple = prepare_img() __SCREAMING_SNAKE_CASE :int = transform(lowerCamelCase__ ).unsqueeze(0 ) __SCREAMING_SNAKE_CASE :Optional[int] = processor(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ) # verify logits with torch.no_grad(): __SCREAMING_SNAKE_CASE :Union[str, Any] = model(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Dict = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: __SCREAMING_SNAKE_CASE :int = timm_model.forward_features(lowerCamelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCamelCase__ , outputs.pooler_output , atol=1e-3 ) else: __SCREAMING_SNAKE_CASE :Optional[int] = timm_model(lowerCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase__ , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) lowerCamelCase_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
353
"""simple docstring""" def __lowerCamelCase ( a_ : str , a_ : str ) -> str: __SCREAMING_SNAKE_CASE :int = len(a_ ) __SCREAMING_SNAKE_CASE :int = len(a_ ) __SCREAMING_SNAKE_CASE :int = ( first_str_length if first_str_length > second_str_length else second_str_length ) __SCREAMING_SNAKE_CASE :list = [] for char_count in range(a_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(a_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
239
0
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = PhobertTokenizer lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : List[Any] = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] __A : List[Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : Union[str, Any] = ['#version: 0.2', 'l à</w>'] __A : str = {'unk_token': '<unk>'} __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __A : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' kwargs.update(self.special_tokens_map) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Any = 'Tôi là VinAI Research' __A : Dict = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) __A : Union[str, Any] = 'Tôi là VinAI Research' __A : List[str] = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() __A : Tuple = tokenizer.tokenize(_UpperCAmelCase) print(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = tokens + [tokenizer.unk_token] __A : int = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase) , _UpperCAmelCase)
190
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = tempfile.mkdtemp() __A : str = 5 # Realm tok __A : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __A : Union[str, Any] = os.path.join(self.tmpdirname , 'realm_tokenizer') os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) __A : Tuple = os.path.join(_UpperCAmelCase , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) __A : int = os.path.join(self.tmpdirname , 'realm_block_records') os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = RealmConfig(num_block_records=self.num_block_records) return config def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], }) return dataset def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=_UpperCAmelCase , ) return block_records def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_config() __A : str = self.get_dummy_retriever() __A : List[str] = retriever.tokenizer __A : Dict = np.array([0, 3] , dtype='long') __A : Dict = tokenizer(['Test question']).input_ids __A : Optional[Any] = tokenizer( ['the fourth'] , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ).input_ids __A : str = config.reader_seq_len __A ,__A ,__A ,__A : List[str] = retriever( _UpperCAmelCase , _UpperCAmelCase , answer_ids=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np') self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(concat_inputs.input_ids.shape , (2, 10)) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10)) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10)) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.get_config() __A : Any = self.get_dummy_retriever() __A : str = retriever.tokenizer __A : Dict = np.array([0, 3, 5] , dtype='long') __A : Tuple = tokenizer(['Test question']).input_ids __A : Union[str, Any] = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ).input_ids __A : Dict = config.reader_seq_len __A ,__A ,__A ,__A : str = retriever( _UpperCAmelCase , _UpperCAmelCase , answer_ids=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np') self.assertEqual([False, True, True] , _UpperCAmelCase) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _UpperCAmelCase) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) # Test local path __A : str = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) self.assertEqual(retriever.block_records[0] , B'This is the first record') # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download') as mock_hf_hub_download: __A : int = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records') , _REALM_BLOCK_RECORDS_FILENAME) __A : Tuple = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa') self.assertEqual(retriever.block_records[0] , B'This is the first record')
190
1
"""simple docstring""" import unittest from knapsack import knapsack as k class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[int]): a : Tuple = 0 a : Union[str, Any] = [0] a : int = [0] a : Dict = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0) a : Dict = [60] a : List[Any] = [10] a : Tuple = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0) def __snake_case ( self : Optional[int]): a : int = 3 a : Any = [1, 2, 3] a : List[Any] = [3, 2, 1] a : Union[str, Any] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 5) def __snake_case ( self : Optional[Any]): a : List[Any] = 50 a : List[Any] = [60, 100, 120] a : Union[str, Any] = [10, 20, 30] a : Dict = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 220) if __name__ == "__main__": unittest.main()
226
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( A_ , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' a : Optional[int] = TapasConfig.from_json_file(A_ ) # set absolute/relative position embeddings parameter a : str = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a : Dict = TapasForQuestionAnswering(config=A_ ) elif task == "WTQ": # run_task_main.py hparams a : Any = 4 a : Dict = True # hparam_utils.py hparams a : str = 0.6_6_4_6_9_4 a : Optional[int] = 0.2_0_7_9_5_1 a : Optional[Any] = 0.1_2_1_1_9_4 a : Union[str, Any] = True a : int = True a : Tuple = False a : Dict = 0.0_3_5_2_5_1_3 a : List[str] = TapasForQuestionAnswering(config=A_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a : Union[str, Any] = 4 a : List[Any] = False # hparam_utils.py hparams a : Dict = 3_6.4_5_1_9 a : List[str] = 0.9_0_3_4_2_1 a : Optional[Any] = 2_2_2.0_8_8 a : Dict = True a : Union[str, Any] = True a : List[str] = True a : List[str] = 0.7_6_3_1_4_1 a : Any = TapasForQuestionAnswering(config=A_ ) elif task == "TABFACT": a : int = TapasForSequenceClassification(config=A_ ) elif task == "MLM": a : int = TapasForMaskedLM(config=A_ ) elif task == "INTERMEDIATE_PRETRAINING": a : List[Any] = TapasModel(config=A_ ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(A_ , A_ , A_ ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A_ ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) a : Optional[int] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(A_ ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
226
1
import torch from diffusers import DiffusionPipeline class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: super().__init__() self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) def __call__( self ) -> List[Any]: lowerCamelCase : Dict = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCamelCase : Optional[Any] = 1 lowerCamelCase : Optional[Any] = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample lowerCamelCase : int = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample lowerCamelCase : Optional[Any] = scheduler_output - scheduler_output + torch.ones_like(UpperCamelCase__ ) return result
48
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """microsoft/speecht5_tts""" _lowerCamelCase = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) _lowerCamelCase = """text_reader""" _lowerCamelCase = SpeechTaProcessor _lowerCamelCase = SpeechTaForTextToSpeech _lowerCamelCase = SpeechTaHifiGan _lowerCamelCase = ["""text"""] _lowerCamelCase = ["""audio"""] def UpperCamelCase__( self ): '''simple docstring''' if self.post_processor is None: __A : List[str] = '''microsoft/speecht5_hifigan''' super().setup() def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' __A : int = self.pre_processor(text=__lowerCamelCase , return_tensors='''pt''' , truncation=__lowerCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) __A : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) __A : int = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' with torch.no_grad(): return self.post_processor(__lowerCamelCase ).cpu().detach()
179
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path UpperCAmelCase__ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase__ = re.compile(r"""^\s*try:""") # Catches a line with else: UpperCAmelCase__ = re.compile(r"""^\s*else:""") def __UpperCAmelCase ( lowercase ): """simple docstring""" if _re_test_backend.search(__SCREAMING_SNAKE_CASE ) is None: return None _UpperCAmelCase = [b[0] for b in _re_backend.findall(__SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( lowercase ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = 0 while line_index < len(__SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure _UpperCAmelCase = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: _UpperCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ): _UpperCAmelCase = _re_one_line_import_struct.search(__SCREAMING_SNAKE_CASE ).groups()[0] _UpperCAmelCase = re.findall("""\[([^\]]+)\]""" ,__SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue _UpperCAmelCase = _re_import_struct_key_value.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: _UpperCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 _UpperCAmelCase = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. _UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): _UpperCAmelCase = lines[line_index] if _re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ) is not None: _UpperCAmelCase = _re_import_struct_add_many.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ ) _UpperCAmelCase = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(__SCREAMING_SNAKE_CASE ) is not None: _UpperCAmelCase = _re_between_brackets.search(__SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ ) _UpperCAmelCase = [obj[1:-1] for obj in imports if len(__SCREAMING_SNAKE_CASE ) > 0] objects.extend(__SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(__SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(__SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 _UpperCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _UpperCAmelCase = [] while ( line_index < len(__SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 _UpperCAmelCase = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. _UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_import.search(__SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 _UpperCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" def find_duplicates(lowercase ): return [k for k, v in collections.Counter(__SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _UpperCAmelCase = [] for key in import_dict_objects.keys(): _UpperCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _UpperCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _UpperCAmelCase = "base imports" if key == "none" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [] for root, _, files in os.walk(__SCREAMING_SNAKE_CASE ): if "__init__.py" in files: _UpperCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE ,"""__init__.py""" ) _UpperCAmelCase = parse_init(__SCREAMING_SNAKE_CASE ) if objects is not None: _UpperCAmelCase = analyze_results(*__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError("""\n\n""".join(__SCREAMING_SNAKE_CASE ) ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [] for path, directories, files in os.walk(__SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(__SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__SCREAMING_SNAKE_CASE ) / folder).glob("""*.py""" ) ) ) == 0: continue _UpperCAmelCase = str((Path(__SCREAMING_SNAKE_CASE ) / folder).relative_to(__SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = short_path.replace(os.path.sep ,""".""" ) submodules.append(__SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue _UpperCAmelCase = str((Path(__SCREAMING_SNAKE_CASE ) / fname).relative_to(__SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = short_path.replace(""".py""" ,"""""" ).replace(os.path.sep ,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(__SCREAMING_SNAKE_CASE ) return submodules UpperCAmelCase__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __UpperCAmelCase ( ): """simple docstring""" # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase = importlib.util.spec_from_file_location( """transformers""" ,os.path.join(__SCREAMING_SNAKE_CASE ,"""__init__.py""" ) ,submodule_search_locations=[PATH_TO_TRANSFORMERS] ,) _UpperCAmelCase = spec.loader.load_module() _UpperCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = "\n".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
369
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : int = 'van' def __init__( self : Any , __lowerCAmelCase : Tuple=224 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : Optional[Any]=[64, 128, 320, 512] , __lowerCAmelCase : Optional[int]=[3, 3, 12, 3] , __lowerCAmelCase : Dict=[8, 8, 4, 4] , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[str]=1e-6 , __lowerCAmelCase : Optional[int]=1e-2 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.0 , **__lowerCAmelCase : Any , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = strides _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = mlp_ratios _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = dropout_rate
30
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) UpperCAmelCase__ : List[Any] = logging.getLogger() def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = """\n""".join(_snake_case ) Path(_snake_case ).open("""w""" ).writelines(_snake_case ) UpperCAmelCase__ : Union[str, Any] = 'patrickvonplaten/t5-tiny-random' UpperCAmelCase__ : Optional[int] = 'sshleifer/bart-tiny-random' UpperCAmelCase__ : Dict = 'sshleifer/tiny-mbart' UpperCAmelCase__ : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowerCAmelCase_ (a__ ): """simple docstring""" def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" SCREAMING_SNAKE_CASE__ : List[Any] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() SCREAMING_SNAKE_CASE__ : str = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """translation_en_to_de""" if model == T5_TINY else """summarization""" SCREAMING_SNAKE_CASE__ : Optional[Any] = F''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ): run_generate() assert Path(SCREAMING_SNAKE_CASE__ ).exists() # os.remove(Path(output_file_name)) def __magic_name__ (self ) -> Dict: """simple docstring""" self.run_eval_tester(SCREAMING_SNAKE_CASE__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" self.run_eval_tester(SCREAMING_SNAKE_CASE__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" SCREAMING_SNAKE_CASE__ : int = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() SCREAMING_SNAKE_CASE__ : Any = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } SCREAMING_SNAKE_CASE__ : List[str] = Path(self.get_auto_remove_tmp_dir() ) SCREAMING_SNAKE_CASE__ : Tuple = str(tmp_dir / """scores.json""" ) SCREAMING_SNAKE_CASE__ : Tuple = str(tmp_dir / """val.target""" ) _dump_articles(SCREAMING_SNAKE_CASE__ , text["""en"""] ) _dump_articles(SCREAMING_SNAKE_CASE__ , text["""de"""] ) SCREAMING_SNAKE_CASE__ : str = """translation_en_to_de""" if model == T5_TINY else """summarization""" SCREAMING_SNAKE_CASE__ : List[Any] = F''' run_eval_search.py {model} {str(SCREAMING_SNAKE_CASE__ )} {str(SCREAMING_SNAKE_CASE__ )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ): with CaptureStdout() as cs: run_search() SCREAMING_SNAKE_CASE__ : Optional[Any] = [""" num_beams | length_penalty""", model, """Best score args"""] SCREAMING_SNAKE_CASE__ : Any = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(SCREAMING_SNAKE_CASE__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(SCREAMING_SNAKE_CASE__ ).exists() os.remove(Path(SCREAMING_SNAKE_CASE__ ) )
25
0
def A__ ( lowerCamelCase , lowerCamelCase ) -> list: UpperCamelCase_: Optional[int] = word.split() def justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: UpperCamelCase_: Tuple = max_width - width UpperCamelCase_: Optional[Any] = len(lowerCamelCase ) if len(lowerCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCamelCase_: List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCamelCase_: Optional[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCamelCase_: List[str] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCamelCase ): num_spaces_between_words_list[i] += 1 UpperCamelCase_: Dict = [] for i in range(lowerCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCamelCase ) UpperCamelCase_: Optional[int] = [] UpperCamelCase_: list[str] = [] UpperCamelCase_: List[str] = 0 for word in words: if width + len(lowerCamelCase ) + len(lowerCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCamelCase ) width += len(lowerCamelCase ) else: # justify the line and add it to result answer.append(justify(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) # reset new line and new width UpperCamelCase_, UpperCamelCase_: List[str] = [word], len(lowerCamelCase ) UpperCamelCase_: List[str] = max_width - width - len(lowerCamelCase ) answer.append(""" """.join(lowerCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
223
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) set_seed(7_70) lowerCamelCase_ : str = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } lowerCamelCase_ : Any = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } lowerCamelCase_ : str = os.path.dirname(os.path.abspath(__file__)) lowerCamelCase_ : Any = os.path.join(os.path.expanduser("""~"""), """.cache""") lowerCamelCase_ : Dict = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def A__ ( lowerCamelCase , lowerCamelCase=False ) -> int: UpperCamelCase_: Union[str, Any] = model_type if use_small: key += "_small" return os.path.join(lowerCamelCase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def A__ ( lowerCamelCase , lowerCamelCase ) -> Tuple: os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) hf_hub_download(repo_id=lowerCamelCase , filename=lowerCamelCase , local_dir=lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase="text" ) -> Optional[int]: if model_type == "text": UpperCamelCase_: str = BarkSemanticModel UpperCamelCase_: Dict = BarkSemanticConfig UpperCamelCase_: int = BarkSemanticGenerationConfig elif model_type == "coarse": UpperCamelCase_: str = BarkCoarseModel UpperCamelCase_: int = BarkCoarseConfig UpperCamelCase_: Any = BarkCoarseGenerationConfig elif model_type == "fine": UpperCamelCase_: Optional[Any] = BarkFineModel UpperCamelCase_: int = BarkFineConfig UpperCamelCase_: Dict = BarkFineGenerationConfig else: raise NotImplementedError() UpperCamelCase_: str = F'''{model_type}_small''' if use_small else model_type UpperCamelCase_: List[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCamelCase ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) UpperCamelCase_: int = torch.load(lowerCamelCase , map_location=lowerCamelCase ) # this is a hack UpperCamelCase_: Tuple = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: UpperCamelCase_: int = model_args["""vocab_size"""] UpperCamelCase_: Optional[int] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments UpperCamelCase_: Tuple = model_args.pop("""n_head""" ) UpperCamelCase_: Dict = model_args.pop("""n_embd""" ) UpperCamelCase_: List[str] = model_args.pop("""n_layer""" ) UpperCamelCase_: Optional[Any] = ConfigClass(**checkpoint["""model_args"""] ) UpperCamelCase_: Optional[Any] = ModelClass(config=lowerCamelCase ) UpperCamelCase_: List[Any] = GenerationConfigClass() UpperCamelCase_: Optional[Any] = model_generation_config UpperCamelCase_: Optional[int] = checkpoint["""model"""] # fixup checkpoint UpperCamelCase_: Dict = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation UpperCamelCase_: Optional[int] = k[len(lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: UpperCamelCase_: Dict = new_k.replace(lowerCamelCase , new_layer_name_dict[old_layer_name] ) UpperCamelCase_: List[str] = state_dict.pop(lowerCamelCase ) UpperCamelCase_: Optional[int] = set(state_dict.keys() ) - set(model.state_dict().keys() ) UpperCamelCase_: Dict = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} UpperCamelCase_: Optional[Any] = set(model.state_dict().keys() ) - set(state_dict.keys() ) UpperCamelCase_: Union[str, Any] = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(lowerCamelCase ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(lowerCamelCase ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) UpperCamelCase_: str = model.num_parameters(exclude_embeddings=lowerCamelCase ) UpperCamelCase_: int = checkpoint["""best_val_loss"""].item() logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowerCamelCase , 3 )} loss''' ) model.eval() model.to(lowerCamelCase ) del checkpoint, state_dict return model def A__ ( lowerCamelCase , lowerCamelCase=False , lowerCamelCase="text" ) -> Any: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() UpperCamelCase_: Union[str, Any] = """cpu""" # do conversion on cpu UpperCamelCase_: int = _get_ckpt_path(lowerCamelCase , use_small=lowerCamelCase ) UpperCamelCase_: Dict = _load_model(lowerCamelCase , lowerCamelCase , model_type=lowerCamelCase , use_small=lowerCamelCase ) # load bark initial model UpperCamelCase_: List[Any] = _bark_load_model(lowerCamelCase , """cpu""" , model_type=lowerCamelCase , use_small=lowerCamelCase ) if model_type == "text": UpperCamelCase_: Tuple = bark_model["""model"""] if model.num_parameters(exclude_embeddings=lowerCamelCase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model UpperCamelCase_: Optional[Any] = 5 UpperCamelCase_: List[str] = 10 if model_type in ["text", "coarse"]: UpperCamelCase_: int = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) UpperCamelCase_: Tuple = bark_model(lowerCamelCase )[0] UpperCamelCase_: Optional[Any] = model(lowerCamelCase ) # take last logits UpperCamelCase_: Union[str, Any] = output_new_model_total.logits[:, [-1], :] else: UpperCamelCase_: Tuple = 3 UpperCamelCase_: List[Any] = 8 UpperCamelCase_: List[str] = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) UpperCamelCase_: int = model(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Any = bark_model(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("""initial and new outputs are not equal""" ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> str: UpperCamelCase_: List[str] = os.path.join(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = BarkSemanticConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: List[Any] = BarkCoarseConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: Optional[int] = BarkFineConfig.from_pretrained(os.path.join(lowerCamelCase , """config.json""" ) ) UpperCamelCase_: Any = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) UpperCamelCase_: Optional[Any] = BarkSemanticModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: Tuple = BarkCoarseModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: List[str] = BarkFineModel.from_pretrained(lowerCamelCase ) UpperCamelCase_: Tuple = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) UpperCamelCase_: int = BarkConfig.from_sub_model_configs( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Optional[int] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) UpperCamelCase_: Optional[Any] = BarkModel(lowerCamelCase ) UpperCamelCase_: int = semantic UpperCamelCase_: Tuple = coarseAcoustic UpperCamelCase_: Optional[int] = fineAcoustic UpperCamelCase_: Any = codec UpperCamelCase_: Dict = bark_generation_config Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) bark.save_pretrained(lowerCamelCase , repo_id=lowerCamelCase , push_to_hub=lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") lowerCamelCase_ : Dict = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
223
1
'''simple docstring''' import unittest import numpy as np def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , ) -> np.ndarray: lowerCamelCase__ : Tuple = np.shape(UpperCamelCase ) lowerCamelCase__ : Optional[int] = np.shape(UpperCamelCase ) lowerCamelCase__ : List[Any] = np.shape(UpperCamelCase ) if shape_a[0] != shape_b[0]: lowerCamelCase__ : List[str] = ( """Expected the same number of rows for A and B. """ f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCamelCase ) if shape_b[1] != shape_c[1]: lowerCamelCase__ : Tuple = ( """Expected the same number of columns for B and C. """ f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = pseudo_inv if a_inv is None: try: lowerCamelCase__ : str = np.linalg.inv(UpperCamelCase ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase__ : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase__ : Optional[Any] = np.array([[2, 1], [6, 3]] ) lowerCamelCase__ : Dict = schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Any = np.block([[a, b], [b.T, c]] ) lowerCamelCase__ : List[Any] = np.linalg.det(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = np.linalg.det(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = np.linalg.det(UpperCamelCase__ ) self.assertAlmostEqual(UpperCamelCase__ , det_a * det_s ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase__ : Tuple = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase__ : str = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCamelCase__ ): schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase__ : int = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase__ : List[str] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCamelCase__ ): schur_complement(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
41
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase : int = None _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Tuple = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowercase : Dict = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } _lowercase : int = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _lowercase : Tuple = "▁" class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = AlbertTokenizer def __init__( self : Optional[Any] , lowercase_ : Union[str, Any]=None , lowercase_ : str=None , lowercase_ : Any=True , lowercase_ : Optional[int]=True , lowercase_ : List[str]=False , lowercase_ : Optional[int]="[CLS]" , lowercase_ : Any="[SEP]" , lowercase_ : int="<unk>" , lowercase_ : Any="[SEP]" , lowercase_ : int="<pad>" , lowercase_ : Tuple="[CLS]" , lowercase_ : Dict="[MASK]" , **lowercase_ : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase_ : Tuple = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) lowercase_ : Optional[int] = do_lower_case lowercase_ : Any = remove_space lowercase_ : Dict = keep_accents lowercase_ : Optional[int] = vocab_file lowercase_ : Any = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): lowercase_ : Tuple = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): lowercase_ : Union[str, Any] = [self.sep_token_id] lowercase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
239
0
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _lowercase : List[Any] = logging.getLogger(__name__) _lowercase : List[Any] = 50 # max width of layer names _lowercase : Tuple = 70 # max width of quantizer names def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' UpperCAmelCase = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=A , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=A , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=A , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=A , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=A , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=A , type=A , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=A , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def lowerCamelCase__ ( A : int ): '''simple docstring''' if args.calibrator == "max": UpperCAmelCase = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) UpperCAmelCase = '''histogram''' elif args.calibrator == "mse": UpperCAmelCase = '''histogram''' else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=A ) UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(A ) quant_nn.QuantLinear.set_default_quant_desc_weight(A ) def lowerCamelCase__ ( A : List[Any] , A : Any , A : Union[str, Any]=False , A : int=False ): '''simple docstring''' logger.info('''Configuring Model for Quantization''' ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(A , ['''embeddings'''] , which='''weight''' , _disabled=A ) if args.quant_disable: set_quantizer_by_name(A , [''''''] , _disabled=A ) if args.quant_disable_keyword: set_quantizer_by_name(A , args.quant_disable_keyword , _disabled=A ) if args.quant_disable_layer_module: set_quantizer_by_name(A , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=A ) if args.quant_enable_layer_module: set_quantizer_by_name(A , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=A ) if args.recalibrate_weights: recalibrate_weights(A ) if args.fuse_qkv: fuse_qkv(A , A ) if args.clip_gelu: clip_gelu(A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(A ) def lowerCamelCase__ ( A : Dict ): '''simple docstring''' logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def lowerCamelCase__ ( A : Tuple , A : str ): '''simple docstring''' logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(A ) def lowerCamelCase__ ( A : int , A : Optional[Any] ): '''simple docstring''' def fusea(A : Union[str, Any] , A : Optional[Any] , A : str ): for mod in [qq, qk, qv]: if not hasattr(A , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return UpperCAmelCase = qq._amax.detach().item() UpperCAmelCase = qk._amax.detach().item() UpperCAmelCase = qv._amax.detach().item() UpperCAmelCase = max(A , A , A ) qq._amax.fill_(A ) qk._amax.fill_(A ) qv._amax.fill_(A ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCamelCase__ ( A : int , A : Tuple ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=A ) UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(A , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: UpperCAmelCase = mod.weight.shape[0] UpperCAmelCase = mod._weight_quantizer._amax.detach() UpperCAmelCase = torch.ones(A , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def lowerCamelCase__ ( A : Union[str, Any] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(A , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=A , keepdims=A ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) UpperCAmelCase = amax def lowerCamelCase__ ( A : List[str] , A : Union[str, Any]=25 , A : Tuple=1_80 , A : List[Any]=None ): '''simple docstring''' if ignore is None: UpperCAmelCase = [] elif not isinstance(A , A ): UpperCAmelCase = [ignore] UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(A , '''weight''' ): continue UpperCAmelCase = max(A , len(A ) ) for name, mod in model.named_modules(): UpperCAmelCase = getattr(A , '''_input_quantizer''' , A ) UpperCAmelCase = getattr(A , '''_weight_quantizer''' , A ) if not hasattr(A , '''weight''' ): continue if type(A ) in ignore: continue if [True for s in ignore if type(A ) is str and s in name]: continue UpperCAmelCase = f"""Act:{input_q.extra_repr()}""" UpperCAmelCase = f"""Wgt:{weight_q.extra_repr()}""" UpperCAmelCase = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(A ) <= line_width: logger.info(A ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{" ":{name_width}} {wgt_str}""" ) def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(A , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def lowerCamelCase__ ( A : Any , A : Any , A : Dict , A : List[str] , A : Any ): '''simple docstring''' UpperCAmelCase = getattr(A , A , A ) if quantizer_mod is not None: assert hasattr(A , A ) setattr(A , A , A ) else: logger.warning(f"""{name} has no {quantizer}""" ) def lowerCamelCase__ ( A : Dict , A : List[str] , A : Optional[Any]="both" , **A : Optional[int] ): '''simple docstring''' UpperCAmelCase = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(A , A , '''_input_quantizer''' , A , A ) if which in ["weight", "both"]: set_quantizer(A , A , '''_weight_quantizer''' , A , A ) logger.info(A ) def lowerCamelCase__ ( A : Any , A : Tuple , **A : Optional[int] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(A , '''_input_quantizer''' ) or hasattr(A , '''_weight_quantizer''' ): for n in names: if re.search(A , A ): set_quantizers(A , A , **A ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(A , A ): UpperCAmelCase = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(A , A , A ) logger.info(A )
367
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowercase : List[str] = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase__ ( A : str , A : str , A : List[Any]=None ): '''simple docstring''' if rng is None: UpperCAmelCase = random.Random() UpperCAmelCase = 1 for dim in shape: total_dims *= dim UpperCAmelCase = [] for _ in range(A ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCAmelCase = np.array(A , dtype=jnp.intaa ).reshape(A ) return output def lowerCamelCase__ ( A : int , A : Optional[int]=None ): '''simple docstring''' UpperCAmelCase = ids_tensor(A , vocab_size=2 , rng=A ) # make sure that at least one token is attended to for each batch UpperCAmelCase = 1 return attn_mask @require_flax class UpperCamelCase__: __magic_name__ : Optional[int] = None __magic_name__ : Optional[Any] = () def a__( self : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCAmelCase = 2 UpperCAmelCase = inputs['''input_ids'''].shape[-1] // 2 UpperCAmelCase = inputs['''input_ids'''][:max_batch_size, :sequence_length] UpperCAmelCase = jnp.ones_like(lowerCAmelCase ) UpperCAmelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCAmelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCAmelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 0 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase = getattr(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = pt_model_class(lowerCAmelCase ).eval() UpperCAmelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase , flax_model.params ) UpperCAmelCase = flax_model.generate(lowerCAmelCase ).sequences UpperCAmelCase = pt_model.generate(torch.tensor(lowerCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCAmelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = True UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : str )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 2 UpperCAmelCase = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def a__( self : Tuple )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = True UpperCAmelCase = max_length UpperCAmelCase = 0.8 UpperCAmelCase = 10 UpperCAmelCase = 0.3 UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = max_length UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = max_length UpperCAmelCase = 2 UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = False UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = True UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = 2 UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class UpperCamelCase__( unittest.TestCase ): def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) UpperCAmelCase = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase = '''Hello world''' UpperCAmelCase = tokenizer(lowerCAmelCase , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase , '''do_samples''' ): model.generate(lowerCAmelCase , do_samples=lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase , '''foo''' ): UpperCAmelCase = {'''foo''': '''bar'''} model.generate(lowerCAmelCase , **lowerCAmelCase )
91
0
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] , a_ : int , a_ : Tuple=13 , a_ : int=7 , a_ : Any=True , a_ : List[str]=True , a_ : Union[str, Any]=True , a_ : List[str]=True , a_ : int=99 , a_ : int=[1, 1, 2] , a_ : Optional[int]=1 , a_ : Optional[Any]=32 , a_ : int=4 , a_ : int=8 , a_ : Any=37 , a_ : Tuple="gelu_new" , a_ : Dict=0.1 , a_ : List[Any]=0.1 , a_ : str=0.0 , a_ : Dict=5_12 , a_ : Optional[int]=3 , a_ : Optional[Any]=0.0_2 , a_ : Optional[Any]=3 , a_ : str=4 , a_ : List[str]=None , a_ : Tuple=False , ): '''simple docstring''' __UpperCAmelCase : Dict = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Dict = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : str = block_sizes __UpperCAmelCase : Optional[Any] = num_decoder_layers __UpperCAmelCase : List[str] = d_model __UpperCAmelCase : List[str] = n_head __UpperCAmelCase : str = d_head __UpperCAmelCase : str = d_inner __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Dict = hidden_dropout __UpperCAmelCase : List[str] = attention_dropout __UpperCAmelCase : Optional[int] = activation_dropout __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : List[Any] = 2 __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : str = scope __UpperCAmelCase : Dict = initializer_std # Used in the tests to check the size of the first attention layer __UpperCAmelCase : Optional[Any] = n_head # Used in the tests to check the size of the first hidden state __UpperCAmelCase : Optional[Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions __UpperCAmelCase : Optional[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __UpperCAmelCase : Tuple = self.num_hidden_layers + 2 def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case__ ( self : Tuple , a_ : List[str] , a_ : Union[str, Any] , a_ : Tuple , a_ : Dict , a_ : int , a_ : Optional[Any] , a_ : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Dict = TFFunnelModel(config=a_ ) __UpperCAmelCase : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase : Tuple = model(a_ ) __UpperCAmelCase : Optional[int] = [input_ids, input_mask] __UpperCAmelCase : Dict = model(a_ ) __UpperCAmelCase : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : List[Any] = False __UpperCAmelCase : int = TFFunnelModel(config=a_ ) __UpperCAmelCase : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : str = TFFunnelModel(config=a_ ) __UpperCAmelCase : Optional[int] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def snake_case__ ( self : Dict , a_ : Optional[int] , a_ : Tuple , a_ : List[str] , a_ : str , a_ : Tuple , a_ : Any , a_ : Tuple , ): '''simple docstring''' __UpperCAmelCase : Any = TFFunnelBaseModel(config=a_ ) __UpperCAmelCase : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase : List[str] = model(a_ ) __UpperCAmelCase : Optional[Any] = [input_ids, input_mask] __UpperCAmelCase : str = model(a_ ) __UpperCAmelCase : Optional[int] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[Any] = TFFunnelBaseModel(config=a_ ) __UpperCAmelCase : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : str = TFFunnelBaseModel(config=a_ ) __UpperCAmelCase : int = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def snake_case__ ( self : Any , a_ : Optional[int] , a_ : Dict , a_ : List[str] , a_ : Optional[int] , a_ : Any , a_ : str , a_ : List[str] , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = TFFunnelForPreTraining(config=a_ ) __UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase : List[str] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Tuple , a_ : List[str] , a_ : Optional[int] , a_ : Tuple , a_ : Optional[Any] , a_ : Any , a_ : Any , a_ : Union[str, Any] , ): '''simple docstring''' __UpperCAmelCase : int = TFFunnelForMaskedLM(config=a_ ) __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase : Dict = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : str , a_ : Tuple , a_ : Union[str, Any] , a_ : List[str] , a_ : int , a_ : List[Any] , a_ : Tuple , a_ : Tuple , ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : Any = TFFunnelForSequenceClassification(config=a_ ) __UpperCAmelCase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase : List[Any] = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : int , a_ : Union[str, Any] , a_ : Any , a_ : Dict , a_ : Any , a_ : Any , a_ : List[str] , a_ : List[Any] , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.num_choices __UpperCAmelCase : List[str] = TFFunnelForMultipleChoice(config=a_ ) __UpperCAmelCase : Any = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : List[Any] = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(a_ , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Optional[int] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __UpperCAmelCase : Dict = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : str , a_ : Any , a_ : List[Any] , a_ : Any , a_ : Optional[int] , a_ : Optional[int] , a_ : int , a_ : int , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : int = TFFunnelForTokenClassification(config=a_ ) __UpperCAmelCase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase : Dict = model(a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Optional[Any] , a_ : List[Any] , a_ : Optional[int] , a_ : Dict , a_ : Optional[int] , a_ : Any , a_ : Dict , a_ : List[Any] , ): '''simple docstring''' __UpperCAmelCase : int = TFFunnelForQuestionAnswering(config=a_ ) __UpperCAmelCase : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCAmelCase : List[str] = model(a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[str] = config_and_inputs __UpperCAmelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = TFFunnelModelTester(self ) __UpperCAmelCase : Dict = ConfigTester(self , config_class=a_ ) def snake_case__ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a_ ) def snake_case__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @require_tf class UpperCAmelCase__ ( __UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCamelCase = False UpperCamelCase = False def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Any = TFFunnelModelTester(self , base=a_ ) __UpperCAmelCase : str = ConfigTester(self , config_class=a_ ) def snake_case__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a_ )
226
import glob import os import random from string import ascii_lowercase, digits import cva __A ="" __A ="" __A ="" __A =1 # (0 is vertical, 1 is horizontal) def a ( ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = get_dataset(_UpperCAmelCase , _UpperCAmelCase ) print('''Processing...''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = update_image_and_anno(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for index, image in enumerate(_UpperCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCAmelCase : Any = random_chars(32 ) __UpperCAmelCase : List[str] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __UpperCAmelCase : Optional[Any] = f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(f'/{file_root}.jpg' , _UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Success {index+1}/{len(_UpperCAmelCase )} with {file_name}' ) __UpperCAmelCase : Optional[Any] = [] for anno in new_annos[index]: __UpperCAmelCase : Union[str, Any] = f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(_UpperCAmelCase ) with open(f'/{file_root}.txt' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def a ( _UpperCAmelCase : str , _UpperCAmelCase : str ): '''simple docstring''' __UpperCAmelCase : Any = [] __UpperCAmelCase : Any = [] for label_file in glob.glob(os.path.join(_UpperCAmelCase , '''*.txt''' ) ): __UpperCAmelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(_UpperCAmelCase ) as in_file: __UpperCAmelCase : List[str] = in_file.readlines() __UpperCAmelCase : Optional[Any] = os.path.join(_UpperCAmelCase , f'{label_name}.jpg' ) __UpperCAmelCase : str = [] for obj_list in obj_lists: __UpperCAmelCase : str = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_UpperCAmelCase ) labels.append(_UpperCAmelCase ) return img_paths, labels def a ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int = 1 ): '''simple docstring''' __UpperCAmelCase : Dict = [] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Any = [] for idx in range(len(_UpperCAmelCase ) ): __UpperCAmelCase : Tuple = [] __UpperCAmelCase : List[Any] = img_list[idx] path_list.append(_UpperCAmelCase ) __UpperCAmelCase : str = anno_list[idx] __UpperCAmelCase : str = cva.imread(_UpperCAmelCase ) if flip_type == 1: __UpperCAmelCase : Any = cva.flip(_UpperCAmelCase , _UpperCAmelCase ) for bbox in img_annos: __UpperCAmelCase : List[str] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCAmelCase : Any = cva.flip(_UpperCAmelCase , _UpperCAmelCase ) for bbox in img_annos: __UpperCAmelCase : Union[str, Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_UpperCAmelCase ) new_imgs_list.append(_UpperCAmelCase ) return new_imgs_list, new_annos_lists, path_list def a ( _UpperCAmelCase : int = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __UpperCAmelCase : Union[str, Any] = ascii_lowercase + digits return "".join(random.choice(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
226
1
import sys def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = len(lowerCAmelCase__ ) lowerCAmelCase__ = [[0 for x in range(lowerCAmelCase__ )] for x in range(lowerCAmelCase__ )] lowerCAmelCase__ = [[0 for x in range(lowerCAmelCase__ )] for x in range(lowerCAmelCase__ )] for chain_length in range(2 , lowerCAmelCase__ ): for a in range(1 , n - chain_length + 1 ): lowerCAmelCase__ = a + chain_length - 1 lowerCAmelCase__ = sys.maxsize for c in range(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowerCAmelCase__ = cost lowerCAmelCase__ = c return matrix, sol def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if i == j: print('A' + str(lowerCAmelCase__ ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(lowerCAmelCase__ , lowerCAmelCase__ , optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase__ , optimal_solution[i][j] + 1 , lowerCAmelCase__ ) print(')' , end=' ' ) def __lowerCamelCase ( ): lowerCAmelCase__ = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] lowerCAmelCase__ = len(lowerCAmelCase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowerCAmelCase__ , lowerCAmelCase__ = matrix_chain_order(lowerCAmelCase__ ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase__ , 1 , n - 1 ) if __name__ == "__main__": main()
119
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
119
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCAmelCase : Optional[List[str]] = None __lowerCAmelCase : Dict = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCAmelCase : List[str] = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE_ : ClassVar[str] = "PIL.Image.Image" SCREAMING_SNAKE_CASE_ : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) SCREAMING_SNAKE_CASE_ : str = field(default="""Image""" , init=_UpperCamelCase , repr=_UpperCamelCase ) def __call__( self : Any ) -> List[str]: return self.pa_type def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(__lowerCamelCase , __lowerCamelCase ): a = np.array(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": value, "bytes": None} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": None, "bytes": value} elif isinstance(__lowerCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__lowerCamelCase ) elif isinstance(__lowerCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__lowerCamelCase ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : dict , __lowerCamelCase : Tuple=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: a = {} a , a = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(__lowerCamelCase ): a = PIL.Image.open(__lowerCamelCase ) else: a = path.split("::" )[-1] try: a = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )["repo_id"] a = token_per_repo_id.get(__lowerCamelCase ) except ValueError: a = None with xopen(__lowerCamelCase , "rb" , use_auth_token=__lowerCamelCase ) as f: a = BytesIO(f.read() ) a = PIL.Image.open(bytes_ ) else: a = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __UpperCAmelCase ( self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): a = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) a = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): a = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) a = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: a = storage.field("bytes" ) else: a = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: a = storage.field("path" ) else: a = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) a = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): a = pa.array( [encode_np_array(np.array(__lowerCamelCase ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) a = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) a = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def __UpperCAmelCase ( self : int , __lowerCamelCase : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase : str ): with xopen(__lowerCamelCase , "rb" ) as f: a = f.read() return bytes_ a = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) a = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) a = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def __magic_name__ ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() a = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __magic_name__ ( A : "PIL.Image.Image" ): '''simple docstring''' a = BytesIO() if image.format in list_image_compression_formats(): a = image.format else: a = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(A, format=A ) return buffer.getvalue() def __magic_name__ ( A : "PIL.Image.Image" ): '''simple docstring''' if hasattr(A, "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(A )} def __magic_name__ ( A : np.ndarray ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) a = array.dtype a = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER a = dtype.kind a = dtype.itemsize a = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: a = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: a = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: a = dtype_byteorder + dtype_kind + str(A ) a = np.dtype(A ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) a = PIL.Image.fromarray(array.astype(A ) ) return {"path": None, "bytes": image_to_bytes(A )} def __magic_name__ ( A : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: a , a = first_non_null_value(A ) if isinstance(A, A ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(A, np.ndarray ): a = no_op_if_value_is_null(A ) return [obj_to_image_dict_func(A ) for obj in objs] elif isinstance(A, PIL.Image.Image ): a = no_op_if_value_is_null(A ) return [obj_to_image_dict_func(A ) for obj in objs] else: return objs else: return objs
107
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __a = 'sshleifer/bart-tiny-random' __a = 'patrickvonplaten/t5-tiny-random' @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Any ) -> Tuple: return AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> List[Any]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> List[Any]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=SCREAMING_SNAKE_CASE_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _lowercase ( self : List[Any] ) -> List[Any]: lowercase_ , *lowercase_ = create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): create_student_by_copying_alternating_layers(SCREAMING_SNAKE_CASE_ , tempfile.mkdtemp() , e=SCREAMING_SNAKE_CASE_ , d=SCREAMING_SNAKE_CASE_ )
30
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int]=13 ,lowerCamelCase__ : Optional[Any]=30 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : List[str]=32 ,lowerCamelCase__ : Any=2 ,lowerCamelCase__ : Optional[int]=4 ,lowerCamelCase__ : Tuple=37 ,lowerCamelCase__ : Optional[int]="gelu" ,lowerCamelCase__ : str=0.1 ,lowerCamelCase__ : str=0.1 ,lowerCamelCase__ : Optional[Any]=10 ,lowerCamelCase__ : int=0.02 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Dict=2 ,) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE = num_patches + 2 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFDeiTModel(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFDeiTForMaskedImageModeling(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = TFDeiTForMaskedImageModeling(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : int ,lowerCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = TFDeiTForImageClassification(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = TFDeiTForImageClassification(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __snake_case : int = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __snake_case : int = False __snake_case : Union[str, Any] = False __snake_case : List[Any] = False __snake_case : Any = False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = TFDeiTModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ ,tf.keras.layers.Dense ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[Any]=False ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = super()._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ,return_labels=lowerCamelCase__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFDeiTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowercase ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCamelCase__ ,return_tensors="""tf""" ) # forward pass SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) # verify the logits SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) )
193
import json import sys def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE = json.load(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = results[benchmark_name] SCREAMING_SNAKE_CASE = benchmark_name.split("""/""" )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) SCREAMING_SNAKE_CASE = """| metric |""" SCREAMING_SNAKE_CASE = """|--------|""" SCREAMING_SNAKE_CASE = """| new / old (diff) |""" for metric_name in sorted(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = benchmark_res[metric_name] SCREAMING_SNAKE_CASE = metric_vals["""new"""] SCREAMING_SNAKE_CASE = metric_vals.get("""old""" , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = metric_vals.get("""diff""" , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = F""" {new_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else """None""" if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = sys.argv[1] SCREAMING_SNAKE_CASE_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
193
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a_ ( unittest.TestCase ): def __init__( self : List[Any] , lowercase : List[str] , lowercase : Any=7 , lowercase : int=3 , lowercase : Union[str, Any]=18 , lowercase : Dict=30 , lowercase : List[str]=400 , lowercase : str=True , lowercase : int=None , lowercase : Tuple=True , ): """simple docstring""" lowercase_ :List[str] = size if size is not None else {"height": 18, "width": 18} lowercase_ :List[str] = parent lowercase_ :List[str] = batch_size lowercase_ :int = num_channels lowercase_ :int = image_size lowercase_ :Any = min_resolution lowercase_ :Tuple = max_resolution lowercase_ :List[Any] = do_resize lowercase_ :Any = size lowercase_ :int = apply_ocr def lowercase__ ( self : List[str] ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[int] = LayoutLMvaImageProcessingTester(self ) @property def lowercase__ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) self.assertTrue(hasattr(lowercase , "apply_ocr" ) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowercase_ :Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def lowercase__ ( self : Optional[int] ): """simple docstring""" pass def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input lowercase_ :Tuple = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , lowercase ) self.assertIsInstance(encoding.boxes , lowercase ) # Test batched lowercase_ :str = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ :int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input lowercase_ :List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowercase_ :Any = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input lowercase_ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowercase_ :int = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ :Any = LayoutLMvaImageProcessor() from datasets import load_dataset lowercase_ :str = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) lowercase_ :Optional[int] = Image.open(ds[0]["file"] ).convert("RGB" ) lowercase_ :str = image_processing(lowercase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowercase_ :List[Any] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 lowercase_ :Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowercase ) self.assertListEqual(encoding.boxes , lowercase ) # with apply_OCR = False lowercase_ :str = LayoutLMvaImageProcessor(apply_ocr=lowercase ) lowercase_ :str = image_processing(lowercase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
223
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ): return x + 2 class a_ ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[int] = "x = 3" lowercase_ :Any = {} lowercase_ :Any = evaluate(lowercase , {} , state=lowercase ) assert result == 3 self.assertDictEqual(lowercase , {"x": 3} ) lowercase_ :Dict = "x = y" lowercase_ :Dict = {"y": 5} lowercase_ :str = evaluate(lowercase , {} , state=lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase , {"x": 5, "y": 5} ) def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Dict = "y = add_two(x)" lowercase_ :Optional[Any] = {"x": 3} lowercase_ :int = evaluate(lowercase , {"add_two": add_two} , state=lowercase ) assert result == 5 self.assertDictEqual(lowercase , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase_ :List[Any] = evaluate(lowercase , {} , state=lowercase ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self : int ): """simple docstring""" lowercase_ :Optional[int] = "x = 3" lowercase_ :Any = {} lowercase_ :Any = evaluate(lowercase , {} , state=lowercase ) assert result == 3 self.assertDictEqual(lowercase , {"x": 3} ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Optional[Any] = "test_dict = {'x': x, 'y': add_two(x)}" lowercase_ :List[str] = {"x": 3} lowercase_ :Any = evaluate(lowercase , {"add_two": add_two} , state=lowercase ) self.assertDictEqual(lowercase , {"x": 3, "y": 5} ) self.assertDictEqual(lowercase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[int] = "x = 3\ny = 5" lowercase_ :Union[str, Any] = {} lowercase_ :Optional[int] = evaluate(lowercase , {} , state=lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase , {"x": 3, "y": 5} ) def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :List[str] = "text = f'This is x: {x}.'" lowercase_ :int = {"x": 3} lowercase_ :int = evaluate(lowercase , {} , state=lowercase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowercase , {"x": 3, "text": "This is x: 3."} ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :List[Any] = "if x <= 3:\n y = 2\nelse:\n y = 5" lowercase_ :List[str] = {"x": 3} lowercase_ :Union[str, Any] = evaluate(lowercase , {} , state=lowercase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowercase , {"x": 3, "y": 2} ) lowercase_ :List[str] = {"x": 8} lowercase_ :Tuple = evaluate(lowercase , {} , state=lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase , {"x": 8, "y": 5} ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Any = "test_list = [x, add_two(x)]" lowercase_ :Optional[int] = {"x": 3} lowercase_ :List[str] = evaluate(lowercase , {"add_two": add_two} , state=lowercase ) self.assertListEqual(lowercase , [3, 5] ) self.assertDictEqual(lowercase , {"x": 3, "test_list": [3, 5]} ) def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :str = "y = x" lowercase_ :Any = {"x": 3} lowercase_ :Tuple = evaluate(lowercase , {} , state=lowercase ) assert result == 3 self.assertDictEqual(lowercase , {"x": 3, "y": 3} ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :List[Any] = "test_list = [x, add_two(x)]\ntest_list[1]" lowercase_ :Dict = {"x": 3} lowercase_ :Any = evaluate(lowercase , {"add_two": add_two} , state=lowercase ) assert result == 5 self.assertDictEqual(lowercase , {"x": 3, "test_list": [3, 5]} ) lowercase_ :Union[str, Any] = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" lowercase_ :List[Any] = {"x": 3} lowercase_ :List[Any] = evaluate(lowercase , {"add_two": add_two} , state=lowercase ) assert result == 5 self.assertDictEqual(lowercase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Dict = "x = 0\nfor i in range(3):\n x = i" lowercase_ :Any = {} lowercase_ :Tuple = evaluate(lowercase , {"range": range} , state=lowercase ) assert result == 2 self.assertDictEqual(lowercase , {"x": 2, "i": 2} )
223
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCAmelCase : def __init__( self : Union[str, Any] ): snake_case_ : Optional[Any] = '''''' snake_case_ : Union[str, Any] = '''''' snake_case_ : str = [] snake_case_ : Union[str, Any] = 0 snake_case_ : Dict = 256 snake_case_ : List[Any] = 0 snake_case_ : str = 0 snake_case_ : Union[str, Any] = 0 snake_case_ : Optional[int] = 0 def _snake_case ( self : Tuple , lowercase_ : Dict ): snake_case_ : Optional[int] = cva.imread(lowercase_ , 0 ) snake_case_ : Dict = copy.deepcopy(self.img ) snake_case_, snake_case_, snake_case_ : Dict = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) snake_case_ : Tuple = np.sum(lowercase_ ) for i in range(len(lowercase_ ) ): snake_case_ : str = x[i] / self.k self.sk += prk snake_case_ : Union[str, Any] = (self.L - 1) * self.sk if self.rem != 0: snake_case_ : List[Any] = int(last % last ) snake_case_ : str = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowercase_ ) snake_case_ : Union[str, Any] = int(np.ma.count(self.img ) / self.img[1].size ) snake_case_ : str = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case_ : str = self.img[j][i] if num != self.last_list[num]: snake_case_ : Optional[int] = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def _snake_case ( self : str ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _snake_case ( self : Any ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowercase__ : Tuple = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') lowercase__ : Any = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
155
"""simple docstring""" def __lowercase ( _a , _a ): return base * power(_a , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') lowercase__ : Optional[Any] = int(input('''Enter the base: ''').strip()) lowercase__ : int = int(input('''Enter the exponent: ''').strip()) lowercase__ : int = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowercase__ : Any = 1 / result print(f'{base} to the power of {exponent} is {result}')
155
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
130
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _A (__a , __a , __a ) -> Dict: """simple docstring""" if gpta_config_file == "": SCREAMING_SNAKE_CASE_ : Optional[Any] = GPTaConfig() else: SCREAMING_SNAKE_CASE_ : Tuple = GPTaConfig.from_json_file(__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = GPTaModel(__a ) # Load weights from numpy load_tf_weights_in_gpta(__a , __a , __a ) # Save pytorch-model SCREAMING_SNAKE_CASE_ : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE_ : List[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , __a ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
91
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Dict = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
210
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__UpperCAmelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
210
1
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=1000, ) -> List[str]: UpperCamelCase : Optional[Any] = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : Any = seq_length UpperCamelCase : Dict = is_training UpperCamelCase : str = use_input_mask UpperCamelCase : Optional[Any] = use_token_type_ids UpperCamelCase : Optional[Any] = use_labels UpperCamelCase : Dict = vocab_size UpperCamelCase : Optional[Any] = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : Any = hidden_act UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = max_position_embeddings UpperCamelCase : Any = type_vocab_size UpperCamelCase : str = type_sequence_label_size UpperCamelCase : int = initializer_range UpperCamelCase : List[Any] = num_labels UpperCamelCase : Optional[Any] = num_choices UpperCamelCase : Tuple = scope UpperCamelCase : List[Any] = range_bbox def snake_case_ ( self ) -> str: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) # convert bbox to numpy since TF does not support item assignment UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase : Optional[Any] = bbox[i, j, 3] UpperCamelCase : Dict = bbox[i, j, 1] UpperCamelCase : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase : List[Any] = bbox[i, j, 2] UpperCamelCase : Any = bbox[i, j, 0] UpperCamelCase : List[str] = t UpperCamelCase : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = None if self.use_input_mask: UpperCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = None if self.use_token_type_ids: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase : Any = ids_tensor([self.batch_size], self.num_choices ) UpperCamelCase : Optional[int] = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase : Optional[int] = TFLayoutLMModel(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Optional[int] = TFLayoutLMForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : Optional[Any] = TFLayoutLMForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = self.num_labels UpperCamelCase : Dict = TFLayoutLMForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : List[str] = config_and_inputs UpperCamelCase : List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : List[str] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) UpperCAmelCase__ : List[Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Optional[int] = 10 def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = TFLayoutLMModelTester(self ) UpperCamelCase : Union[str, Any] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> Any: self.config_tester.run_common_tests() def snake_case_ ( self ) -> str: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Optional[int]: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Dict = TFLayoutLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def snake_case_ ( self ) -> int: pass def UpperCamelCase ( ) -> int: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off UpperCamelCase : Optional[int] = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 UpperCamelCase : str = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 UpperCamelCase : Dict = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 UpperCamelCase : Optional[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) UpperCamelCase : Optional[Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Any: UpperCamelCase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase : Any = model(input_ids=SCREAMING_SNAKE_CASE_, bbox=SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) # test the sequence output on [0, :3, :3] UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # test the pooled output on [1, :3] UpperCamelCase : str = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: # initialize model with randomly initialized sequence classification head UpperCamelCase : List[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased', num_labels=2 ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase : str = model( input_ids=SCREAMING_SNAKE_CASE_, bbox=SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=tf.convert_to_tensor([1, 1] ), ) # test whether we get a loss as a scalar UpperCamelCase : Any = outputs.loss UpperCamelCase : List[str] = (2,) self.assertEqual(loss.shape, SCREAMING_SNAKE_CASE_ ) # test the shape of the logits UpperCamelCase : Any = outputs.logits UpperCamelCase : Optional[Any] = (2, 2) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> List[Any]: # initialize model with randomly initialized token classification head UpperCamelCase : Tuple = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased', num_labels=13 ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase : Optional[Any] = model( input_ids=SCREAMING_SNAKE_CASE_, bbox=SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) # test the shape of the logits UpperCamelCase : Optional[int] = outputs.logits UpperCamelCase : Dict = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Dict: # initialize model with randomly initialized token classification head UpperCamelCase : str = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase : Optional[int] = model(input_ids=SCREAMING_SNAKE_CASE_, bbox=SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) # test the shape of the logits UpperCamelCase : List[str] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape, SCREAMING_SNAKE_CASE_ ) self.assertEqual(outputs.end_logits.shape, SCREAMING_SNAKE_CASE_ )
119
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = "codegen" UpperCAmelCase__ : str = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, SCREAMING_SNAKE_CASE_=5_0400, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_=28, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="gelu_new", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Tuple: UpperCamelCase : Tuple = vocab_size UpperCamelCase : Optional[int] = n_ctx UpperCamelCase : Optional[int] = n_positions UpperCamelCase : List[str] = n_embd UpperCamelCase : Dict = n_layer UpperCamelCase : int = n_head UpperCamelCase : Union[str, Any] = n_inner UpperCamelCase : int = rotary_dim UpperCamelCase : Optional[Any] = activation_function UpperCamelCase : Optional[int] = resid_pdrop UpperCamelCase : Union[str, Any] = embd_pdrop UpperCamelCase : Optional[Any] = attn_pdrop UpperCamelCase : List[str] = layer_norm_epsilon UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : str = use_cache UpperCamelCase : Dict = bos_token_id UpperCamelCase : Union[str, Any] = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, tie_word_embeddings=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "default", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_, task=SCREAMING_SNAKE_CASE_, patching_specs=SCREAMING_SNAKE_CASE_, use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config, 'pad_token_id', SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? UpperCamelCase : str = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase : Tuple = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs' ) UpperCamelCase : List[Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case_ ( self ) -> int: return self._config.n_layer @property def snake_case_ ( self ) -> int: return self._config.n_head def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]: UpperCamelCase : Tuple = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase : List[str] = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase : List[Any] = seqlen + 2 UpperCamelCase : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase : str = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] UpperCamelCase : List[Any] = common_inputs['attention_mask'] if self.use_past: UpperCamelCase : Optional[Any] = ordered_inputs['attention_mask'].dtype UpperCamelCase : List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: return 13
119
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase : Optional[Any] = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase : Tuple = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase : Optional[int] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase : List[Any] = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase : Union[str, Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase : str = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase : List[str] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase : str = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase : int = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase ) class A: '''simple docstring''' def __call__( self : List[str] , A_ : List[str] , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Union[bool, str] = False , A_ : Union[bool, str] = False , A_ : Optional[int] = None , A_ : Optional[Union[str, TensorType]] = None , A_ : Optional[bool] = None , **A_ : str , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( A_ , padding=A_ , truncation=A_ , max_length=A_ , return_tensors=A_ , return_attention_mask=A_ , **A_ , ) elif titles is None or texts is None: lowerCamelCase_ = titles if texts is None else texts return super().__call__( A_ , A_ , padding=A_ , truncation=A_ , max_length=A_ , return_tensors=A_ , return_attention_mask=A_ , **A_ , ) lowerCamelCase_ = titles if not isinstance(A_ , A_ ) else [titles] lowerCamelCase_ = texts if not isinstance(A_ , A_ ) else [texts] lowerCamelCase_ = len(A_ ) lowerCamelCase_ = questions if not isinstance(A_ , A_ ) else [questions] * n_passages assert len(A_ ) == len( A_ ), f"""There should be as many titles than texts but got {len(A_ )} titles and {len(A_ )} texts.""" lowerCamelCase_ = super().__call__(A_ , A_ , padding=A_ , truncation=A_ )['input_ids'] lowerCamelCase_ = super().__call__(A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ )['input_ids'] lowerCamelCase_ = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A_ , A_ ) ] } if return_attention_mask is not False: lowerCamelCase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ = attention_mask return self.pad(A_ , padding=A_ , max_length=A_ , return_tensors=A_ ) def a__ ( self : Optional[int] , A_ : BatchEncoding , A_ : DPRReaderOutput , A_ : int = 16 , A_ : int = 64 , A_ : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowerCamelCase_ = reader_input['input_ids'] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reader_output[:3] lowerCamelCase_ = len(A_ ) lowerCamelCase_ = sorted(range(A_ ) , reverse=A_ , key=relevance_logits.__getitem__ ) lowerCamelCase_ = [] for doc_id in sorted_docs: lowerCamelCase_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ = sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ = len(A_ ) lowerCamelCase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=A_ , top_spans=A_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=A_ , start_index=A_ , end_index=A_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(A_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self : List[str] , A_ : List[int] , A_ : List[int] , A_ : int , A_ : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowerCamelCase_ = [] for start_index, start_score in enumerate(A_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ = sorted(A_ , key=lambda A_ : x[1] , reverse=A_ ) lowerCamelCase_ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" lowerCamelCase_ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(A_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase ) class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = DPRReaderTokenizer
355
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''transfo-xl''' UpperCamelCase = ['''mems'''] UpperCamelCase = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , A_ : Optional[Any]=267735 , A_ : Optional[Any]=[20000, 40000, 200000] , A_ : Union[str, Any]=1024 , A_ : Optional[Any]=1024 , A_ : Optional[int]=16 , A_ : Any=64 , A_ : List[Any]=4096 , A_ : str=4 , A_ : int=False , A_ : List[Any]=18 , A_ : Optional[int]=1600 , A_ : Union[str, Any]=1000 , A_ : Optional[Any]=True , A_ : Optional[int]=True , A_ : List[str]=0 , A_ : int=-1 , A_ : List[Any]=True , A_ : List[Any]=0.1 , A_ : str=0.0 , A_ : Dict=True , A_ : Dict="normal" , A_ : Dict=0.01 , A_ : Optional[Any]=0.01 , A_ : Any=0.02 , A_ : int=1E-5 , A_ : List[str]=0 , **A_ : Optional[Any] , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = [] self.cutoffs.extend(A_ ) if proj_share_all_but_first: lowerCamelCase_ = [False] + [True] * len(self.cutoffs ) else: lowerCamelCase_ = [False] + [False] * len(self.cutoffs ) lowerCamelCase_ = d_model lowerCamelCase_ = d_embed lowerCamelCase_ = d_head lowerCamelCase_ = d_inner lowerCamelCase_ = div_val lowerCamelCase_ = pre_lnorm lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = mem_len lowerCamelCase_ = same_length lowerCamelCase_ = attn_type lowerCamelCase_ = clamp_len lowerCamelCase_ = sample_softmax lowerCamelCase_ = adaptive lowerCamelCase_ = dropout lowerCamelCase_ = dropatt lowerCamelCase_ = untie_r lowerCamelCase_ = init lowerCamelCase_ = init_range lowerCamelCase_ = proj_init_std lowerCamelCase_ = init_std lowerCamelCase_ = layer_norm_epsilon super().__init__(eos_token_id=A_ , **A_ ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , A_ : Optional[int] ) -> List[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
208
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=0.999 , UpperCamelCase__ : Any="cosine" , )->List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : str ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) A__ = [] for i in range(UpperCamelCase__ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = [e.name for e in KarrasDiffusionSchedulers] __SCREAMING_SNAKE_CASE = 2 @register_to_config def __init__( self,__lowerCamelCase = 1000,__lowerCamelCase = 0.00085,__lowerCamelCase = 0.012,__lowerCamelCase = "linear",__lowerCamelCase = None,__lowerCamelCase = "epsilon",__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = 1.0,__lowerCamelCase = "linspace",__lowerCamelCase = 0,): if trained_betas is not None: A__ = torch.tensor(__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "linear": A__ = torch.linspace(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A__ = ( torch.linspace(beta_start**0.5,beta_end**0.5,__lowerCamelCase,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A__ = betas_for_alpha_bar(__lowerCamelCase,alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": A__ = betas_for_alpha_bar(__lowerCamelCase,alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) A__ = 1.0 - self.betas A__ = torch.cumprod(self.alphas,dim=0 ) # set all values self.set_timesteps(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = use_karras_sigmas def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): if schedule_timesteps is None: A__ = self.timesteps A__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A__ = 1 if len(__lowerCamelCase ) > 1 else 0 else: A__ = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep A__ = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,): A__ = self.index_for_timestep(__lowerCamelCase ) A__ = self.sigmas[step_index] A__ = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = None,): A__ = num_inference_steps A__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A__ = np.linspace(0,num_train_timesteps - 1,__lowerCamelCase,dtype=__lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": A__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(0,__lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(__lowerCamelCase,0,-step_ratio )).round().copy().astype(__lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) A__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A__ = np.log(__lowerCamelCase ) A__ = np.interp(__lowerCamelCase,np.arange(0,len(__lowerCamelCase ) ),__lowerCamelCase ) if self.config.use_karras_sigmas: A__ = self._convert_to_karras(in_sigmas=__lowerCamelCase,num_inference_steps=self.num_inference_steps ) A__ = np.array([self._sigma_to_t(__lowerCamelCase,__lowerCamelCase ) for sigma in sigmas] ) A__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A__ = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ) A__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A__ = torch.from_numpy(__lowerCamelCase ) A__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__lowerCamelCase ).startswith('''mps''' ): # mps does not support float64 A__ = timesteps.to(__lowerCamelCase,dtype=torch.floataa ) else: A__ = timesteps.to(device=__lowerCamelCase ) # empty dt and derivative A__ = None A__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A__ = defaultdict(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): # get log sigma A__ = np.log(__lowerCamelCase ) # get distribution A__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A__ = np.cumsum((dists >= 0),axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A__ = low_idx + 1 A__ = log_sigmas[low_idx] A__ = log_sigmas[high_idx] # interpolate sigmas A__ = (low - log_sigma) / (low - high) A__ = np.clip(__lowerCamelCase,0,1 ) # transform interpolation to time range A__ = (1 - w) * low_idx + w * high_idx A__ = t.reshape(sigma.shape ) return t def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = in_sigmas[-1].item() A__ = in_sigmas[0].item() A__ = 7.0 # 7.0 is the value used in the paper A__ = np.linspace(0,1,__lowerCamelCase ) A__ = sigma_min ** (1 / rho) A__ = sigma_max ** (1 / rho) A__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCamelCase ( self ): return self.dt is None def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = True,): A__ = self.index_for_timestep(__lowerCamelCase ) # advance index counter by 1 A__ = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A__ = self.sigmas[step_index] A__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A__ = self.sigmas[step_index - 1] A__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A__ = 0 A__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A__ = sigma_hat if self.state_in_first_order else sigma_next A__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A__ = sigma_hat if self.state_in_first_order else sigma_next A__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A__ = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: A__ = pred_original_sample.clamp( -self.config.clip_sample_range,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A__ = sigma_next - sigma_hat # store for 2nd order step A__ = derivative A__ = dt A__ = sample else: # 2. 2nd order / Heun's method A__ = (sample - pred_original_sample) / sigma_next A__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A__ = self.dt A__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A__ = None A__ = None A__ = None A__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): # Make sure sigmas and timesteps have the same device and dtype as original_samples A__ = self.sigmas.to(device=original_samples.device,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase ): # mps does not support float64 A__ = self.timesteps.to(original_samples.device,dtype=torch.floataa ) A__ = timesteps.to(original_samples.device,dtype=torch.floataa ) else: A__ = self.timesteps.to(original_samples.device ) A__ = timesteps.to(original_samples.device ) A__ = [self.index_for_timestep(__lowerCamelCase,__lowerCamelCase ) for t in timesteps] A__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A__ = sigma.unsqueeze(-1 ) A__ = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
193
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ['''keras_nlp'''] def __init__( self,*__lowerCamelCase,**__lowerCamelCase ): requires_backends(self,['''keras_nlp'''] )
193
1
# using dfs for finding eulerian path traversal def a( A : int , A : Optional[Any] , A : Any , A : Optional[int]=None ) -> List[str]: """simple docstring""" a = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: a , a = True, True a = dfs(A , A , A , A ) return path def a( A : List[str] , A : Optional[int] ) -> List[str]: """simple docstring""" a = 0 a = -1 for i in range(A ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 a = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def a( A : str , A : str ) -> List[Any]: """simple docstring""" a = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] a , a = check_circuit_or_path(A , A ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return a = 1 if check == 2: a = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) a = dfs(A , A , A ) print(A ) def a( ) -> int: """simple docstring""" a = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} a = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} a = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} a = {1: [2, 3], 2: [1, 3], 3: [1, 2]} a = { 1: [], 2: [] # all degree is zero } a = 10 check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) if __name__ == "__main__": main()
358
def a( A : int = 200 ) -> int: """simple docstring""" a = [1, 2, 5, 10, 20, 50, 100, 200] a = [0] * (pence + 1) a = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(A , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
71
0
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowercase (snake_case__ : bytes , snake_case__ : int ) -> np.array: '''simple docstring''' lowerCAmelCase = f'''{sampling_rate}''' lowerCAmelCase = """1""" lowerCAmelCase = """f32le""" lowerCAmelCase = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(snake_case__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase = ffmpeg_process.communicate(snake_case__ ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error lowerCAmelCase = output_stream[0] lowerCAmelCase = np.frombuffer(snake_case__ , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def lowercase (snake_case__ : int , snake_case__ : float , snake_case__ : str = "f32le" , ) -> Dict: '''simple docstring''' lowerCAmelCase = f'''{sampling_rate}''' lowerCAmelCase = """1""" if format_for_conversion == "s16le": lowerCAmelCase = 2 elif format_for_conversion == "f32le": lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCAmelCase = platform.system() if system == "Linux": lowerCAmelCase = """alsa""" lowerCAmelCase = """default""" elif system == "Darwin": lowerCAmelCase = """avfoundation""" lowerCAmelCase = """:0""" elif system == "Windows": lowerCAmelCase = """dshow""" lowerCAmelCase = """default""" lowerCAmelCase = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase = _ffmpeg_stream(snake_case__ , snake_case__ ) for item in iterator: yield item def lowercase (snake_case__ : int , snake_case__ : float , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[Tuple[float, float], float]] = None , snake_case__ : str = "f32le" , ) -> Optional[Any]: '''simple docstring''' if stream_chunk_s is not None: lowerCAmelCase = stream_chunk_s else: lowerCAmelCase = chunk_length_s lowerCAmelCase = ffmpeg_microphone(snake_case__ , snake_case__ , format_for_conversion=snake_case__ ) if format_for_conversion == "s16le": lowerCAmelCase = np.intaa lowerCAmelCase = 2 elif format_for_conversion == "f32le": lowerCAmelCase = np.floataa lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCAmelCase = chunk_length_s / 6 lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(snake_case__ , (int, float) ): lowerCAmelCase = [stride_length_s, stride_length_s] lowerCAmelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase = datetime.datetime.now() lowerCAmelCase = datetime.timedelta(seconds=snake_case__ ) for item in chunk_bytes_iter(snake_case__ , snake_case__ , stride=(stride_left, stride_right) , stream=snake_case__ ): # Put everything back in numpy scale lowerCAmelCase = np.frombuffer(item["""raw"""] , dtype=snake_case__ ) lowerCAmelCase = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) lowerCAmelCase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowercase (snake_case__ : Any , snake_case__ : int , snake_case__ : Tuple[int, int] , snake_case__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase = B"""""" lowerCAmelCase , lowerCAmelCase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCAmelCase = 0 for raw in iterator: acc += raw if stream and len(snake_case__ ) < chunk_len: lowerCAmelCase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(snake_case__ ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase = (_stride_left, stride_right) lowerCAmelCase = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: lowerCAmelCase = False yield item lowerCAmelCase = stride_left lowerCAmelCase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(snake_case__ ) > stride_left: lowerCAmelCase = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: lowerCAmelCase = False yield item def lowercase (snake_case__ : Union[str, Any] , snake_case__ : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase = 2**24 # 16Mo try: with subprocess.Popen(snake_case__ , stdout=subprocess.PIPE , bufsize=snake_case__ ) as ffmpeg_process: while True: lowerCAmelCase = ffmpeg_process.stdout.read(snake_case__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
155
"""simple docstring""" def lowercase (snake_case__ : list ) -> list: '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] lowerCAmelCase = [] def generate(snake_case__ : int , snake_case__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCAmelCase , lowerCAmelCase = arr[k - 1], arr[i] else: # k is odd lowerCAmelCase , lowerCAmelCase = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": a = input('Enter numbers separated by a comma:\n').strip() a = [int(item) for item in user_input.split(',')] print(heaps(arr))
155
1
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowercase_ = parser.parse_args() if args.model_type == "bert": lowercase_ = BertForMaskedLM.from_pretrained(args.model_name) lowercase_ = 'bert' else: raise ValueError('args.model_type should be "bert".') lowercase_ = model.state_dict() lowercase_ = {} for w in ["word_embeddings", "position_embeddings"]: lowercase_ = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowercase_ = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] lowercase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowercase_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowercase_ = state_dict['cls.predictions.decoder.weight'] lowercase_ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowercase_ = state_dict[F"""cls.predictions.transform.dense.{w}"""] lowercase_ = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
194
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase_ = 5_0_0_0_0_0 lowercase_ ,lowercase_ = os.path.split(__file__) lowercase_ = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[int] = dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = dataset.filter(**SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( ): __lowerCamelCase : str = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Any = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) __lowerCamelCase : Any = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__ , 'dataset.arrow' ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[Any] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ ): return tokenizer(examples['text'] ) __lowerCamelCase : str = map(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='numpy' ): __lowerCamelCase : Union[str, Any] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='pandas' ): __lowerCamelCase : Any = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): __lowerCamelCase : List[str] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): __lowerCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[Any] = map(SCREAMING_SNAKE_CASE__ , function=SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
194
1
import torch from torch import nn class _UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 , lowerCAmelCase__=False ) -> List[str]: '''simple docstring''' super().__init__() __lowercase = n_token __lowercase = d_embed __lowercase = d_proj __lowercase = cutoffs + [n_token] __lowercase = [0] + self.cutoffs __lowercase = div_val __lowercase = self.cutoffs[0] __lowercase = len(self.cutoffs ) - 1 __lowercase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __lowercase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) __lowercase = nn.Parameter(torch.zeros(self.n_clusters ) ) __lowercase = nn.ModuleList() __lowercase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) else: self.out_projs.append(lowerCAmelCase__ ) self.out_layers.append(nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: for i in range(len(self.cutoffs ) ): __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) self.out_layers.append(nn.Linear(lowerCAmelCase__ , r_idx - l_idx ) ) __lowercase = keep_order def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' if proj is None: __lowercase = nn.functional.linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __lowercase = nn.functional.linear(lowerCAmelCase__ , proj.t().contiguous() ) __lowercase = nn.functional.linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=False ) -> Optional[int]: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n __lowercase = hidden[..., :-1, :].contiguous() __lowercase = labels[..., 1:].contiguous() __lowercase = hidden.view(-1 , hidden.size(-1 ) ) __lowercase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: __lowercase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: __lowercase = self._compute_logit(lowerCAmelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: __lowercase = labels != -1_00 __lowercase = torch.zeros_like(lowerCAmelCase__ , dtype=hidden.dtype , device=hidden.device ) __lowercase = ( -nn.functional.log_softmax(lowerCAmelCase__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __lowercase = nn.functional.log_softmax(lowerCAmelCase__ , dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase__ ) biases.append(lowerCAmelCase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = nn.functional.log_softmax(lowerCAmelCase__ , dim=1 ) if labels is None: __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __lowercase = torch.zeros_like(lowerCAmelCase__ , dtype=hidden.dtype , device=hidden.device ) __lowercase = 0 __lowercase = [0] + self.cutoffs for i in range(len(lowerCAmelCase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __lowercase = (labels >= l_idx) & (labels < r_idx) __lowercase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __lowercase = labels.index_select(0 , lowerCAmelCase__ ) - l_idx __lowercase = head_logprob.index_select(0 , lowerCAmelCase__ ) __lowercase = hidden.index_select(0 , lowerCAmelCase__ ) else: __lowercase = hidden if i == 0: if labels is not None: __lowercase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = nn.functional.log_softmax(lowerCAmelCase__ , dim=1 ) __lowercase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __lowercase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: __lowercase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __lowercase = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' if self.n_clusters == 0: __lowercase = self._compute_logit(lowerCAmelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowerCAmelCase__ , dim=-1 ) else: # construct weights and biases __lowercase , __lowercase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __lowercase , __lowercase = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowercase = self.out_layers[0].weight[l_idx:r_idx] __lowercase = self.out_layers[0].bias[l_idx:r_idx] else: __lowercase = self.out_layers[i].weight __lowercase = self.out_layers[i].bias if i == 0: __lowercase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __lowercase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase__ ) biases.append(lowerCAmelCase__ ) __lowercase , __lowercase , __lowercase = weights[0], biases[0], self.out_projs[0] __lowercase = self._compute_logit(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __lowercase = nn.functional.log_softmax(lowerCAmelCase__ , dim=1 ) __lowercase = [0] + self.cutoffs for i in range(len(lowerCAmelCase__ ) - 1 ): __lowercase , __lowercase = cutoff_values[i], cutoff_values[i + 1] if i == 0: __lowercase = head_logprob[:, : self.cutoffs[0]] else: __lowercase , __lowercase , __lowercase = weights[i], biases[i], self.out_projs[i] __lowercase = self._compute_logit(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = nn.functional.log_softmax(lowerCAmelCase__ , dim=1 ) __lowercase = head_logprob[:, -i] + tail_logprob_i __lowercase = logprob_i return out
210
import requests def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = {'''Content-Type''': '''application/json'''} __lowercase = requests.post(lowercase , json={'''text''': message_body} , headers=lowercase ) if response.status_code != 200: __lowercase = ( '''Request to slack returned an error ''' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
210
1
"""simple docstring""" from math import ceil def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 1001 ): '''simple docstring''' lowercase_ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowercase_ = 2 * i + 1 lowercase_ = 2 * i lowercase_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: SCREAMING_SNAKE_CASE__ = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
352
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
0
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): UpperCamelCase = 4_2 class __UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @register_to_config def __init__( self : Optional[int], __A : int = 3_2, __A : int = 6_4, __A : int = 2_0, __A : int = 7_6_8, __A : int=7_7, __A : Tuple=4, __A : float = 0.0, __A : str = "silu", __A : Optional[str] = None, __A : Optional[str] = None, __A : Optional[str] = "linear", __A : Optional[str] = "prd", __A : Optional[int] = None, __A : Optional[int] = None, __A : Optional[int] = None, ): super().__init__() UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Any = attention_head_dim UpperCAmelCase : List[str] = num_attention_heads * attention_head_dim UpperCAmelCase : int = additional_embeddings UpperCAmelCase : Optional[Any] = time_embed_dim or inner_dim UpperCAmelCase : Dict = embedding_proj_dim or embedding_dim UpperCAmelCase : Tuple = clip_embed_dim or embedding_dim UpperCAmelCase : Union[str, Any] = Timesteps(_a, _a, 0 ) UpperCAmelCase : Tuple = TimestepEmbedding(_a, _a, out_dim=_a, act_fn=_a ) UpperCAmelCase : int = nn.Linear(_a, _a ) if embedding_proj_norm_type is None: UpperCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": UpperCAmelCase : Dict = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase : List[str] = nn.Linear(_a, _a ) if encoder_hid_proj_type is None: UpperCAmelCase : List[Any] = None elif encoder_hid_proj_type == "linear": UpperCAmelCase : List[Any] = nn.Linear(_a, _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase : str = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, _a ) ) if added_emb_type == "prd": UpperCAmelCase : Optional[Any] = nn.Parameter(torch.zeros(1, 1, _a ) ) elif added_emb_type is None: UpperCAmelCase : List[Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase : int = nn.ModuleList( [ BasicTransformerBlock( _a, _a, _a, dropout=_a, activation_fn='''gelu''', attention_bias=_a, ) for d in range(_a ) ] ) if norm_in_type == "layer": UpperCAmelCase : List[Any] = nn.LayerNorm(_a ) elif norm_in_type is None: UpperCAmelCase : Dict = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase : List[Any] = nn.LayerNorm(_a ) UpperCAmelCase : Tuple = nn.Linear(_a, _a ) UpperCAmelCase : int = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase : List[str] = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''', _a, persistent=_a ) UpperCAmelCase : Optional[Any] = nn.Parameter(torch.zeros(1, _a ) ) UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(1, _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Union[str, Any] = {} def fn_recursive_add_processors(__A : str, __A : torch.nn.Module, __A : Dict[str, AttentionProcessor] ): if hasattr(_a, '''set_processor''' ): UpperCAmelCase : Union[str, Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''', _a, _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a, _a, _a ) return processors def __magic_name__ ( self : int, __A : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): UpperCAmelCase : List[str] = len(self.attn_processors.keys() ) if isinstance(_a, _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__A : str, __A : torch.nn.Module, __A : int ): if hasattr(_a, '''set_processor''' ): if not isinstance(_a, _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''', _a, _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a, _a, _a ) def __magic_name__ ( self : Tuple ): self.set_attn_processor(AttnProcessor() ) def __magic_name__ ( self : int, __A : Any, __A : Union[torch.Tensor, float, int], __A : torch.FloatTensor, __A : Optional[torch.FloatTensor] = None, __A : Optional[torch.BoolTensor] = None, __A : bool = True, ): UpperCAmelCase : List[Any] = hidden_states.shape[0] UpperCAmelCase : List[Any] = timestep if not torch.is_tensor(_a ): UpperCAmelCase : Dict = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: UpperCAmelCase : Optional[int] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase : Optional[Any] = timesteps * torch.ones(_a, dtype=timesteps.dtype, device=timesteps.device ) UpperCAmelCase : List[str] = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase : List[str] = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase : Dict = self.time_embedding(_a ) if self.embedding_proj_norm is not None: UpperCAmelCase : List[str] = self.embedding_proj_norm(_a ) UpperCAmelCase : Optional[int] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase : Any = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) UpperCAmelCase : Optional[Any] = self.proj_in(_a ) UpperCAmelCase : Union[str, Any] = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase : Any = [] UpperCAmelCase : str = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase : Dict = hidden_states[:, None, :] UpperCAmelCase : Any = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase : Dict = self.prd_embedding.to(hidden_states.dtype ).expand(_a, -1, -1 ) additional_embeds.append(_a ) UpperCAmelCase : Optional[Any] = torch.cat( _a, dim=1, ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase : Union[str, Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase : Any = F.pad( _a, ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ), value=0.0, ) UpperCAmelCase : Tuple = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 UpperCAmelCase : List[Any] = F.pad(_a, (0, self.additional_embeddings), value=0.0 ) UpperCAmelCase : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase : List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0 ) if self.norm_in is not None: UpperCAmelCase : List[str] = self.norm_in(_a ) for block in self.transformer_blocks: UpperCAmelCase : Union[str, Any] = block(_a, attention_mask=_a ) UpperCAmelCase : Union[str, Any] = self.norm_out(_a ) if self.prd_embedding is not None: UpperCAmelCase : Union[str, Any] = hidden_states[:, -1] else: UpperCAmelCase : Optional[Any] = hidden_states[:, additional_embeddings_len:] UpperCAmelCase : int = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def __magic_name__ ( self : List[Any], __A : str ): UpperCAmelCase : Optional[int] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
336
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,) -> Optional[int]: if config_name_or_path is None: __lowerCamelCase : List[Any] = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __lowerCamelCase : Optional[int] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __lowerCamelCase : Tuple = question_encoder_name_or_path __lowerCamelCase : Union[str, Any] = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __lowerCamelCase : Tuple = RagConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : List[Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Tuple = gen_config __lowerCamelCase : List[Any] = question_encoder_config __lowerCamelCase : str = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase ,_lowerCAmelCase ,config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. __lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
208
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''roformer''' def __init__( self, A=50_000, A=None, A=768, A=12, A=12, A=3_072, A="gelu", A=0.1, A=0.1, A=1_536, A=2, A=0.02, A=1E-12, A=0, A=False, A=True, **A, ): '''simple docstring''' super().__init__(pad_token_id=A, **A ) SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = rotary_value SCREAMING_SNAKE_CASE : Tuple = use_cache class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE : List[str] = {0: 'batch', 1: 'sequence'} SCREAMING_SNAKE_CASE : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
362
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = ['''pixel_values'''] def __init__( self, A = True, A = None, A = PILImageResampling.BICUBIC, A = True, A = None, A = True, A = 1 / 255, A = True, A = IMAGENET_DEFAULT_MEAN, A = IMAGENET_DEFAULT_STD, **A, ): '''simple docstring''' super().__init__(**A ) SCREAMING_SNAKE_CASE : Any = size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE : List[str] = get_size_dict(A, default_to_square=A ) SCREAMING_SNAKE_CASE : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE : int = get_size_dict(A, param_name='crop_size' ) SCREAMING_SNAKE_CASE : Any = do_resize SCREAMING_SNAKE_CASE : Dict = size SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : List[Any] = do_center_crop SCREAMING_SNAKE_CASE : Dict = crop_size SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE : Any = rescale_factor SCREAMING_SNAKE_CASE : List[Any] = do_normalize SCREAMING_SNAKE_CASE : List[str] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self, A, A, A = PILImageResampling.BICUBIC, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = get_size_dict(A, default_to_square=A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: SCREAMING_SNAKE_CASE : List[str] = int((256 / 224) * size['shortest_edge'] ) SCREAMING_SNAKE_CASE : int = get_resize_output_image_size(A, size=A, default_to_square=A ) SCREAMING_SNAKE_CASE : List[str] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( A, size=(size_dict['height'], size_dict['width']), resample=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F"Size dict must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(A, size=(size['height'], size['width']), data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A = None, **A, ): '''simple docstring''' return rescale(A, scale=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A, A = None, **A, ): '''simple docstring''' return normalize(A, mean=A, std=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = ChannelDimension.FIRST, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Optional[int] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : List[Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Any = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Dict = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : int = size if size is not None else self.size SCREAMING_SNAKE_CASE : Dict = get_size_dict(A, default_to_square=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(A, param_name='crop_size' ) SCREAMING_SNAKE_CASE : List[Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Optional[int] = [to_numpy_array(A ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : List[str] = [self.resize(A, A, A ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : List[Any] = [self.center_crop(A, A ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : List[str] = [self.rescale(A, A ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Optional[int] = [self.normalize(A, A, A ) for image in images] SCREAMING_SNAKE_CASE : List[str] = [to_channel_dimension_format(A, A ) for image in images] SCREAMING_SNAKE_CASE : Optional[int] = {'pixel_values': images} return BatchFeature(data=A, tensor_type=A )
246
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter UpperCAmelCase_ = True except ImportError: UpperCAmelCase_ = False UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=lowerCamelCase__ , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=lowerCamelCase__ , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any]=None , *_UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = testing UpperCAmelCase__ = testing_file UpperCAmelCase__ = path def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCAmelCase__ = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(lowerCamelCase__ ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) UpperCAmelCase__ = ( Path(lowerCamelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCAmelCase__ = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase__ ) ) else: with open(self._testing_file , """r""" ) as configuration_file: UpperCAmelCase__ = json.load(lowerCamelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase__ , extra_context=lowerCamelCase__ , ) UpperCAmelCase__ = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: UpperCAmelCase__ = json.load(lowerCamelCase__ ) UpperCAmelCase__ = configuration['lowercase_modelname'] UpperCAmelCase__ = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f'''{directory}/configuration.json''' ) UpperCAmelCase__ = 'PyTorch' in generate_tensorflow_pytorch_and_flax UpperCAmelCase__ = 'TensorFlow' in generate_tensorflow_pytorch_and_flax UpperCAmelCase__ = 'Flax' in generate_tensorflow_pytorch_and_flax UpperCAmelCase__ = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=lowerCamelCase__ ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , """w""" ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(_UpperCAmelCase : Optional[int] ): with open(lowerCamelCase__ , """r""" ) as f: UpperCAmelCase__ = f.readlines() with open(lowerCamelCase__ , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(_UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): # Create temp file UpperCAmelCase__ = mkstemp() UpperCAmelCase__ = False with fdopen(lowerCamelCase__ , """w""" ) as new_file: with open(lowerCamelCase__ ) as old_file: for line in old_file: new_file.write(lowerCamelCase__ ) if line_to_copy_below in line: UpperCAmelCase__ = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase__ ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase__ , lowerCamelCase__ ) # Remove original file remove(lowerCamelCase__ ) # Move new file move(lowerCamelCase__ , lowerCamelCase__ ) def skip_units(_UpperCAmelCase : Optional[Any] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(_UpperCAmelCase : Optional[Any] ): with open(lowerCamelCase__ ) as datafile: UpperCAmelCase__ = [] UpperCAmelCase__ = False UpperCAmelCase__ = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCAmelCase__ = line.split("""\"""" )[1] UpperCAmelCase__ = skip_units(lowerCamelCase__ ) elif "# Below: " in line and "##" not in line: UpperCAmelCase__ = line.split("""\"""" )[1] UpperCAmelCase__ = skip_units(lowerCamelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__ = [] elif "# Replace with" in line and "##" not in line: UpperCAmelCase__ = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase__ ) remove(lowerCamelCase__ ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(lowerCamelCase__ )
346
import os from datetime import datetime as dt from github import Github A_ :str = [ '''good first issue''', '''feature request''', '''wip''', ] def A ( ) -> Any: __UpperCamelCase : Any =Github(os.environ['GITHUB_TOKEN'] ) __UpperCamelCase : Union[str, Any] =g.get_repo('huggingface/accelerate' ) __UpperCamelCase : Tuple =repo.get_issues(state='open' ) for issue in open_issues: __UpperCamelCase : List[Any] =sorted([comment for comment in issue.get_comments()] ,key=lambda a_ : i.created_at ,reverse=a_ ) __UpperCamelCase : str =comments[0] if len(a_ ) > 0 else None __UpperCamelCase : Any =dt.utcnow() __UpperCamelCase : List[str] =(current_time - issue.updated_at).days __UpperCamelCase : Union[str, Any] =(current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
71
0
'''simple docstring''' import math import sys import cva import numpy as np def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> np.ndarray: # For applying gaussian function for each element in matrix. _snake_case = math.sqrt(__A ) _snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> np.ndarray: _snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> np.ndarray: # Creates a gaussian kernel of given dimension. _snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __A ): for j in range(0 , __A ): _snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__A , __A ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , ) -> np.ndarray: _snake_case = np.zeros(img.shape ) _snake_case = get_gauss_kernel(__A , __A ) _snake_case , _snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _snake_case = get_slice(__A , __A , __A , __A ) _snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] _snake_case = vec_gaussian(__A , __A ) _snake_case = np.multiply(__A , __A ) _snake_case = np.multiply(__A , __A ) _snake_case = np.sum(__A ) / np.sum(__A ) _snake_case = val return imga def SCREAMING_SNAKE_CASE__ ( __A ) -> tuple: _snake_case = args[1] if args[1:] else '../image_data/lena.jpg' _snake_case = float(args[2] ) if args[2:] else 1.0 _snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: _snake_case = int(args[4] ) _snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: _snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowercase , lowercase , lowercase , lowercase : int = parse_args(sys.argv) lowercase : Optional[Any] = cva.imread(filename, 0) cva.imshow("input image", img) lowercase : Union[str, Any] = img / 255 lowercase : Tuple = out.astype("float32") lowercase : str = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowercase : Any = out * 255 lowercase : Union[str, Any] = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
160
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : List[str] = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """marian""" __lowercase = ["""past_key_values"""] __lowercase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase_=5_81_01 , lowerCAmelCase_=None , lowerCAmelCase_=10_24 , lowerCAmelCase_=12 , lowerCAmelCase_=40_96 , lowerCAmelCase_=16 , lowerCAmelCase_=12 , lowerCAmelCase_=40_96 , lowerCAmelCase_=16 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_="gelu" , lowerCAmelCase_=10_24 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=5_81_00 , lowerCAmelCase_=False , lowerCAmelCase_=5_81_00 , lowerCAmelCase_=0 , lowerCAmelCase_=0 , lowerCAmelCase_=True , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = vocab_size _snake_case = decoder_vocab_size or vocab_size _snake_case = max_position_embeddings _snake_case = d_model _snake_case = encoder_ffn_dim _snake_case = encoder_layers _snake_case = encoder_attention_heads _snake_case = decoder_ffn_dim _snake_case = decoder_layers _snake_case = decoder_attention_heads _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = activation_function _snake_case = init_std _snake_case = encoder_layerdrop _snake_case = decoder_layerdrop _snake_case = use_cache _snake_case = encoder_layers _snake_case = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , forced_eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , ) class __UpperCAmelCase ( _lowerCamelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCamelCase ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _snake_case = {0: 'batch'} _snake_case = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'decoder_sequence'} _snake_case = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _snake_case = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _snake_case , _snake_case = self.num_layers for i in range(lowerCAmelCase_ ): _snake_case = {0: 'batch', 2: 'past_sequence + sequence'} _snake_case = {0: 'batch', 2: 'past_sequence + sequence'} else: _snake_case = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCamelCase ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case = super().outputs else: _snake_case = super(lowerCAmelCase_ , self ).outputs if self.use_past: _snake_case , _snake_case = self.num_layers for i in range(lowerCAmelCase_ ): _snake_case = {0: 'batch', 2: 'past_sequence + sequence'} _snake_case = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Generate decoder inputs _snake_case = seq_length if not self.use_past else 1 _snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _snake_case = dict(**lowerCAmelCase_ , **lowerCAmelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape _snake_case = common_inputs['decoder_input_ids'].shape[1] _snake_case , _snake_case = self.num_attention_heads _snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _snake_case = decoder_seq_length + 3 _snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _snake_case = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ )] , dim=1 ) _snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _snake_case , _snake_case = self.num_layers _snake_case = min(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = max(lowerCAmelCase_ , lowerCAmelCase_ ) - min_num_layers _snake_case = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ ), ) ) # TODO: test this. _snake_case = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase_ , lowerCAmelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) ) return common_inputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case , _snake_case = self.num_layers _snake_case , _snake_case = self.num_attention_heads _snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _snake_case = common_inputs['attention_mask'].dtype _snake_case = torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(lowerCAmelCase_ ) ] return common_inputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _snake_case = tokenizer.num_special_tokens_to_add(lowerCAmelCase_ ) _snake_case = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_ ) # Generate dummy inputs according to compute batch and sequence _snake_case = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _snake_case = dict(tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) ) return common_inputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) else: _snake_case = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) return common_inputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case = super()._flatten_past_key_values_(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: _snake_case = super(lowerCAmelCase_ , self )._flatten_past_key_values_( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @property def lowerCamelCase ( self ): """simple docstring""" return 1E-4
160
1
"""simple docstring""" from collections import Counter from timeit import timeit def lowerCamelCase__ ( __snake_case = "", ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(''' ''', '''''' ).lower() ).values() ) < 2 def lowerCamelCase__ ( __snake_case = "" ) -> bool: """simple docstring""" if len(__snake_case ) == 0: return True _UpperCamelCase = input_str.replace(''' ''', '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCamelCase = {} for character in lower_case_input_str: _UpperCamelCase = character_freq_dict.get(__snake_case, 0 ) + 1 _UpperCamelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCamelCase__ ( __snake_case = "" ) -> None: """simple docstring""" print('''\nFor string = ''', __snake_case, ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''', '''\tans =''', can_string_be_rearranged_as_palindrome_counter(__snake_case ), '''\ttime =''', timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''', setup='''import __main__ as z''', ), '''seconds''', ) print( '''> can_string_be_rearranged_as_palindrome()''', '''\tans =''', can_string_be_rearranged_as_palindrome(__snake_case ), '''\ttime =''', timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''', setup='''import __main__ as z''', ), '''seconds''', ) if __name__ == "__main__": _a = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _a = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
194
"""simple docstring""" import datasets _a = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ _a = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ _a = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase( datasets.Metric ): def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32'''), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32'''), }) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' return {"accuracy": simple_accuracy(__a , __a)}
194
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase ={ "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["ChineseCLIPFeatureExtractor"] __UpperCAmelCase =["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
237
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase =get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[Any] =DebertaVaTokenizer lowerCamelCase : Optional[int] =DebertaVaTokenizerFast lowerCamelCase : Optional[Any] =True lowerCamelCase : Tuple =True def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = DebertaVaTokenizer(a , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Dict ): """simple docstring""" __lowerCamelCase = '''this is a test''' __lowerCamelCase = '''this is a test''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = '''<pad>''' __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(a ) , 3_00_01 ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = ''' \tHeLLo!how \n Are yoU? ''' __lowerCamelCase = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on __lowerCamelCase = DebertaVaTokenizer(a , do_lower_case=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __lowerCamelCase = DebertaVaTokenizerFast(a , do_lower_case=a ) __lowerCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = '''I was born in 92000, and this is falsé.''' __lowerCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __lowerCamelCase = DebertaVaTokenizer(a , split_by_punct=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __lowerCamelCase = DebertaVaTokenizerFast(a , split_by_punct=a ) __lowerCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = '''I was born in 92000, and this is falsé.''' __lowerCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __lowerCamelCase = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __lowerCamelCase = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a ) __lowerCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = '''I was born in 92000, and this is falsé.''' __lowerCamelCase = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __lowerCamelCase = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __lowerCamelCase = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a ) __lowerCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = '''I was born in 92000, and this is falsé.''' __lowerCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __lowerCamelCase = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __lowerCamelCase = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a ) __lowerCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = ''' \tHeLLo!how \n Are yoU? ''' __lowerCamelCase = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on __lowerCamelCase = DebertaVaTokenizer(a , do_lower_case=a , split_by_punct=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __lowerCamelCase = DebertaVaTokenizerFast(a , do_lower_case=a , split_by_punct=a ) __lowerCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = '''I was born in 92000, and this is falsé.''' __lowerCamelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(a , add_special_tokens=a ) ) __lowerCamelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(a , add_special_tokens=a ) ) self.assertListEqual(a , a ) __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a ) __lowerCamelCase = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(a ) __lowerCamelCase = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = '''This is a test''' __lowerCamelCase = [13, 1, 43_98, 25, 21, 12_89] __lowerCamelCase = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __lowerCamelCase = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __lowerCamelCase = DebertaVaTokenizer(a , keep_accents=a ) __lowerCamelCase = DebertaVaTokenizerFast(a , keep_accents=a ) __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __lowerCamelCase = tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual(a , a ) __lowerCamelCase = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __lowerCamelCase = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase = rust_tokenizer.convert_ids_to_tokens(a ) self.assertListEqual(a , a ) # fmt: off __lowerCamelCase = '''I was born in 92000, and this is falsé.''' __lowerCamelCase = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] __lowerCamelCase = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] __lowerCamelCase = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __lowerCamelCase = tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual(a , a ) __lowerCamelCase = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) __lowerCamelCase = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase = rust_tokenizer.convert_ids_to_tokens(a ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = DebertaVaTokenizer(a ) __lowerCamelCase = tokenizer.encode('''sequence builders''' ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a , a ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , a ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , a , ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = {'''input_ids''': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
237
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging snake_case_ : str = '\\n\n' snake_case_ : str = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' snake_case_ : List[str] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) ,reference_urls=['https://huggingface.co/docs/transformers/perplexity'] ,) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 16 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : int=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCamelCase : int = 'cuda' else: _UpperCamelCase : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' _UpperCamelCase : Dict = AutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Dict = model.to(lowerCamelCase__ ) _UpperCamelCase : int = AutoTokenizer.from_pretrained(lowerCamelCase__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCamelCase : List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowerCamelCase__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCamelCase : List[Any] = model.config.max_length - 1 else: _UpperCamelCase : Tuple = model.config.max_length _UpperCamelCase : Tuple = tokenizer( lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors='pt' ,return_attention_mask=lowerCamelCase__ ,).to(lowerCamelCase__ ) _UpperCamelCase : str = encodings['input_ids'] _UpperCamelCase : int = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCamelCase : List[Any] = [] _UpperCamelCase : Dict = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 ,len(lowerCamelCase__ ) ,lowerCamelCase__ ) ): _UpperCamelCase : str = min(start_index + batch_size ,len(lowerCamelCase__ ) ) _UpperCamelCase : Tuple = encoded_texts[start_index:end_index] _UpperCamelCase : List[str] = attn_masks[start_index:end_index] if add_start_token: _UpperCamelCase : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCamelCase__ ) _UpperCamelCase : List[Any] = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 ) _UpperCamelCase : Tuple = torch.cat( [torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(lowerCamelCase__ ), attn_mask] ,dim=1 ) _UpperCamelCase : Tuple = encoded_batch with torch.no_grad(): _UpperCamelCase : Any = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ).logits _UpperCamelCase : Dict = out_logits[..., :-1, :].contiguous() _UpperCamelCase : List[str] = labels[..., 1:].contiguous() _UpperCamelCase : Optional[int] = attn_mask[..., 1:].contiguous() _UpperCamelCase : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 ,2 ) ,lowerCamelCase__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCamelCase__ )}
83
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a__: def __init__( self : Tuple ): a : Optional[int] = '' a : Optional[Any] = '' a : str = [] a : int = 0 a : str = 2_56 a : Union[str, Any] = 0 a : Any = 0 a : Optional[int] = 0 a : List[str] = 0 def lowercase_ ( self : str , __snake_case : str ): a : Any = cva.imread(__snake_case , 0 ) a : Optional[Any] = copy.deepcopy(self.img ) a , a , a : int = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) a : Optional[int] = np.sum(__snake_case ) for i in range(len(__snake_case ) ): a : Optional[Any] = x[i] / self.k self.sk += prk a : str = (self.L - 1) * self.sk if self.rem != 0: a : Optional[int] = int(last % last ) a : int = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__snake_case ) a : str = int(np.ma.count(self.img ) / self.img[1].size ) a : Optional[int] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): a : Any = self.img[j][i] if num != self.last_list[num]: a : str = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def lowercase_ ( self : Dict ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def lowercase_ ( self : List[Any] ): cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase: Optional[Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase: Tuple = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
297
0
UpperCamelCase_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCamelCase_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = True UpperCAmelCase_ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) order.append(__UpperCAmelCase ) return order def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = True UpperCAmelCase_ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return component def A ( __UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) * [False] UpperCAmelCase_ = {vert: [] for vert in range(len(__UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__UpperCAmelCase ) UpperCAmelCase_ = [] for i, was_visited in enumerate(__UpperCAmelCase ): if not was_visited: order += topology_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = [] UpperCAmelCase_ = len(__UpperCAmelCase ) * [False] for i in range(len(__UpperCAmelCase ) ): UpperCAmelCase_ = order[len(__UpperCAmelCase ) - i - 1] if not visited[vert]: UpperCAmelCase_ = find_components(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) components_list.append(__UpperCAmelCase ) return components_list
358
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Dict ={ '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _A : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets lowerCamelCase__ : List[str] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowerCamelCase__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowerCamelCase__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _UpperCAmelCase ( datasets.Metric): def __snake_case ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def __snake_case ( self , _A , _A , _A=None ) -> str: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(_A , _A , sample_weight=_A ) ), }
246
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase : List[Any] = logging.get_logger(__name__) lowercase : Union[str, Any] = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class __snake_case ( lowerCAmelCase , lowerCAmelCase ): _a : Optional[Any]= "bit" _a : Optional[Any]= ["preactivation", "bottleneck"] _a : List[Any]= ["SAME", "VALID"] def __init__( self ,snake_case=3 ,snake_case=64 ,snake_case=[256, 512, 1024, 2048] ,snake_case=[3, 4, 6, 3] ,snake_case="preactivation" ,snake_case="relu" ,snake_case=None ,snake_case=32 ,snake_case=0.0 ,snake_case=False ,snake_case=32 ,snake_case=1 ,snake_case=None ,snake_case=None ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowercase : Tuple = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) lowercase : Union[str, Any] = num_channels lowercase : Optional[Any] = embedding_size lowercase : Optional[int] = hidden_sizes lowercase : Union[str, Any] = depths lowercase : List[str] = layer_type lowercase : Optional[Any] = hidden_act lowercase : List[Any] = global_padding lowercase : Union[str, Any] = num_groups lowercase : Dict = drop_path_rate lowercase : Tuple = embedding_dynamic_padding lowercase : Optional[int] = output_stride lowercase : str = width_factor lowercase : Optional[int] = ["""stem"""] + [f"stage{idx}" for idx in range(1 ,len(snake_case ) + 1 )] lowercase : List[Any] = get_aligned_output_features_output_indices( out_features=snake_case ,out_indices=snake_case ,stage_names=self.stage_names )
351
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = tempfile.mkdtemp() lowercase : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] lowercase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase : Any = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], """do_convert_rgb""": True, } lowercase : List[str] = os.path.join(self.tmpdirname ,snake_case ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowercase : str = [Image.fromarray(np.moveaxis(snake_case ,0 ,-1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.get_tokenizer() lowercase : Dict = self.get_rust_tokenizer() lowercase : Union[str, Any] = self.get_image_processor() lowercase : Optional[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowercase : Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=snake_case ) lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowercase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,snake_case ) self.assertIsInstance(processor_fast.tokenizer ,snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,snake_case ) self.assertIsInstance(processor_fast.image_processor ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : int = self.get_tokenizer(cls_token="""(CLS)""" ,sep_token="""(SEP)""" ) lowercase : Dict = self.get_image_processor(do_normalize=snake_case ) lowercase : Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname ,cls_token="""(CLS)""" ,sep_token="""(SEP)""" ,do_normalize=snake_case ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,snake_case ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_image_processor() lowercase : List[str] = self.get_tokenizer() lowercase : Optional[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : Optional[int] = self.prepare_image_inputs() lowercase : Tuple = image_processor(snake_case ,return_tensors="""np""" ) lowercase : Optional[int] = processor(images=snake_case ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_image_processor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Any = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : Any = """Alexandra,T-shirt的价格是15便士。""" lowercase : int = processor(text=snake_case ) lowercase : Dict = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.get_image_processor() lowercase : Optional[Any] = self.get_tokenizer() lowercase : Dict = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : List[str] = """Alexandra,T-shirt的价格是15便士。""" lowercase : Any = self.prepare_image_inputs() lowercase : Optional[Any] = processor(text=snake_case ,images=snake_case ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.get_image_processor() lowercase : str = self.get_tokenizer() lowercase : Dict = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : Any = processor.batch_decode(snake_case ) lowercase : str = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.get_image_processor() lowercase : Dict = self.get_tokenizer() lowercase : List[Any] = ChineseCLIPProcessor(tokenizer=snake_case ,image_processor=snake_case ) lowercase : str = """Alexandra,T-shirt的价格是15便士。""" lowercase : Optional[Any] = self.prepare_image_inputs() lowercase : Dict = processor(text=snake_case ,images=snake_case ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
285
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=6 , _UpperCAmelCase=17 , _UpperCAmelCase=23 , _UpperCAmelCase=11 , _UpperCAmelCase=True , ): __a : str = parent __a : Any = batch_size __a : Any = seq_length __a : Optional[int] = act_dim __a : Any = state_dim __a : str = hidden_size __a : List[str] = max_length __a : Dict = is_training def _lowerCamelCase ( self ): __a : Dict = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __a : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __a : int = floats_tensor((self.batch_size, self.seq_length, 1) ) __a : List[str] = floats_tensor((self.batch_size, self.seq_length, 1) ) __a : Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) __a : str = random_attention_mask((self.batch_size, self.seq_length) ) __a : Dict = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _lowerCamelCase ( self ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : Union[str, Any] = DecisionTransformerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _lowerCamelCase ( self ): __a : Optional[Any] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : List[str] = config_and_inputs __a : Dict = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (DecisionTransformerModel,) if is_torch_available() else () __lowerCAmelCase = () __lowerCAmelCase = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCAmelCase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : str = DecisionTransformerModelTester(self ) __a : Any = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = DecisionTransformerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _lowerCamelCase ( self ): __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Optional[int] = model_class(_UpperCAmelCase ) __a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[int] = [*signature.parameters.keys()] __a : Union[str, Any] = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(_UpperCAmelCase )] , _UpperCAmelCase ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : Dict = 2 # number of steps of autoregressive prediction we will perform __a : List[str] = 10 # defined by the RL environment, may be normalized __a : Union[str, Any] = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) __a : str = model.to(_UpperCAmelCase ) __a : str = model.config torch.manual_seed(0 ) __a : List[str] = torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ) # env.reset() __a : List[str] = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=_UpperCAmelCase ) __a : str = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __a : str = state __a : List[Any] = torch.zeros(1 , 0 , config.act_dim , device=_UpperCAmelCase , dtype=torch.floataa ) __a : List[Any] = torch.zeros(1 , 0 , device=_UpperCAmelCase , dtype=torch.floataa ) __a : int = torch.tensor(0 , device=_UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_UpperCAmelCase ): __a : Optional[int] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_UpperCAmelCase )] , dim=1 ) __a : Any = torch.cat([rewards, torch.zeros(1 , 1 , device=_UpperCAmelCase )] , dim=1 ) __a : Any = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __a , __a , __a : int = model( states=_UpperCAmelCase , actions=_UpperCAmelCase , rewards=_UpperCAmelCase , returns_to_go=_UpperCAmelCase , timesteps=_UpperCAmelCase , attention_mask=_UpperCAmelCase , return_dict=_UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __a , __a , __a , __a : Dict = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) __a : int = action_pred[0, -1] __a : int = torch.cat([states, state] , dim=1 ) __a : Any = returns_to_go[0, -1] - reward __a : Dict = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __a : Optional[Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=_UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
160
1
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( a ): def __init__( self : Any , _snake_case : VQModel , _snake_case : UNetaDModel , _snake_case : DDIMScheduler): """simple docstring""" super().__init__() self.register_modules(vqvae=_snake_case , unet=_snake_case , scheduler=_snake_case) @torch.no_grad() def __call__( self : List[str] , _snake_case : int = 1 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : float = 0.0 , _snake_case : int = 50 , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_snake_case , ) UpperCAmelCase_ = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_snake_case) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) UpperCAmelCase_ = {} if accepts_eta: UpperCAmelCase_ = eta for t in self.progress_bar(self.scheduler.timesteps): UpperCAmelCase_ = self.scheduler.scale_model_input(_snake_case , _snake_case) # predict the noise residual UpperCAmelCase_ = self.unet(_snake_case , _snake_case).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample # decode the image latents with the VAE UpperCAmelCase_ = self.vqvae.decode(_snake_case).sample UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(_snake_case) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case)
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
7
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : str=True ): model.train() A__ = model(_lowerCamelCase ) A__ = F.mse_loss(_lowerCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=False ): set_seed(42 ) A__ = RegressionModel() A__ = deepcopy(_lowerCamelCase ) A__ = RegressionDataset(length=80 ) A__ = DataLoader(_lowerCamelCase , batch_size=16 ) model.to(accelerator.device ) if sched: A__ = AdamW(params=model.parameters() , lr=1e-3 ) A__ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) A__ = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase : epoch**0.6_5 ) A__ = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase : epoch**0.6_5 ) # Make a copy of `model` if sched: A__, A__, A__, A__ = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: A__, A__ = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def UpperCamelCase ( _lowerCamelCase : Tuple ): # Test when on a single CPU or GPU that the context manager does nothing A__, A__, A__ = get_training_setup(_lowerCamelCase ) # Use a single batch A__, A__ = next(iter(_lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A__, A__ = accelerator.gather((ddp_input, ddp_target) ) A__, A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A__ = ddp_input[torch.randperm(len(_lowerCamelCase ) )] def UpperCamelCase ( _lowerCamelCase : List[str] ): # Test on distributed setup that context manager behaves properly A__, A__, A__ = get_training_setup(_lowerCamelCase ) # Use a single batch A__, A__ = next(iter(_lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A__, A__ = accelerator.gather((ddp_input, ddp_target) ) A__, A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A__ = ddp_input[torch.randperm(len(_lowerCamelCase ) )] def UpperCamelCase ( _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[int]=False ): A__ = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A__, A__, A__ = get_training_setup(_lowerCamelCase ) for iteration, batch in enumerate(_lowerCamelCase ): A__, A__ = batch.values() # Gather the distributed inputs and targs for the base model A__, A__ = accelerator.gather((ddp_input, ddp_target) ) A__, A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A__ = ddp_input[torch.randperm(len(_lowerCamelCase ) )] GradientState._reset_state() def UpperCamelCase ( _lowerCamelCase : int=False , _lowerCamelCase : str=False ): A__ = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A__, A__, A__, A__, A__, A__, A__ = get_training_setup(_lowerCamelCase , _lowerCamelCase ) for iteration, batch in enumerate(_lowerCamelCase ): A__, A__ = batch.values() # Gather the distributed inputs and targs for the base model A__, A__ = accelerator.gather((ddp_input, ddp_target) ) A__, A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" A__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def UpperCamelCase ( ): A__ = Accelerator() A__ = RegressionDataset(length=80 ) A__ = DataLoader(_lowerCamelCase , batch_size=16 ) A__ = RegressionDataset(length=96 ) A__ = DataLoader(_lowerCamelCase , batch_size=16 ) A__, A__ = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCamelCase ) if iteration < len(_lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCamelCase ) if batch_num < len(_lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def UpperCamelCase ( ): A__ = Accelerator() A__ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
237
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class UpperCAmelCase : __lowercase = 42 __lowercase = None @staticmethod def UpperCAmelCase_ ( )-> Dict: raise NotImplementedError def UpperCAmelCase_ ( self :List[Any] , lowercase_ :str , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> str: raise NotImplementedError def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :int )-> Any: raise NotImplementedError def UpperCAmelCase_ ( self :List[Any] )-> Optional[Any]: if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def UpperCAmelCase_ ( cls :int )-> Any: return F"`pip install {cls.pip_package or cls.name}`" class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """optuna""" @staticmethod def UpperCAmelCase_ ( )-> int: return is_optuna_available() def UpperCAmelCase_ ( self :List[str] , lowercase_ :str , lowercase_ :int , lowercase_ :str , **lowercase_ :List[Any] )-> Tuple: return run_hp_search_optuna(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :str , lowercase_ :Optional[int] )-> Optional[Any]: return default_hp_space_optuna(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """ray""" __lowercase = """'ray[tune]'""" @staticmethod def UpperCAmelCase_ ( )-> str: return is_ray_available() def UpperCAmelCase_ ( self :int , lowercase_ :Dict , lowercase_ :int , lowercase_ :str , **lowercase_ :List[str] )-> int: return run_hp_search_ray(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Dict )-> int: return default_hp_space_ray(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """sigopt""" @staticmethod def UpperCAmelCase_ ( )-> Union[str, Any]: return is_sigopt_available() def UpperCAmelCase_ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> Dict: return run_hp_search_sigopt(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Optional[int] )-> List[str]: return default_hp_space_sigopt(lowercase_ ) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """wandb""" @staticmethod def UpperCAmelCase_ ( )-> List[str]: return is_wandb_available() def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] , lowercase_ :int , lowercase_ :str , **lowercase_ :Dict )-> List[str]: return run_hp_search_wandb(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :str )-> Dict: return default_hp_space_wandb(lowercase_ ) __lowerCAmelCase : int ={ HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase ( ): A__ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_lowerCamelCase ) > 0: A__ = available_backends[0].name if len(_lowerCamelCase ) > 1: logger.info( F"{len(_lowerCamelCase )} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
237
1
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __lowerCAmelCase ( UpperCamelCase__ = "isbn/0140328726" ) -> dict: __lowerCamelCase = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __lowerCamelCase = f"""{olid} is not a valid Open Library olid""" raise ValueError(__lowerCAmelCase ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def __lowerCAmelCase ( UpperCamelCase__ ) -> dict: __lowerCamelCase = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __lowerCamelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __lowerCamelCase = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __lowerCamelCase = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowerCamelCase = ''', '''.join(__lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __UpperCAmelCase =input("\nEnter the ISBN code to search (or \'quit\' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: __UpperCAmelCase =summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print("\n".join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
362
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class a__ : def __init__( self : List[Any] , a : Tuple , a : int , a : int ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __lowerCamelCase = img __lowerCamelCase = img.shape[1] __lowerCamelCase = img.shape[0] __lowerCamelCase = dst_width __lowerCamelCase = dst_height __lowerCamelCase = self.src_w / self.dst_w __lowerCamelCase = self.src_h / self.dst_h __lowerCamelCase = __lowerCamelCase = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCamelCase = self.img[self.get_y(a )][self.get_x(a )] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int ): """simple docstring""" return int(self.ratio_x * x ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : int ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": __UpperCAmelCase , __UpperCAmelCase =8_0_0, 6_0_0 __UpperCAmelCase =imread("image_data/lena.jpg", 1) __UpperCAmelCase =NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
237
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A_ ( __A , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Optional[Any] = XLMTokenizer _UpperCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) lowercase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = """lower newer""" lowercase = """lower newer""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): lowercase = XLMTokenizer(self.vocab_file , self.merges_file ) lowercase = """lower""" lowercase = ["""low""", """er</w>"""] lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) lowercase = tokens + ["""<unk>"""] lowercase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCamelCase ) lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCamelCase ) lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
195
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCAmelCase ( a_ , a_ ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
344
0
import mpmath # for roots of unity import numpy as np class __UpperCAmelCase : def __init__( self : Dict, __A : Optional[int]=None, __A : Any=None ): # Input as list UpperCAmelCase : Union[str, Any] = list(poly_a or [0] )[:] UpperCAmelCase : Union[str, Any] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCAmelCase : Optional[Any] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCAmelCase : Any = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCAmelCase : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCAmelCase : Tuple = complex(mpmath.root(x=1, n=self.c_max_length, k=1 ) ) # The product UpperCAmelCase : str = self.__multiply() def __magic_name__ ( self : Tuple, __A : List[str] ): UpperCAmelCase : str = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(a__ ) <= 1: return dft[0] # UpperCAmelCase : Optional[int] = self.c_max_length // 2 while next_ncol > 0: UpperCAmelCase : Dict = [[] for i in range(a__ )] UpperCAmelCase : List[str] = self.root**next_ncol # First half of next step UpperCAmelCase : Tuple = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCAmelCase : List[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCAmelCase : Dict = new_dft UpperCAmelCase : Dict = next_ncol // 2 return dft[0] def __magic_name__ ( self : Any ): UpperCAmelCase : Any = self.__dft('''A''' ) UpperCAmelCase : Optional[Any] = self.__dft('''B''' ) UpperCAmelCase : List[str] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCAmelCase : Optional[int] = 2 while next_ncol <= self.c_max_length: UpperCAmelCase : int = [[] for i in range(a__ )] UpperCAmelCase : str = self.root ** (next_ncol // 2) UpperCAmelCase : Dict = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCAmelCase : Any = new_inverse_c next_ncol *= 2 # Unpack UpperCAmelCase : Any = [round(x[0].real, 8 ) + round(x[0].imag, 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Optional[int] ): UpperCAmelCase : Any = '''A = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCAmelCase : str = '''B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCAmelCase : Optional[Any] = '''A*B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
364
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : Any, __A : Optional[int]=1_3, __A : Any=7, __A : Tuple=True, __A : int=True, __A : Dict=True, __A : Union[str, Any]=True, __A : Optional[int]=9_9, __A : Optional[int]=3_2, __A : Union[str, Any]=5, __A : Optional[int]=4, __A : str=3_7, __A : Union[str, Any]="gelu", __A : Optional[int]=0.1, __A : Optional[Any]=0.1, __A : Any=5_1_2, __A : List[str]=1_6, __A : Optional[int]=2, __A : Union[str, Any]=0.0_2, __A : Optional[int]=False, __A : List[str]=True, __A : int="None", __A : List[str]=3, __A : Any=4, __A : Dict=None, ): UpperCAmelCase : str = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Dict = use_input_mask UpperCAmelCase : Optional[Any] = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : Dict = num_labels UpperCAmelCase : Optional[Any] = num_choices UpperCAmelCase : str = relative_attention UpperCAmelCase : Any = position_biased_input UpperCAmelCase : str = pos_att_type UpperCAmelCase : Union[str, Any] = scope def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase : int = None if self.use_input_mask: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase : List[str] = None UpperCAmelCase : str = None UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Any ): return DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def __magic_name__ ( self : Dict, __A : str ): self.parent.assertListEqual(list(result.loss.size() ), [] ) def __magic_name__ ( self : List[str], __A : Dict, __A : int, __A : str, __A : List[str], __A : Dict, __A : str, __A : int ): UpperCAmelCase : Optional[int] = DebertaVaModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, attention_mask=__A, token_type_ids=__A )[0] UpperCAmelCase : Optional[int] = model(__A, token_type_ids=__A )[0] UpperCAmelCase : int = model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ), [self.batch_size, self.seq_length, self.hidden_size] ) def __magic_name__ ( self : Dict, __A : Union[str, Any], __A : Optional[Any], __A : Tuple, __A : Optional[int], __A : List[Any], __A : List[Any], __A : Optional[int] ): UpperCAmelCase : int = DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : List[str], __A : str, __A : Optional[Any], __A : List[str], __A : Optional[int], __A : List[Any], __A : int, __A : Optional[int] ): UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertListEqual(list(result.logits.size() ), [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def __magic_name__ ( self : Any, __A : Tuple, __A : Any, __A : str, __A : List[Any], __A : Dict, __A : Optional[Any], __A : List[str] ): UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : int = DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Tuple, __A : List[str], __A : Tuple, __A : Tuple, __A : int, __A : Optional[Any], __A : Tuple, __A : Any ): UpperCAmelCase : Union[str, Any] = DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Any = model( __A, attention_mask=__A, token_type_ids=__A, start_positions=__A, end_positions=__A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Dict, __A : Optional[int], __A : str, __A : List[str], __A : Dict, __A : Optional[Any], __A : Union[str, Any], __A : int ): UpperCAmelCase : Union[str, Any] = DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase : int = model( __A, attention_mask=__A, token_type_ids=__A, labels=__A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : str = DebertaVaModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self, config_class=__A, hidden_size=3_7 ) def __magic_name__ ( self : Any ): self.config_tester.run_common_tests() def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def __magic_name__ ( self : Any ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def __magic_name__ ( self : Dict ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def __magic_name__ ( self : str ): pass @slow def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) UpperCAmelCase : Union[str, Any] = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase : List[str] = model(__A, attention_mask=__A )[0] # compare the actual values for a slice. UpperCAmelCase : List[str] = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], __A, atol=1E-4 ), F'''{output[:, 1:4, 1:4]}''' )
99
0
'''simple docstring''' from __future__ import annotations import numpy as np def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase , UpperCAmelCase : Any = np.shape(UpperCamelCase__ ) if rows != columns: UpperCAmelCase : Any = ( """\'table\' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(UpperCamelCase__ ) UpperCAmelCase : int = np.zeros((rows, columns) ) UpperCAmelCase : List[str] = np.zeros((rows, columns) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): UpperCAmelCase : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) UpperCAmelCase : Optional[int] = (table[i][j] - total) / upper[j][j] UpperCAmelCase : List[Any] = 1 for j in range(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase : List[str] = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) UpperCAmelCase : List[str] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
265
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) # General docstring _UpperCAmelCase : Dict = """ResNetConfig""" # Base docstring _UpperCAmelCase : Optional[int] = """microsoft/resnet-50""" _UpperCAmelCase : Optional[Any] = [1, 2048, 7, 7] # Image classification docstring _UpperCAmelCase : Tuple = """microsoft/resnet-50""" _UpperCAmelCase : int = """tiger cat""" _UpperCAmelCase : Optional[Any] = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case = 3 , snake_case = 1 , snake_case = "relu" ): super().__init__() snake_case_ = nn.Convad( snake_case , snake_case , kernel_size=snake_case , stride=snake_case , padding=kernel_size // 2 , bias=snake_case ) snake_case_ = nn.BatchNormad(snake_case ) snake_case_ = ACTaFN[activation] if activation is not None else nn.Identity() def a ( self , snake_case ): snake_case_ = self.convolution(snake_case ) snake_case_ = self.normalization(snake_case ) snake_case_ = self.activation(snake_case ) return hidden_state class lowercase ( nn.Module ): def __init__( self , snake_case ): super().__init__() snake_case_ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) snake_case_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) snake_case_ = config.num_channels def a ( self , snake_case ): snake_case_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) snake_case_ = self.embedder(snake_case ) snake_case_ = self.pooler(snake_case ) return embedding class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case = 2 ): super().__init__() snake_case_ = nn.Convad(snake_case , snake_case , kernel_size=1 , stride=snake_case , bias=snake_case ) snake_case_ = nn.BatchNormad(snake_case ) def a ( self , snake_case ): snake_case_ = self.convolution(snake_case ) snake_case_ = self.normalization(snake_case ) return hidden_state class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case = 1 , snake_case = "relu" ): super().__init__() snake_case_ = in_channels != out_channels or stride != 1 snake_case_ = ( ResNetShortCut(snake_case , snake_case , stride=snake_case ) if should_apply_shortcut else nn.Identity() ) snake_case_ = nn.Sequential( ResNetConvLayer(snake_case , snake_case , stride=snake_case ) , ResNetConvLayer(snake_case , snake_case , activation=snake_case ) , ) snake_case_ = ACTaFN[activation] def a ( self , snake_case ): snake_case_ = hidden_state snake_case_ = self.layer(snake_case ) snake_case_ = self.shortcut(snake_case ) hidden_state += residual snake_case_ = self.activation(snake_case ) return hidden_state class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case = 1 , snake_case = "relu" , snake_case = 4 ): super().__init__() snake_case_ = in_channels != out_channels or stride != 1 snake_case_ = out_channels // reduction snake_case_ = ( ResNetShortCut(snake_case , snake_case , stride=snake_case ) if should_apply_shortcut else nn.Identity() ) snake_case_ = nn.Sequential( ResNetConvLayer(snake_case , snake_case , kernel_size=1 ) , ResNetConvLayer(snake_case , snake_case , stride=snake_case ) , ResNetConvLayer(snake_case , snake_case , kernel_size=1 , activation=snake_case ) , ) snake_case_ = ACTaFN[activation] def a ( self , snake_case ): snake_case_ = hidden_state snake_case_ = self.layer(snake_case ) snake_case_ = self.shortcut(snake_case ) hidden_state += residual snake_case_ = self.activation(snake_case ) return hidden_state class lowercase ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case , snake_case = 2 , snake_case = 2 , ): super().__init__() snake_case_ = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer snake_case_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(snake_case , snake_case , stride=snake_case , activation=config.hidden_act ) , *[layer(snake_case , snake_case , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def a ( self , snake_case ): snake_case_ = input for layer in self.layers: snake_case_ = layer(snake_case ) return hidden_state class lowercase ( nn.Module ): def __init__( self , snake_case ): super().__init__() snake_case_ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) snake_case_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(snake_case , config.depths[1:] ): self.stages.append(ResNetStage(snake_case , snake_case , snake_case , depth=snake_case ) ) def a ( self , snake_case , snake_case = False , snake_case = True ): snake_case_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case_ = hidden_states + (hidden_state,) snake_case_ = stage_module(snake_case ) if output_hidden_states: snake_case_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=snake_case , hidden_states=snake_case , ) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : List[str] = ResNetConfig __SCREAMING_SNAKE_CASE : Any = '''resnet''' __SCREAMING_SNAKE_CASE : int = '''pixel_values''' __SCREAMING_SNAKE_CASE : Tuple = True def a ( self , snake_case ): if isinstance(snake_case , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(snake_case , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a ( self , snake_case , snake_case=False ): if isinstance(snake_case , snake_case ): snake_case_ = value _UpperCAmelCase : Tuple = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase : Optional[int] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , lowercase_ , ) class lowercase ( lowercase_ ): def __init__( self , snake_case ): super().__init__(snake_case ) snake_case_ = config snake_case_ = ResNetEmbeddings(snake_case ) snake_case_ = ResNetEncoder(snake_case ) snake_case_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self , snake_case , snake_case = None , snake_case = None ): snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = self.embedder(snake_case ) snake_case_ = self.encoder( snake_case , output_hidden_states=snake_case , return_dict=snake_case ) snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case , pooler_output=snake_case , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowercase_ , ) class lowercase ( lowercase_ ): def __init__( self , snake_case ): super().__init__(snake_case ) snake_case_ = config.num_labels snake_case_ = ResNetModel(snake_case ) # classification head snake_case_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self , snake_case = None , snake_case = None , snake_case = None , snake_case = None , ): snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = self.resnet(snake_case , output_hidden_states=snake_case , return_dict=snake_case ) snake_case_ = outputs.pooler_output if return_dict else outputs[1] snake_case_ = self.classifier(snake_case ) snake_case_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case_ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case_ = 'single_label_classification' else: snake_case_ = 'multi_label_classification' if self.config.problem_type == "regression": snake_case_ = MSELoss() if self.num_labels == 1: snake_case_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case_ = loss_fct(snake_case , snake_case ) elif self.config.problem_type == "single_label_classification": snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case_ = BCEWithLogitsLoss() snake_case_ = loss_fct(snake_case , snake_case ) if not return_dict: snake_case_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case , logits=snake_case , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , lowercase_ , ) class lowercase ( lowercase_ , lowercase_ ): def __init__( self , snake_case ): super().__init__(snake_case ) super()._init_backbone(snake_case ) snake_case_ = [config.embedding_size] + config.hidden_sizes snake_case_ = ResNetEmbeddings(snake_case ) snake_case_ = ResNetEncoder(snake_case ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case ) @replace_return_docstrings(output_type=snake_case , config_class=_CONFIG_FOR_DOC ) def a ( self , snake_case , snake_case = None , snake_case = None ): snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = self.embedder(snake_case ) snake_case_ = self.encoder(snake_case , output_hidden_states=snake_case , return_dict=snake_case ) snake_case_ = outputs.hidden_states snake_case_ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: snake_case_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=snake_case , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=snake_case , )
285
0
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int = 10_00 ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
353
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" if gpta_config_file == "": UpperCAmelCase_ : List[str] = GPTaConfig() else: UpperCAmelCase_ : int = GPTaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = GPTaModel(_SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCAmelCase_ : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase_ : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowerCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
67
0
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any],lowercase_ : VQModel,lowercase_ : UNetaDModel,lowercase_ : DDIMScheduler )-> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules(vqvae=lowercase_,unet=lowercase_,scheduler=lowercase_ ) @torch.no_grad() def __call__( self : int,lowercase_ : int = 1,lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None,lowercase_ : float = 0.0,lowercase_ : int = 5_0,lowercase_ : Optional[str] = "pil",lowercase_ : bool = True,**lowercase_ : Dict,)-> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' A__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),generator=lowercase_,) A__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowercase_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature A__ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta for t in self.progress_bar(self.scheduler.timesteps ): A__ = self.scheduler.scale_model_input(lowercase_,lowercase_ ) # predict the noise residual A__ = self.unet(lowercase_,lowercase_ ).sample # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample # decode the image latents with the VAE A__ = self.vqvae.decode(lowercase_ ).sample A__ = (image / 2 + 0.5).clamp(0,1 ) A__ = image.cpu().permute(0,2,3,1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
7
def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float: '''simple docstring''' A__ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: A__ = 1 - (matter_density + radiation_density + dark_energy) A__ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) A__ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowercase_ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
7
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets UpperCamelCase : List[Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ UpperCamelCase : Any = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ UpperCamelCase : List[str] = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types()) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float')), "references": datasets.Sequence(datasets.Value('float')), } else: return { "predictions": datasets.Value('float'), "references": datasets.Value('float'), } def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict="uniform_average" , UpperCAmelCase_ : Optional[Any]=True): """simple docstring""" a : Optional[Any] = mean_squared_error( UpperCAmelCase_ , UpperCAmelCase_ , sample_weight=UpperCAmelCase_ , multioutput=UpperCAmelCase_ , squared=UpperCAmelCase_) return {"mse": mse}
370
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : int | float | str , snake_case : int | float | str ) -> list[str]: """simple docstring""" if nth_term == "": return [""] a : Dict = int(snake_case ) a : Optional[int] = int(snake_case ) a : list[str] = [] for temp in range(int(snake_case ) ): series.append(F"""1 / {pow(temp + 1 , int(snake_case ) )}""" if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Optional[int] = int(input("""Enter the last number (nth term) of the P-Series""")) UpperCamelCase : List[Any] = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
345
0
"""simple docstring""" from __future__ import annotations class __snake_case : def __init__( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = text, pattern _lowerCamelCase , _lowerCamelCase : Optional[int] = len(__lowerCAmelCase ), len(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCamelCase : str = self.mismatch_in_text(__lowerCAmelCase ) if mismatch_index == -1: positions.append(__lowerCAmelCase ) else: _lowerCamelCase : str = self.match_in_pattern(self.text[mismatch_index] ) _lowerCamelCase : str = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase__ = '''ABAABA''' lowerCAmelCase__ = '''AB''' lowerCAmelCase__ = BoyerMooreSearch(text, pattern) lowerCAmelCase__ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
72
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): __lowercase = KandinskyVaaPipeline __lowercase = [ """image_embeds""", """negative_image_embeds""", ] __lowercase = ["""image_embeds""", """negative_image_embeds"""] __lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase = False @property def UpperCAmelCase_ ( self :Optional[Any] )-> str: return 32 @property def UpperCAmelCase_ ( self :int )-> List[Any]: return 32 @property def UpperCAmelCase_ ( self :Optional[Any] )-> Dict: return self.time_input_dim @property def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self :Any )-> List[Any]: return 1_00 @property def UpperCAmelCase_ ( self :Union[str, Any] )-> Union[str, Any]: torch.manual_seed(0 ) A__ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } A__ = UNetaDConditionModel(**lowercase_ ) return model @property def UpperCAmelCase_ ( self :Any )-> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self :Dict )-> Union[str, Any]: torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowercase_ , ) A__ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self :Dict , lowercase_ :int , lowercase_ :Union[str, Any]=0 )-> Dict: A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase_ ) if str(lowercase_ ).startswith("mps" ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self :Optional[Any] )-> str: A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) A__ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = pipe(**self.get_dummy_inputs(lowercase_ ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Dict )-> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self :Any )-> List[Any]: A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) A__ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) A__ = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) A__ = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) A__ = "red cat, 4k photo" A__ = torch.Generator(device="cuda" ).manual_seed(0 ) A__, A__ = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() A__ = torch.Generator(device="cuda" ).manual_seed(0 ) A__ = pipeline( image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=1_00 , output_type="np" , ) A__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
237
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase ( self : Tuple ): torch.manual_seed(0 ) _snake_case = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def lowercase ( self : List[Any] ): torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def lowercase ( self : Tuple ): torch.manual_seed(0 ) _snake_case = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) _snake_case = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def lowercase ( self : Dict ): _snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator _snake_case = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _snake_case = DDPMScheduler() _snake_case = AudioDiffusionPipeline(vqvae=__lowerCamelCase , unet=self.dummy_unet , mel=__lowerCamelCase , scheduler=__lowerCamelCase ) _snake_case = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) _snake_case = pipe(generator=__lowerCamelCase , steps=4 ) _snake_case = output.audios[0] _snake_case = output.images[0] _snake_case = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) _snake_case = pipe(generator=__lowerCamelCase , steps=4 , return_dict=__lowerCamelCase ) _snake_case = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _snake_case = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _snake_case = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] _snake_case = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _snake_case = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _snake_case = DDIMScheduler() _snake_case = self.dummy_vqvae_and_unet _snake_case = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__lowerCamelCase , scheduler=__lowerCamelCase ) _snake_case = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) np.random.seed(0 ) _snake_case = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _snake_case = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) _snake_case = pipe(raw_audio=__lowerCamelCase , generator=__lowerCamelCase , start_step=5 , steps=10 ) _snake_case = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _snake_case = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _snake_case = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _snake_case = self.dummy_unet_condition _snake_case = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__lowerCamelCase , mel=__lowerCamelCase , scheduler=__lowerCamelCase ) _snake_case = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) np.random.seed(0 ) _snake_case = torch.rand((1, 1, 10) ) _snake_case = pipe(generator=__lowerCamelCase , encoding=__lowerCamelCase ) _snake_case = output.images[0] _snake_case = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _snake_case = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : Union[str, Any] ): _snake_case = torch_device _snake_case = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) _snake_case = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) _snake_case = pipe(generator=__lowerCamelCase ) _snake_case = output.audios[0] _snake_case = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _snake_case = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _snake_case = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
367
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Dict=3 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Dict=4 , _lowerCamelCase : Optional[int]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : List[str] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Optional[Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Any ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : int ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : int ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : Tuple ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Dict ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : int ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : str ): pass def lowercase ( self : Optional[int] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Optional[int] ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : List[Any] ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : str ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Optional[int] ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> Tuple: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Optional[Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : str ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : Optional[int] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
40
0
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_=1e-12 ): UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowercase_ , axis=1 ) , a_min=lowercase_ ) ).T UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowercase_ , axis=1 ) , a_min=lowercase_ ) ).T return jnp.matmul(lowercase_ , norm_emb_a.T ) class A_ ( nn.Module ): """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = jnp.floataa def UpperCAmelCase__ ( self :List[Any] ) -> str: UpperCAmelCase = FlaxCLIPVisionModule(self.config.vision_config ) UpperCAmelCase = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype ) UpperCAmelCase = self.param('concept_embeds' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCAmelCase = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCAmelCase = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (17,) ) UpperCAmelCase = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self :List[Any] , lowercase_ :str ) -> int: UpperCAmelCase = self.vision_model(lowercase_ )[1] UpperCAmelCase = self.visual_projection(lowercase_ ) UpperCAmelCase = jax_cosine_distance(lowercase_ , self.special_care_embeds ) UpperCAmelCase = jax_cosine_distance(lowercase_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCAmelCase = 0.0 UpperCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCAmelCase = jnp.round(lowercase_ , 3 ) UpperCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_ ) # Use a lower threshold if an image has any special care concept UpperCAmelCase = is_special_care * 0.01 UpperCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCAmelCase = jnp.round(lowercase_ , 3 ) UpperCAmelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = """clip_input""" __UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self :Optional[Any] , lowercase_ :CLIPConfig , lowercase_ :Optional[Tuple] = None , lowercase_ :int = 0 , lowercase_ :jnp.dtype = jnp.floataa , lowercase_ :bool = True , **lowercase_ :List[Any] , ) -> Optional[Any]: if input_shape is None: UpperCAmelCase = (1, 2_24, 2_24, 3) UpperCAmelCase = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_ ) super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :jax.random.KeyArray , lowercase_ :Tuple , lowercase_ :FrozenDict = None ) -> FrozenDict: # init input tensor UpperCAmelCase = jax.random.normal(lowercase_ , lowercase_ ) UpperCAmelCase , UpperCAmelCase = jax.random.split(lowercase_ ) UpperCAmelCase = {'params': params_rng, 'dropout': dropout_rng} UpperCAmelCase = self.module.init(lowercase_ , lowercase_ )['params'] return random_params def __call__( self :List[Any] , lowercase_ :Tuple , lowercase_ :dict = None , ) -> Optional[int]: UpperCAmelCase = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa ) , rngs={} , )
78
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowercase : Tuple = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class A__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowercase = " ") -> Tuple: '''simple docstring''' a__ : Tuple = sentence_delimiter def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' return list(lowercase) def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : Tuple = [] for sent_idx, sentence in enumerate(lowercase): chars.extend(self.process_string(lowercase)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowercase) - 1: chars.append(self.sentence_delimiter) return chars lowercase : Union[str, Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowercase : List[str] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowercase : List[Any] = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowercase : Optional[int] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowercase : Optional[Any] = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def __lowercase ( self , lowercase , lowercase , lowercase=False) -> Any: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , )["wer"] a__ : Optional[int] = 0 a__ : str = 0 for prediction, reference in zip(lowercase , lowercase): a__ : Optional[int] = jiwer.compute_measures( lowercase , lowercase , truth_transform=lowercase , hypothesis_transform=lowercase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
99
0
"""simple docstring""" def snake_case ( A__ ,A__ ): return base * power(lowercase_ ,(exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') lowerCamelCase_ : List[Any] = int(input('''Enter the base: ''').strip()) lowerCamelCase_ : str = int(input('''Enter the exponent: ''').strip()) lowerCamelCase_ : Optional[Any] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowerCamelCase_ : Union[str, Any] = 1 / result print(f'{base} to the power of {exponent} is {result}')
362
"""simple docstring""" from math import factorial lowerCamelCase_ = {str(d): factorial(d) for d in range(10)} def snake_case ( A__ ): return sum(DIGIT_FACTORIAL[d] for d in str(A__ ) ) def snake_case ( ): UpperCAmelCase_ : int = 7 * factorial(9 ) + 1 return sum(i for i in range(3 ,A__ ) if sum_of_digit_factorial(A__ ) == i ) if __name__ == "__main__": print(f'{solution() = }')
253
0
import math import os import sys def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = '' try: with open(UpperCamelCase__ , 'rb' ) as binary_file: __lowerCamelCase = binary_file.read() for dat in data: __lowerCamelCase = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( UpperCamelCase__ : dict[str, str] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> None: """simple docstring""" lexicon.pop(UpperCamelCase__ ) __lowerCamelCase = last_match_id if math.loga(UpperCamelCase__ ).is_integer(): for curr_key in lexicon: __lowerCamelCase = '0' + lexicon[curr_key] __lowerCamelCase = bin(UpperCamelCase__ )[2:] def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = {'0': '0', '1': '1'} __lowerCamelCase , __lowerCamelCase = '', '' __lowerCamelCase = len(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCamelCase = lexicon[curr_string] result += last_match_id add_key_to_lexicon(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) index += 1 __lowerCamelCase = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __lowerCamelCase = lexicon[curr_string] result += last_match_id return result def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = os.path.getsize(UpperCamelCase__ ) __lowerCamelCase = bin(UpperCamelCase__ )[2:] __lowerCamelCase = len(UpperCamelCase__ ) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = 8 try: with open(UpperCamelCase__ , 'wb' ) as opened_file: __lowerCamelCase = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(UpperCamelCase__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = read_file_binary(UpperCamelCase__ ) __lowerCamelCase = compress_data(UpperCamelCase__ ) __lowerCamelCase = add_file_length(UpperCamelCase__ , UpperCamelCase__ ) write_file_binary(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
90
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="M-CLIP" def __init__( self : Tuple , a : Optional[int]=10_24 , a : Tuple=7_68 , **a : List[str] ): """simple docstring""" __lowerCamelCase = transformerDimSize __lowerCamelCase = imageDimSize super().__init__(**a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] =MCLIPConfig def __init__( self : str , a : List[Any] , *a : Dict , **a : str ): """simple docstring""" super().__init__(a , *a , **a ) __lowerCamelCase = XLMRobertaModel(a ) __lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int , a : List[Any] ): """simple docstring""" __lowerCamelCase = self.transformer(input_ids=a , attention_mask=a )[0] __lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a ), embs
67
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCamelCase_ : def __init__( self : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]=99 , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Optional[int]=5 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Tuple=37 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : List[Any]=512 , lowerCAmelCase_ : List[str]=16 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Optional[Any]=0.0_2 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Optional[int]=None , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : List[str] = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : int = use_token_type_ids UpperCAmelCase_ : str = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : Tuple = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : str = num_choices UpperCAmelCase_ : List[Any] = scope def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = None if self.use_input_mask: UpperCAmelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowerCAmelCase_ , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> List[str]: UpperCAmelCase_ : Any = FalconModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , ) -> Tuple: UpperCAmelCase_ : Dict = True UpperCAmelCase_ : List[Any] = FalconModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) UpperCAmelCase_ : Optional[int] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) UpperCAmelCase_ : str = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , ) -> int: UpperCAmelCase_ : Union[str, Any] = FalconForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Tuple: UpperCAmelCase_ : str = True UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : List[Any] = FalconForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # first forward pass UpperCAmelCase_ : Union[str, Any] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ , ) UpperCAmelCase_ : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : str = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ : Dict = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )["hidden_states"][0] UpperCAmelCase_ : List[str] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )["hidden_states"][0] # select random slice UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = config_and_inputs UpperCAmelCase_ : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ (__A , __A , __A , unittest.TestCase ): __magic_name__ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __magic_name__ = (FalconForCausalLM,) if is_torch_available() else () __magic_name__ = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: UpperCAmelCase_ : str = FalconModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_ , *UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCAmelCase_ : Tuple = alibi self.model_tester.create_and_check_model(lowerCAmelCase_ , *lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = 3 UpperCAmelCase_ : Optional[Any] = input_dict["input_ids"] UpperCAmelCase_ : Any = input_ids.ne(1 ).to(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : List[Any] = FalconForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = 3 UpperCAmelCase_ : Optional[Any] = "single_label_classification" UpperCAmelCase_ : int = input_dict["input_ids"] UpperCAmelCase_ : int = input_ids.ne(1 ).to(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : List[str] = FalconForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = input_dict["input_ids"] UpperCAmelCase_ : Union[str, Any] = FalconForCausalLM(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = input_ids.shape[0] UpperCAmelCase_ : int = model._convert_to_rw_cache(result.past_key_values ) UpperCAmelCase_ : Dict = model._convert_cache_to_standard_format(lowerCAmelCase_ , lowerCAmelCase_ ) for layer in range(len(lowerCAmelCase_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = 3 UpperCAmelCase_ : str = "multi_label_classification" UpperCAmelCase_ : Union[str, Any] = input_dict["input_ids"] UpperCAmelCase_ : Union[str, Any] = input_ids.ne(1 ).to(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : Any = FalconForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowerCAmelCase_ , "use_cache" ): return UpperCAmelCase_ : int = model_class(lowerCAmelCase_ ).to(lowerCAmelCase_ ) if "use_cache" not in inputs: UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Dict = model(**lowerCAmelCase_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCAmelCase_ : str = ( getattr(lowerCAmelCase_ , "decoder_layers" , lowerCAmelCase_ ) or getattr(lowerCAmelCase_ , "num_decoder_layers" , lowerCAmelCase_ ) or config.num_hidden_layers ) UpperCAmelCase_ : int = getattr(lowerCAmelCase_ , "num_kv_heads" , config.num_attention_heads ) UpperCAmelCase_ : Optional[int] = getattr(lowerCAmelCase_ , "d_model" , config.hidden_size ) UpperCAmelCase_ : Tuple = embed_dim // num_attention_heads UpperCAmelCase_ : Optional[int] = outputs["past_key_values"] self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = inputs["input_ids"].shape for i in range(lowerCAmelCase_ ): if config.new_decoder_architecture: UpperCAmelCase_ : Union[str, Any] = config.num_attention_heads elif config.multi_query: UpperCAmelCase_ : Dict = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCamelCase_ (unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: UpperCAmelCase_ : int = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) UpperCAmelCase_ : Any = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(lowerCAmelCase_ ) UpperCAmelCase_ : Any = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase_ ) UpperCAmelCase_ : str = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) UpperCAmelCase_ : List[Any] = model.generate(**lowerCAmelCase_ , do_sample=lowerCAmelCase_ , max_new_tokens=19 ) UpperCAmelCase_ : Optional[Any] = tokenizer.batch_decode(lowerCAmelCase_ )[0] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = FalconForCausalLM.from_pretrained(lowerCAmelCase_ ) model.eval() model.to(lowerCAmelCase_ ) UpperCAmelCase_ : str = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowerCAmelCase_ , do_sample=lowerCAmelCase_ , max_new_tokens=4 ) model.generate(**lowerCAmelCase_ , do_sample=lowerCAmelCase_ , max_new_tokens=4 ) model.generate(**lowerCAmelCase_ , num_beams=2 , max_new_tokens=4 ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = FalconForCausalLM.from_pretrained(lowerCAmelCase_ ) model.eval() model.to(device=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase_ ) # Test results are the same with and without cache UpperCAmelCase_ : Optional[Any] = model.generate(**lowerCAmelCase_ , do_sample=lowerCAmelCase_ , max_new_tokens=20 , use_cache=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.generate(**lowerCAmelCase_ , do_sample=lowerCAmelCase_ , max_new_tokens=20 , use_cache=lowerCAmelCase_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
253
"""simple docstring""" from math import factorial lowerCamelCase_ = {str(d): factorial(d) for d in range(10)} def snake_case ( A__ ): return sum(DIGIT_FACTORIAL[d] for d in str(A__ ) ) def snake_case ( ): UpperCAmelCase_ : int = 7 * factorial(9 ) + 1 return sum(i for i in range(3 ,A__ ) if sum_of_digit_factorial(A__ ) == i ) if __name__ == "__main__": print(f'{solution() = }')
253
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , ) -> Dict: A_ : Any = parent A_ : str = 13 A_ : Optional[Any] = 7 A_ : str = True A_ : Union[str, Any] = True A_ : Optional[Any] = True A_ : str = 99 A_ : Union[str, Any] = 32 A_ : Any = 2 A_ : Optional[Any] = 4 A_ : str = 37 A_ : List[Any] = """gelu""" A_ : str = 0.1 A_ : int = 0.1 A_ : Dict = 512 A_ : List[Any] = 16 A_ : Optional[Any] = 2 A_ : Optional[Any] = 0.02 A_ : Union[str, Any] = 3 A_ : List[str] = 4 A_ : Optional[int] = None def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Optional[Any] = None if self.use_input_mask: A_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Tuple = None A_ : Dict = None A_ : Tuple = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) A_ : str = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> int: ( A_ ) : Tuple = self.prepare_config_and_inputs() A_ : Any = True A_ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: A_ : Optional[int] = TFEsmModel(config=lowerCamelCase_ ) A_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} A_ : Dict = model(lowerCamelCase_ ) A_ : Tuple = [input_ids, input_mask] A_ : Any = model(lowerCamelCase_ ) A_ : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> List[Any]: A_ : List[Any] = True A_ : Any = TFEsmModel(config=lowerCamelCase_ ) A_ : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } A_ : Dict = model(lowerCamelCase_ ) A_ : int = [input_ids, input_mask] A_ : List[Any] = model(lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ ) # Also check the case where encoder outputs are not passed A_ : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = TFEsmForMaskedLM(config=lowerCamelCase_ ) A_ : int = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: A_ : str = self.num_labels A_ : List[str] = TFEsmForTokenClassification(config=lowerCamelCase_ ) A_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} A_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : Any = self.prepare_config_and_inputs() ( A_ ) : Optional[Any] = config_and_inputs A_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase = False lowerCamelCase = False def UpperCAmelCase_ ( self ) -> Tuple: A_ : str = TFEsmModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Dict: A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> int: A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> str: A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = TFEsmModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass def UpperCAmelCase_ ( self ) -> Any: A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Tuple = model_class(lowerCamelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A_ : Optional[Any] = model.get_bias() assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) for k, v in name.items(): assert isinstance(lowerCamelCase_ , tf.Variable ) else: A_ : Union[str, Any] = model.get_output_embeddings() assert x is None A_ : Optional[int] = model.get_bias() assert name is None @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ) -> int: A_ : Any = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) A_ : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ : Tuple = model(lowerCamelCase_ )[0] A_ : Any = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowerCamelCase_ ) # compare the actual values for a slice. A_ : Union[str, Any] = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : int = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) A_ : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A_ : Optional[Any] = model(lowerCamelCase_ )[0] # compare the actual values for a slice. A_ : Any = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
344
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _a : Dict ): '''simple docstring''' UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" ) UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCAmelCase_ : Optional[int] = checkpoint["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} UpperCAmelCase_ : int = XGLMConfig( vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a ) UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a ) print(_a ) UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
345
0
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowerCamelCase :Optional[int] = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) A_, A_, A_, A_ : Tuple = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: A_ : Tuple = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) A_ : Dict = config_class.from_json_file(lowerCamelCase__ ) A_ : List[Any] = True A_ : Tuple = True print(f'Building TensorFlow model from configuration: {config}' ) A_ : Union[str, Any] = model_class(lowerCamelCase__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): A_ : List[str] = cached_file( lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: A_ : Optional[Any] = load_pytorch_checkpoint_in_tfa_model(lowerCamelCase__ , lowerCamelCase__ ) if compare_with_pt_model: A_ : str = tf_model(tf_model.dummy_inputs , training=lowerCamelCase__ ) # build the network A_ : List[Any] = torch.load(lowerCamelCase__ , map_location="""cpu""" ) A_ : List[Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowerCamelCase__ , config=lowerCamelCase__ , state_dict=lowerCamelCase__ ) with torch.no_grad(): A_ : List[Any] = pt_model(**pt_model.dummy_inputs ) A_ : Optional[int] = pto[0].numpy() A_ : str = tfo[0].numpy() A_ : Union[str, Any] = np.amax(np.abs(np_pt - np_tf ) ) print(f'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, f'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(f'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(lowerCamelCase__ , save_format="""h5""" ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , ): '''simple docstring''' if args_model_type is None: A_ : List[str] = list(MODEL_CLASSES.keys() ) else: A_ : Dict = [args_model_type] for j, model_type in enumerate(lowerCamelCase__ , start=1 ): print("""=""" * 1_00 ) print(f' Converting model type {j}/{len(lowerCamelCase__ )}: {model_type}' ) print("""=""" * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) A_, A_, A_, A_, A_ : List[Any] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: A_ : Tuple = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: A_ : int = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowerCamelCase__ , lowerCamelCase__ ) , start=1 ): print("""-""" * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f' Skipping finetuned checkpoint {model_shortcut_name}' ) continue A_ : Optional[int] = model_shortcut_name elif only_convert_finetuned_models: print(f' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( f' Converting checkpoint {i}/{len(lowerCamelCase__ )}: {model_shortcut_name} - model_type {model_type}' ) print("""-""" * 1_00 ) if config_shortcut_name in aws_config_map: A_ : int = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) else: A_ : int = config_shortcut_name if model_shortcut_name in aws_model_maps: A_ : List[Any] = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) else: A_ : Optional[int] = model_shortcut_name if os.path.isfile(lowerCamelCase__ ): A_ : Optional[int] = """converted_model""" convert_pt_checkpoint_to_tf( model_type=lowerCamelCase__ , pytorch_checkpoint_path=lowerCamelCase__ , config_file=lowerCamelCase__ , tf_dump_path=os.path.join(lowerCamelCase__ , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=lowerCamelCase__ , ) if remove_cached_files: os.remove(lowerCamelCase__ ) os.remove(lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') lowerCamelCase :Optional[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
135
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase :Dict = logging.get_logger(__name__) lowerCamelCase :Any = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : List[Any] = 'bart' __SCREAMING_SNAKE_CASE : Union[str, Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , lowercase=50265 , lowercase=1024 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=0.0 , lowercase=0.0 , lowercase="gelu" , lowercase=1024 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=0.0 , lowercase=False , lowercase=True , lowercase=3 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=True , lowercase=2 , lowercase=2 , **lowercase , ): A_ : Optional[int] = vocab_size A_ : Dict = max_position_embeddings A_ : Dict = d_model A_ : Any = encoder_ffn_dim A_ : Dict = encoder_layers A_ : Optional[int] = encoder_attention_heads A_ : Tuple = decoder_ffn_dim A_ : List[str] = decoder_layers A_ : int = decoder_attention_heads A_ : Dict = dropout A_ : List[str] = attention_dropout A_ : int = activation_dropout A_ : Dict = activation_function A_ : List[Any] = init_std A_ : Dict = encoder_layerdrop A_ : Tuple = decoder_layerdrop A_ : Optional[int] = classifier_dropout A_ : Union[str, Any] = use_cache A_ : Dict = encoder_layers A_ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , lowercase ): A_ : List[str] = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" ) class _lowerCAmelCase ( __UpperCAmelCase ): @property def _a (self ): if self.task in ["default", "seq2seq-lm"]: A_ : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: A_ : Union[str, Any] = {0: """batch"""} A_ : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A_ : Optional[int] = {0: """batch""", 1: """decoder_sequence"""} A_ : List[str] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. A_ : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: A_, A_ : Optional[int] = self.num_layers for i in range(lowercase ): A_ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} A_ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} else: A_ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _a (self ): if self.task in ["default", "seq2seq-lm"]: A_ : int = super().outputs else: A_ : int = super(lowercase , self ).outputs if self.use_past: A_, A_ : Union[str, Any] = self.num_layers for i in range(lowercase ): A_ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): A_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs A_ : int = seq_length if not self.use_past else 1 A_ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) A_ : Optional[int] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A_ : Dict = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_, A_ : Union[str, Any] = common_inputs["""input_ids"""].shape A_ : Optional[Any] = common_inputs["""decoder_input_ids"""].shape[1] A_, A_ : str = self.num_attention_heads A_ : Tuple = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Tuple = decoder_seq_length + 3 A_ : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A_ : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowercase , lowercase )] , dim=1 ) A_ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A_, A_ : Optional[int] = self.num_layers A_ : List[Any] = min(lowercase , lowercase ) A_ : Tuple = max(lowercase , lowercase ) - min_num_layers A_ : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. A_ : List[Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): A_ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_, A_ : List[str] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ : Optional[Any] = seqlen + 2 A_, A_ : str = self.num_layers A_, A_ : Optional[int] = self.num_attention_heads A_ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Union[str, Any] = common_inputs["""attention_mask"""].dtype A_ : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) A_ : int = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ : List[Any] = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Union[str, Any] = tokenizer.num_special_tokens_to_add(lowercase ) A_ : List[Any] = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence A_ : str = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size A_ : Tuple = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): if self.task in ["default", "seq2seq-lm"]: A_ : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) elif self.task == "causal-lm": A_ : List[str] = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: A_ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def _a (self , lowercase , lowercase , lowercase , lowercase ): if self.task in ["default", "seq2seq-lm"]: A_ : Optional[Any] = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: A_ : List[Any] = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase )
135
1
from collections.abc import Generator from math import sin def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" if len(__magic_name__ ) != 32: raise ValueError("""Input must be of length 32""" ) UpperCamelCase :int = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase :Any = format(__magic_name__ , """08x""" )[-8:] UpperCamelCase :Union[str, Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" UpperCamelCase :str = B"""""" for char in message: bit_string += format(__magic_name__ , """08b""" ).encode("""utf-8""" ) UpperCamelCase :Any = format(len(__magic_name__ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__magic_name__ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(__magic_name__ ) , 512 ): UpperCamelCase :Tuple = bit_string[pos : pos + 512] UpperCamelCase :Optional[int] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase :List[str] = format(__magic_name__ , """032b""" ) UpperCamelCase :Any = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return (a + b) % 2**32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" UpperCamelCase :Tuple = preprocess(__magic_name__ ) UpperCamelCase :List[str] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCamelCase :Union[str, Any] = 0X67_45_23_01 UpperCamelCase :Union[str, Any] = 0XEF_CD_AB_89 UpperCamelCase :List[str] = 0X98_BA_DC_FE UpperCamelCase :int = 0X10_32_54_76 UpperCamelCase :int = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): UpperCamelCase :Optional[Any] = aa UpperCamelCase :Any = ba UpperCamelCase :Tuple = ca UpperCamelCase :List[str] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCamelCase :int = d ^ (b & (c ^ d)) UpperCamelCase :Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCamelCase :str = c ^ (d & (b ^ c)) UpperCamelCase :Union[str, Any] = (5 * i + 1) % 16 elif i <= 47: UpperCamelCase :str = b ^ c ^ d UpperCamelCase :Optional[int] = (3 * i + 5) % 16 else: UpperCamelCase :List[str] = c ^ (b | not_aa(__magic_name__ )) UpperCamelCase :int = (7 * i) % 16 UpperCamelCase :Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCamelCase :Tuple = d UpperCamelCase :str = c UpperCamelCase :Tuple = b UpperCamelCase :Optional[Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCamelCase :List[str] = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :str = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :int = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :Optional[Any] = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :Optional[Any] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
38
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _A ( _a ): """simple docstring""" UpperCAmelCase : str = """naver-clova-ix/donut-base-finetuned-docvqa""" UpperCAmelCase : Tuple = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) UpperCAmelCase : List[str] = """document_qa""" UpperCAmelCase : str = AutoProcessor UpperCAmelCase : Optional[int] = VisionEncoderDecoderModel UpperCAmelCase : int = ["""image""", """text"""] UpperCAmelCase : int = ["""text"""] def __init__( self : Tuple , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.") super().__init__(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Tuple , __UpperCAmelCase : "Image" , __UpperCAmelCase : str): a : Any = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a : Union[str, Any] = task_prompt.replace("{user_input}" , __UpperCAmelCase) a : Optional[Any] = self.pre_processor.tokenizer( __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors="pt").input_ids a : Any = self.pre_processor(__UpperCAmelCase , return_tensors="pt").pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __snake_case ( self : int , __UpperCAmelCase : int): return self.model.generate( inputs["pixel_values"].to(self.device) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__UpperCAmelCase , ).sequences def __snake_case ( self : str , __UpperCAmelCase : List[Any]): a : Union[str, Any] = self.pre_processor.batch_decode(__UpperCAmelCase)[0] a : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , "") a : Any = sequence.replace(self.pre_processor.tokenizer.pad_token , "") a : Optional[Any] = re.sub(r"<.*?>" , "" , __UpperCAmelCase , count=1).strip() # remove first task start token a : List[str] = self.pre_processor.tokenajson(__UpperCAmelCase) return sequence["answer"]
40
0
"""simple docstring""" def __lowercase ( snake_case_ : str ) ->Any: '''simple docstring''' __A : Any = 0 for ch in input_str: __A : Any = ord(A__ ) __A : Optional[int] = pow(2 ,A__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" a_ = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) a_ = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def __lowercase ( snake_case_ : float ,snake_case_ : str ,snake_case_ : str ) ->float: '''simple docstring''' __A : Tuple = from_type.lower().strip('''s''' ) __A : Optional[int] = to_type.lower().strip('''s''' ) __A : List[str] = UNIT_SYMBOL.get(snake_case_ ,snake_case_ ) __A : Any = UNIT_SYMBOL.get(snake_case_ ,snake_case_ ) if from_sanitized not in METRIC_CONVERSION: __A : int = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(snake_case_ )}""" ) raise ValueError(snake_case_ ) if to_sanitized not in METRIC_CONVERSION: __A : str = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(snake_case_ )}""" ) raise ValueError(snake_case_ ) __A : Optional[Any] = METRIC_CONVERSION[from_sanitized] __A : Optional[int] = METRIC_CONVERSION[to_sanitized] __A : Union[str, Any] = 1 if from_exponent > to_exponent: __A : Dict = from_exponent - to_exponent else: __A : Union[str, Any] = -(to_exponent - from_exponent) return value * pow(10 ,snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
291
0
'''simple docstring''' def __lowerCamelCase ( A__ , A__ ) -> float: """simple docstring""" if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
28
import math def A_ ( a , a = 0 , a = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = end or len(a ) for i in range(a , a ): SCREAMING_SNAKE_CASE_ : List[Any] = i SCREAMING_SNAKE_CASE_ : Optional[Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: SCREAMING_SNAKE_CASE_ : Tuple = array[temp_index - 1] temp_index -= 1 SCREAMING_SNAKE_CASE_ : str = temp_index_value return array def A_ ( a , a , a ): # Max Heap """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = index SCREAMING_SNAKE_CASE_ : str = 2 * index + 1 # Left Node SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: SCREAMING_SNAKE_CASE_ : Dict = left_index if right_index < heap_size and array[largest] < array[right_index]: SCREAMING_SNAKE_CASE_ : Any = right_index if largest != index: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[largest], array[index] heapify(a , a , a ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = len(a ) for i in range(n // 2 , -1 , -1 ): heapify(a , a , a ) for i in range(n - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[0], array[i] heapify(a , 0 , a ) return array def A_ ( a , a , a , a ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A_ ( a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = low SCREAMING_SNAKE_CASE_ : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[j], array[i] i += 1 def A_ ( a ): """simple docstring""" if len(a ) == 0: return array SCREAMING_SNAKE_CASE_ : Any = 2 * math.ceil(math.loga(len(a ) ) ) SCREAMING_SNAKE_CASE_ : int = 1_6 return intro_sort(a , 0 , len(a ) , a , a ) def A_ ( a , a , a , a , a ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a ) max_depth -= 1 SCREAMING_SNAKE_CASE_ : Optional[int] = median_of_a(a , a , start + ((end - start) // 2) + 1 , end - 1 ) SCREAMING_SNAKE_CASE_ : Dict = partition(a , a , a , a ) intro_sort(a , a , a , a , a ) SCREAMING_SNAKE_CASE_ : List[Any] = p return insertion_sort(a , a , a ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] = input('Enter numbers separated by a comma : ').strip() lowerCAmelCase : Optional[Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
253
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase__ =logging.get_logger(__name__) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : int = ["input_values", "padding_mask"] def __init__(self : Dict , snake_case_ : int = 1 , snake_case_ : int = 2_4_0_0_0 , snake_case_ : float = 0.0 , snake_case_ : float = None , snake_case_ : float = None , **snake_case_ : Dict , ): super().__init__(feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , **snake_case_ ) __a : Union[str, Any] = chunk_length_s __a : Dict = overlap @property def lowerCAmelCase (self : List[str] ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCAmelCase (self : List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__(self : List[str] , snake_case_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case_ : Optional[Union[bool, str, PaddingStrategy]] = None , snake_case_ : Optional[bool] = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[int] = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs __a : Tuple = True __a : Optional[int] = bool( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a : str = [np.asarray(snake_case_ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): __a : int = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __a : List[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __a : Union[str, Any] = [np.asarray(snake_case_ ).T] # verify inputs are valid for idx, example in enumerate(snake_case_ ): if example.ndim > 2: raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels" ) __a : Union[str, Any] = None __a : Optional[Any] = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __a : int = min(array.shape[0] for array in raw_audio ) __a : Any = int(np.floor(max_length / self.chunk_stride ) ) __a : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __a : Optional[int] = max(array.shape[0] for array in raw_audio ) __a : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) __a : str = (nb_step - 1) * self.chunk_stride + self.chunk_length __a : Optional[int] = '''max_length''' else: __a : Union[str, Any] = input_values # normal padding on batch if padded_inputs is None: __a : str = self.pad( snake_case_ , max_length=snake_case_ , truncation=snake_case_ , padding=snake_case_ , return_attention_mask=snake_case_ , ) if padding: __a : int = padded_inputs.pop('''attention_mask''' ) __a : Optional[int] = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: __a : Optional[Any] = example[..., None] input_values.append(example.T ) __a : Optional[Any] = input_values if return_tensors is not None: __a : int = padded_inputs.convert_to_tensors(snake_case_ ) return padded_inputs
90
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ ={ 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure)
90
1
from jiwer import compute_measures import datasets lowerCAmelCase : Tuple = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCAmelCase : List[Any] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' lowerCAmelCase : Dict = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _A ( datasets.Metric): def UpperCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" if concatenate_texts: return compute_measures(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["wer"] else: SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for prediction, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = compute_measures(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
253
import math def A_ ( a , a = 0 , a = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = end or len(a ) for i in range(a , a ): SCREAMING_SNAKE_CASE_ : List[Any] = i SCREAMING_SNAKE_CASE_ : Optional[Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: SCREAMING_SNAKE_CASE_ : Tuple = array[temp_index - 1] temp_index -= 1 SCREAMING_SNAKE_CASE_ : str = temp_index_value return array def A_ ( a , a , a ): # Max Heap """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = index SCREAMING_SNAKE_CASE_ : str = 2 * index + 1 # Left Node SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: SCREAMING_SNAKE_CASE_ : Dict = left_index if right_index < heap_size and array[largest] < array[right_index]: SCREAMING_SNAKE_CASE_ : Any = right_index if largest != index: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[largest], array[index] heapify(a , a , a ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = len(a ) for i in range(n // 2 , -1 , -1 ): heapify(a , a , a ) for i in range(n - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[0], array[i] heapify(a , 0 , a ) return array def A_ ( a , a , a , a ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A_ ( a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = low SCREAMING_SNAKE_CASE_ : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[j], array[i] i += 1 def A_ ( a ): """simple docstring""" if len(a ) == 0: return array SCREAMING_SNAKE_CASE_ : Any = 2 * math.ceil(math.loga(len(a ) ) ) SCREAMING_SNAKE_CASE_ : int = 1_6 return intro_sort(a , 0 , len(a ) , a , a ) def A_ ( a , a , a , a , a ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a ) max_depth -= 1 SCREAMING_SNAKE_CASE_ : Optional[int] = median_of_a(a , a , start + ((end - start) // 2) + 1 , end - 1 ) SCREAMING_SNAKE_CASE_ : Dict = partition(a , a , a , a ) intro_sort(a , a , a , a , a ) SCREAMING_SNAKE_CASE_ : List[Any] = p return insertion_sort(a , a , a ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] = input('Enter numbers separated by a comma : ').strip() lowerCAmelCase : Optional[Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
253
1
'''simple docstring''' import random def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = a[left_index] _UpperCAmelCase : Optional[int] = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase_ ): if a[j] < pivot: _UpperCAmelCase : Any = a[i], a[j] i += 1 _UpperCAmelCase : Any = a[i - 1], a[left_index] return i - 1 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if left < right: _UpperCAmelCase : Tuple = random.randint(lowerCAmelCase_ , right - 1 ) _UpperCAmelCase : Optional[int] = ( a[left], a[pivot], ) # switches the pivot with the left most bound _UpperCAmelCase : Tuple = partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) quick_sort_random( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase_ , pivot_index + 1 , lowerCAmelCase_ ) # recursive quicksort to the right of the pivot point def snake_case_ ( )-> Dict: '''simple docstring''' _UpperCAmelCase : str = input("""Enter numbers separated by a comma:\n""" ).strip() _UpperCAmelCase : int = [int(lowerCAmelCase_ ) for item in user_input.split(""",""" )] quick_sort_random(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) ) print(lowerCAmelCase_ ) if __name__ == "__main__": main()
353
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 __A = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] snake_case__ = TaTokenizer snake_case__ = [] def __init__( self : List[Any] , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : Union[str, Any]="<unk>" , UpperCAmelCase : int="<pad>" , UpperCAmelCase : str=100 , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Dict , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowerCamelCase : Optional[Any] = [F"""<extra_id_{i}>""" for i in range(UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __lowerCamelCase : int = len(set(filter(lambda UpperCAmelCase : bool("extra_id_" in str(UpperCAmelCase ) ) , UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , extra_ids=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : Optional[Any] = vocab_file __lowerCamelCase : int = False if not self.vocab_file else True __lowerCamelCase : Tuple = extra_ids @staticmethod def lowerCamelCase__ ( UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __lowerCamelCase : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , UpperCAmelCase , ) return max_model_length def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase : Union[str, Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) logger.info(F"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def lowerCamelCase__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : Union[str, Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __lowerCamelCase : Any = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase__ ( self : Dict ): return list( set(filter(lambda UpperCAmelCase : bool(re.search(r"<extra_id_\d+>" , UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCamelCase__ ( self : Optional[Any] ): return [self.convert_tokens_to_ids(UpperCAmelCase ) for token in self.get_sentinel_tokens()]
135
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class _snake_case ( a__ ): snake_case__ = "camembert" def __init__( self : Union[str, Any] , UpperCAmelCase : List[Any]=30522 , UpperCAmelCase : Optional[int]=768 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : Tuple=3072 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : Tuple=1E-12 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , UpperCAmelCase : str="absolute" , UpperCAmelCase : Dict=True , UpperCAmelCase : int=None , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Any = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : int = hidden_act __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : List[Any] = attention_probs_dropout_prob __lowerCamelCase : Dict = max_position_embeddings __lowerCamelCase : Tuple = type_vocab_size __lowerCamelCase : Any = initializer_range __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : List[Any] = position_embedding_type __lowerCamelCase : Dict = use_cache __lowerCamelCase : List[Any] = classifier_dropout class _snake_case ( a__ ): @property def lowerCamelCase__ ( self : int ): if self.task == "multiple-choice": __lowerCamelCase : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCamelCase : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
135
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Dict = """roformer""" def __init__( self , a=5_0000 , a=None , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=1536 , a=2 , a=0.02 , a=1e-12 , a=0 , a=False , a=True , **a , ): super().__init__(pad_token_id=a , **a) lowercase__ : Optional[int] = vocab_size lowercase__ : Tuple = hidden_size if embedding_size is None else embedding_size lowercase__ : Optional[int] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : int = hidden_act lowercase__ : str = intermediate_size lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : Dict = initializer_range lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[int] = rotary_value lowercase__ : Optional[int] = use_cache class SCREAMING_SNAKE_CASE__ (__snake_case ): @property def snake_case_ ( self): if self.task == "multiple-choice": lowercase__ : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ : Dict = {0: 'batch', 1: 'sequence'} lowercase__ : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
216
import math import sys def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 lowercase__ : Tuple = [-1] * (number + 1) lowercase__ : Tuple = 0 for i in range(1 , number + 1 ): lowercase__ : Tuple = sys.maxsize lowercase__ : str = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): lowercase__ : List[Any] = 1 + answers[i - (j**2)] lowercase__ : str = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
216
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = BertTokenizer __lowerCamelCase = BertTokenizerFast __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = filter_non_english def snake_case ( self ): """simple docstring""" super().setUp() _lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = """UNwant\u00E9d,running""" _lowerCAmelCase = """unwanted, running""" return input_text, output_text def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_snake_case , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [9, 6, 7, 12, 10, 11] ) def snake_case ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = """UNwant\u00E9d,running""" _lowerCAmelCase = tokenizer.tokenize(_snake_case ) _lowerCAmelCase = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(_snake_case ) _lowerCAmelCase = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # With lower casing _lowerCAmelCase = self.get_tokenizer(do_lower_case=_snake_case ) _lowerCAmelCase = self.get_rust_tokenizer(do_lower_case=_snake_case ) _lowerCAmelCase = """UNwant\u00E9d,running""" _lowerCAmelCase = tokenizer.tokenize(_snake_case ) _lowerCAmelCase = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(_snake_case ) _lowerCAmelCase = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = BasicTokenizer() _lowerCAmelCase = """a\n'll !!to?'d of, can't.""" _lowerCAmelCase = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(_snake_case ) , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _lowerCAmelCase = {} for i, token in enumerate(_snake_case ): _lowerCAmelCase = i _lowerCAmelCase = WordpieceTokenizer(vocab=_snake_case , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def snake_case ( self ): """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def snake_case ( self ): """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def snake_case ( self ): """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_snake_case ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(_snake_case ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) _lowerCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=_snake_case ) _lowerCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_snake_case ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_snake_case ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def snake_case ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _lowerCAmelCase = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' _lowerCAmelCase = tokenizer_r.encode_plus( _snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case , ) _lowerCAmelCase = tokenizer_r.do_lower_case if hasattr(_snake_case , """do_lower_case""" ) else False _lowerCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = ["""的""", """人""", """有"""] _lowerCAmelCase = """""".join(_snake_case ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase = True _lowerCAmelCase = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _lowerCAmelCase = tokenizer_p.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase = tokenizer_r.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(_snake_case ) _lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(_snake_case ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_snake_case , _snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase = False _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _lowerCAmelCase = tokenizer_r.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase = tokenizer_p.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(_snake_case ) _lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(_snake_case ) # it is expected that only the first Chinese character is not preceded by "##". _lowerCAmelCase = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(_snake_case ) ] self.assertListEqual(_snake_case , _snake_case ) self.assertListEqual(_snake_case , _snake_case )
82
"""simple docstring""" from __future__ import annotations def a__ ( snake_case__ , snake_case__ ) -> bool: if len(snake_case__ ) == 0: return False lowerCamelCase = len(snake_case__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case__ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case__ ) if __name__ == "__main__": lowerCAmelCase : List[Any] = input("""Enter numbers separated by comma:\n""").strip() lowerCAmelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(""",""")] lowerCAmelCase : Optional[int] = int(input("""Enter the number to be found in the list:\n""").strip()) lowerCAmelCase : Union[str, Any] = """""" if binary_search(sequence, target) else """not """ print(F"""{target} was {not_str}found in {sequence}""")
291
0
def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE = [[0 for _ in range(a__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __SCREAMING_SNAKE_CASE = 1 for n in range(m + 1 ): for k in range(1 , a__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowerCAmelCase__ : Optional[Any] =int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowerCAmelCase__ : str =int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
118
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''speech'''] def __init__( self , *_A , **_A ): '''simple docstring''' requires_backends(self , ['speech'] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''speech'''] def __init__( self , *_A , **_A ): '''simple docstring''' requires_backends(self , ['speech'] )
118
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ) -> Dict: """simple docstring""" __lowerCamelCase = TapasConfig.from_json_file(UpperCamelCase__ ) # set absolute/relative position embeddings parameter __lowerCamelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowerCamelCase = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams __lowerCamelCase = 4 __lowerCamelCase = True # hparam_utils.py hparams __lowerCamelCase = 0.66_46_94 __lowerCamelCase = 0.20_79_51 __lowerCamelCase = 0.12_11_94 __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = 0.0_35_25_13 __lowerCamelCase = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowerCamelCase = 4 __lowerCamelCase = False # hparam_utils.py hparams __lowerCamelCase = 36.45_19 __lowerCamelCase = 0.90_34_21 __lowerCamelCase = 2_22.0_88 __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = 0.76_31_41 __lowerCamelCase = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "TABFACT": __lowerCamelCase = TapasForSequenceClassification(config=UpperCamelCase__ ) elif task == "MLM": __lowerCamelCase = TapasForMaskedLM(config=UpperCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": __lowerCamelCase = TapasModel(config=UpperCamelCase__ ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase__ ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowerCamelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(UpperCamelCase__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
90
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''onnx'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['onnx'] ) @classmethod def lowercase_ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['onnx'] ) @classmethod def lowercase_ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['onnx'] )
90
1
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def UpperCAmelCase__ ( self : Tuple , A : str=0 ): __snake_case: List[str] = np.random.RandomState(A ) __snake_case: List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=A ) __snake_case: int = self.get_dummy_inputs() __snake_case: List[Any] = pipe(**A ).images __snake_case: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: Any = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Dict ): __snake_case: str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case: List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A ) pipe.set_progress_bar_config(disable=A ) __snake_case: str = self.get_dummy_inputs() __snake_case: Union[str, Any] = pipe(**A ).images __snake_case: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: List[str] = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ): __snake_case: str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case: int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) __snake_case: str = self.get_dummy_inputs() __snake_case: Optional[int] = pipe(**A ).images __snake_case: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: Optional[int] = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[str] ): __snake_case: Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case: Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) __snake_case: Union[str, Any] = self.get_dummy_inputs() __snake_case: int = pipe(**A ).images __snake_case: str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: Optional[int] = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Any ): __snake_case: Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case: str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) __snake_case: int = self.get_dummy_inputs() __snake_case: Optional[Any] = pipe(**A ).images __snake_case: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: List[Any] = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case: Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) __snake_case: str = self.get_dummy_inputs() __snake_case: Any = pipe(**A ).images __snake_case: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: Optional[Any] = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=A ) __snake_case: str = self.get_dummy_inputs() __snake_case: List[Any] = 3 * [inputs["""prompt"""]] # forward __snake_case: str = pipe(**A ) __snake_case: List[Any] = output.images[0, -3:, -3:, -1] __snake_case: Optional[Any] = self.get_dummy_inputs() __snake_case: Dict = 3 * [inputs.pop("""prompt""" )] __snake_case: Optional[int] = pipe.tokenizer( A , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=A , return_tensors="""np""" , ) __snake_case: Union[str, Any] = text_inputs["""input_ids"""] __snake_case: int = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __snake_case: Optional[Any] = prompt_embeds # forward __snake_case: List[str] = pipe(**A ) __snake_case: Optional[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=A ) __snake_case: Optional[Any] = self.get_dummy_inputs() __snake_case: List[Any] = 3 * ["""this is a negative prompt"""] __snake_case: Any = negative_prompt __snake_case: Dict = 3 * [inputs["""prompt"""]] # forward __snake_case: Union[str, Any] = pipe(**A ) __snake_case: List[Any] = output.images[0, -3:, -3:, -1] __snake_case: Optional[Any] = self.get_dummy_inputs() __snake_case: Union[str, Any] = 3 * [inputs.pop("""prompt""" )] __snake_case: List[str] = [] for p in [prompt, negative_prompt]: __snake_case: Union[str, Any] = pipe.tokenizer( A , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=A , return_tensors="""np""" , ) __snake_case: List[Any] = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __snake_case , __snake_case: Optional[int] = embeds # forward __snake_case: Dict = pipe(**A ) __snake_case: List[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase__ ( self : str ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : str ): __snake_case: Tuple = ort.SessionOptions() __snake_case: List[str] = False return options def UpperCAmelCase__ ( self : int ): # using the PNDM scheduler by default __snake_case: int = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=A ) __snake_case: int = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __snake_case: Optional[Any] = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __snake_case: Optional[int] = output.images __snake_case: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case: Optional[Any] = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: List[Any] = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __snake_case: Dict = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=A , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=A ) __snake_case: str = """open neural network exchange""" __snake_case: List[Any] = np.random.RandomState(0 ) __snake_case: Union[str, Any] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=A , output_type="""np""" ) __snake_case: Tuple = output.images __snake_case: str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case: Tuple = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : List[Any] ): __snake_case: int = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __snake_case: List[str] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=A , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=A ) __snake_case: str = """open neural network exchange""" __snake_case: Optional[int] = np.random.RandomState(0 ) __snake_case: str = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=A , output_type="""np""" ) __snake_case: List[str] = output.images __snake_case: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case: List[str] = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Any = 0 def test_callback_fn(A : int , A : int , A : np.ndarray ) -> None: __snake_case: Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __snake_case: str = latents[0, -3:, -3:, -1] __snake_case: Optional[Any] = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __snake_case: Optional[int] = latents[0, -3:, -3:, -1] __snake_case: List[str] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 __snake_case: Dict = False __snake_case: Any = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) __snake_case: List[str] = """Andromeda galaxy in a bottle""" __snake_case: Union[str, Any] = np.random.RandomState(0 ) pipe( prompt=A , num_inference_steps=5 , guidance_scale=7.5 , generator=A , callback=A , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase__ ( self : Tuple ): __snake_case: Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(A , A ) assert pipe.safety_checker is None __snake_case: List[str] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A ) __snake_case: List[str] = OnnxStableDiffusionPipeline.from_pretrained(A ) # sanity check that the pipeline still works assert pipe.safety_checker is None __snake_case: int = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
293
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = 42 class __snake_case ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = True @register_to_config def __init__( self : Union[str, Any] , A : int = 3 , A : int = 3 , A : Tuple[str] = ("DownEncoderBlock2D",) , A : Tuple[str] = ("UpDecoderBlock2D",) , A : Tuple[int] = (64,) , A : int = 1 , A : str = "silu" , A : int = 4 , A : int = 32 , A : int = 32 , A : float = 0.1_8215 , ): super().__init__() # pass init params to Encoder __snake_case: Any = Encoder( in_channels=A , out_channels=A , down_block_types=A , block_out_channels=A , layers_per_block=A , act_fn=A , norm_num_groups=A , double_z=A , ) # pass init params to Decoder __snake_case: int = Decoder( in_channels=A , out_channels=A , up_block_types=A , block_out_channels=A , layers_per_block=A , norm_num_groups=A , act_fn=A , ) __snake_case: Dict = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __snake_case: int = nn.Convad(A , A , 1 ) __snake_case: List[str] = False __snake_case: Optional[int] = False # only relevant if vae tiling is enabled __snake_case: Any = self.config.sample_size __snake_case: int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __snake_case: Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __snake_case: Optional[int] = 0.25 def UpperCAmelCase__ ( self : int , A : List[str] , A : Optional[Any]=False ): if isinstance(A , (Encoder, Decoder) ): __snake_case: str = value def UpperCAmelCase__ ( self : str , A : bool = True ): __snake_case: Union[str, Any] = use_tiling def UpperCAmelCase__ ( self : Optional[int] ): self.enable_tiling(A ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[str] = True def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[str] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase__ ( self : Tuple ): __snake_case: Any = {} def fn_recursive_add_processors(A : str , A : torch.nn.Module , A : Dict[str, AttentionProcessor] ): if hasattr(A , """set_processor""" ): __snake_case: List[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , A , A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(A , A , A ) return processors def UpperCAmelCase__ ( self : Optional[int] , A : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): __snake_case: Any = len(self.attn_processors.keys() ) if isinstance(A , A ) and len(A ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(A )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(A : str , A : torch.nn.Module , A : Optional[Any] ): if hasattr(A , """set_processor""" ): if not isinstance(A , A ): module.set_processor(A ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , A , A ) for name, module in self.named_children(): fn_recursive_attn_processor(A , A , A ) def UpperCAmelCase__ ( self : List[str] ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , A : torch.FloatTensor , A : bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(A , return_dict=A ) if self.use_slicing and x.shape[0] > 1: __snake_case: List[Any] = [self.encoder(A ) for x_slice in x.split(1 )] __snake_case: Optional[Any] = torch.cat(A ) else: __snake_case: str = self.encoder(A ) __snake_case: Any = self.quant_conv(A ) __snake_case: Tuple = DiagonalGaussianDistribution(A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=A ) def UpperCAmelCase__ ( self : Tuple , A : torch.FloatTensor , A : bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(A , return_dict=A ) __snake_case: Optional[int] = self.post_quant_conv(A ) __snake_case: Union[str, Any] = self.decoder(A ) if not return_dict: return (dec,) return DecoderOutput(sample=A ) @apply_forward_hook def UpperCAmelCase__ ( self : Tuple , A : torch.FloatTensor , A : bool = True ): if self.use_slicing and z.shape[0] > 1: __snake_case: Union[str, Any] = [self._decode(A ).sample for z_slice in z.split(1 )] __snake_case: List[str] = torch.cat(A ) else: __snake_case: int = self._decode(A ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=A ) def UpperCAmelCase__ ( self : Any , A : Tuple , A : int , A : List[Any] ): __snake_case: int = min(a.shape[2] , b.shape[2] , A ) for y in range(A ): __snake_case: Dict = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def UpperCAmelCase__ ( self : Union[str, Any] , A : Optional[Any] , A : List[str] , A : List[str] ): __snake_case: Dict = min(a.shape[3] , b.shape[3] , A ) for x in range(A ): __snake_case: Tuple = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def UpperCAmelCase__ ( self : int , A : torch.FloatTensor , A : bool = True ): __snake_case: List[str] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __snake_case: Dict = int(self.tile_latent_min_size * self.tile_overlap_factor ) __snake_case: Dict = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __snake_case: Optional[int] = [] for i in range(0 , x.shape[2] , A ): __snake_case: Optional[int] = [] for j in range(0 , x.shape[3] , A ): __snake_case: int = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __snake_case: Tuple = self.encoder(A ) __snake_case: Dict = self.quant_conv(A ) row.append(A ) rows.append(A ) __snake_case: Tuple = [] for i, row in enumerate(A ): __snake_case: str = [] for j, tile in enumerate(A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __snake_case: Optional[Any] = self.blend_v(rows[i - 1][j] , A , A ) if j > 0: __snake_case: Tuple = self.blend_h(row[j - 1] , A , A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(A , dim=3 ) ) __snake_case: Tuple = torch.cat(A , dim=2 ) __snake_case: Optional[int] = DiagonalGaussianDistribution(A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=A ) def UpperCAmelCase__ ( self : Union[str, Any] , A : torch.FloatTensor , A : bool = True ): __snake_case: Optional[Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __snake_case: str = int(self.tile_sample_min_size * self.tile_overlap_factor ) __snake_case: int = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __snake_case: List[Any] = [] for i in range(0 , z.shape[2] , A ): __snake_case: Optional[Any] = [] for j in range(0 , z.shape[3] , A ): __snake_case: Dict = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __snake_case: Any = self.post_quant_conv(A ) __snake_case: Optional[Any] = self.decoder(A ) row.append(A ) rows.append(A ) __snake_case: Optional[Any] = [] for i, row in enumerate(A ): __snake_case: Optional[Any] = [] for j, tile in enumerate(A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __snake_case: Tuple = self.blend_v(rows[i - 1][j] , A , A ) if j > 0: __snake_case: List[str] = self.blend_h(row[j - 1] , A , A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(A , dim=3 ) ) __snake_case: Dict = torch.cat(A , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=A ) def UpperCAmelCase__ ( self : List[Any] , A : torch.FloatTensor , A : bool = False , A : bool = True , A : Optional[torch.Generator] = None , ): __snake_case: Optional[Any] = sample __snake_case: Union[str, Any] = self.encode(A ).latent_dist if sample_posterior: __snake_case: Optional[Any] = posterior.sample(generator=A ) else: __snake_case: Dict = posterior.mode() __snake_case: Any = self.decode(A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=A )
293
1
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): def __init__( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] = None , lowerCAmelCase : Tuple = None , lowerCAmelCase : List[Any] = True , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : List[str] = False , lowerCAmelCase : List[Any] = None , lowerCAmelCase : Union[str, Any] = True , lowerCAmelCase : str = "arrow" , **lowerCAmelCase : Optional[int] , ): super().__init__( split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , **lowerCAmelCase , ) lowerCAmelCase = load_from_cache_file lowerCAmelCase = file_format lowerCAmelCase = Spark( df=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , working_dir=lowerCAmelCase , **lowerCAmelCase , ) def __lowercase ( self : Dict ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
155
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( __A ,__A=False ): '''simple docstring''' try: __UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCamelCase = default else: # KEY is set, convert it to True or False. try: __UpperCamelCase = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True) a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio a__ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam a__ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility a__ : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows a__ : Tuple = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowercase ( __A ): '''simple docstring''' try: import faiss # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires faiss""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import regex # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires regex""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TORCH_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TF_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.JAX_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires JAX""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.PIL_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("""test requires spacy""" )(__A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A ) else: return test_case return _require_spacy_model def _lowercase ( __A ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __UpperCamelCase = unittest.skip("""test is slow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __UpperCamelCase = unittest.skip("""test is local""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCamelCase = unittest.skip("""test is packaged""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __UpperCamelCase = unittest.skip("""test requires remote""" )(__A ) return test_case def _lowercase ( *__A ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("""test""" ): for decorator in decorators: __UpperCamelCase = decorator(__A ) setattr(cls ,__A ,__A ) return cls return decorate class UpperCAmelCase__ ( UpperCAmelCase_): pass class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 @contextmanager def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ): '''simple docstring''' __UpperCamelCase = requests.Session().request def timeout_request(__A ,__A ,__A ,**__A ): # Change the url to an invalid url so that the connection hangs __UpperCamelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __UpperCamelCase = timeout try: return online_request(__A ,__A ,**__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCamelCase = url __UpperCamelCase = e.args[0] __UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),) __UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__A ,__A ,**__A ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,__A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,__A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _lowercase ( *__A ,**__A ): '''simple docstring''' __UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( __A ,__A ): '''simple docstring''' return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist() def _lowercase ( __A ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A ,*__A ,**__A ): try: return func(*__A ,**__A ) except HTTPError as err: if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper ,__A ) class UpperCAmelCase__ : def __init__( self , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = returncode __UpperCamelCase = stdout __UpperCamelCase = stderr async def _lowercase ( __A ,__A ): '''simple docstring''' while True: __UpperCamelCase = await stream.readline() if line: callback(__A ) else: break async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ): '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(__A ) ) __UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCamelCase = [] __UpperCamelCase = [] def tee(__A ,__A ,__A ,__A="" ): __UpperCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A ,__A ,file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=__A ,) return _RunOutput(await p.wait() ,__A ,__A ) def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ): '''simple docstring''' __UpperCamelCase = asyncio.get_event_loop() __UpperCamelCase = loop.run_until_complete( _stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) ) __UpperCamelCase = """ """.join(__A ) if result.returncode > 0: __UpperCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def _lowercase ( ): '''simple docstring''' __UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) __UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M ) return int(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 29_500 __UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
349
0
"""simple docstring""" def _a ( _snake_case , _snake_case ): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _a ( _snake_case , _snake_case=0 ): """simple docstring""" return sorted(_snake_case , key=lambda _snake_case : x[column] ) def _a ( _snake_case , _snake_case , _snake_case=float("""inf""" ) ): """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _snake_case ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _a ( _snake_case , _snake_case , _snake_case=float("""inf""" ) ): """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _snake_case ): for j in range(max(0 , i - 6 ) , _snake_case ): UpperCAmelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: UpperCAmelCase = current_dis return min_dis def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_snake_case , _snake_case ) # recursion UpperCAmelCase = points_counts // 2 UpperCAmelCase = closest_pair_of_points_sqr( _snake_case , points_sorted_on_y[:mid] , _snake_case ) UpperCAmelCase = closest_pair_of_points_sqr( _snake_case , points_sorted_on_y[mid:] , points_counts - mid ) UpperCAmelCase = min(_snake_case , _snake_case ) UpperCAmelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_snake_case ) UpperCAmelCase = dis_between_closest_in_strip( _snake_case , len(_snake_case ) , _snake_case ) return min(_snake_case , _snake_case ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = column_based_sort(_snake_case , column=0 ) UpperCAmelCase = column_based_sort(_snake_case , column=1 ) return ( closest_pair_of_points_sqr( _snake_case , _snake_case , _snake_case ) ) ** 0.5 if __name__ == "__main__": _UpperCamelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
234
"""simple docstring""" from __future__ import annotations def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
234
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ ={'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
216
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ ={ 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } lowercase__ ='ETAOINSHRDLCUMWFGYPBVKJXQZ' lowercase__ ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : List[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __UpperCamelCase ( lowerCAmelCase__ : tuple ): return x[0] def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : Optional[Any] = get_letter_count(lowerCAmelCase__ ) __a : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase__ ) __a : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase__ ) __a : int = ''''''.join(freq_to_letter[freq] ) __a : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) __a : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : int = get_frequency_order(lowerCAmelCase__ ) __a : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
216
1
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = RobertaConfig a_ : Dict = """roberta""" def __init__( self , __UpperCAmelCase) ->Dict: super().__init__(__UpperCAmelCase) a_ = RobertaEmbeddings(__UpperCAmelCase) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = RobertaConfig a_ : Tuple = """roberta""" def __init__( self , __UpperCAmelCase) ->Tuple: super().__init__(__UpperCAmelCase) a_ = config.num_labels a_ = config.num_hidden_layers a_ = DeeRobertaModel(__UpperCAmelCase) a_ = nn.Dropout(config.hidden_dropout_prob) a_ = nn.Linear(config.hidden_size , self.config.num_labels) @add_start_docstrings_to_model_forward(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=-1 , __UpperCAmelCase=False , ) ->Tuple: a_ = self.num_layers try: a_ = self.roberta( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase , ) a_ = outputs[1] a_ = self.dropout(__UpperCAmelCase) a_ = self.classifier(__UpperCAmelCase) a_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: a_ = e.message a_ = e.exit_layer a_ = outputs[0] if not self.training: a_ = entropy(__UpperCAmelCase) a_ = [] a_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression a_ = MSELoss() a_ = loss_fct(logits.view(-1) , labels.view(-1)) else: a_ = CrossEntropyLoss() a_ = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits a_ = [] for highway_exit in outputs[-1]: a_ = highway_exit[0] if not self.training: highway_logits_all.append(__UpperCAmelCase) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression a_ = MSELoss() a_ = loss_fct(highway_logits.view(-1) , labels.view(-1)) else: a_ = CrossEntropyLoss() a_ = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(__UpperCAmelCase) if train_highway: a_ = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: a_ = (loss,) + outputs if not self.training: a_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: a_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
303
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
1
def a__ ( __UpperCamelCase , __UpperCamelCase ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
118
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = CpmAntTokenizer lowerCamelCase__ = False def __A ( self : List[str] ) -> str: super().setUp() SCREAMING_SNAKE_CASE_ = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) SCREAMING_SNAKE_CASE_ = "今天天气真好!" SCREAMING_SNAKE_CASE_ = ["今天", "天气", "真", "好", "!"] SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = "今天天气真好!" SCREAMING_SNAKE_CASE_ = [tokenizer.bos_token] + tokens SCREAMING_SNAKE_CASE_ = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ )
118
1
'''simple docstring''' from bisect import bisect from itertools import accumulate def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: List[str] ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : str = sorted(zip(__UpperCamelCase ,__UpperCamelCase ) ,key=lambda __UpperCamelCase : x[0] / x[1] ,reverse=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = [i[0] for i in r], [i[1] for i in r] SCREAMING_SNAKE_CASE : str = list(accumulate(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : str = bisect(__UpperCamelCase ,__UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "facebook/nllb-large-en-ro": 1_0_2_4, "facebook/nllb-200-distilled-600M": 1_0_2_4, } # fmt: off UpperCamelCase_ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Any = ['''input_ids''', '''attention_mask'''] A : Dict = NllbTokenizer A : List[int] = [] A : List[int] = [] def __init__( self, A=None, A=None, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A=None, A=None, A=None, A=False, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else mask_token SCREAMING_SNAKE_CASE : Tuple = legacy_behaviour super().__init__( vocab_file=A, tokenizer_file=A, bos_token=A, eos_token=A, sep_token=A, cls_token=A, unk_token=A, pad_token=A, mask_token=A, src_lang=A, tgt_lang=A, additional_special_tokens=A, legacy_behaviour=A, **A, ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : Optional[int] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : Optional[Any] = { lang_code: self.convert_tokens_to_ids(A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : Dict = src_lang if src_lang is not None else 'eng_Latn' SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self, A, A, A, A, **A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[Any] = self(A, add_special_tokens=A, return_tensors=A, **A ) SCREAMING_SNAKE_CASE : Any = self.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : int = tgt_lang_id return inputs def UpperCamelCase_ ( self, A, A = "eng_Latn", A = None, A = "fra_Latn", **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[Any] = tgt_lang return super().prepare_seqaseq_batch(A, A, **A ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(A ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE : Tuple = [self.cur_lang_code] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : int = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_tokens_to_ids(A ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE : Dict = [self.cur_lang_code] SCREAMING_SNAKE_CASE : str = [self.eos_token_id] SCREAMING_SNAKE_CASE : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return SCREAMING_SNAKE_CASE : int = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file, A ) return (out_vocab_file,)
246
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __A = 25_0004 __A = 25_0020 @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = MBartaaTokenizer __magic_name__ :List[Any] = MBartaaTokenizerFast __magic_name__ :str = True __magic_name__ :int = True def snake_case ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ :str = MBartaaTokenizer(__UpperCAmelCase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = '<s>' lowerCAmelCase__ :Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__UpperCAmelCase ) , 1_0_5_4 ) def snake_case ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = MBartaaTokenizer(__UpperCAmelCase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ :Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase__ :List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowerCAmelCase__ :List[Any] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowerCAmelCase__ :str = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = {'input_ids': [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def snake_case ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase__ :Optional[Any] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :List[str] = tempfile.mkdtemp() lowerCAmelCase__ :int = tokenizer_r.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = tokenizer_p.save_pretrained(__UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCAmelCase__ :List[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase ) # Checks everything loads correctly in the same way lowerCAmelCase__ :Any = tokenizer_r.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer_p.from_pretrained(__UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__UpperCAmelCase ) # Save tokenizer rust, legacy_format=True lowerCAmelCase__ :Any = tempfile.mkdtemp() lowerCAmelCase__ :str = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = tokenizer_p.save_pretrained(__UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(__UpperCAmelCase , __UpperCAmelCase ) # Checks everything loads correctly in the same way lowerCAmelCase__ :int = tokenizer_r.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :int = tokenizer_p.from_pretrained(__UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) ) shutil.rmtree(__UpperCAmelCase ) # Save tokenizer rust, legacy_format=False lowerCAmelCase__ :str = tempfile.mkdtemp() lowerCAmelCase__ :str = tokenizer_r.save_pretrained(__UpperCAmelCase , legacy_format=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = tokenizer_p.save_pretrained(__UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase__ :Optional[int] = tokenizer_r.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = tokenizer_p.from_pretrained(__UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCAmelCase , __UpperCAmelCase ) ) shutil.rmtree(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = """facebook/mbart-large-50-one-to-many-mmt""" __magic_name__ :Dict = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __magic_name__ :str = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __magic_name__ :Union[str, Any] = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def snake_case ( cls ): '''simple docstring''' lowerCAmelCase__ :MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCAmelCase__ :List[Any] = 1 return cls def snake_case ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 2_5_0_0_3_8 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids ) lowerCAmelCase__ :Dict = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowerCAmelCase__ :str = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = ['this is gunna be a long sentence ' * 2_0] assert isinstance(src_text[0] , __UpperCAmelCase ) lowerCAmelCase__ :Dict = 1_0 lowerCAmelCase__ :List[str] = self.tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ).input_ids[0] self.assertEqual(ids[0] , __UpperCAmelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = tempfile.mkdtemp() lowerCAmelCase__ :List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = MBartaaTokenizer.from_pretrained(__UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCAmelCase ) @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , return_tensors='pt' ) lowerCAmelCase__ :Dict = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCAmelCase__ :List[Any] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) lowerCAmelCase__ :Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.tokenizer(self.src_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=3 , return_tensors='pt' ) lowerCAmelCase__ :Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_0 , return_tensors='pt' ) lowerCAmelCase__ :str = targets['input_ids'] lowerCAmelCase__ :Union[str, Any] = shift_tokens_right(__UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , { # en_XX, A, test, EOS 'input_ids': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 2_5_0_0_0_1, } , )
293
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase__ :List[Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = tokenizer('This is me' , return_tensors='pt' ) lowerCAmelCase__ :Dict = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCAmelCase__ :Optional[Any] = model.generate(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Any = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCAmelCase__ :Union[str, Any] = model_reloaded.generate(**__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase__ :Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__UpperCAmelCase ): model.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = model.reverse_bettertransformer() model.save_pretrained(__UpperCAmelCase )
293
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple=13 , UpperCAmelCase__ : Dict=32 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : List[str]=[32, 64, 128] , UpperCAmelCase__ : Tuple=[1, 2, 1] , UpperCAmelCase__ : Optional[int]=[2, 2, 4] , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Dict=2.0 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Tuple="gelu" , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : List[Any]=1e-5 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : int=True , UpperCAmelCase__ : int=10 , UpperCAmelCase__ : Optional[int]=8 , UpperCAmelCase__ : Tuple=["stage1", "stage2"] , UpperCAmelCase__ : str=[1, 2] , ) ->str: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = hidden_sizes A__ = depths A__ = num_heads A__ = window_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = use_absolute_embeddings A__ = patch_norm A__ = layer_norm_eps A__ = initializer_range A__ = is_training A__ = scope A__ = use_labels A__ = type_sequence_label_size A__ = encoder_stride A__ = out_features A__ = out_indices def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Any) ->Any: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->List[Any]: '''simple docstring''' A__ = FocalNetModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) A__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) A__ = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str]) ->int: '''simple docstring''' A__ = FocalNetBackbone(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size, 8, 8]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1]) # verify backbone works with out_features=None A__ = None A__ = FocalNetBackbone(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size * 2, 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]) ->Optional[Any]: '''simple docstring''' A__ = FocalNetForMaskedImageModeling(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images A__ = 1 A__ = FocalNetForMaskedImageModeling(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = FocalNetForImageClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = FocalNetForImageClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCAmelCase__ = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = FocalNetModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , embed_dim=37 , has_text_modality=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' return def SCREAMING_SNAKE_CASE ( self : Dict) ->Any: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @unittest.skip(reason='''FocalNet does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->str: '''simple docstring''' pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''') def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: A__ = model_class(UpperCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear)) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str) ->int: '''simple docstring''' A__ = model_class(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__)) A__ = outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) # FocalNet has a different seq_length A__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) A__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) A__ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ , A__ , A__ , A__ = reshaped_hidden_states[0].shape A__ = ( reshaped_hidden_states[0].view(UpperCAmelCase__ , UpperCAmelCase__ , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: A__ = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) A__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) A__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) A__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: A__ = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , (padded_height, padded_width)) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = FocalNetModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(UpperCAmelCase__) for model_class in self.all_model_classes: A__ = model_class(config=UpperCAmelCase__) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' A__ = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''').to(UpperCAmelCase__) A__ = self.default_image_processor A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__) # forward pass with torch.no_grad(): A__ = model(**UpperCAmelCase__) # verify the logits A__ = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = torch.tensor([0.2166, -0.4368, 0.2191]).to(UpperCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) self.assertTrue(outputs.logits.argmax(dim=-1).item() , 281) @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () UpperCAmelCase__ = FocalNetConfig UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' A__ = FocalNetModelTester(self)
231
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase_ : '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any=14 , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Tuple=99 , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : int=4 , UpperCAmelCase__ : Optional[Any]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Optional[Any]=512 , UpperCAmelCase__ : Union[str, Any]=0.02 , ) ->Any: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = rotary_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = None A__ = vocab_size - 1 A__ = vocab_size - 1 A__ = vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any]) ->Optional[int]: '''simple docstring''' A__ = 20 A__ = model_class_name(UpperCAmelCase__) A__ = model.init_cache(input_ids.shape[0] , UpperCAmelCase__) A__ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''') A__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) A__ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , ) A__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''') A__ = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase__ , ) A__ = model(UpperCAmelCase__) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int) ->Any: '''simple docstring''' A__ = 20 A__ = model_class_name(UpperCAmelCase__) A__ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) A__ = model.init_cache(input_ids.shape[0] , UpperCAmelCase__) A__ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) A__ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , ) A__ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''') A__ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , ) A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") @require_flax class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () UpperCAmelCase__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' A__ = FlaxGPTJModelTester(self) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' for model_class_name in self.all_model_classes: A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' for model_class_name in self.all_model_classes: A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) @tooslow def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''') A__ = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__) A__ = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''') A__ = False A__ = model.config.eos_token_id A__ = jax.jit(model.generate) A__ = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id).sequences A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) A__ = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A__ = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ = getattr(UpperCAmelCase__ , UpperCAmelCase__) A__ , A__ = pt_inputs['''input_ids'''].shape A__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(UpperCAmelCase__): A__ = 0 A__ = 1 A__ = 0 A__ = 1 A__ = pt_model_class(UpperCAmelCase__).eval() A__ = model_class(UpperCAmelCase__ , dtype=jnp.floataa) A__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase__) A__ = fx_state with torch.no_grad(): A__ = pt_model(**UpperCAmelCase__).to_tuple() A__ = fx_model(**UpperCAmelCase__).to_tuple() self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase__) A__ = model_class.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__) A__ = fx_model_loaded(**UpperCAmelCase__).to_tuple() self.assertEqual( len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output_loaded, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) A__ = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A__ = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ = getattr(UpperCAmelCase__ , UpperCAmelCase__) A__ = pt_model_class(UpperCAmelCase__).eval() A__ = model_class(UpperCAmelCase__ , dtype=jnp.floataa) A__ = load_flax_weights_in_pytorch_model(UpperCAmelCase__ , fx_model.params) A__ , A__ = pt_inputs['''input_ids'''].shape A__ = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(UpperCAmelCase__): A__ = 0 A__ = 1 A__ = 0 A__ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): A__ = pt_model(**UpperCAmelCase__).to_tuple() A__ = fx_model(**UpperCAmelCase__).to_tuple() self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase__) A__ = pt_model_class.from_pretrained(UpperCAmelCase__ , from_flax=UpperCAmelCase__) with torch.no_grad(): A__ = pt_model_loaded(**UpperCAmelCase__).to_tuple() self.assertEqual( len(UpperCAmelCase__) , len(UpperCAmelCase__) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) @tooslow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''') A__ = model(np.ones((1, 1))) self.assertIsNotNone(UpperCAmelCase__)
231
1
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = checkpoints.load_tax_checkpoint(__lowerCAmelCase ) _UpperCAmelCase : List[str] = flatten_dict(__lowerCAmelCase ) return flax_params def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = {} _UpperCAmelCase : Tuple = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } _UpperCAmelCase : Any = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _UpperCAmelCase : Any = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _UpperCAmelCase : int = new_key.replace(__lowerCAmelCase , __lowerCAmelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _UpperCAmelCase : Dict = new_key.replace(__lowerCAmelCase , __lowerCAmelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _UpperCAmelCase : Union[str, Any] = re.sub(R"layers_(\d+)" , R"layer.\1" , __lowerCAmelCase ) _UpperCAmelCase : int = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _UpperCAmelCase : str = re.sub(R"layers_(\d+)" , R"layer.\1" , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = flax_dict[key] _UpperCAmelCase : List[Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _UpperCAmelCase : Optional[Any] = torch.from_numpy(converted_dict[key].T ) else: _UpperCAmelCase : int = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False ): _UpperCAmelCase : List[Any] = get_flax_param(__lowerCAmelCase ) if not use_large: _UpperCAmelCase : Optional[Any] = PixaStructVisionConfig() _UpperCAmelCase : str = PixaStructTextConfig() else: _UpperCAmelCase : Dict = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) _UpperCAmelCase : Tuple = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) _UpperCAmelCase : Dict = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__lowerCAmelCase ) _UpperCAmelCase : int = PixaStructForConditionalGeneration(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = rename_and_convert_flax_params(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) _UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) _UpperCAmelCase : Any = PixaStructImageProcessor() _UpperCAmelCase : Optional[Any] = PixaStructProcessor(image_processor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) if use_large: _UpperCAmelCase : Tuple = 4_096 _UpperCAmelCase : Optional[Any] = True # mkdir if needed os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) print("Model saved in {}".format(__lowerCAmelCase ) ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') lowerCamelCase__ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
234
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ = '▁' class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Dict = VOCAB_FILES_NAMES lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Optional[int] = ["input_ids", "token_type_ids"] lowerCAmelCase : Optional[Any] = FNetTokenizer def __init__( self : Dict , lowerCamelCase__ : int=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Any=False , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : List[str]="[SEP]" , lowerCamelCase__ : Union[str, Any]="<pad>" , lowerCamelCase__ : Optional[Any]="[CLS]" , lowerCamelCase__ : Any="[MASK]" , **lowerCamelCase__ : Any , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = ( AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ , normalized=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token ) super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) _UpperCAmelCase : Optional[Any] = do_lower_case _UpperCAmelCase : Tuple = remove_space _UpperCAmelCase : List[Any] = keep_accents _UpperCAmelCase : Tuple = vocab_file _UpperCAmelCase : str = False if not self.vocab_file else True def lowerCAmelCase__ ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [self.sep_token_id] _UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
234
1
from __future__ import annotations lowerCamelCase_ = list[list[int]] # assigning initial values to the grid lowerCamelCase_ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCamelCase_ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __magic_name__ ( __a : Matrix , __a : int , __a : int , __a : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __magic_name__ ( __a : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __magic_name__ ( __a : Matrix ): '''simple docstring''' if location := find_empty_location(__a ): UpperCamelCase__ , UpperCamelCase__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): UpperCamelCase__ = digit if sudoku(__a ) is not None: return grid UpperCamelCase__ = 0 return None def __magic_name__ ( __a : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(__a , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') lowerCamelCase_ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
178
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase_ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase_ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCamelCase_ = spec.loader.load_module() lowerCamelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase_ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCamelCase_ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCamelCase__ = False # source code of `config_class` UpperCamelCase__ = inspect.getsource(__a ) UpperCamelCase__ = _re_checkpoint.findall(__a ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCamelCase__ , UpperCamelCase__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase__ = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: UpperCamelCase__ = True break UpperCamelCase__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: UpperCamelCase__ = """\n""".join(sorted(__a ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
178
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''pixel_values''' lowerCAmelCase_ = False lowerCAmelCase_ = TimmBackboneConfig def __init__( self : str , _A : Dict , **_A : Optional[Any] ): """simple docstring""" requires_backends(self , '''timm''' ) super().__init__(_A ) __SCREAMING_SNAKE_CASE : List[str] = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(_A , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) __SCREAMING_SNAKE_CASE : List[Any] = getattr(_A , '''use_pretrained_backbone''' , _A ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. __SCREAMING_SNAKE_CASE : Optional[int] = config.out_indices if getattr(_A , '''out_indices''' , _A ) is not None else (-1,) __SCREAMING_SNAKE_CASE : Optional[int] = timm.create_model( config.backbone , pretrained=_A , features_only=config.features_only , in_chans=config.num_channels , out_indices=_A , **_A , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __SCREAMING_SNAKE_CASE : Optional[int] = self._backbone.return_layers __SCREAMING_SNAKE_CASE : Tuple = {layer['''module''']: str(_A ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(_A ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , _A : List[str] , *_A : Any , **_A : List[str] ): """simple docstring""" requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''config''' , TimmBackboneConfig() ) __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''use_timm_backbone''' , _A ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''num_channels''' , config.num_channels ) __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''features_only''' , config.features_only ) __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''out_indices''' , config.out_indices ) __SCREAMING_SNAKE_CASE : List[Any] = TimmBackboneConfig( backbone=_A , num_channels=_A , features_only=_A , use_pretrained_backbone=_A , out_indices=_A , ) return super()._from_config(_A , **_A ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : Optional[int] ): """simple docstring""" pass def UpperCAmelCase__ ( self : Tuple , _A : int , _A : int=None , _A : List[str]=None , _A : Optional[int]=None , **_A : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE : Optional[Any] = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __SCREAMING_SNAKE_CASE : int = self._all_layers __SCREAMING_SNAKE_CASE : Optional[Any] = self._backbone(_A , **_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self._return_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(hidden_states[i] for i in self.out_indices ) else: __SCREAMING_SNAKE_CASE : Optional[int] = self._backbone(_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : str = tuple(_A ) __SCREAMING_SNAKE_CASE : Dict = tuple(_A ) if hidden_states is not None else None if not return_dict: __SCREAMING_SNAKE_CASE : int = (feature_maps,) if output_hidden_states: __SCREAMING_SNAKE_CASE : int = output + (hidden_states,) return output return BackboneOutput(feature_maps=_A , hidden_states=_A , attentions=_A )
303
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt''', '''negative_prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __SCREAMING_SNAKE_CASE : Optional[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection(_A ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior __SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image_processor __SCREAMING_SNAKE_CASE : str = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=10.0 , ) __SCREAMING_SNAKE_CASE : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Tuple = output.image_embeds __SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -10:] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __SCREAMING_SNAKE_CASE : List[str] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
303
1
import logging from transformers.configuration_utils import PretrainedConfig snake_case : Optional[Any] = logging.getLogger(__name__) class snake_case_ (A_ ): UpperCAmelCase__ : int = "masked_bert" def __init__( self :str ,__snake_case :int=3_05_22 ,__snake_case :Any=7_68 ,__snake_case :str=12 ,__snake_case :str=12 ,__snake_case :Any=30_72 ,__snake_case :Optional[int]="gelu" ,__snake_case :Tuple=0.1 ,__snake_case :Union[str, Any]=0.1 ,__snake_case :List[Any]=5_12 ,__snake_case :Tuple=2 ,__snake_case :Dict=0.02 ,__snake_case :str=1E-12 ,__snake_case :Tuple=0 ,__snake_case :Optional[Any]="topK" ,__snake_case :Optional[Any]="constant" ,__snake_case :str=0.0 ,**__snake_case :Tuple ,) -> Dict: super().__init__(pad_token_id=snake_case__ ,**snake_case__ ) a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = hidden_act a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = initializer_range a__ = layer_norm_eps a__ = pruning_method a__ = mask_init a__ = mask_scale
360
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin snake_case : Tuple = logging.get_logger(__name__) enable_full_determinism() class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = UNetaDModel UpperCAmelCase__ : str = '''sample''' @property def lowerCamelCase__( self :Optional[int] ) -> List[str]: a__ = 4 a__ = 3 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor([10] ).to(__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Tuple ) -> Tuple: return (3, 32, 32) @property def lowerCamelCase__( self :List[str] ) -> Optional[Any]: return (3, 32, 32) def lowerCamelCase__( self :str ) -> Tuple: a__ = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } a__ = self.dummy_input return init_dict, inputs_dict class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = UNetaDModel UpperCAmelCase__ : Any = '''sample''' @property def lowerCamelCase__( self :Dict ) -> List[str]: a__ = 4 a__ = 4 a__ = (32, 32) a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor([10] ).to(__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Any ) -> str: return (4, 32, 32) @property def lowerCamelCase__( self :Any ) -> Dict: return (4, 32, 32) def lowerCamelCase__( self :int ) -> int: a__ = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } a__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__( self :str ) -> Any: a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(__snake_case ) a__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' ,'This test is supposed to run on GPU' ) def lowerCamelCase__( self :Tuple ) -> Optional[int]: a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) model.to(__snake_case ) a__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' ,'This test is supposed to run on GPU' ) def lowerCamelCase__( self :Union[str, Any] ) -> int: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` a__ , a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ) model_accelerate.to(__snake_case ) model_accelerate.eval() a__ = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) a__ = noise.to(__snake_case ) a__ = torch.tensor([10] * noise.shape[0] ).to(__snake_case ) a__ = model_accelerate(__snake_case ,__snake_case )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() a__ , a__ = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' ,output_loading_info=__snake_case ,low_cpu_mem_usage=__snake_case ) model_normal_load.to(__snake_case ) model_normal_load.eval() a__ = model_normal_load(__snake_case ,__snake_case )['sample'] assert torch_all_close(__snake_case ,__snake_case ,rtol=1E-3 ) def lowerCamelCase__( self :str ) -> Union[str, Any]: a__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__snake_case ) a__ = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) a__ = noise.to(__snake_case ) a__ = torch.tensor([10] * noise.shape[0] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off a__ = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-3 ) ) class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Dict = UNetaDModel UpperCAmelCase__ : Optional[Any] = '''sample''' @property def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any]=(32, 32) ) -> Optional[int]: a__ = 4 a__ = 3 a__ = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__snake_case ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase__( self :Tuple ) -> Optional[int]: return (3, 32, 32) @property def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: return (3, 32, 32) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: a__ = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } a__ = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase__( self :str ) -> Tuple: a__ , a__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(__snake_case ) a__ = self.dummy_input a__ = floats_tensor((4, 3) + (2_56, 2_56) ).to(__snake_case ) a__ = noise a__ = model(**__snake_case ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase__( self :Union[str, Any] ) -> Dict: a__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__snake_case ) a__ = 4 a__ = 3 a__ = (2_56, 2_56) a__ = torch.ones((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [1E-4] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-2 ) ) def lowerCamelCase__( self :Dict ) -> int: a__ = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__snake_case ) a__ = 4 a__ = 3 a__ = (32, 32) a__ = torch.ones((batch_size, num_channels) + sizes ).to(__snake_case ) a__ = torch.tensor(batch_size * [1E-4] ).to(__snake_case ) with torch.no_grad(): a__ = model(__snake_case ,__snake_case ).sample a__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off a__ = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1E-2 ) ) def lowerCamelCase__( self :int ) -> str: # not required for this model pass
109
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __lowercase : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=2 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Tuple: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = 13 lowerCamelCase = 7 lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True lowerCamelCase = 99 lowerCamelCase = 3_84 lowerCamelCase = 2 lowerCamelCase = 4 lowerCamelCase = 37 lowerCamelCase = """gelu""" lowerCamelCase = 0.1 lowerCamelCase = 0.1 lowerCamelCase = 5_12 lowerCamelCase = 16 lowerCamelCase = 2 lowerCamelCase = 0.02 lowerCamelCase = 3 lowerCamelCase = 4 lowerCamelCase = 1_28 lowerCamelCase = 2 lowerCamelCase = 9 lowerCamelCase = 1 lowerCamelCase = None def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_input_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None if self.use_token_type_ids: lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self , A , A , A , A , A , A , A ) -> int: '''simple docstring''' lowerCamelCase = TFConvBertModel(config=_A ) lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCamelCase = [input_ids, input_mask] lowerCamelCase = model(_A ) lowerCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , A , A , A ) -> List[str]: '''simple docstring''' lowerCamelCase = TFConvBertForMaskedLM(config=_A ) lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , A , A , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = TFConvBertForSequenceClassification(config=_A ) lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A , A , A , A , A , A , A ) -> str: '''simple docstring''' lowerCamelCase = self.num_choices lowerCamelCase = TFConvBertForMultipleChoice(config=_A ) lowerCamelCase = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCamelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , A , A , A , A , A , A , A ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = TFConvBertForTokenClassification(config=_A ) lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , A , A , A , A , A , A , A ) -> str: '''simple docstring''' lowerCamelCase = TFConvBertForQuestionAnswering(config=_A ) lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() ( lowerCamelCase ) = config_and_inputs lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowercase ( __a , __a , unittest.TestCase ): """simple docstring""" UpperCamelCase : str = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase : List[str] = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase : Optional[Any] = False UpperCamelCase : int = False UpperCamelCase : List[str] = False def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = TFConvBertModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def __A ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = True lowerCamelCase = True if hasattr(_A , """use_cache""" ): lowerCamelCase = True lowerCamelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCamelCase = getattr(self.model_tester , """key_length""" , _A ) for model_class in self.all_model_classes: lowerCamelCase = self._prepare_for_class(_A , _A ) lowerCamelCase = model_class(_A ) lowerCamelCase = len(model(_A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) lowerCamelCase = os.path.join(_A , """saved_model""" , """1""" ) lowerCamelCase = tf.keras.models.load_model(_A ) lowerCamelCase = model(_A ) if self.is_encoder_decoder: lowerCamelCase = outputs["""encoder_hidden_states"""] lowerCamelCase = outputs["""encoder_attentions"""] else: lowerCamelCase = outputs["""hidden_states"""] lowerCamelCase = outputs["""attentions"""] self.assertEqual(len(_A ) , _A ) lowerCamelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(_A ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = True lowerCamelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) lowerCamelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCamelCase = getattr(self.model_tester , """key_length""" , _A ) lowerCamelCase = getattr(self.model_tester , """key_length""" , _A ) def check_decoder_attentions_output(A ): lowerCamelCase = len(_A ) self.assertEqual(out_len % 2 , 0 ) lowerCamelCase = outputs.decoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A ): lowerCamelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCamelCase = True lowerCamelCase = False lowerCamelCase = model_class(_A ) lowerCamelCase = model(self._prepare_for_class(_A , _A ) ) lowerCamelCase = len(_A ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: lowerCamelCase = model_class(_A ) lowerCamelCase = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase = True lowerCamelCase = model_class(_A ) lowerCamelCase = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine lowerCamelCase = True lowerCamelCase = True lowerCamelCase = model_class(_A ) lowerCamelCase = model(self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_A ) ) self.assertEqual(model.config.output_hidden_states , _A ) check_encoder_attentions_output(_A ) @require_tf class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) lowerCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase = model(_A )[0] lowerCamelCase = [1, 6, 7_68] self.assertEqual(output.shape , _A ) lowerCamelCase = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1e-4 )
252
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class _UpperCAmelCase ( __a): __a : Optional[torch.FloatTensor] = None __a : torch.FloatTensor = None __a : Optional[Tuple[torch.FloatTensor]] = None __a : Optional[Tuple[torch.FloatTensor]] = None class _UpperCAmelCase ( __a): def __init__( self , _A=1 , _A=0 , _A=2 , _A=5_12 , _A="cls" , _A=False , _A=True , **_A , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) _UpperCAmelCase : int = project_dim _UpperCAmelCase : str = pooler_fn _UpperCAmelCase : Union[str, Any] = learn_encoder _UpperCAmelCase : Tuple = use_attention_mask class _UpperCAmelCase ( __a): __a : str = [R"""pooler""", R"""logit_scale"""] __a : str = [R"""position_ids""", R"""predictions.decoder.bias"""] __a : int = """roberta""" __a : Optional[int] = RobertaSeriesConfig def __init__( self , _A ) -> List[Any]: '''simple docstring''' super().__init__(_A ) _UpperCAmelCase : Dict = XLMRobertaModel(_A ) _UpperCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase : Optional[int] = getattr(_A , """has_pre_transformation""" , _A ) if self.has_pre_transformation: _UpperCAmelCase : Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase : Union[str, Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __snake_case ( self , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Any = self.base_model( input_ids=_A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_attentions=_A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_A , ) if self.has_pre_transformation: _UpperCAmelCase : Optional[int] = outputs["""hidden_states"""][-2] _UpperCAmelCase : str = self.pre_LN(_A ) _UpperCAmelCase : str = self.transformation_pre(_A ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCAmelCase : Union[str, Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
246
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Dict=1_0 , lowerCAmelCase_ : Any=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : int=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : int=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = embeddings_size lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_act lowercase_ = num_labels lowercase_ = scope lowercase_ = len(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase_ = self.get_config() return config, pixel_values def _UpperCAmelCase ( self : Tuple): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = FlaxRegNetModel(config=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = FlaxRegNetForImageClassification(config=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = FlaxRegNetModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self : str): """simple docstring""" return def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_) @unittest.skip(reason="""RegNet does not use inputs_embeds""") def _UpperCAmelCase ( self : Any): """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""") def _UpperCAmelCase ( self : int): """simple docstring""" pass def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) lowercase_ = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Any): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)) lowercase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_) , expected_num_stages + 1) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any]): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = model_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = model_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : Any): """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""") if is_vision_available() else None @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""") lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""np""") lowercase_ = model(**lowerCAmelCase_) # verify the logits lowercase_ = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_) lowercase_ = jnp.array([-0.4_180, -1.5_051, -3.4_836]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4))
313
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "huggingface/informer-tourism-monthly": ( "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" ), # See all Informer models at https://huggingface.co/models?filter=informer } class _lowerCAmelCase ( __a ): _lowercase ='''informer''' _lowercase ={ '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = "student_t" , _UpperCamelCase = "nll" , _UpperCamelCase = 1 , _UpperCamelCase = None , _UpperCamelCase = "mean" , _UpperCamelCase = 0 , _UpperCamelCase = 0 , _UpperCamelCase = 0 , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 64 , _UpperCamelCase = 32 , _UpperCamelCase = 32 , _UpperCamelCase = 2 , _UpperCamelCase = 2 , _UpperCamelCase = 2 , _UpperCamelCase = 2 , _UpperCamelCase = True , _UpperCamelCase = "gelu" , _UpperCamelCase = 0.05 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 100 , _UpperCamelCase = 0.02 , _UpperCamelCase=True , _UpperCamelCase = "prob" , _UpperCamelCase = 5 , _UpperCamelCase = True , **_UpperCamelCase , ) -> List[str]: # time series specific configuration lowerCAmelCase_ = prediction_length lowerCAmelCase_ = context_length or prediction_length lowerCAmelCase_ = distribution_output lowerCAmelCase_ = loss lowerCAmelCase_ = input_size lowerCAmelCase_ = num_time_features lowerCAmelCase_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase_ = scaling lowerCAmelCase_ = num_dynamic_real_features lowerCAmelCase_ = num_static_real_features lowerCAmelCase_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase_ = cardinality else: lowerCAmelCase_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase_ = embedding_dimension else: lowerCAmelCase_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase_ = num_parallel_samples # Transformer architecture configuration lowerCAmelCase_ = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase_ = d_model lowerCAmelCase_ = encoder_attention_heads lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = encoder_ffn_dim lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = activation_function lowerCAmelCase_ = init_std lowerCAmelCase_ = use_cache # Informer lowerCAmelCase_ = attention_type lowerCAmelCase_ = sampling_factor lowerCAmelCase_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def __a ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
231
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
231
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = BigBirdConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: lowercase__ = BigBirdForQuestionAnswering(SCREAMING_SNAKE_CASE ) else: lowercase__ = BigBirdForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , is_trivia_qa=SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
93
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
93
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __UpperCAmelCase ( ): snake_case_ = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=a_ , default='microsoft/unixcoder-base-nine') parser.add_argument('--num_epochs' , type=a_ , default=5) parser.add_argument('--batch_size' , type=a_ , default=6) parser.add_argument('--gradient_accumulation_steps' , type=a_ , default=1) parser.add_argument('--freeze' , type=a_ , default=a_) parser.add_argument('--learning_rate' , type=a_ , default=5E-4) parser.add_argument('--seed' , type=a_ , default=0) parser.add_argument('--lr_scheduler_type' , type=a_ , default='cosine') parser.add_argument('--num_warmup_steps' , type=a_ , default=10) parser.add_argument('--weight_decay' , type=a_ , default=0.01) parser.add_argument('--output_dir' , type=a_ , default='./results') return parser.parse_args() lowercase = load("accuracy") def __UpperCAmelCase ( a_): snake_case_ , snake_case_ = eval_pred snake_case_ = np.argmax(a_ , axis=1) return metric.compute(predictions=a_ , references=a_) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a ) -> None: super().__init__() snake_case_ = trainer def _UpperCamelCase ( self , a , a , a , **a ) -> List[Any]: if control.should_evaluate: snake_case_ = deepcopy(a ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' ) return control_copy def __UpperCAmelCase ( ): snake_case_ = get_args() set_seed(args.seed) snake_case_ = load_dataset('codeparrot/codecomplex' , split='train') snake_case_ = dataset.train_test_split(test_size=0.2) snake_case_ = train_test['test'].train_test_split(test_size=0.5) snake_case_ = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], }) print('Loading tokenizer and model') snake_case_ = AutoTokenizer.from_pretrained(args.model_ckpt) snake_case_ = tokenizer.eos_token snake_case_ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7) snake_case_ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): snake_case_ = False snake_case_ = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity']))) def tokenize(a_): snake_case_ = tokenizer(example['src'] , truncation=a_ , max_length=10_24) snake_case_ = labels.straint(example['complexity']) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } snake_case_ = train_test_validation.map( a_ , batched=a_ , remove_columns=train_test_validation['train'].column_names , ) snake_case_ = DataCollatorWithPadding(tokenizer=a_) snake_case_ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) snake_case_ = Trainer( model=a_ , args=a_ , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=a_ , data_collator=a_ , compute_metrics=a_ , ) print('Training...') trainer.add_callback(CustomCallback(a_)) trainer.train() if __name__ == "__main__": main()
178
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
1
'''simple docstring''' from __future__ import annotations from typing import Any class _a : '''simple docstring''' def __init__( self, A, A, A = 0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = row, column SCREAMING_SNAKE_CASE : Tuple = [[default_value for c in range(A )] for r in range(A )] def __str__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = F"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier SCREAMING_SNAKE_CASE : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: SCREAMING_SNAKE_CASE : Dict = max(A, len(str(A ) ) ) SCREAMING_SNAKE_CASE : List[Any] = F"%{max_element_length}s" # Make string and return def single_line(A ) -> str: nonlocal string_format_identifier SCREAMING_SNAKE_CASE : Optional[Any] = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(A ) for row_vector in self.array ) return s def __repr__( self ): '''simple docstring''' return str(self ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not (isinstance(A, (list, tuple) ) and len(A ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, A ): '''simple docstring''' assert self.validate_indicies(A ) return self.array[loc[0]][loc[1]] def __setitem__( self, A, A ): '''simple docstring''' assert self.validate_indicies(A ) SCREAMING_SNAKE_CASE : Tuple = value def __add__( self, A ): '''simple docstring''' assert isinstance(A, A ) assert self.row == another.row and self.column == another.column # Add SCREAMING_SNAKE_CASE : List[Any] = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : Tuple = self[r, c] + another[r, c] return result def __neg__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : int = -self[r, c] return result def __sub__( self, A ): '''simple docstring''' return self + (-another) def __mul__( self, A ): '''simple docstring''' if isinstance(A, (int, float) ): # Scalar multiplication SCREAMING_SNAKE_CASE : Any = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : List[str] = self[r, c] * another return result elif isinstance(A, A ): # Matrix multiplication assert self.column == another.row SCREAMING_SNAKE_CASE : Union[str, Any] = Matrix(self.row, another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: SCREAMING_SNAKE_CASE : int = F"Unsupported type given for another ({type(A )})" raise TypeError(A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Matrix(self.column, self.row ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : Any = self[r, c] return result def UpperCamelCase_ ( self, A, A ): '''simple docstring''' assert isinstance(A, A ) and isinstance(A, A ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate SCREAMING_SNAKE_CASE : Any = v.transpose() SCREAMING_SNAKE_CASE : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = Matrix(3 ,3 ,0 ) for i in range(3 ): SCREAMING_SNAKE_CASE : str = 1 print(f"a^(-1) is {ainv}" ) # u, v SCREAMING_SNAKE_CASE : Tuple = Matrix(3 ,1 ,0 ) SCREAMING_SNAKE_CASE : List[Any] = 1, 2, -3 SCREAMING_SNAKE_CASE : Union[str, Any] = Matrix(3 ,1 ,0 ) SCREAMING_SNAKE_CASE : List[str] = 4, -2, 5 print(f"u is {u}" ) print(f"v is {v}" ) print(f"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(f"(a + uv^T)^(-1) is {ainv.sherman_morrison(__UpperCamelCase ,__UpperCamelCase )}" ) def lowercase__( ): """simple docstring""" import doctest doctest.testmod() testa()
356
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets UpperCamelCase_ = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" UpperCamelCase_ = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" UpperCamelCase_ = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Value('string', id='sequence' ), } ), codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'], reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ], ) def UpperCamelCase_ ( self, A, A, A=None, A=True, A=False ): '''simple docstring''' if rouge_types is None: SCREAMING_SNAKE_CASE : List[Any] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE : int = rouge_scorer.RougeScorer(rouge_types=A, use_stemmer=A ) if use_aggregator: SCREAMING_SNAKE_CASE : Tuple = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for ref, pred in zip(A, A ): SCREAMING_SNAKE_CASE : Tuple = scorer.score(A, A ) if use_aggregator: aggregator.add_scores(A ) else: scores.append(A ) if use_aggregator: SCREAMING_SNAKE_CASE : Union[str, Any] = aggregator.aggregate() else: SCREAMING_SNAKE_CASE : int = {} for key in scores[0]: SCREAMING_SNAKE_CASE : List[str] = [score[key] for score in scores] return result
246
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowercase_ = logging.get_logger(__name__) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = CLIPConfig lowerCamelCase = ['CLIPEncoderLayer'] def __init__( self : int,lowercase_ : CLIPConfig )-> Union[str, Any]: '''simple docstring''' super().__init__(lowercase_ ) A__ = CLIPVisionModelWithProjection(config.vision_config ) A__ = nn.Linear(config.vision_config.projection_dim,1 ) A__ = nn.Linear(config.vision_config.projection_dim,1 ) @torch.no_grad() def snake_case__ ( self : Optional[int],lowercase_ : List[Any],lowercase_ : Dict,lowercase_ : str=0.5,lowercase_ : List[Any]=0.5 )-> List[str]: '''simple docstring''' A__ = self.vision_model(lowercase_ )[0] A__ = self.p_head(lowercase_ ) A__ = nsfw_detected.flatten() A__ = nsfw_detected > p_threshold A__ = nsfw_detected.tolist() if any(lowercase_ ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(lowercase_ ): if nsfw_detected_: A__ = np.zeros(images[idx].shape ) A__ = self.w_head(lowercase_ ) A__ = watermark_detected.flatten() A__ = watermark_detected > w_threshold A__ = watermark_detected.tolist() if any(lowercase_ ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(lowercase_ ): if watermark_detected_: A__ = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
7
"""simple docstring""" from collections.abc import Callable import numpy as np def _snake_case ( UpperCamelCase : Callable , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): UpperCAmelCase : Any = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase : Optional[int] = ya UpperCAmelCase : int = xa for k in range(UpperCamelCase ): UpperCAmelCase : Optional[int] = y[k] + step_size * ode_func(UpperCamelCase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(UpperCamelCase , y[k] ) + ode_func(x + step_size , UpperCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
109
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _a ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase : int = StableDiffusionControlNetImgaImgPipeline _lowerCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowerCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) _lowerCamelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __A ( self : Tuple ): torch.manual_seed(0 ) A_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) A_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) A_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) A_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ = CLIPTextModel(UpperCAmelCase__ ) A_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __A ( self : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : int=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): A_ = torch.manual_seed(UpperCAmelCase__ ) else: A_ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) A_ = 2 A_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__ ) , ) A_ = floats_tensor(control_image.shape , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) A_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ = Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert("RGB" ).resize((64, 64) ) A_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def __A ( self : Optional[Any] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __A ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __A ( self : Any ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _a ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[Any] = StableDiffusionControlNetImgaImgPipeline _lowerCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase : Tuple = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __A ( self : str ): torch.manual_seed(0 ) A_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCAmelCase : Any ): if isinstance(UpperCAmelCase__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) A_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCAmelCase__ ) torch.manual_seed(0 ) A_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCAmelCase__ ) torch.manual_seed(0 ) A_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) A_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ = CLIPTextModel(UpperCAmelCase__ ) A_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A_ = MultiControlNetModel([controlneta, controlneta] ) A_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __A ( self : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): A_ = torch.manual_seed(UpperCAmelCase__ ) else: A_ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) A_ = 2 A_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__ ) , ), ] A_ = floats_tensor(control_image[0].shape , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) A_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ = Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert("RGB" ).resize((64, 64) ) A_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def __A ( self : Tuple ): A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) A_ = 10.0 A_ = 4 A_ = self.get_dummy_inputs(UpperCAmelCase__ ) A_ = steps A_ = scale A_ = pipe(**UpperCAmelCase__ )[0] A_ = self.get_dummy_inputs(UpperCAmelCase__ ) A_ = steps A_ = scale A_ = pipe(**UpperCAmelCase__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] A_ = self.get_dummy_inputs(UpperCAmelCase__ ) A_ = steps A_ = scale A_ = pipe(**UpperCAmelCase__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] A_ = self.get_dummy_inputs(UpperCAmelCase__ ) A_ = steps A_ = scale A_ = pipe(**UpperCAmelCase__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __A ( self : List[str] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __A ( self : str ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __A ( self : List[str] ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __A ( self : str ): A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(UpperCAmelCase__ ) except NotImplementedError: pass @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Any ): A_ = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) A_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=UpperCAmelCase__ , controlnet=UpperCAmelCase__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) A_ = torch.Generator(device="cpu" ).manual_seed(0 ) A_ = "evil space-punk bird" A_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) A_ = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) A_ = pipe( UpperCAmelCase__ , UpperCAmelCase__ , control_image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type="np" , num_inference_steps=50 , strength=0.6 , ) A_ = output.images[0] assert image.shape == (512, 512, 3) A_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9E-2
361
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for char in word: A_ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = set() for token in tokens: A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A_ = list(__UpperCamelCase ) return word_list def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(__UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start ,__UpperCamelCase ) for i in range(__UpperCamelCase ,1 ,-1 ): A_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): A_ = "##" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ): """simple docstring""" A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] A_ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(args.file_name ,"r" ,encoding="utf-8" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __a :Dict = parser.parse_args() main(args)
329
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=10 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[1, 1, 2, 1] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->List[Any]: SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Optional[int] = embeddings_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = scope SCREAMING_SNAKE_CASE : Union[str, Any] = len(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Dict = self.get_config() return config, pixel_values def __lowerCAmelCase ( self ) ->Dict: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = FlaxRegNetModel(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE : Optional[Any] = FlaxRegNetForImageClassification(config=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : str = False def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : List[str] = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->Dict: return def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->List[str]: pass def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : int = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) @jax.jit def model_jitted(_lowerCamelCase , **_lowerCamelCase ): return model(pixel_values=_lowerCamelCase , **_lowerCamelCase ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE : Any = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : List[Any] = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->int: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**_lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE : Dict = (1, 1000) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
313
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE :Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __SCREAMING_SNAKE_CASE :Union[str, Any] = 250004 __SCREAMING_SNAKE_CASE :str = 250020 @require_sentencepiece @require_tokenizers class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Tuple = MBartaaTokenizer _lowerCamelCase : List[str] = MBartaaTokenizerFast _lowerCamelCase : List[Any] = True _lowerCamelCase : Dict = True def lowercase ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = MBartaaTokenizer(__a , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : int ): _UpperCAmelCase = "<s>" _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__a ) , 1_0_5_4 ) def lowercase ( self : Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def lowercase ( self : int ): _UpperCAmelCase = MBartaaTokenizer(__a , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__a ) _UpperCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def lowercase ( self : Optional[Any] ): _UpperCAmelCase = {"input_ids": [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def lowercase ( self : int ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCAmelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = tokenizer_r.save_pretrained(__a ) _UpperCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) _UpperCAmelCase = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way _UpperCAmelCase = tokenizer_r.from_pretrained(__a ) _UpperCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = tokenizer_r.save_pretrained(__a , legacy_format=__a ) _UpperCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way _UpperCAmelCase = tokenizer_r.from_pretrained(__a ) _UpperCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = tokenizer_r.save_pretrained(__a , legacy_format=__a ) _UpperCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCAmelCase = tokenizer_r.from_pretrained(__a ) _UpperCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): _lowerCamelCase : List[Any] = """facebook/mbart-large-50-one-to-many-mmt""" _lowerCamelCase : Union[str, Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] _lowerCamelCase : Dict = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] _lowerCamelCase : List[str] = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def lowercase ( cls : str ): _UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) _UpperCAmelCase = 1 return cls def lowercase ( self : Optional[int] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 2_5_0_0_3_8 ) def lowercase ( self : str ): _UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def lowercase ( self : str ): self.assertIn(__a , self.tokenizer.all_special_ids ) _UpperCAmelCase = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] _UpperCAmelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) _UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def lowercase ( self : Dict ): _UpperCAmelCase = ["this is gunna be a long sentence " * 2_0] assert isinstance(src_text[0] , __a ) _UpperCAmelCase = 1_0 _UpperCAmelCase = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[0] , __a ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__a ) , __a ) def lowercase ( self : int ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) _UpperCAmelCase = MBartaaTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors="pt" ) _UpperCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def lowercase ( self : List[Any] ): _UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) _UpperCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors="pt" ) _UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=1_0 , return_tensors="pt" ) _UpperCAmelCase = targets["input_ids"] _UpperCAmelCase = shift_tokens_right(__a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowercase ( self : List[Any] ): _UpperCAmelCase = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__a ) , { # en_XX, A, test, EOS "input_ids": [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 2_5_0_0_0_1, } , )
362
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' _UpperCAmelCase = set() # Replace all the whitespace in our sentence _UpperCAmelCase = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowercase ) == 26 def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' _UpperCAmelCase = [False] * 26 for char in input_str: if char.islower(): _UpperCAmelCase = True elif char.isupper(): _UpperCAmelCase = True return all(__lowercase ) def UpperCAmelCase_ ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCAmelCase_ ( ) -> None: '''simple docstring''' from timeit import timeit _UpperCAmelCase = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=__lowercase ) ) print(timeit("is_pangram_faster()" , setup=__lowercase ) ) print(timeit("is_pangram_fastest()" , setup=__lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
156
0
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _lowercase : Union[str, Any] = "Usage of script: script_name <size_of_canvas:int>" _lowercase : Union[str, Any] = [0] * 1_0_0 + [1] * 1_0 random.shuffle(choice) def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Union[str, Any] = [[False for i in range(__SCREAMING_SNAKE_CASE )] for j in range(__SCREAMING_SNAKE_CASE )] return canvas def snake_case_ ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): """simple docstring""" for i, row in enumerate(__SCREAMING_SNAKE_CASE ): for j, _ in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = bool(random.getrandbits(1 ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : list[list[bool]] ): """simple docstring""" lowercase_ : str = np.array(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__SCREAMING_SNAKE_CASE ): for c, pt in enumerate(__SCREAMING_SNAKE_CASE ): lowercase_ : List[Any] = __judge_point( __SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowercase_ : Dict = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowercase_ : list[list[bool]] = current_canvas.tolist() return return_canvas def snake_case_ ( __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : list[list[bool]] ): """simple docstring""" lowercase_ : List[str] = 0 lowercase_ : Tuple = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowercase_ : Union[str, Any] = pt if pt: if alive < 2: lowercase_ : Optional[int] = False elif alive == 2 or alive == 3: lowercase_ : int = True elif alive > 3: lowercase_ : Any = False else: if alive == 3: lowercase_ : str = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _lowercase : Tuple = int(sys.argv[1]) # main working structure of this module. _lowercase : int = create_canvas(canvas_size) seed(c) _lowercase , _lowercase : List[str] = plt.subplots() fig.show() _lowercase : str = ListedColormap(["w", "k"]) try: while True: _lowercase : str = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
93
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = [10, 20, 30, 40, 50, 60] lowercase_ : Optional[Any] = [2, 4, 6, 8, 10, 12] lowercase_ : Union[str, Any] = 1_00 self.assertEqual(kp.calc_profit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 2_10 ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''max_weight must greater than zero.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''Weight can not be negative.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''Profit can not be negative.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''max_weight must greater than zero.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
93
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _lowercase : Optional[Any] = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ["""ViTFeatureExtractor"""] _lowercase : Optional[int] = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCamelCase__: def __init__( self : Any , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : float = 0 )-> None: """simple docstring""" UpperCAmelCase , UpperCAmelCase = row, column UpperCAmelCase = [[default_value for c in range(lowerCAmelCase )] for r in range(lowerCAmelCase )] def __str__( self : int )-> str: """simple docstring""" UpperCAmelCase = F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier UpperCAmelCase = 0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase = max(lowerCAmelCase , len(str(lowerCAmelCase ) ) ) UpperCAmelCase = F"""%{max_element_length}s""" # Make string and return def single_line(lowerCAmelCase : list[float] ) -> str: nonlocal string_format_identifier UpperCAmelCase = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowerCAmelCase ) for row_vector in self.array ) return s def __repr__( self : Tuple )-> str: """simple docstring""" return str(self ) def a__( self : str , lowerCAmelCase : tuple[int, int] )-> bool: """simple docstring""" if not (isinstance(lowerCAmelCase , (list, tuple) ) and len(lowerCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , lowerCAmelCase : tuple[int, int] )-> Any: """simple docstring""" assert self.validate_indicies(lowerCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , lowerCAmelCase : tuple[int, int] , lowerCAmelCase : float )-> None: """simple docstring""" assert self.validate_indicies(lowerCAmelCase ) UpperCAmelCase = value def __add__( self : int , lowerCAmelCase : Matrix )-> Matrix: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : Dict )-> Matrix: """simple docstring""" UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = -self[r, c] return result def __sub__( self : Union[str, Any] , lowerCAmelCase : Matrix )-> Matrix: """simple docstring""" return self + (-another) def __mul__( self : Union[str, Any] , lowerCAmelCase : int | float | Matrix )-> Matrix: """simple docstring""" if isinstance(lowerCAmelCase , (int, float) ): # Scalar multiplication UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = self[r, c] * another return result elif isinstance(lowerCAmelCase , lowerCAmelCase ): # Matrix multiplication assert self.column == another.row UpperCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase = F"""Unsupported type given for another ({type(lowerCAmelCase )})""" raise TypeError(lowerCAmelCase ) def a__( self : Optional[Any] )-> Matrix: """simple docstring""" UpperCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = self[r, c] return result def a__( self : Tuple , lowerCAmelCase : Matrix , lowerCAmelCase : Matrix )-> Any: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase = v.transpose() UpperCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCAmelCase = 1 print(f"""a^(-1) is {ainv}""" ) # u, v UpperCAmelCase = Matrix(3 , 1 , 0 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1, 2, -3 UpperCAmelCase = Matrix(3 , 1 , 0 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(A , A )}""" ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() testa()
91
1
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case : """simple docstring""" def __init__( self : Any , __A : Any , __A : Any=2 , __A : List[str]=3 , __A : Any=4 , __A : int=2 , __A : Union[str, Any]=7 , __A : List[str]=True , __A : int=True , __A : Optional[Any]=True , __A : Optional[Any]=True , __A : List[str]=9_9 , __A : Optional[int]=3_6 , __A : Optional[int]=3 , __A : List[Any]=4 , __A : Union[str, Any]=3_7 , __A : Dict="gelu" , __A : Dict=0.1 , __A : str=0.1 , __A : Dict=5_1_2 , __A : int=1_6 , __A : Optional[Any]=2 , __A : int=0.02 , __A : Dict=6 , __A : Union[str, Any]=6 , __A : int=3 , __A : Optional[int]=4 , __A : List[str]=None , __A : List[Any]=1_0_0_0 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = text_seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = coordinate_size __UpperCamelCase = shape_size __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope __UpperCamelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __UpperCamelCase = text_seq_length __UpperCamelCase = (image_size // patch_size) ** 2 + 1 __UpperCamelCase = self.text_seq_length + self.image_seq_length def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __UpperCamelCase = bbox[i, j, 3] __UpperCamelCase = bbox[i, j, 1] __UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: __UpperCamelCase = bbox[i, j, 2] __UpperCamelCase = bbox[i, j, 0] __UpperCamelCase = t __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __UpperCamelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowerCamelCase ( self : Any , __A : List[str] , __A : Tuple , __A : str , __A : Optional[int] , __A : Optional[int] , __A : str , __A : Union[str, Any] , __A : List[str] ): __UpperCamelCase = LayoutLMvaModel(config=_A ) model.to(_A ) model.eval() # text + image __UpperCamelCase = model(_A , pixel_values=_A ) __UpperCamelCase = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A ) __UpperCamelCase = model(_A , bbox=_A , pixel_values=_A , token_type_ids=_A ) __UpperCamelCase = model(_A , bbox=_A , pixel_values=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __UpperCamelCase = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __UpperCamelCase = model(pixel_values=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Optional[Any] , __A : str , __A : List[Any] , __A : Any , __A : List[str] , __A : List[Any] , __A : Optional[int] , __A : Tuple , __A : Union[str, Any] ): __UpperCamelCase = self.num_labels __UpperCamelCase = LayoutLMvaForSequenceClassification(_A ) model.to(_A ) model.eval() __UpperCamelCase = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : str , __A : str , __A : int , __A : Tuple , __A : List[str] , __A : Union[str, Any] , __A : Optional[int] , __A : Union[str, Any] , __A : Optional[Any] ): __UpperCamelCase = self.num_labels __UpperCamelCase = LayoutLMvaForTokenClassification(config=_A ) model.to(_A ) model.eval() __UpperCamelCase = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __A : Optional[Any] , __A : str , __A : str , __A : Union[str, Any] , __A : int , __A : Any , __A : str , __A : Optional[Any] ): __UpperCamelCase = LayoutLMvaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() __UpperCamelCase = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.prepare_config_and_inputs() ( __UpperCamelCase ) = config_and_inputs __UpperCamelCase = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class snake_case ( __a , __a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =False SCREAMING_SNAKE_CASE_ : Tuple =False SCREAMING_SNAKE_CASE_ : str =False SCREAMING_SNAKE_CASE_ : List[str] =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : int =( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def _lowerCamelCase ( self : Any , __A : Union[str, Any] , __A : Any , __A : Dict , __A : List[Any] , __A : str ): return True def _lowerCamelCase ( self : str ): __UpperCamelCase = LayoutLMvaModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def _lowerCamelCase ( self : Tuple , __A : str , __A : Any , __A : Tuple=False ): __UpperCamelCase = copy.deepcopy(_A ) if model_class in get_values(_A ): __UpperCamelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_A ): __UpperCamelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in get_values(_A ): __UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) __UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in [ *get_values(_A ), ]: __UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in [ *get_values(_A ), ]: __UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_A , ) return inputs_dict def _lowerCamelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _lowerCamelCase ( self : str ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase = type self.model_tester.create_and_check_model(*_A ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def _lowerCamelCase ( self : str ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def _lowerCamelCase ( self : Optional[Any] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = LayoutLMvaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowercase__ ( ) -> int: """simple docstring""" __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCamelCase ( self : int ): return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(_A ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=_A , return_tensors='pt' ).pixel_values.to(_A ) __UpperCamelCase = torch.tensor([[1, 2]] ) __UpperCamelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __UpperCamelCase = model( input_ids=input_ids.to(_A ) , bbox=bbox.to(_A ) , pixel_values=pixel_values.to(_A ) , ) # verify the logits __UpperCamelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , _A ) __UpperCamelCase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4 ) )
53
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCamelCase ( _lowerCAmelCase : List[str] ) -> Any: _UpperCAmelCase : List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase, _lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: _UpperCAmelCase , _UpperCAmelCase : str = emb.weight.shape _UpperCAmelCase : Union[str, Any] = nn.Linear(_lowerCAmelCase, _lowerCAmelCase, bias=_lowerCAmelCase ) _UpperCAmelCase : List[str] = emb.weight.data return lin_layer def UpperCamelCase ( _lowerCAmelCase : str, _lowerCAmelCase : Dict="facebook/mbart-large-en-ro", _lowerCAmelCase : Optional[int]=False, _lowerCAmelCase : Union[str, Any]=False ) -> Optional[Any]: _UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase, map_location="""cpu""" )["""model"""] remove_ignore_keys_(_lowerCAmelCase ) _UpperCAmelCase : int = state_dict["""encoder.embed_tokens.weight"""].shape[0] _UpperCAmelCase : str = MBartConfig.from_pretrained(_lowerCAmelCase, vocab_size=_lowerCAmelCase ) if mbart_aa and finetuned: _UpperCAmelCase : Any = """relu""" _UpperCAmelCase : Union[str, Any] = state_dict["""decoder.embed_tokens.weight"""] _UpperCAmelCase : Any = MBartForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase ) if finetuned: _UpperCAmelCase : List[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCamelCase__ : str = parser.parse_args() lowerCamelCase__ : Optional[int] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
246
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _UpperCamelCase: str = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) _UpperCamelCase: Any = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) _UpperCamelCase: Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) _UpperCamelCase: Tuple = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) _UpperCamelCase: Optional[int] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 1_4]), ('2H 5D 3C AS 5S', False, [1_4, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) _UpperCamelCase: Any = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) _UpperCamelCase: Optional[int] = ( ('JH AH TH KH QH', 2_3), ('JH 9H TH KH QH', 2_2), ('JC KH JS JD JH', 2_1), ('KH KC 3S 3H 3D', 2_0), ('8C 9C 5C 3C TC', 1_9), ('JS QS 9H TS KH', 1_8), ('7C 7S KH 2H 7H', 1_7), ('3C KH 5D 5S KH', 1_6), ('QH 8H KD JH 8S', 1_5), ('2D 6D 9D TH 7D', 1_4), ) def lowercase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase , lowercase : str = randrange(len(_a ) ), randrange(len(_a ) ) lowercase : Optional[Any] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] lowercase , lowercase : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase__ ( _UpperCAmelCase = 1_00 ) -> int: '''simple docstring''' return (generate_random_hand() for _ in range(_a )) @pytest.mark.parametrize('hand, expected' , _a ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' assert PokerHand(_a )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _a ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: '''simple docstring''' assert PokerHand(_a )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _a ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowercase : Optional[int] = PokerHand(_a ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _a ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' assert PokerHand(_a )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _a ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: '''simple docstring''' assert PokerHand(_a )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _a ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: '''simple docstring''' assert PokerHand(_a ).compare_with(PokerHand(_a ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: '''simple docstring''' assert PokerHand(_a ).compare_with(PokerHand(_a ) ) == expected def lowercase__ ( ) -> Dict: '''simple docstring''' lowercase : Any = [PokerHand(_a ) for hand in SORTED_HANDS] lowercase : str = poker_hands.copy() shuffle(_a ) lowercase : List[str] = chain(sorted(_a ) ) for index, hand in enumerate(_a ): assert hand == poker_hands[index] def lowercase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_a ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase__ ( ) -> str: '''simple docstring''' lowercase : Union[str, Any] = PokerHand('2C 4S AS 3D 5C' ) lowercase : Optional[Any] = True lowercase : Dict = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase : Dict = 0 lowercase : Any = os.path.abspath(os.path.dirname(_a ) ) lowercase : Union[str, Any] = os.path.join(_a , 'poker_hands.txt' ) with open(_a ) as file_hand: for line in file_hand: lowercase : int = line[:14].strip() lowercase : Tuple = line[15:].strip() lowercase , lowercase : int = PokerHand(_a ), PokerHand(_a ) lowercase : Optional[Any] = player.compare_with(_a ) if output == "Win": answer += 1 assert answer == 3_76
360
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _UpperCamelCase: Any = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
53
0