code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from math import factorial def __snake_case ( UpperCAmelCase_ : int = 100 ): return sum(int(UpperCAmelCase_ ) for x in str(factorial(UpperCAmelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
55
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __a ( unittest.TestCase ): _a : List[str] = JukeboxTokenizer _a : List[Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
329
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
356
'''simple docstring''' _SCREAMING_SNAKE_CASE = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _lowerCAmelCase ( lowerCamelCase_ : dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): __lowercase = set() # keep track of all the paths to be checked __lowercase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowercase = queue.pop(0 ) # get the last node from the path __lowercase = path[-1] if node not in explored: __lowercase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowercase = list(lowerCamelCase_ ) new_path.append(lowerCamelCase_ ) queue.append(lowerCamelCase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCamelCase_ ) # in case there's no path between the 2 nodes return [] def _lowerCAmelCase ( lowerCamelCase_ : dict , lowerCamelCase_ : str , lowerCamelCase_ : str ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowercase = [start] __lowercase = set(lowerCamelCase_ ) # Keep tab on distances from `start` node. __lowercase = {start: 0, target: -1} while queue: __lowercase = queue.pop(0 ) if node == target: __lowercase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCamelCase_ ) queue.append(lowerCamelCase_ ) __lowercase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
217
0
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=16 , UpperCamelCase_=36 , UpperCamelCase_=6 , UpperCamelCase_=6 , UpperCamelCase_=6 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ): '''simple docstring''' UpperCamelCase__ :Tuple = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = seq_length UpperCamelCase__ :Optional[int] = is_training UpperCamelCase__ :Union[str, Any] = use_input_mask UpperCamelCase__ :List[str] = use_token_type_ids UpperCamelCase__ :List[Any] = use_labels UpperCamelCase__ :List[Any] = vocab_size UpperCamelCase__ :Dict = embedding_size UpperCamelCase__ :int = hidden_size UpperCamelCase__ :str = num_hidden_layers UpperCamelCase__ :List[Any] = num_hidden_groups UpperCamelCase__ :Any = num_attention_heads UpperCamelCase__ :Optional[int] = intermediate_size UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :List[Any] = hidden_dropout_prob UpperCamelCase__ :Optional[int] = attention_probs_dropout_prob UpperCamelCase__ :List[str] = max_position_embeddings UpperCamelCase__ :List[str] = type_vocab_size UpperCamelCase__ :Dict = type_sequence_label_size UpperCamelCase__ :Union[str, Any] = initializer_range UpperCamelCase__ :List[Any] = num_labels UpperCamelCase__ :Union[str, Any] = num_choices UpperCamelCase__ :Tuple = scope def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Dict = None if self.use_input_mask: UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ :Union[str, Any] = None if self.use_token_type_ids: UpperCamelCase__ :str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ :int = None UpperCamelCase__ :str = None UpperCamelCase__ :Optional[Any] = None if self.use_labels: UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = AlbertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) UpperCamelCase__ :int = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = AlbertForPreTraining(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , sentence_order_label=UpperCamelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = AlbertForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = AlbertForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Optional[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = self.num_labels UpperCamelCase__ :Any = AlbertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Union[str, Any] = AlbertForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Dict = self.num_choices UpperCamelCase__ :Optional[int] = AlbertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ :Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ :Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ :Any = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :List[Any] = config_and_inputs UpperCamelCase__ :List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase ( A__ , A__ , unittest.TestCase ): """simple docstring""" _a = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _a = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) _a = True def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' UpperCamelCase__ :Tuple = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class in get_values(UpperCamelCase_ ): UpperCamelCase__ :Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase_ ) UpperCamelCase__ :str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) return inputs_dict def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = AlbertModelTester(self ) UpperCamelCase__ :int = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ :Any = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Optional[int] = AlbertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = AlbertModel.from_pretrained('''albert-base-v2''' ) UpperCamelCase__ :int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCamelCase__ :List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ :Optional[int] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] UpperCamelCase__ :Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase_ , atol=1e-4 ) )
97
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __lowerCAmelCase : str = False __lowerCAmelCase : List[str] = True __lowerCAmelCase : Union[str, Any] = False if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : str = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } __lowerCAmelCase : Optional[int] = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } __lowerCAmelCase : str = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: __lowerCAmelCase : Any = reader.read() __lowerCAmelCase : int = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): __lowerCAmelCase : Any = UNetaDModel(**config) else: __lowerCAmelCase : List[str] = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel __lowerCAmelCase : str = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __lowerCAmelCase : Union[str, Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __lowerCAmelCase : Dict = config[key] del config[key] __lowerCAmelCase : int = [k.replace("UNetRes", "") for k in config["down_block_types"]] __lowerCAmelCase : Optional[Any] = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: __lowerCAmelCase : Any = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) __lowerCAmelCase : Tuple = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue __lowerCAmelCase : Dict = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: __lowerCAmelCase : Union[str, Any] = param_value __lowerCAmelCase : str = True if not has_changed: __lowerCAmelCase : Union[str, Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
156
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase_ ) class _UpperCamelCase ( lowerCAmelCase_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _UpperCamelCase : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCamelCase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) _UpperCamelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) _UpperCamelCase : str = "text" _UpperCamelCase : str = "labels" def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Optional[int]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCamelCase_ = copy.deepcopy(self ) UpperCamelCase_ = self.label_schema.copy() UpperCamelCase_ = features[self.label_column] UpperCamelCase_ = label_schema return task_template @property def lowercase ( self: str ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
353
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
0
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _A (__a , __a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = checkpoint SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''encoder.conv_in.weight'''] SCREAMING_SNAKE_CASE_ : Dict = vae_state_dict['''encoder.conv_in.bias'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''encoder.conv_out.weight'''] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['''encoder.conv_out.bias'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''encoder.norm_out.weight'''] SCREAMING_SNAKE_CASE_ : str = vae_state_dict['''encoder.norm_out.bias'''] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['''decoder.conv_in.weight'''] SCREAMING_SNAKE_CASE_ : Any = vae_state_dict['''decoder.conv_in.bias'''] SCREAMING_SNAKE_CASE_ : Tuple = vae_state_dict['''decoder.conv_out.weight'''] SCREAMING_SNAKE_CASE_ : Any = vae_state_dict['''decoder.conv_out.bias'''] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['''decoder.norm_out.weight'''] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['''decoder.norm_out.bias'''] SCREAMING_SNAKE_CASE_ : str = vae_state_dict['''quant_conv.weight'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict['''quant_conv.bias'''] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['''post_quant_conv.weight'''] SCREAMING_SNAKE_CASE_ : int = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE_ : Optional[int] = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) SCREAMING_SNAKE_CASE_ : Tuple = { layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE_ : Optional[Any] = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) SCREAMING_SNAKE_CASE_ : Tuple = { layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(__a ) } for i in range(__a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: SCREAMING_SNAKE_CASE_ : List[str] = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.weight' ) SCREAMING_SNAKE_CASE_ : Optional[int] = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.bias' ) SCREAMING_SNAKE_CASE_ : List[Any] = renew_vae_resnet_paths(__a ) SCREAMING_SNAKE_CASE_ : List[Any] = {'''old''': f'down.{i}.block', '''new''': f'down_blocks.{i}.resnets'} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) SCREAMING_SNAKE_CASE_ : str = [key for key in vae_state_dict if '''encoder.mid.block''' in key] SCREAMING_SNAKE_CASE_ : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] SCREAMING_SNAKE_CASE_ : List[str] = renew_vae_resnet_paths(__a ) SCREAMING_SNAKE_CASE_ : Dict = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) SCREAMING_SNAKE_CASE_ : Dict = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] SCREAMING_SNAKE_CASE_ : Union[str, Any] = renew_vae_attention_paths(__a ) SCREAMING_SNAKE_CASE_ : Tuple = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): SCREAMING_SNAKE_CASE_ : List[str] = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE_ : Tuple = [ key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key ] if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: SCREAMING_SNAKE_CASE_ : Optional[Any] = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.weight' ] SCREAMING_SNAKE_CASE_ : str = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.bias' ] SCREAMING_SNAKE_CASE_ : Optional[Any] = renew_vae_resnet_paths(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''old''': f'up.{block_id}.block', '''new''': f'up_blocks.{i}.resnets'} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) SCREAMING_SNAKE_CASE_ : str = [key for key in vae_state_dict if '''decoder.mid.block''' in key] SCREAMING_SNAKE_CASE_ : List[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] SCREAMING_SNAKE_CASE_ : int = renew_vae_resnet_paths(__a ) SCREAMING_SNAKE_CASE_ : Tuple = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) SCREAMING_SNAKE_CASE_ : List[Any] = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] SCREAMING_SNAKE_CASE_ : Dict = renew_vae_attention_paths(__a ) SCREAMING_SNAKE_CASE_ : Tuple = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def _A (__a , __a , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) SCREAMING_SNAKE_CASE_ : Dict = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE_ : Any = OmegaConf.load(__a ) SCREAMING_SNAKE_CASE_ : int = 5_12 SCREAMING_SNAKE_CASE_ : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open SCREAMING_SNAKE_CASE_ : Dict = {} with safe_open(__a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE_ : Any = f.get_tensor(__a ) else: SCREAMING_SNAKE_CASE_ : List[Any] = torch.load(__a , map_location=__a )['''state_dict'''] # Convert the VAE model. SCREAMING_SNAKE_CASE_ : Any = create_vae_diffusers_config(__a , image_size=__a ) SCREAMING_SNAKE_CASE_ : int = custom_convert_ldm_vae_checkpoint(__a , __a ) SCREAMING_SNAKE_CASE_ : Optional[int] = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") UpperCAmelCase_ : Any = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
91
"""simple docstring""" def _A (__a = 50 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
91
1
'''simple docstring''' import os from collections.abc import Iterator def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str = "." ): '''simple docstring''' for dir_path, dir_names, filenames in os.walk(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(SCREAMING_SNAKE_CASE__ )[1] in (".py", ".ipynb"): yield os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).lstrip("""./""" ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return F'''{i * ' '}*''' if i else "\n##" def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(SCREAMING_SNAKE_CASE__ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(SCREAMING_SNAKE_CASE__ )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str = "." ): '''simple docstring''' UpperCAmelCase__ = """""" for filepath in sorted(good_file_paths(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase__ , UpperCAmelCase__ = os.path.split(SCREAMING_SNAKE_CASE__ ) if filepath != old_path: UpperCAmelCase__ = print_path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCAmelCase__ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) UpperCAmelCase__ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(SCREAMING_SNAKE_CASE__ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('.')
61
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCAmelCase_ = logging.get_logger(__name__) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCAmelCase__ = json.loads(SCREAMING_SNAKE_CASE__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCAmelCase__ = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCAmelCase__ = json.loads(SCREAMING_SNAKE_CASE__ ) if not mpi_options.get("""sagemaker_mpi_enabled""" , SCREAMING_SNAKE_CASE__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , _UpperCAmelCase , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: UpperCAmelCase__ = torch.device("""cpu""" ) UpperCAmelCase__ = 0 elif is_sagemaker_model_parallel_available(): UpperCAmelCase__ = smp.local_rank() UpperCAmelCase__ = torch.device("""cuda""" , _UpperCAmelCase ) UpperCAmelCase__ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) UpperCAmelCase__ = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) UpperCAmelCase__ = torch.device("""cuda""" , self.local_rank ) UpperCAmelCase__ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCAmelCase__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCAmelCase__ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) UpperCAmelCase__ = torch.device("""cuda""" , self.local_rank ) UpperCAmelCase__ = 1 if device.type == "cuda": torch.cuda.set_device(_UpperCAmelCase ) return device @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return False
61
1
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a_ : Optional[Any] = logging.get_logger(__name__) def a_ ( ) -> Union[str, Any]: """simple docstring""" # Get the sagemaker specific mp parameters from smp_options variable. lowerCamelCase_ =os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ =json.loads(__snake_case ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ =os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ =json.loads(__snake_case ) if not mpi_options.get('''sagemaker_mpi_enabled''' , __snake_case ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : str =field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def lowercase__ ( self ): """simple docstring""" super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''', lowerCAmelCase, ) @cached_property def lowercase__ ( self ): """simple docstring""" logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: lowerCamelCase_ =torch.device('''cpu''' ) lowerCamelCase_ =0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ =smp.local_rank() lowerCamelCase_ =torch.device('''cuda''', lowerCAmelCase ) lowerCamelCase_ =1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''', timeout=self.ddp_timeout_delta ) lowerCamelCase_ =int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) lowerCamelCase_ =torch.device('''cuda''', self.local_rank ) lowerCamelCase_ =1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ =torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ =torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''', timeout=self.ddp_timeout_delta ) lowerCamelCase_ =torch.device('''cuda''', self.local_rank ) lowerCamelCase_ =1 if device.type == "cuda": torch.cuda.set_device(lowerCAmelCase ) return device @property def lowercase__ ( self ): """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def lowercase__ ( self ): """simple docstring""" return not is_sagemaker_model_parallel_available() @property def lowercase__ ( self ): """simple docstring""" return False
75
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a__ : Tuple ='''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
53
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _snake_case : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } _snake_case : Any = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } _snake_case : Optional[Any] = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ElectraTokenizer def __init__( self : List[Any] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Tuple="[UNK]" , lowerCAmelCase_ : int="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : Dict="[CLS]" , lowerCAmelCase_ : Optional[Any]="[MASK]" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int=None ) -> Dict: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
350
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _snake_case : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def a_ ( lowerCAmelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead', lowerCAmelCase_, ) if isinstance(lowerCAmelCase_, torch.Tensor ): return image elif isinstance(lowerCAmelCase_, PIL.Image.Image ): __lowerCAmelCase = [image] if isinstance(image[0], PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowerCAmelCase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __lowerCAmelCase = np.concatenate(lowerCAmelCase_, axis=0 ) __lowerCAmelCase = np.array(lowerCAmelCase_ ).astype(np.floataa ) / 255.0 __lowerCAmelCase = image.transpose(0, 3, 1, 2 ) __lowerCAmelCase = 2.0 * image - 1.0 __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) elif isinstance(image[0], torch.Tensor ): __lowerCAmelCase = torch.cat(lowerCAmelCase_, dim=0 ) return image def a_ ( lowerCAmelCase_ : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(lowerCAmelCase_, torch.Tensor ): return mask elif isinstance(lowerCAmelCase_, PIL.Image.Image ): __lowerCAmelCase = [mask] if isinstance(mask[0], PIL.Image.Image ): __lowerCAmelCase , __lowerCAmelCase = mask[0].size __lowerCAmelCase , __lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCAmelCase = [np.array(m.convert('L' ).resize((w, h), resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] __lowerCAmelCase = np.concatenate(lowerCAmelCase_, axis=0 ) __lowerCAmelCase = mask.astype(np.floataa ) / 255.0 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) elif isinstance(mask[0], torch.Tensor ): __lowerCAmelCase = torch.cat(lowerCAmelCase_, dim=0 ) return mask class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 a_ = 42 def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ) -> Optional[int]: super().__init__() self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : Dict , lowerCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase_ : int = 2_5_0 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 1_0 , lowerCAmelCase_ : int = 1_0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __lowerCAmelCase = image __lowerCAmelCase = _preprocess_image(lowerCAmelCase_ ) __lowerCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = _preprocess_mask(lowerCAmelCase_ ) __lowerCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCAmelCase = original_image.shape __lowerCAmelCase = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.device ) __lowerCAmelCase = eta __lowerCAmelCase = self.scheduler.timesteps[0] + 1 __lowerCAmelCase = generator[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowerCAmelCase = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute previous image: x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowerCAmelCase = self.scheduler.undo_step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = t __lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
207
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Tuple = {"vocab_file": "spiece.model"} UpperCamelCase__: List[Any] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Dict , __snake_case : Optional[Any] , __snake_case : Optional[Any]=False , __snake_case : str=True , __snake_case : List[Any]=False , __snake_case : Union[str, Any]="<s>" , __snake_case : Tuple="</s>" , __snake_case : str="<unk>" , __snake_case : int="<sep>" , __snake_case : str="<pad>" , __snake_case : Optional[int]="<cls>" , __snake_case : Dict="<mask>" , __snake_case : str=["<eop>", "<eod>"] , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Any , ) -> None: UpperCAmelCase : Any = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Union[str, Any] = 3 UpperCAmelCase : str = do_lower_case UpperCAmelCase : Optional[Any] = remove_space UpperCAmelCase : str = keep_accents UpperCAmelCase : Optional[Any] = vocab_file UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) UpperCAmelCase : List[str] = jieba UpperCAmelCase : Any = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def A ( self : Tuple ) -> Dict: return len(self.sp_model ) def A ( self : Tuple ) -> int: UpperCAmelCase : Dict = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Any: UpperCAmelCase : int = self.__dict__.copy() UpperCAmelCase : Optional[Any] = None return state def __setstate__( self : Any , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Dict = {} UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : int , __snake_case : int ) -> Tuple: if self.remove_space: UpperCAmelCase : Dict = ''' '''.join(inputs.strip().split() ) else: UpperCAmelCase : Any = inputs UpperCAmelCase : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: UpperCAmelCase : int = unicodedata.normalize('''NFKD''' , __snake_case ) UpperCAmelCase : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(__snake_case )] ) if self.do_lower_case: UpperCAmelCase : Union[str, Any] = outputs.lower() return outputs def A ( self : Any , __snake_case : str ) -> List[str]: UpperCAmelCase : Dict = self.preprocess_text(__snake_case ) UpperCAmelCase : Union[str, Any] = self.sp_model.encode(__snake_case , out_type=__snake_case ) UpperCAmelCase : List[Any] = [] for piece in pieces: if len(__snake_case ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): UpperCAmelCase : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__snake_case , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase : Union[str, Any] = cur_pieces[1:] else: UpperCAmelCase : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__snake_case ) else: new_pieces.append(__snake_case ) return new_pieces def A ( self : Dict , __snake_case : Tuple ) -> List[Any]: return self.sp_model.PieceToId(__snake_case ) def A ( self : Any , __snake_case : str ) -> List[Any]: return self.sp_model.IdToPiece(__snake_case ) def A ( self : str , __snake_case : Tuple ) -> Dict: UpperCAmelCase : List[Any] = ''''''.join(__snake_case ).replace(__snake_case , ''' ''' ).strip() return out_string def A ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1, 1] return ([0] * len(__snake_case )) + [1, 1] def A ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Any = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def A ( self : Optional[Any] , *__snake_case : Any , **__snake_case : Optional[Any] ) -> int: UpperCAmelCase : Any = super()._decode(*__snake_case , **__snake_case ) UpperCAmelCase : Any = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
23
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } __A = { "google/rembert": 256, } __A = "▁" class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict = RemBertTokenizer def __init__( self : Tuple , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int="[CLS]" , UpperCamelCase__ : Optional[Any]="[SEP]" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : Dict="[SEP]" , UpperCamelCase__ : int="<pad>" , UpperCamelCase__ : Any="[CLS]" , UpperCamelCase__ : str="[MASK]" , **UpperCamelCase__ : Optional[Any] , )-> List[Any]: '''simple docstring''' __lowerCAmelCase: int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Optional[int] = do_lower_case __lowerCAmelCase: int = remove_space __lowerCAmelCase: int = keep_accents __lowerCAmelCase: str = vocab_file __lowerCAmelCase: Tuple = False if not self.vocab_file else True def lowercase_ ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [self.sep_token_id] __lowerCAmelCase: Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False)-> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model.") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__)) + [1] + ([0] * len(UpperCamelCase__)) + [1] return [1] + ([0] * len(UpperCamelCase__)) + [1] def lowercase_ ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [self.sep_token_id] __lowerCAmelCase: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__): logger.error("Vocabulary path ({}) should be a directory".format(UpperCamelCase__)) return __lowerCAmelCase: Optional[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase__): copyfile(self.vocab_file , UpperCamelCase__) return (out_vocab_file,)
217
0
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __UpperCamelCase = get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 ) -> Any: os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'Saving model to {output_model_file}' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase_ , F'{MODEL_NAME}_{model_index}' ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) logger.info(F'Saving model to {ckpt_dir}' ) SCREAMING_SNAKE_CASE = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=lowerCamelCase_ , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase_ ) , planner=DefaultSavePlanner() , ) logger.info(F'Model saved to {ckpt_dir}' ) def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 ) -> List[Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowerCamelCase_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return SCREAMING_SNAKE_CASE = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'Loading model from {input_model_file}' ) SCREAMING_SNAKE_CASE = torch.load(lowerCamelCase_ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'Loading model from {input_model_file}' ) SCREAMING_SNAKE_CASE = torch.load(lowerCamelCase_ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE = ( os.path.join(lowerCamelCase_ , F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) SCREAMING_SNAKE_CASE = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=lowerCamelCase_ , storage_reader=dist_cp.FileSystemReader(lowerCamelCase_ ) , planner=DefaultLoadPlanner() , ) SCREAMING_SNAKE_CASE = state_dict["""model"""] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(lowerCamelCase_ ) def lowercase (SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=0 ) -> List[str]: os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE = FSDP.optim_state_dict(lowerCamelCase_ , lowerCamelCase_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase_ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase_ ) , planner=DefaultSavePlanner() , ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=0 ) -> str: accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) SCREAMING_SNAKE_CASE = torch.load(lowerCamelCase_ ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: SCREAMING_SNAKE_CASE = ( os.path.join(lowerCamelCase_ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) SCREAMING_SNAKE_CASE = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(lowerCamelCase_ ) , ) SCREAMING_SNAKE_CASE = optim_state["""optimizer"""] logger.info(F'Optimizer loaded from {ckpt_dir}' ) SCREAMING_SNAKE_CASE = FSDP.optim_state_dict_to_load(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) optimizer.load_state_dict(lowerCamelCase_ )
358
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''allenai/led-base-16384''': 16384, } class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> List[Any]: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , lowerCAmelCase__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __A ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __A ( self , lowerCAmelCase__ ) -> int: SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value SCREAMING_SNAKE_CASE = value def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[int]: SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> dict: SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(lowerCAmelCase__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(lowerCAmelCase__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
38
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "megatron-bert" def __init__( self : int , lowercase_ : int=29056 , lowercase_ : Dict=1024 , lowercase_ : Optional[Any]=24 , lowercase_ : Union[str, Any]=16 , lowercase_ : Optional[int]=4096 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : int=512 , lowercase_ : Optional[Any]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Optional[Any]=1e-12 , lowercase_ : Optional[Any]=0 , lowercase_ : Dict="absolute" , lowercase_ : Any=True , **lowercase_ : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Any = num_attention_heads SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = position_embedding_type SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_cache
91
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : str = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) __lowercase : ClassVar[Features] = Features({'image': Image()} ) __lowercase : ClassVar[Features] = Features({'labels': ClassLabel} ) __lowercase : str = "image" __lowercase : str = "labels" def __A ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) A_ = copy.deepcopy(self ) A_ = self.label_schema.copy() A_ = features[self.label_column] A_ = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
18
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
1
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _a = logging.getLogger(__name__) _a = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowercase__ )} ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """The input training data file (a text file)."""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} ,) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} ,) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) SCREAMING_SNAKE_CASE__ : bool = field(default=lowercase__ ,metadata={"""help""": """Whether ot not to use whole word mask."""} ) SCREAMING_SNAKE_CASE__ : float = field( default=0.1_5 ,metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) SCREAMING_SNAKE_CASE__ : float = field( default=1 / 6 ,metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } ,) SCREAMING_SNAKE_CASE__ : int = field( default=5 ,metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) SCREAMING_SNAKE_CASE__ : int = field( default=-1 ,metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } ,) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False, __lowerCamelCase = None, ): def _dataset(__lowerCamelCase, __lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=__lowerCamelCase, file_path=__lowerCamelCase, block_size=args.block_size, ref_path=__lowerCamelCase, ) return LineByLineTextDataset(tokenizer=__lowerCamelCase, file_path=__lowerCamelCase, block_size=args.block_size ) else: return TextDataset( tokenizer=__lowerCamelCase, file_path=__lowerCamelCase, block_size=args.block_size, overwrite_cache=args.overwrite_cache, cache_dir=__lowerCamelCase, ) if evaluate: return _dataset(args.eval_data_file, args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file, args.train_ref_file ) def __a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", __lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase_ : str = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir ) else: UpperCAmelCase_ : int = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: UpperCAmelCase_ : Any = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=__lowerCamelCase, cache_dir=model_args.cache_dir, ) else: logger.info("Training new model from scratch" ) UpperCAmelCase_ : Any = AutoModelWithLMHead.from_config(__lowerCamelCase ) model.resize_token_embeddings(len(__lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: UpperCAmelCase_ : Tuple = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase_ : Tuple = min(data_args.block_size, tokenizer.max_len ) # Get datasets UpperCAmelCase_ : List[Any] = ( get_dataset(__lowerCamelCase, tokenizer=__lowerCamelCase, cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase_ : List[str] = ( get_dataset(__lowerCamelCase, tokenizer=__lowerCamelCase, evaluate=__lowerCamelCase, cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase_ : Tuple = DataCollatorForPermutationLanguageModeling( tokenizer=__lowerCamelCase, plm_probability=data_args.plm_probability, max_span_length=data_args.max_span_length, ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase_ : int = DataCollatorForWholeWordMask( tokenizer=__lowerCamelCase, mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase_ : List[Any] = DataCollatorForLanguageModeling( tokenizer=__lowerCamelCase, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase_ : List[str] = Trainer( model=__lowerCamelCase, args=__lowerCamelCase, data_collator=__lowerCamelCase, train_dataset=__lowerCamelCase, eval_dataset=__lowerCamelCase, prediction_loss_only=__lowerCamelCase, ) # Training if training_args.do_train: UpperCAmelCase_ : Tuple = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase_ : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase_ : Union[str, Any] = trainer.evaluate() UpperCAmelCase_ : List[str] = math.exp(eval_output["eval_loss"] ) UpperCAmelCase_ : List[Any] = {"perplexity": perplexity} UpperCAmelCase_ : Union[str, Any] = os.path.join(training_args.output_dir, "eval_results_lm.txt" ) if trainer.is_world_master(): with open(__lowerCamelCase, "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s", __lowerCamelCase, str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(__lowerCamelCase ) return results def __a ( __lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
61
"""simple docstring""" import os _a = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def __a ( __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[str] = 0 while index < len(__lowerCamelCase ) - 1: UpperCAmelCase_ : Tuple = SYMBOLS[numerals[index]] UpperCAmelCase_ : List[str] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = "" UpperCAmelCase_ : Any = num // 1000 numerals += m_count * "M" num %= 1000 UpperCAmelCase_ : Any = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCAmelCase_ : str = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __a ( __lowerCamelCase = "/p089_roman.txt" ): UpperCAmelCase_ : int = 0 with open(os.path.dirname(__lowerCamelCase ) + roman_numerals_filename ) as filea: UpperCAmelCase_ : Optional[Any] = filea.readlines() for line in lines: UpperCAmelCase_ : Tuple = line.strip() UpperCAmelCase_ : Optional[Any] = parse_roman_numerals(__lowerCamelCase ) UpperCAmelCase_ : Tuple = generate_roman_numerals(__lowerCamelCase ) savings += len(__lowerCamelCase ) - len(__lowerCamelCase ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
61
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCamelCase : List[str] = random.Random() def A_ ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> str: if rng is None: UpperCamelCase : List[Any] = global_rng UpperCamelCase : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A__ ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ): '''simple docstring''' UpperCamelCase : str = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : int = min_seq_length UpperCamelCase : Any = max_seq_length UpperCamelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Tuple = padding_value UpperCamelCase : Dict = sampling_rate UpperCamelCase : Optional[int] = return_attention_mask UpperCamelCase : Optional[Any] = do_normalize UpperCamelCase : List[Any] = feature_size UpperCamelCase : Union[str, Any] = chunk_length UpperCamelCase : str = hop_length def __UpperCamelCase( self ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase( self , A_=False , A_=False ): '''simple docstring''' def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: UpperCamelCase : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase : Dict = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :List[str] = WhisperFeatureExtractor if is_speech_available() else None def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = WhisperFeatureExtractionTester(self ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase : List[str] = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) UpperCamelCase : str = self.feature_extraction_class.from_pretrained(A_ ) UpperCamelCase : Any = feat_extract_first.to_dict() UpperCamelCase : Optional[Any] = feat_extract_second.to_dict() UpperCamelCase : List[str] = feat_extract_first.mel_filters UpperCamelCase : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase : Optional[Any] = os.path.join(A_ , "feat_extract.json" ) feat_extract_first.to_json_file(A_ ) UpperCamelCase : Tuple = self.feature_extraction_class.from_json_file(A_ ) UpperCamelCase : Tuple = feat_extract_first.to_dict() UpperCamelCase : Tuple = feat_extract_second.to_dict() UpperCamelCase : Optional[int] = feat_extract_first.mel_filters UpperCamelCase : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase : List[str] = [np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase : List[str] = feature_extractor(A_ , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase : str = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features UpperCamelCase : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched UpperCamelCase : Tuple = feature_extractor(A_ , return_tensors="np" ).input_features UpperCamelCase : int = feature_extractor(A_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : List[Any] = np.asarray(A_ ) UpperCamelCase : Optional[int] = feature_extractor(A_ , return_tensors="np" ).input_features UpperCamelCase : List[Any] = feature_extractor(A_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test truncation required UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] UpperCamelCase : List[Any] = [np.asarray(A_ ) for speech_input in speech_inputs] UpperCamelCase : str = [x[: feature_extractor.n_samples] for x in speech_inputs] UpperCamelCase : str = [np.asarray(A_ ) for speech_input in speech_inputs_truncated] UpperCamelCase : int = feature_extractor(A_ , return_tensors="np" ).input_features UpperCamelCase : List[Any] = feature_extractor(A_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) def __UpperCamelCase( self ): '''simple docstring''' import torch UpperCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : Union[str, Any] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase : Tuple = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase : List[str] = ds.sort("id" ).select(range(A_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on UpperCamelCase : Dict = self._load_datasamples(1 ) UpperCamelCase : List[str] = WhisperFeatureExtractor() UpperCamelCase : Optional[int] = feature_extractor(A_ , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1e-4 ) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = self._load_datasamples(1 )[0] UpperCamelCase : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue UpperCamelCase : int = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1e-3 ) )
140
from scipy.stats import spearmanr import datasets __lowerCamelCase : List[str] = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ __lowerCamelCase : List[Any] = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ __lowerCamelCase : Optional[int] = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def __UpperCamelCase( self , A_ , A_ , A_=False ): '''simple docstring''' UpperCamelCase : Tuple = spearmanr(A_ , A_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
140
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A( A__ , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # fmt: off __a = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __a = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) def SCREAMING_SNAKE_CASE_ ( self , **_snake_case ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' __a = '''tester''' __a = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.get_tokenizers(do_lower_case=_snake_case ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __a = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) __a = tokenizer.encode([special_token] , add_special_tokens=_snake_case ) self.assertEqual(len(_snake_case ) , 1 ) __a = tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __a , __a = self.get_input_output_texts(_snake_case ) __a = tokenizer.tokenize(_snake_case ) __a = tokenizer.convert_tokens_to_ids(_snake_case ) __a = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) __a = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertNotEqual(len(_snake_case ) , 0 ) __a = tokenizer.decode(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _snake_case ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' pass
6
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """BlipImageProcessor""" lowercase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict, lowerCamelCase : Dict, lowerCamelCase : str ): '''simple docstring''' lowercase__ = False super().__init__(lowerCamelCase, lowerCamelCase ) lowercase__ = self.image_processor def __call__( self : int, lowerCamelCase : ImageInput = None, lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCamelCase : bool = True, lowerCamelCase : Union[bool, str, PaddingStrategy] = False, lowerCamelCase : Union[bool, str, TruncationStrategy] = None, lowerCamelCase : Optional[int] = None, lowerCamelCase : int = 0, lowerCamelCase : Optional[int] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : bool = True, lowerCamelCase : Optional[Union[str, TensorType]] = None, **lowerCamelCase : Any, ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowercase__ = self.tokenizer lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) return text_encoding # add pixel_values lowercase__ = self.image_processor(lowerCamelCase, return_tensors=lowerCamelCase ) if text is not None: lowercase__ = self.tokenizer( text=lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, stride=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_attention_mask=lowerCamelCase, return_overflowing_tokens=lowerCamelCase, return_special_tokens_mask=lowerCamelCase, return_offsets_mapping=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_length=lowerCamelCase, verbose=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def lowercase__ ( self : Tuple, *lowerCamelCase : Union[str, Any], **lowerCamelCase : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def lowercase__ ( self : List[str], *lowerCamelCase : int, **lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase ) @property def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
207
0
from jiwer import compute_measures import datasets __A = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __A = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' __A = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def UpperCamelCase_ ( self : Tuple ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCamelCase_ ( self : Optional[int] , A__ : List[Any]=None , A__ : Any=None , A__ : Tuple=False ) -> Optional[Any]: if concatenate_texts: return compute_measures(A__ , A__ )["wer"] else: _snake_case = 0 _snake_case = 0 for prediction, reference in zip(A__ , A__ ): _snake_case = compute_measures(A__ , A__ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
364
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
278
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = Dict[str, Any] lowercase_ = List[Prediction] @add_end_docstrings(_UpperCAmelCase ) class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[int],*lowercase_ : Union[str, Any],**lowercase_ : Tuple )-> int: '''simple docstring''' super().__init__(*lowercase_,**lowercase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self,'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def snake_case__ ( self : Union[str, Any],**lowercase_ : int )-> Any: '''simple docstring''' A__ = {} if "threshold" in kwargs: A__ = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self : List[str],*lowercase_ : int,**lowercase_ : Union[str, Any] )-> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*lowercase_,**lowercase_ ) def snake_case__ ( self : Tuple,lowercase_ : Any )-> List[Any]: '''simple docstring''' A__ = load_image(lowercase_ ) A__ = torch.IntTensor([[image.height, image.width]] ) A__ = self.image_processor(images=[image],return_tensors='pt' ) if self.tokenizer is not None: A__ = self.tokenizer(text=inputs['words'],boxes=inputs['boxes'],return_tensors='pt' ) A__ = target_size return inputs def snake_case__ ( self : Dict,lowercase_ : int )-> str: '''simple docstring''' A__ = model_inputs.pop('target_size' ) A__ = self.model(**lowercase_ ) A__ = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: A__ = model_inputs['bbox'] return model_outputs def snake_case__ ( self : List[str],lowercase_ : Tuple,lowercase_ : Union[str, Any]=0.9 )-> List[str]: '''simple docstring''' A__ = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A__ , A__ = target_size[0].tolist() def unnormalize(lowercase_ : List[str] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_0_0_0), (height * bbox[1] / 1_0_0_0), (width * bbox[2] / 1_0_0_0), (height * bbox[3] / 1_0_0_0), ] ) ) A__ , A__ = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A__ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A__ = [unnormalize(lowercase_ ) for bbox in model_outputs['bbox'].squeeze(0 )] A__ = ['score', 'label', 'box'] A__ = [dict(zip(lowercase_,lowercase_ ) ) for vals in zip(scores.tolist(),lowercase_,lowercase_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A__ = self.image_processor.post_process_object_detection(lowercase_,lowercase_,lowercase_ ) A__ = raw_annotations[0] A__ = raw_annotation['scores'] A__ = raw_annotation['labels'] A__ = raw_annotation['boxes'] A__ = scores.tolist() A__ = [self.model.config.idalabel[label.item()] for label in labels] A__ = [self._get_bounding_box(lowercase_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A__ = ['score', 'label', 'box'] A__ = [ dict(zip(lowercase_,lowercase_ ) ) for vals in zip(raw_annotation['scores'],raw_annotation['labels'],raw_annotation['boxes'] ) ] return annotation def snake_case__ ( self : Optional[int],lowercase_ : "torch.Tensor" )-> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) A__ , A__ , A__ , A__ = box.int().tolist() A__ = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
7
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
38
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = ["""pixel_values"""] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BICUBIC , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , A_ = True , **A_ , )-> None: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = size if size is not None else {'shortest_edge': 224} UpperCamelCase = get_size_dict(A_ , default_to_square=A_ ) UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase = get_size_dict(A_ , default_to_square=A_ , param_name='crop_size' ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase = do_convert_rgb def UpperCAmelCase_ ( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , )-> np.ndarray: '''simple docstring''' UpperCamelCase = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase = get_resize_output_image_size(A_ , size=size['shortest_edge'] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ = None , **A_ , )-> np.ndarray: '''simple docstring''' UpperCamelCase = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ = None , **A_ , )-> Dict: '''simple docstring''' return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ = None , **A_ , )-> np.ndarray: '''simple docstring''' return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , )-> PIL.Image.Image: '''simple docstring''' UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(A_ , param_name='size' , default_to_square=A_ ) UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase = crop_size if crop_size is not None else self.crop_size UpperCamelCase = get_size_dict(A_ , param_name='crop_size' , default_to_square=A_ ) UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase = [convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(A_ ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: UpperCamelCase = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] UpperCamelCase = [to_channel_dimension_format(A_ , A_ ) for image in images] UpperCamelCase = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
251
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=13 , A_=2 , A_=24 , A_=16 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , A_=2 , )-> int: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = patch_size UpperCamelCase = max_length UpperCamelCase = num_mel_bins UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = frequency_stride UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCamelCase = frequency_out_dimension * time_out_dimension UpperCamelCase = num_patches + 2 def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, input_values, labels def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = ASTModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_values': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ )-> Dict: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ASTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['input_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ASTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset') UpperCamelCase , UpperCamelCase = torchaudio.load(A) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.default_feature_extractor UpperCamelCase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(A_ ) UpperCamelCase = self.default_feature_extractor UpperCamelCase , UpperCamelCase = prepare_audio() UpperCamelCase = audio.squeeze().numpy() UpperCamelCase = feature_extractor(A_ , sampling_rate=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
251
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : List[str] = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class a__ ( A__ ): A = 'rwkv' A = {'max_position_embeddings': 'context_length'} def __init__( self : List[Any],_A : int=5_0277,_A : Any=1024,_A : List[str]=4096,_A : Union[str, Any]=32,_A : List[str]=None,_A : List[str]=None,_A : Optional[int]=1E-5,_A : Any=0,_A : Any=0,_A : Any=6,_A : Any=False,_A : Any=True,**_A : Optional[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = context_length SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE_ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE_ : Tuple = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Optional[Any] = rescale_every SCREAMING_SNAKE_CASE_ : str = use_cache SCREAMING_SNAKE_CASE_ : Any = bos_token_id SCREAMING_SNAKE_CASE_ : int = eos_token_id super().__init__( tie_word_embeddings=_A,bos_token_id=_A,eos_token_id=_A,**_A )
18
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
snake_case : List[str] = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) snake_case : Optional[int] = frozenset(['''prompt''', '''negative_prompt''']) snake_case : List[str] = frozenset([]) snake_case : Optional[int] = frozenset(['''image''']) snake_case : Union[str, Any] = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) snake_case : List[Any] = frozenset(['''image''']) snake_case : List[str] = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) snake_case : Union[str, Any] = frozenset(['''prompt''', '''image''', '''negative_prompt''']) snake_case : Optional[int] = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) snake_case : int = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) snake_case : int = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) snake_case : List[Any] = frozenset(['''image''', '''mask_image''']) snake_case : Optional[int] = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) snake_case : List[str] = frozenset(['''example_image''', '''image''', '''mask_image''']) snake_case : List[Any] = frozenset(['''class_labels''']) snake_case : Optional[Any] = frozenset(['''class_labels''']) snake_case : Union[str, Any] = frozenset(['''batch_size''']) snake_case : List[str] = frozenset([]) snake_case : Dict = frozenset(['''batch_size''']) snake_case : str = frozenset([]) snake_case : Dict = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) snake_case : int = frozenset(['''prompt''', '''negative_prompt''']) snake_case : Tuple = frozenset(['''input_tokens''']) snake_case : Tuple = frozenset(['''input_tokens'''])
368
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __lowerCamelCase ( UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Any=100 , UpperCAmelCase_ : List[str]=1026 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str="data/tokenized_stories_train_wikitext103.jbl" , UpperCAmelCase_ : List[Any]="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set a , a :Optional[int] = generate_datasets( UpperCAmelCase_ , UpperCAmelCase_ , number=UpperCAmelCase_ , min_len=1026 , trim=UpperCAmelCase_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? a :str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model a :str = load_gpta('''gpt2''' ).to(UpperCAmelCase_ ) print('''computing perplexity on objective set''' ) a :Dict = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).item() print('''perplexity on objective set:''' , UpperCAmelCase_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str=15 , UpperCAmelCase_ : Optional[Any]=128 , UpperCAmelCase_ : List[Any]=100 , UpperCAmelCase_ : List[str]="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model a :Tuple = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model a :List[str] = SecondaryLearner(UpperCAmelCase_ ) # Train secondary learner a :List[str] = train_secondary_learner( UpperCAmelCase_ , UpperCAmelCase_ , max_epochs=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , eval_freq=100 , igf_model_path=UpperCAmelCase_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : List[str]=1000 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Any=1.0 , UpperCAmelCase_ : Optional[int]=recopy_gpta , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=10 , UpperCAmelCase_ : Any="gpt2_finetuned.pt" , ): """simple docstring""" a :Optional[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) a :Optional[Any] = RandomSampler(UpperCAmelCase_ ) a :Union[str, Any] = DataLoader(UpperCAmelCase_ , sampler=UpperCAmelCase_ ) a :List[str] = max_steps // (len(UpperCAmelCase_ )) + 1 a :Tuple = 0 a :int = torch.zeros((1, context_len) , dtype=torch.long , device=UpperCAmelCase_ ) a , a , a :str = recopy_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCAmelCase_ ) secondary_learner.eval() a :Optional[Any] = [] a :Union[str, Any] = 0 a :Optional[Any] = [] a :Tuple = [] # Compute the performance of the transformer model at the beginning a :Any = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print('''Test perplexity, step''' , UpperCAmelCase_ , ''':''' , UpperCAmelCase_ ) for epoch in range(int(UpperCAmelCase_ ) ): for step, example in enumerate(UpperCAmelCase_ ): torch.cuda.empty_cache() a :Tuple = random.randint(0 , example.size(2 ) - context_len - 1 ) a :Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() a :Optional[int] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) a :int = True if secondary_learner is not None: a :Tuple = secondary_learner.forward( torch.tensor(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCAmelCase_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: a :List[str] = -1 if predicted_q < threshold: a :Tuple = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) a :Any = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() a :Tuple = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: a :Dict = compute_perplexity(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) test_perps.append(UpperCAmelCase_ ) print('''Test perplexity, step''' , UpperCAmelCase_ , ''':''' , UpperCAmelCase_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , UpperCAmelCase_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __lowerCamelCase ( ): """simple docstring""" a :Union[str, Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=UpperCAmelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=UpperCAmelCase_ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=UpperCAmelCase_ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1000 , type=UpperCAmelCase_ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=UpperCAmelCase_ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=UpperCAmelCase_ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=UpperCAmelCase_ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=UpperCAmelCase_ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1026 , type=UpperCAmelCase_ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=UpperCAmelCase_ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=UpperCAmelCase_ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=UpperCAmelCase_ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=UpperCAmelCase_ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner a :Union[str, Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner a :Any = training_secondary_learner( UpperCAmelCase_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model a :Any = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model a , a :Union[str, Any] = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1026 , trim=UpperCAmelCase_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=UpperCAmelCase_ , secondary_learner=UpperCAmelCase_ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
281
0
def UpperCamelCase ( __lowercase : int = 10_00 ): '''simple docstring''' A_ : Tuple = -1 A_ : List[str] = 0 for a in range(1 ,n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c A_ : List[str] = (n * n - 2 * a * n) // (2 * n - 2 * a) A_ : str = n - a - b if c * c == (a * a + b * b): A_ : Optional[Any] = a * b * c if candidate >= product: A_ : List[str] = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
140
from queue import PriorityQueue from typing import Any import numpy as np def UpperCamelCase ( __lowercase : dict ,__lowercase : str ,__lowercase : set ,__lowercase : set ,__lowercase : dict ,__lowercase : dict ,__lowercase : PriorityQueue ,__lowercase : dict ,__lowercase : float | int ,): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue A_ : List[str] = cst_fwd.get(__lowercase ,np.inf ) A_ : Any = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ : Any = new_cost_f A_ : Optional[int] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ : str = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCamelCase ( __lowercase : str ,__lowercase : str ,__lowercase : dict ,__lowercase : dict ): '''simple docstring''' A_ : List[str] = -1 A_ : List[Any] = set() A_ : Union[str, Any] = set() A_ : int = {source: 0} A_ : List[Any] = {destination: 0} A_ : Dict = {source: None} A_ : Optional[int] = {destination: None} A_ : PriorityQueue[Any] = PriorityQueue() A_ : PriorityQueue[Any] = PriorityQueue() A_ : Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ : List[str] = queue_forward.get() visited_forward.add(__lowercase ) A_ , A_ : Union[str, Any] = queue_backward.get() visited_backward.add(__lowercase ) A_ : int = pass_and_relaxation( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,) A_ : str = pass_and_relaxation( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ : int = shortest_distance return shortest_path_distance _UpperCAmelCase = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } _UpperCAmelCase = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
140
1
"""simple docstring""" def _A ( UpperCamelCase_ : str, UpperCamelCase_ : list[str]) -> str: '''simple docstring''' __lowercase = "" for word_or_phrase in separated: if not isinstance(UpperCamelCase_, UpperCamelCase_): raise Exception("join() accepts only strings to be joined") joined += word_or_phrase + separator return joined.strip(UpperCamelCase_) if __name__ == "__main__": from doctest import testmod testmod()
350
"""simple docstring""" import argparse import os import re _a = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _a = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings _a = re.compile(r'\s*\(\s*"(\S[^"]+)"') def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : bool = False) -> Optional[Any]: '''simple docstring''' with open(UpperCamelCase_, "r", encoding="utf-8") as f: __lowercase = f.read() __lowercase = content.split("\n") __lowercase = [] __lowercase = 0 while line_idx < len(UpperCamelCase_): if _re_intro_mapping.search(lines[line_idx]) is not None: __lowercase = len(re.search(r"^(\s*)\S", lines[line_idx]).groups()[0]) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "("): new_lines.append(lines[line_idx]) line_idx += 1 __lowercase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __lowercase = line_idx while not lines[line_idx].startswith(" " * indent + ")"): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1])) else: blocks.append(lines[line_idx]) line_idx += 1 # Sort blocks by their identifiers __lowercase = sorted(UpperCamelCase_, key=lambda UpperCamelCase_: _re_identifier.search(UpperCamelCase_).groups()[0]) new_lines += blocks else: new_lines.append(lines[line_idx]) line_idx += 1 if overwrite: with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write("\n".join(UpperCamelCase_)) elif "\n".join(UpperCamelCase_) != content: return True def _A ( UpperCamelCase_ : bool = False) -> Optional[Any]: '''simple docstring''' __lowercase = [os.path.join(UpperCamelCase_, UpperCamelCase_) for f in os.listdir(UpperCamelCase_) if f.endswith(".py")] __lowercase = [sort_auto_mapping(UpperCamelCase_, overwrite=UpperCamelCase_) for fname in fnames] if not overwrite and any(UpperCamelCase_): __lowercase = [f for f, d in zip(UpperCamelCase_, UpperCamelCase_) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {", ".join(UpperCamelCase_)}. Run `make style` to fix""" " this.") if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _a = parser.parse_args() sort_all_auto_mappings(not args.check_only)
144
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__UpperCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = ["""speech"""] def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Dict ) -> int: '''simple docstring''' requires_backends(self , ['''speech'''] ) class lowerCAmelCase_ ( metaclass=__UpperCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ["""speech"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''speech'''] )
319
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __UpperCamelCase ( _A ): lowerCAmelCase_ = 384 lowerCAmelCase_ = 7 if "tiny" in model_name: lowerCAmelCase_ = 96 lowerCAmelCase_ = (2, 2, 6, 2) lowerCAmelCase_ = (3, 6, 12, 24) elif "small" in model_name: lowerCAmelCase_ = 96 lowerCAmelCase_ = (2, 2, 18, 2) lowerCAmelCase_ = (3, 6, 12, 24) elif "base" in model_name: lowerCAmelCase_ = 128 lowerCAmelCase_ = (2, 2, 18, 2) lowerCAmelCase_ = (4, 8, 16, 32) lowerCAmelCase_ = 12 lowerCAmelCase_ = 512 elif "large" in model_name: lowerCAmelCase_ = 192 lowerCAmelCase_ = (2, 2, 18, 2) lowerCAmelCase_ = (6, 12, 24, 48) lowerCAmelCase_ = 12 lowerCAmelCase_ = 768 # set label information lowerCAmelCase_ = 150 lowerCAmelCase_ = '''huggingface/label-files''' lowerCAmelCase_ = '''ade20k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = SwinConfig( embed_dim=_A , depths=_A , num_heads=_A , window_size=_A , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) lowerCAmelCase_ = UperNetConfig( backbone_config=_A , auxiliary_in_channels=_A , num_labels=_A , idalabel=_A , labelaid=_A , ) return config def __UpperCamelCase ( _A ): lowerCAmelCase_ = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.stages.{i}.downsample.reduction.weight", f"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.weight", f"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.bias", f"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = dct.pop(_A ) lowerCAmelCase_ = val def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) lowerCAmelCase_ = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[:dim, :] lowerCAmelCase_ = in_proj_bias[: dim] lowerCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase_ = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase_ = in_proj_weight[ -dim :, : ] lowerCAmelCase_ = in_proj_bias[-dim :] # fmt: on def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = x.shape lowerCAmelCase_ = x.reshape(_A , 4 , in_channel // 4 ) lowerCAmelCase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_A , _A ) return x def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = x.shape lowerCAmelCase_ = x.reshape(_A , in_channel // 4 , 4 ) lowerCAmelCase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_A , _A ) return x def __UpperCamelCase ( _A ): lowerCAmelCase_ = x.shape[0] lowerCAmelCase_ = x.reshape(4 , in_channel // 4 ) lowerCAmelCase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_A ) return x def __UpperCamelCase ( _A ): lowerCAmelCase_ = x.shape[0] lowerCAmelCase_ = x.reshape(in_channel // 4 , 4 ) lowerCAmelCase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_A ) return x def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } lowerCAmelCase_ = model_name_to_url[model_name] lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' , file_name=_A )[ '''state_dict''' ] for name, param in state_dict.items(): print(_A , param.shape ) lowerCAmelCase_ = get_upernet_config(_A ) lowerCAmelCase_ = UperNetForSemanticSegmentation(_A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCAmelCase_ = state_dict.pop(_A ) if "bn" in key: lowerCAmelCase_ = key.replace('''bn''' , '''batch_norm''' ) lowerCAmelCase_ = val # rename keys lowerCAmelCase_ = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowerCAmelCase_ = reverse_correct_unfold_reduction_order(_A ) if "norm" in key: lowerCAmelCase_ = reverse_correct_unfold_norm_order(_A ) model.load_state_dict(_A ) # verify on image lowerCAmelCase_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ).convert('''RGB''' ) lowerCAmelCase_ = SegformerImageProcessor() lowerCAmelCase_ = processor(_A , return_tensors='''pt''' ).pixel_values with torch.no_grad(): lowerCAmelCase_ = model(_A ) lowerCAmelCase_ = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowerCAmelCase_ = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": lowerCAmelCase_ = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": lowerCAmelCase_ = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": lowerCAmelCase_ = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_A ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[f"upernet-swin-{size}" for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _A = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
278
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCamelCase : List[str] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase : str = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCamelCase : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING __UpperCamelCase : str = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : str ): lowerCAmelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'config.{attribute}' in modeling_source or F'getattr(config, "{attribute}"' in modeling_source or F'getattr(self.config, "{attribute}"' in modeling_source ): lowerCAmelCase = True # Deal with multi-line cases elif ( re.search( RF'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , _UpperCAmelCase , ) is not None ): lowerCAmelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCAmelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCAmelCase = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] lowerCAmelCase = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed lowerCAmelCase = True if not attribute_used: lowerCAmelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCAmelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCAmelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCAmelCase = True elif attribute.endswith('_token_id' ): lowerCAmelCase = True # configuration class specific cases if not case_allowed: lowerCAmelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowerCAmelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): lowerCAmelCase = dict(inspect.signature(config_class.__init__ ).parameters ) lowerCAmelCase = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] lowerCAmelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCAmelCase = {} if len(config_class.attribute_map ) > 0: lowerCAmelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCAmelCase = inspect.getsourcefile(_UpperCAmelCase ) lowerCAmelCase = os.path.dirname(_UpperCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCAmelCase = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for fn in os.listdir(_UpperCAmelCase ) if fn.startswith('modeling_' )] # Get the source code strings lowerCAmelCase = [] for path in modeling_paths: if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase ) as fp: modeling_sources.append(fp.read() ) lowerCAmelCase = [] for config_param, default_value in zip(_UpperCAmelCase , _UpperCAmelCase ): # `attributes` here is all the variant names for `config_param` lowerCAmelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCAmelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _UpperCAmelCase : inspect.isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ) and inspect.getmodule(_UpperCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowerCAmelCase = check_config_attributes_being_used(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: lowerCAmelCase = unused_attributes if len(_UpperCAmelCase ) > 0: lowerCAmelCase = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += F'{name}: {attributes}\n' raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": check_config_attributes()
309
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
'''simple docstring''' from itertools import product def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = sides_number SCREAMING_SNAKE_CASE : str = max_face_number * dice_number SCREAMING_SNAKE_CASE : Tuple = [0] * (max_total + 1) SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : int = range(__UpperCamelCase ,max_face_number + 1 ) for dice_numbers in product(__UpperCamelCase ,repeat=__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = sum(__UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = total_frequency_distribution( sides_number=4 ,dice_number=9 ) SCREAMING_SNAKE_CASE : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = 9 SCREAMING_SNAKE_CASE : Dict = 4 * 9 SCREAMING_SNAKE_CASE : str = 6 for peter_total in range(__UpperCamelCase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) SCREAMING_SNAKE_CASE : Optional[Any] = (4**9) * (6**6) SCREAMING_SNAKE_CASE : int = peter_wins_count / total_games_number SCREAMING_SNAKE_CASE : Optional[Any] = round(__UpperCamelCase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
251
1
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = int(lowerCamelCase__ ) # Initialize Result lowercase__ : Tuple = [] # Traverse through all denomination for denomination in reversed(lowerCamelCase__ ): # Find denominations while int(lowerCamelCase__ ) >= int(lowerCamelCase__ ): total_value -= int(lowerCamelCase__ ) answer.append(lowerCamelCase__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCAmelCase__ = [] lowerCAmelCase__ = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): lowerCAmelCase__ = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) lowerCAmelCase__ = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter lowerCAmelCase__ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] lowerCAmelCase__ = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') lowerCAmelCase__ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
363
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class snake_case__(unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : Optional[int] ): lowercase__ : Dict = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowercase__ : Dict = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase__ : Optional[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids lowercase__ : Optional[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowercase__ : int = shift_tokens_right(SCREAMING_SNAKE_CASE , model.config.pad_token_id , model.config.decoder_start_token_id ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE ).logits lowercase__ : Dict = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE , onehot(SCREAMING_SNAKE_CASE , logits.shape[-1] ) ).mean() lowercase__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) lowercase__ : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
121
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCamelCase__ = ["text", "image", "audio"] def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_snake_case , _snake_case ): inputs.append(create_inputs(_snake_case ) ) else: raise ValueError(F"Invalid type requested: {input_type}" ) return inputs def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = [] for output in outputs: if isinstance(_snake_case , (str, AgentText) ): output_types.append('text' ) elif isinstance(_snake_case , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_snake_case , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F"Invalid output: {output}" ) return output_types @is_tool_test class A__ : def __lowerCamelCase ( self ): self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) __lowerCAmelCase : Union[str, Any] = self.tool.inputs for _input in inputs: if isinstance(_input , _a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __lowerCAmelCase : List[Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = create_inputs(self.tool.inputs ) __lowerCAmelCase : List[str] = self.tool(*_a ) # There is a single output if len(self.tool.outputs ) == 1: __lowerCAmelCase : Any = [outputs] self.assertListEqual(output_types(_a ) , self.tool.outputs ) def __lowerCamelCase ( self ): self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = create_inputs(self.tool.inputs ) __lowerCAmelCase : Dict = self.tool(*_a ) if not isinstance(_a , _a ): __lowerCAmelCase : List[Any] = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) ) for output, output_type in zip(_a , self.tool.outputs ): __lowerCAmelCase : str = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_a , _a ) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = create_inputs(self.tool.inputs ) __lowerCAmelCase : Optional[Any] = [] for _input, input_type in zip(_a , self.tool.inputs ): if isinstance(_a , _a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __lowerCAmelCase : List[Any] = self.tool(*_a ) if not isinstance(_a , _a ): __lowerCAmelCase : str = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) )
86
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase_ ( _snake_case : str = "laptop" ) -> DataFrame: '''simple docstring''' __magic_name__ : Tuple = F'''https://www.amazon.in/laptop/s?k={product}''' __magic_name__ : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } __magic_name__ : Tuple = BeautifulSoup(requests.get(_snake_case , headers=_snake_case ).text ) # Initialize a Pandas dataframe with the column titles __magic_name__ : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: __magic_name__ : Dict = item.ha.text __magic_name__ : Optional[int] = "https://www.amazon.in/" + item.ha.a["href"] __magic_name__ : Optional[Any] = item.find("span" , attrs={"class": "a-offscreen"} ).text try: __magic_name__ : Union[str, Any] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: __magic_name__ : Dict = "Not available" try: __magic_name__ : Optional[int] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: __magic_name__ : List[str] = "" try: __magic_name__ : int = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: __magic_name__ : str = float("nan" ) except AttributeError: pass __magic_name__ : Optional[int] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __magic_name__ : Optional[Any] = " " __magic_name__ : str = " " data_frame.index += 1 return data_frame if __name__ == "__main__": snake_case : Any = "headphones" get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
281
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __snake_case : Tuple = logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase_ : str ) -> int: """simple docstring""" lowerCAmelCase__ = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) lowerCAmelCase__ = MaskFormerConfig(backbone_config=UpperCamelCase_ ) lowerCAmelCase__ = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok lowerCAmelCase__ = 847 lowerCAmelCase__ = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok lowerCAmelCase__ = 150 lowerCAmelCase__ = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok lowerCAmelCase__ = 171 lowerCAmelCase__ = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO lowerCAmelCase__ = 133 lowerCAmelCase__ = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok lowerCAmelCase__ = 19 lowerCAmelCase__ = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok lowerCAmelCase__ = 65 lowerCAmelCase__ = 'mapillary-vistas-id2label.json' lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} return config def _UpperCamelCase ( UpperCamelCase_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight") ) rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def _UpperCamelCase ( UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : str ) -> int: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Dict ) -> Dict: """simple docstring""" lowerCAmelCase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:dim, :] lowerCAmelCase__ = in_proj_bias[: dim] lowerCAmelCase__ = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase__ = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase__ = in_proj_weight[ -dim :, : ] lowerCAmelCase__ = in_proj_bias[-dim :] # fmt: on def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> Any: """simple docstring""" lowerCAmelCase__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[: hidden_size, :] lowerCAmelCase__ = in_proj_bias[:config.hidden_size] lowerCAmelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCAmelCase__ = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase__ = in_proj_weight[-hidden_size :, :] lowerCAmelCase__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[: hidden_size, :] lowerCAmelCase__ = in_proj_bias[:config.hidden_size] lowerCAmelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCAmelCase__ = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase__ = in_proj_weight[-hidden_size :, :] lowerCAmelCase__ = in_proj_bias[-hidden_size :] # fmt: on def _UpperCamelCase ( ) -> torch.Tensor: """simple docstring""" lowerCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : bool = False ) -> int: """simple docstring""" lowerCAmelCase__ = get_maskformer_config(UpperCamelCase_ ) # load original state_dict with open(UpperCamelCase_ , 'rb' ) as f: lowerCAmelCase__ = pickle.load(UpperCamelCase_ ) lowerCAmelCase__ = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_swin_q_k_v(UpperCamelCase_ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase_ , UpperCamelCase_ ) # update to torch tensors for key, value in state_dict.items(): lowerCAmelCase__ = torch.from_numpy(UpperCamelCase_ ) # load 🤗 model lowerCAmelCase__ = MaskFormerForInstanceSegmentation(UpperCamelCase_ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase_ , param.shape ) lowerCAmelCase__ , lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase_ ) == 0, F"Unexpected keys: {unexpected_keys}" # verify results lowerCAmelCase__ = prepare_img() if "vistas" in model_name: lowerCAmelCase__ = 65 elif "cityscapes" in model_name: lowerCAmelCase__ = 6_5535 else: lowerCAmelCase__ = 255 lowerCAmelCase__ = True if 'ade' in model_name else False lowerCAmelCase__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase_ , reduce_labels=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(UpperCamelCase_ , return_tensors='pt' ) lowerCAmelCase__ = model(**UpperCamelCase_ ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowerCAmelCase__ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"nielsr/{model_name}" ) image_processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __snake_case : Union[str, Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
122
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase=3 , _UpperCamelCase=32 , _UpperCamelCase=3 , _UpperCamelCase=10 , _UpperCamelCase=[10, 20, 30, 40] , _UpperCamelCase=[1, 1, 2, 1] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase="relu" , _UpperCamelCase=3 , _UpperCamelCase=None , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embeddings_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_labels lowerCAmelCase__ = scope lowerCAmelCase__ = len(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = TFResNetModel(config=_UpperCamelCase ) lowerCAmelCase__ = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFResNetForImageClassification(_UpperCamelCase ) lowerCAmelCase__ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFResNetModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(_UpperCamelCase ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowerCAmelCase__ = model_class(_UpperCamelCase ) lowerCAmelCase__ = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase__ = layer_type lowerCAmelCase__ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFResNetModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=_UpperCamelCase , return_tensors='tf' ) # forward pass lowerCAmelCase__ = model(**_UpperCamelCase ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) lowerCAmelCase__ = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCamelCase , atol=1E-4 ) )
122
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: int = logging.get_logger(__name__) _lowercase: List[str] = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class _lowercase ( snake_case__ ): """simple docstring""" __A = "pix2struct_text_model" __A = ["past_key_values"] __A = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , lowerCamelCase_=50244 , lowerCamelCase_=768 , lowerCamelCase_=64 , lowerCamelCase_=2048 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_=32 , lowerCamelCase_=128 , lowerCamelCase_=0.1 , lowerCamelCase_=1E-6 , lowerCamelCase_=1.0 , lowerCamelCase_="gelu_new" , lowerCamelCase_=0 , lowerCamelCase_=False , lowerCamelCase_=0 , lowerCamelCase_=1 , lowerCamelCase_=False , lowerCamelCase_=True , **lowerCamelCase_ , ): """simple docstring""" a = vocab_size a = hidden_size a = d_kv a = d_ff a = num_layers a = num_heads a = relative_attention_num_buckets a = relative_attention_max_distance a = dropout_rate a = layer_norm_epsilon a = initializer_factor a = use_cache a = eos_token_id a = decoder_start_token_id # for backwards compatibility a = dense_act_fn super().__init__( pad_token_id=snake_case__ , eos_token_id=snake_case__ , decoder_start_token_id=snake_case__ , tie_word_embeddings=snake_case__ , is_decoder=snake_case__ , **snake_case__ , ) @classmethod def UpperCamelCase_ (cls , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" cls._set_token_in_kwargs(snake_case__ ) a = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": a = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case__ , **snake_case__ ) class _lowercase ( snake_case__ ): """simple docstring""" __A = "pix2struct_vision_model" def __init__(self , lowerCamelCase_=768 , lowerCamelCase_=768 , lowerCamelCase_=2048 , lowerCamelCase_=64 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_="gelu_new" , lowerCamelCase_=1E-6 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=1E-1_0 , lowerCamelCase_=1.0 , lowerCamelCase_=4096 , lowerCamelCase_=32 , lowerCamelCase_=128 , **lowerCamelCase_ , ): """simple docstring""" super().__init__(**snake_case__ ) a = hidden_size a = patch_embed_hidden_size a = d_ff a = dropout_rate a = num_hidden_layers a = num_attention_heads a = initializer_range a = initializer_factor a = attention_dropout a = layer_norm_eps a = dense_act_fn a = seq_len a = relative_attention_num_buckets a = relative_attention_max_distance a = d_kv @classmethod def UpperCamelCase_ (cls , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" cls._set_token_in_kwargs(snake_case__ ) a = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": a = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case__ , **snake_case__ ) class _lowercase ( snake_case__ ): """simple docstring""" __A = "pix2struct" __A = True def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=1.0 , lowerCamelCase_=0.02 , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=True , **lowerCamelCase_ , ): """simple docstring""" super().__init__(tie_word_embeddings=snake_case__ , is_encoder_decoder=snake_case__ , **snake_case__ ) if text_config is None: a = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: a = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) a = PixaStructTextConfig(**snake_case__ ) a = PixaStructVisionConfig(**snake_case__ ) a = self.text_config.decoder_start_token_id a = self.text_config.pad_token_id a = self.text_config.eos_token_id a = initializer_factor a = initializer_range a = self.initializer_range a = self.initializer_range a = is_vqa @classmethod def UpperCamelCase_ (cls , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case__ ) def UpperCamelCase_ (self ): """simple docstring""" a = copy.deepcopy(self.__dict__ ) a = self.text_config.to_dict() a = self.vision_config.to_dict() a = self.__class__.model_type return output
227
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :torch.FloatTensor class lowercase__ ( snake_case__, snake_case__ ): @register_to_config def __init__( self : Optional[int] , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : Tuple[str] = ("DownEncoderBlock2D",) , snake_case__ : Tuple[str] = ("UpDecoderBlock2D",) , snake_case__ : Tuple[int] = (64,) , snake_case__ : int = 1 , snake_case__ : str = "silu" , snake_case__ : int = 3 , snake_case__ : int = 32 , snake_case__ : int = 256 , snake_case__ : int = 32 , snake_case__ : Optional[int] = None , snake_case__ : float = 0.18_215 , snake_case__ : str = "group" , ): super().__init__() # pass init params to Encoder lowerCamelCase_ : List[str] =Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) lowerCamelCase_ : Union[str, Any] =vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase_ : List[Any] =nn.Convad(snake_case__ , snake_case__ , 1 ) lowerCamelCase_ : int =VectorQuantizer(snake_case__ , snake_case__ , beta=0.25 , remap=snake_case__ , sane_index_shape=snake_case__ ) lowerCamelCase_ : int =nn.Convad(snake_case__ , snake_case__ , 1 ) # pass init params to Decoder lowerCamelCase_ : Union[str, Any] =Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , norm_type=snake_case__ , ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : int =self.encoder(snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.quant_conv(snake_case__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=snake_case__ ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = False , snake_case__ : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =self.quantize(snake_case__ ) else: lowerCamelCase_ : List[Any] =h lowerCamelCase_ : List[Any] =self.post_quant_conv(snake_case__ ) lowerCamelCase_ : Dict =self.decoder(snake_case__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : Dict =sample lowerCamelCase_ : Optional[Any] =self.encode(snake_case__ ).latents lowerCamelCase_ : str =self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
144
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''distilbert''' snake_case = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self : str , __UpperCAmelCase : Any=30522 , __UpperCAmelCase : Any=512 , __UpperCAmelCase : Any=False , __UpperCAmelCase : Union[str, Any]=6 , __UpperCAmelCase : int=12 , __UpperCAmelCase : Dict=768 , __UpperCAmelCase : Dict=4 * 768 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : int=0.2 , __UpperCAmelCase : Optional[Any]=0 , **__UpperCAmelCase : Dict , ): '''simple docstring''' _A = vocab_size _A = max_position_embeddings _A = sinusoidal_pos_embds _A = n_layers _A = n_heads _A = dim _A = hidden_dim _A = dropout _A = attention_dropout _A = activation _A = initializer_range _A = qa_dropout _A = seq_classif_dropout super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" @property def lowerCAmelCase ( self : str ): '''simple docstring''' if self.task == "multiple-choice": _A = {0: "batch", 1: "choice", 2: "sequence"} else: _A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
174
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): _A = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = "sgugger/tiny-distilbert-classification" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , only_pretrain_model=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , [config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = "patrickvonplaten/t5-tiny-random" _A = AutoConfig.from_pretrained(__UpperCAmelCase ) _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase , configs=[config] ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , save_to_csv=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCAmelCase , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(__UpperCAmelCase , "inf_mem.csv" ) , env_info_csv_file=os.path.join(__UpperCAmelCase , "env.csv" ) , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "env.csv" ) ).exists() ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__UpperCAmelCase : Any ): self.assertTrue(hasattr(__UpperCAmelCase , "sequential" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "cumulative" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "current" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _A = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCAmelCase , "log.txt" ) , log_print=__UpperCAmelCase , trace_memory_line_by_line=__UpperCAmelCase , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) _A = TensorFlowBenchmark(__UpperCAmelCase ) _A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "log.txt" ) ).exists() )
174
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] ) -> Optional[Any]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class a_ (nn.Module ): def __init__( self , snake_case_ , snake_case_ ): super().__init__() _lowerCAmelCase : Any = module _lowerCAmelCase : Tuple = nn.Sequential( nn.Linear(module.in_features , snake_case_ , bias=snake_case_ ) , nn.Linear(snake_case_ , module.out_features , bias=snake_case_ ) , ) _lowerCAmelCase : Tuple = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=snake_case_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __UpperCamelCase ( self , snake_case_ , *snake_case_ , **snake_case_ ): return self.module(snake_case_ , *snake_case_ , **snake_case_ ) + self.adapter(snake_case_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class a_ (unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module __lowerCAmelCase : List[Any] = """bigscience/bloom-1b7""" # Constant values __lowerCAmelCase : Optional[int] = 2.109659552692574 __lowerCAmelCase : int = """Hello my name is""" __lowerCAmelCase : Tuple = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) __lowerCAmelCase : Optional[Any] = 1_0 def __UpperCamelCase ( self ): # Models and tokenizer _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(self.model_name ) class a_ (_a ): def __UpperCamelCase ( self ): super().setUp() # Models and tokenizer _lowerCAmelCase : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) _lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) def __UpperCamelCase ( self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.model_abit.config self.assertTrue(hasattr(snake_case_ , """quantization_config""" ) ) _lowerCAmelCase : str = config.to_dict() _lowerCAmelCase : List[Any] = config.to_diff_dict() _lowerCAmelCase : Union[str, Any] = config.to_json_string() def __UpperCamelCase ( self ): from bitsandbytes.nn import Paramsabit _lowerCAmelCase : Tuple = self.model_fpaa.get_memory_footprint() _lowerCAmelCase : Any = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) _lowerCAmelCase : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __UpperCamelCase ( self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(snake_case_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.tokenizer(self.input_text , return_tensors="""pt""" ) _lowerCAmelCase : List[Any] = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = BitsAndBytesConfig() _lowerCAmelCase : List[Any] = True _lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , device_map="""auto""" ) _lowerCAmelCase : List[Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ) _lowerCAmelCase : str = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def __UpperCamelCase ( self ): with self.assertRaises(snake_case_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = BitsAndBytesConfig() with self.assertRaises(snake_case_ ): _lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , load_in_abit=snake_case_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def __UpperCamelCase ( self ): with self.assertRaises(snake_case_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(snake_case_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _lowerCAmelCase : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ) _lowerCAmelCase : Optional[Any] = self.model_fpaa.to(torch.floataa ) _lowerCAmelCase : Optional[int] = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error _lowerCAmelCase : Dict = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error _lowerCAmelCase : Tuple = self.model_fpaa.half() # Check this does not throw an error _lowerCAmelCase : Optional[int] = self.model_fpaa.float() def __UpperCamelCase ( self ): _lowerCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=snake_case_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class a_ (unittest.TestCase ): @classmethod def __UpperCamelCase ( cls ): _lowerCAmelCase : Optional[int] = """t5-small""" _lowerCAmelCase : Optional[Any] = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense _lowerCAmelCase : int = AutoTokenizer.from_pretrained(cls.model_name ) _lowerCAmelCase : Optional[Any] = """Translate in German: Hello, my dog is cute""" def __UpperCamelCase ( self ): gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): from transformers import TaForConditionalGeneration _lowerCAmelCase : List[str] = TaForConditionalGeneration._keep_in_fpaa_modules _lowerCAmelCase : Optional[int] = None # test with `t5-small` _lowerCAmelCase : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) _lowerCAmelCase : List[str] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) _lowerCAmelCase : Tuple = model.generate(**snake_case_ ) # test with `flan-t5-small` _lowerCAmelCase : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map="""auto""" ) _lowerCAmelCase : int = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) _lowerCAmelCase : Optional[Any] = model.generate(**snake_case_ ) _lowerCAmelCase : Optional[Any] = modules def __UpperCamelCase ( self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _lowerCAmelCase : Optional[int] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) _lowerCAmelCase : str = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) _lowerCAmelCase : List[str] = model.generate(**snake_case_ ) # test with `flan-t5-small` _lowerCAmelCase : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map="""auto""" ) _lowerCAmelCase : Optional[int] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) _lowerCAmelCase : Tuple = model.generate(**snake_case_ ) class a_ (_a ): def __UpperCamelCase ( self ): super().setUp() # model_name _lowerCAmelCase : List[str] = """bigscience/bloom-560m""" _lowerCAmelCase : Union[str, Any] = """t5-small""" # Different types of model _lowerCAmelCase : Dict = AutoModel.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # Sequence classification model _lowerCAmelCase : int = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # CausalLM model _lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="""auto""" ) # Seq2seq model _lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=snake_case_ , device_map="""auto""" ) def __UpperCamelCase ( self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class a_ (_a ): def __UpperCamelCase ( self ): super().setUp() def __UpperCamelCase ( self ): del self.pipe gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass _lowerCAmelCase : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class a_ (_a ): def __UpperCamelCase ( self ): super().setUp() def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model _lowerCAmelCase : int = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch _lowerCAmelCase : Optional[int] = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) class a_ (_a ): def __UpperCamelCase ( self ): _lowerCAmelCase : str = """facebook/opt-350m""" super().setUp() def __UpperCamelCase ( self ): if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters _lowerCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): _lowerCAmelCase : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _lowerCAmelCase : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(snake_case_ ) ): _lowerCAmelCase : List[Any] = LoRALayer(module.q_proj , rank=1_6 ) _lowerCAmelCase : str = LoRALayer(module.k_proj , rank=1_6 ) _lowerCAmelCase : str = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch _lowerCAmelCase : Dict = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _lowerCAmelCase : Dict = model.forward(**snake_case_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(snake_case_ , snake_case_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(snake_case_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class a_ (_a ): __lowerCAmelCase : Any = """gpt2-xl""" __lowerCAmelCase : Optional[Any] = 3.3191854854152187
309
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
309
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case (__lowercase , __lowercase , __lowercase ) -> int: '''simple docstring''' _snake_case : Optional[int] = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _snake_case : Any = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__lowercase ): os.makedirs(__lowercase ) _snake_case : Union[str, Any] = model.state_dict() def to_tf_var_name(__lowercase ): for patt, repl in iter(__lowercase ): _snake_case : Dict = name.replace(__lowercase , __lowercase ) return F"""bert/{name}""" def create_tf_var(__lowercase , __lowercase , __lowercase ): _snake_case : int = tf.dtypes.as_dtype(tensor.dtype ) _snake_case : List[str] = tf.get_variable(dtype=__lowercase , shape=tensor.shape , name=__lowercase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__lowercase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _snake_case : List[str] = to_tf_var_name(__lowercase ) _snake_case : Optional[Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _snake_case : List[Any] = torch_tensor.T _snake_case : str = create_tf_var(tensor=__lowercase , name=__lowercase , session=__lowercase ) tf.keras.backend.set_value(__lowercase , __lowercase ) _snake_case : Dict = session.run(__lowercase ) print(F"""Successfully created {tf_name}: {np.allclose(__lowercase , __lowercase )}""" ) _snake_case : Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(__lowercase , os.path.join(__lowercase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def snake_case (__lowercase=None ) -> Tuple: '''simple docstring''' _snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__lowercase , required=__lowercase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=__lowercase , default=__lowercase , required=__lowercase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=__lowercase , required=__lowercase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=__lowercase , required=__lowercase , help="Directory in which to save tensorflow model" ) _snake_case : Tuple = parser.parse_args(__lowercase ) _snake_case : Tuple = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
284
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Any = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
284
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
173
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = '''swin2sr''' __UpperCamelCase : str = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[str] , lowerCAmelCase_ : int=6_4 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=1_8_0 , lowerCAmelCase_ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : Tuple=[6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : Any=2.0 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Optional[Any]=1e-5 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : int=1.0 , lowerCAmelCase_ : Any="1conv" , lowerCAmelCase_ : List[str]="pixelshuffle" , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: List[str] = image_size _A: Any = patch_size _A: Any = num_channels _A: Union[str, Any] = embed_dim _A: int = depths _A: List[Any] = len(lowerCAmelCase_ ) _A: int = num_heads _A: Any = window_size _A: Optional[int] = mlp_ratio _A: int = qkv_bias _A: List[Any] = hidden_dropout_prob _A: List[str] = attention_probs_dropout_prob _A: List[Any] = drop_path_rate _A: Any = hidden_act _A: List[str] = use_absolute_embeddings _A: Tuple = layer_norm_eps _A: str = initializer_range _A: int = upscale _A: int = img_range _A: Optional[Any] = resi_connection _A: int = upsampler
121
0
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : List[Any] ): if vertex not in self.adjacency: SCREAMING_SNAKE_CASE_ = {} self.num_vertices += 1 def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ): self.add_vertex(_lowerCAmelCase ) self.add_vertex(_lowerCAmelCase ) if head == tail: return SCREAMING_SNAKE_CASE_ = weight SCREAMING_SNAKE_CASE_ = weight def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.get_edges() for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge edges.remove((tail, head, weight) ) for i in range(len(_lowerCAmelCase ) ): SCREAMING_SNAKE_CASE_ = list(edges[i] ) edges.sort(key=lambda _lowerCAmelCase : e[2] ) for i in range(len(_lowerCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: SCREAMING_SNAKE_CASE_ = edges[i][2] + 1 for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge SCREAMING_SNAKE_CASE_ = weight SCREAMING_SNAKE_CASE_ = weight def __str__( self : Dict ): SCREAMING_SNAKE_CASE_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: SCREAMING_SNAKE_CASE_ = self.adjacency[head][tail] string += F"{head} -> {tail} == {weight}\n" return string.rstrip('\n' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCAmelCase_ ( self : Any ): return self.adjacency.keys() @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : int=None , _lowerCAmelCase : Dict=None ): SCREAMING_SNAKE_CASE_ = Graph() if vertices is None: SCREAMING_SNAKE_CASE_ = [] if edges is None: SCREAMING_SNAKE_CASE_ = [] for vertex in vertices: g.add_vertex(_lowerCAmelCase ) for edge in edges: g.add_edge(*_lowerCAmelCase ) return g class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = {} def __len__( self : Dict ): return len(self.parent ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str ): if item in self.parent: return self.find(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = item SCREAMING_SNAKE_CASE_ = 0 return item def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): if item not in self.parent: return self.make_set(_lowerCAmelCase ) if item != self.parent[item]: SCREAMING_SNAKE_CASE_ = self.find(self.parent[item] ) return self.parent[item] def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = self.find(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.find(_lowerCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: SCREAMING_SNAKE_CASE_ = roota return roota if self.rank[roota] < self.rank[roota]: SCREAMING_SNAKE_CASE_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 SCREAMING_SNAKE_CASE_ = roota return roota return None @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = graph.num_vertices SCREAMING_SNAKE_CASE_ = Graph.UnionFind() SCREAMING_SNAKE_CASE_ = [] while num_components > 1: SCREAMING_SNAKE_CASE_ = {} for vertex in graph.get_vertices(): SCREAMING_SNAKE_CASE_ = -1 SCREAMING_SNAKE_CASE_ = graph.get_edges() for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge edges.remove((tail, head, weight) ) for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge SCREAMING_SNAKE_CASE_ = union_find.find(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = union_find.find(_lowerCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cheap_edge[vertex] if union_find.find(_lowerCAmelCase ) != union_find.find(_lowerCAmelCase ): union_find.union(_lowerCAmelCase , _lowerCAmelCase ) mst_edges.append(cheap_edge[vertex] ) SCREAMING_SNAKE_CASE_ = num_components - 1 SCREAMING_SNAKE_CASE_ = Graph.build(edges=_lowerCAmelCase ) return mst
210
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "" lowercase_ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : Optional[int] , _lowerCAmelCase : Optional[DatasetInfo] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : int , ): super().__init__(self , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = repo_info SCREAMING_SNAKE_CASE_ = token SCREAMING_SNAKE_CASE_ = None def lowerCAmelCase_ ( self : Tuple ): if self.dir_cache is None: SCREAMING_SNAKE_CASE_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes SCREAMING_SNAKE_CASE_ = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowerCAmelCase ): {'name': str(_lowerCAmelCase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str = "rb" , **_lowerCAmelCase : Optional[Any] , ): if not isinstance(self.repo_info , _lowerCAmelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) SCREAMING_SNAKE_CASE_ = hf_hub_url(self.repo_info.id , _lowerCAmelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCAmelCase , mode=_lowerCAmelCase , headers=get_authentication_headers_for_url(_lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , **_lowerCAmelCase : Dict ): self._get_dirs() SCREAMING_SNAKE_CASE_ = self._strip_protocol(_lowerCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=False , **_lowerCAmelCase : str ): self._get_dirs() SCREAMING_SNAKE_CASE_ = PurePosixPath(path.strip('/' ) ) SCREAMING_SNAKE_CASE_ = {} for p, f in self.dir_cache.items(): SCREAMING_SNAKE_CASE_ = PurePosixPath(p.strip('/' ) ) SCREAMING_SNAKE_CASE_ = p.parent if root == path: SCREAMING_SNAKE_CASE_ = f SCREAMING_SNAKE_CASE_ = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
210
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _A = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCamelCase__ ( a__ : Union[str, Any] ) -> Optional[int]: config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def lowerCamelCase__ ( a__ : int ) -> Dict: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a__ ) def lowerCamelCase__ ( a__ : Union[str, Any] ) -> List[Any]: from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase_ = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(a__ , id=a__ ) def lowerCamelCase__ ( a__ : Optional[int] , a__ : int ) -> Optional[int]: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: UpperCamelCase_ = 0 # Doctest custom flag to ignore output. _A = doctest.register_optionflag('''IGNORE_RESULT''') _A = doctest.OutputChecker class lowercase_ ( __SCREAMING_SNAKE_CASE ): def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _A = CustomOutputChecker _A = HfDoctestModule _A = HfDocTestParser
122
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCamelCase__ ( a__ : Any , a__ : Union[str, Any] ) -> int: UpperCamelCase_ = checkpoint UpperCamelCase_ = {} UpperCamelCase_ = vae_state_dict["""encoder.conv_in.weight"""] UpperCamelCase_ = vae_state_dict["""encoder.conv_in.bias"""] UpperCamelCase_ = vae_state_dict["""encoder.conv_out.weight"""] UpperCamelCase_ = vae_state_dict["""encoder.conv_out.bias"""] UpperCamelCase_ = vae_state_dict["""encoder.norm_out.weight"""] UpperCamelCase_ = vae_state_dict["""encoder.norm_out.bias"""] UpperCamelCase_ = vae_state_dict["""decoder.conv_in.weight"""] UpperCamelCase_ = vae_state_dict["""decoder.conv_in.bias"""] UpperCamelCase_ = vae_state_dict["""decoder.conv_out.weight"""] UpperCamelCase_ = vae_state_dict["""decoder.conv_out.bias"""] UpperCamelCase_ = vae_state_dict["""decoder.norm_out.weight"""] UpperCamelCase_ = vae_state_dict["""decoder.norm_out.bias"""] UpperCamelCase_ = vae_state_dict["""quant_conv.weight"""] UpperCamelCase_ = vae_state_dict["""quant_conv.bias"""] UpperCamelCase_ = vae_state_dict["""post_quant_conv.weight"""] UpperCamelCase_ = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only UpperCamelCase_ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) UpperCamelCase_ = { layer_id: [key for key in vae_state_dict if f'''down.{layer_id}''' in key] for layer_id in range(a__ ) } # Retrieves the keys for the decoder up blocks only UpperCamelCase_ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) UpperCamelCase_ = { layer_id: [key for key in vae_state_dict if f'''up.{layer_id}''' in key] for layer_id in range(a__ ) } for i in range(a__ ): UpperCamelCase_ = [key for key in down_blocks[i] if f'''down.{i}''' in key and f'''down.{i}.downsample''' not in key] if f'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: UpperCamelCase_ = vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.weight''' ) UpperCamelCase_ = vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.bias''' ) UpperCamelCase_ = renew_vae_resnet_paths(a__ ) UpperCamelCase_ = {"""old""": f'''down.{i}.block''', """new""": f'''down_blocks.{i}.resnets'''} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) UpperCamelCase_ = [key for key in vae_state_dict if """encoder.mid.block""" in key] UpperCamelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCamelCase_ = [key for key in mid_resnets if f'''encoder.mid.block_{i}''' in key] UpperCamelCase_ = renew_vae_resnet_paths(a__ ) UpperCamelCase_ = {"""old""": f'''mid.block_{i}''', """new""": f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) UpperCamelCase_ = [key for key in vae_state_dict if """encoder.mid.attn""" in key] UpperCamelCase_ = renew_vae_attention_paths(a__ ) UpperCamelCase_ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) conv_attn_to_linear(a__ ) for i in range(a__ ): UpperCamelCase_ = num_up_blocks - 1 - i UpperCamelCase_ = [ key for key in up_blocks[block_id] if f'''up.{block_id}''' in key and f'''up.{block_id}.upsample''' not in key ] if f'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: UpperCamelCase_ = vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.weight''' ] UpperCamelCase_ = vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.bias''' ] UpperCamelCase_ = renew_vae_resnet_paths(a__ ) UpperCamelCase_ = {"""old""": f'''up.{block_id}.block''', """new""": f'''up_blocks.{i}.resnets'''} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) UpperCamelCase_ = [key for key in vae_state_dict if """decoder.mid.block""" in key] UpperCamelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCamelCase_ = [key for key in mid_resnets if f'''decoder.mid.block_{i}''' in key] UpperCamelCase_ = renew_vae_resnet_paths(a__ ) UpperCamelCase_ = {"""old""": f'''mid.block_{i}''', """new""": f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) UpperCamelCase_ = [key for key in vae_state_dict if """decoder.mid.attn""" in key] UpperCamelCase_ = renew_vae_attention_paths(a__ ) UpperCamelCase_ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) conv_attn_to_linear(a__ ) return new_checkpoint def lowerCamelCase__ ( a__ : str , a__ : str , ) -> List[Any]: # Only support V1 UpperCamelCase_ = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) UpperCamelCase_ = io.BytesIO(r.content ) UpperCamelCase_ = OmegaConf.load(a__ ) UpperCamelCase_ = 512 UpperCamelCase_ = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open UpperCamelCase_ = {} with safe_open(a__ , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): UpperCamelCase_ = f.get_tensor(a__ ) else: UpperCamelCase_ = torch.load(a__ , map_location=a__ )["""state_dict"""] # Convert the VAE model. UpperCamelCase_ = create_vae_diffusers_config(a__ , image_size=a__ ) UpperCamelCase_ = custom_convert_ldm_vae_checkpoint(a__ , a__ ) UpperCamelCase_ = AutoencoderKL(**a__ ) vae.load_state_dict(a__ ) vae.save_pretrained(a__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') _A = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
122
1
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = PhobertTokenizer lowerCAmelCase__ = False def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Any = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] UpperCAmelCase__ : Any = dict(zip(a__ , range(len(a__ ) ) ) ) UpperCAmelCase__ : List[Any] = ['''#version: 0.2''', '''l à</w>'''] UpperCAmelCase__ : List[Any] = {'''unk_token''': '''<unk>'''} UpperCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a__ ) ) def lowercase_ ( self : Dict , **_A : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **a__ ) def lowercase_ ( self : List[str] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Dict = '''Tôi là VinAI Research''' UpperCAmelCase__ : Any = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ : int = '''Tôi là VinAI Research''' UpperCAmelCase__ : Optional[int] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() UpperCAmelCase__ : int = tokenizer.tokenize(a__ ) print(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase__ : int = tokens + [tokenizer.unk_token] UpperCAmelCase__ : Dict = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
360
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : str = 3 UpperCAmelCase__ : str = (32, 32) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Tuple = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : Dict ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : List[str] = (32, 32) UpperCAmelCase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : List[Any] = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (4, 32, 32) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() UpperCAmelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : Union[str, Any] = noise.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_A ) UpperCAmelCase__ : Any = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() UpperCAmelCase__ : Optional[int] = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1e-3 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : str = noise.to(_A ) UpperCAmelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-3 ) ) class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any , _A : str=(32, 32) ): '''simple docstring''' UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : List[str] = self.dummy_input UpperCAmelCase__ : Dict = floats_tensor((4, 3) + (256, 256) ).to(_A ) UpperCAmelCase__ : Optional[Any] = noise UpperCAmelCase__ : Any = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Dict = (256, 256) UpperCAmelCase__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : int = (32, 32) UpperCAmelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : int = model(_A , _A ).sample UpperCAmelCase__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
299
0
'''simple docstring''' def __magic_name__( lowerCamelCase = 1_0, lowerCamelCase = 2_2): __lowerCAmelCase = range(1, lowerCamelCase) __lowerCAmelCase = range(1, lowerCamelCase) return sum( 1 for power in powers for base in bases if len(str(base**power)) == power) if __name__ == "__main__": print(f"""{solution(1_0, 2_2) = }""")
174
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
1
"""simple docstring""" def lowercase__(A , A ) ->float: """simple docstring""" return base * power(lowercase_ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") __UpperCAmelCase : Union[str, Any] = int(input("""Enter the base: """).strip()) __UpperCAmelCase : Tuple = int(input("""Enter the exponent: """).strip()) __UpperCAmelCase : Dict = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __UpperCAmelCase : Tuple = 1 / result print(F"""{base} to the power of {exponent} is {result}""")
357
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a : Optional[Any] = """pt""" elif is_tf_available(): a : Union[str, Any] = """tf""" else: a : Any = """jax""" class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = PerceiverTokenizer __lowerCamelCase = False def UpperCAmelCase_ ( self ): '''simple docstring''' super().setUp() lowercase__ : str= PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__=False , snake_case__=20 , snake_case__=5 ): '''simple docstring''' # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowercase__ : Union[str, Any]= [] for i in range(len(snake_case__ ) ): try: lowercase__ : Any= tokenizer.decode([i] , clean_up_tokenization_spaces=snake_case__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ : int= list(filter(lambda snake_case__ : re.match(r"^[ a-zA-Z]+$" , t[1] ) , snake_case__ ) ) lowercase__ : Union[str, Any]= list(filter(lambda snake_case__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=snake_case__ ) , snake_case__ ) ) if max_length is not None and len(snake_case__ ) > max_length: lowercase__ : int= toks[:max_length] if min_length is not None and len(snake_case__ ) < min_length and len(snake_case__ ) > 0: while len(snake_case__ ) < min_length: lowercase__ : List[str]= toks + toks # toks_str = [t[1] for t in toks] lowercase__ : str= [t[0] for t in toks] # Ensure consistency lowercase__ : Optional[Any]= tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) if " " not in output_txt and len(snake_case__ ) > 1: lowercase__ : Dict= ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=snake_case__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=snake_case__ ) ) if with_prefix_space: lowercase__ : List[Any]= " " + output_txt lowercase__ : Any= tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) return output_txt, output_ids def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.perceiver_tokenizer lowercase__ : Union[str, Any]= "Unicode €." lowercase__ : Tuple= tokenizer(snake_case__ ) lowercase__ : Dict= [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , snake_case__ ) # decoding lowercase__ : List[str]= tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , "[CLS]Unicode €.[SEP]" ) lowercase__ : List[str]= tokenizer("e è é ê ë" ) lowercase__ : int= [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , snake_case__ ) # decoding lowercase__ : Any= tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= self.perceiver_tokenizer lowercase__ : Tuple= ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ : List[Any]= [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowercase__ : Dict= tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) if FRAMEWORK != "jax": lowercase__ : List[Any]= list(batch.input_ids.numpy()[0] ) else: lowercase__ : str= list(batch.input_ids.tolist()[0] ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.perceiver_tokenizer lowercase__ : int= ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : Union[str, Any]= tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , snake_case__ ) self.assertIn("attention_mask" , snake_case__ ) self.assertNotIn("decoder_input_ids" , snake_case__ ) self.assertNotIn("decoder_attention_mask" , snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= self.perceiver_tokenizer lowercase__ : int= [ "Summary of the text.", "Another summary.", ] lowercase__ : List[Any]= tokenizer( text_target=snake_case__ , max_length=32 , padding="max_length" , truncation=snake_case__ , return_tensors=snake_case__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def UpperCAmelCase_ ( self ): '''simple docstring''' # safety check on max_len default value so we are sure the test works lowercase__ : Union[str, Any]= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase__ : List[str]= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ : str= tempfile.mkdtemp() lowercase__ : str= " He is very happy, UNwant\u00E9d,running" lowercase__ : int= tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) tokenizer.save_pretrained(snake_case__ ) lowercase__ : List[str]= tokenizer.__class__.from_pretrained(snake_case__ ) lowercase__ : Tuple= after_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) shutil.rmtree(snake_case__ ) lowercase__ : List[str]= self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ : Tuple= tempfile.mkdtemp() lowercase__ : List[Any]= " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ : Tuple= tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ : List[str]= tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) tokenizer.save_pretrained(snake_case__ ) lowercase__ : Tuple= tokenizer.__class__.from_pretrained(snake_case__ ) lowercase__ : Tuple= after_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase__ : Tuple= tokenizer.__class__.from_pretrained(snake_case__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowercase__ : Optional[Any]= json.load(snake_case__ ) with open(os.path.join(snake_case__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowercase__ : Optional[Any]= json.load(snake_case__ ) lowercase__ : List[str]= [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ : Optional[int]= added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ : Union[str, Any]= added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(snake_case__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case__ , snake_case__ ) with open(os.path.join(snake_case__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(snake_case__ , snake_case__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ : Optional[int]= tokenizer_class.from_pretrained( snake_case__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ : int= added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=snake_case__ )] lowercase__ : int= tokenizer_class.from_pretrained( snake_case__ , additional_special_tokens=snake_case__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self ): '''simple docstring''' # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens lowercase__ : Optional[int]= self.get_tokenizers(fast=snake_case__ , do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ : Optional[int]= ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] lowercase__ : Optional[int]= tokenizer.convert_tokens_to_string(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ )
150
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case : Tuple = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Dict = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
284
1
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME SCREAMING_SNAKE_CASE_ = ['small', 'medium', 'large'] SCREAMING_SNAKE_CASE_ = 'lm_head.decoder.weight' SCREAMING_SNAKE_CASE_ = 'lm_head.weight' def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str ) -> List[str]: _UpperCAmelCase : List[Any] = torch.load(UpperCAmelCase_ ) _UpperCAmelCase : Dict = d.pop(UpperCAmelCase_ ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) torch.save(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) SCREAMING_SNAKE_CASE_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: SCREAMING_SNAKE_CASE_ = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''') SCREAMING_SNAKE_CASE_ = F'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
353
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class a ( UpperCAmelCase ): _lowercase = "autoformer" _lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = True , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 64 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 32 , A_ = 32 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.02 , A_ = True , A_=True , A_ = 10 , A_ = 25 , A_ = 3 , **A_ , ): '''simple docstring''' _UpperCAmelCase : List[Any] = prediction_length _UpperCAmelCase : Dict = context_length if context_length is not None else prediction_length _UpperCAmelCase : Tuple = distribution_output _UpperCAmelCase : List[Any] = loss _UpperCAmelCase : Optional[Any] = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : str = lags_sequence _UpperCAmelCase : Union[str, Any] = scaling _UpperCAmelCase : Union[str, Any] = num_dynamic_real_features _UpperCAmelCase : int = num_static_real_features _UpperCAmelCase : int = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Union[str, Any] = cardinality else: _UpperCAmelCase : Any = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : int = embedding_dimension else: _UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : Union[str, Any] = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features _UpperCAmelCase : int = d_model _UpperCAmelCase : Any = encoder_attention_heads _UpperCAmelCase : str = decoder_attention_heads _UpperCAmelCase : Union[str, Any] = encoder_ffn_dim _UpperCAmelCase : Any = decoder_ffn_dim _UpperCAmelCase : Any = encoder_layers _UpperCAmelCase : Optional[int] = decoder_layers _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Dict = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : int = decoder_layerdrop _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : str = init_std _UpperCAmelCase : Tuple = use_cache # Autoformer _UpperCAmelCase : str = label_length _UpperCAmelCase : Any = moving_average _UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
189
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : int = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Any = '''wavlm''' def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=16 , lowerCAmelCase__=3_20 , lowerCAmelCase__=8_00 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=3_20 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_00 , lowerCAmelCase__=2_56 , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_12 , lowerCAmelCase__=80 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = conv_bias __lowercase = num_buckets __lowercase = max_bucket_distance __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = num_ctc_classes __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum __lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # adapter __lowercase = add_adapter __lowercase = adapter_kernel_size __lowercase = adapter_stride __lowercase = num_adapter_layers __lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
210
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a : str = 1_6 __a : str = 3_2 def UpperCAmelCase ( lowercase ): """simple docstring""" return int(x / 2**20 ) class _UpperCamelCase : """simple docstring""" def __enter__( self ) -> str: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowercase = torch.cuda.memory_allocated() return self def __exit__( self , *lowerCAmelCase__ ) -> int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() __lowercase = torch.cuda.memory_allocated() __lowercase = torch.cuda.max_memory_allocated() __lowercase = bamb(self.end - self.begin ) __lowercase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCAmelCase ( lowercase , lowercase = 16 , lowercase = "bert-base-cased" , lowercase = 320 , lowercase = 160 , ): """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(lowercase ) __lowercase = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': F"train[:{n_train}]", '''validation''': F"validation[:{n_val}]"} ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( lowercase , batched=lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) __lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config['''lr'''] __lowercase = int(config['''num_epochs'''] ) __lowercase = int(config['''seed'''] ) __lowercase = int(config['''batch_size'''] ) __lowercase = args.model_name_or_path set_seed(lowercase ) __lowercase , __lowercase = get_dataloaders(lowercase , lowercase , lowercase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(lowercase , return_dict=lowercase ) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters() , lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __lowercase = 1 __lowercase = (len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=0 , num_training_steps=lowercase , ) else: __lowercase = DummyScheduler(lowercase , total_num_steps=lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 # Now we train the model __lowercase = {} for epoch in range(lowercase , lowercase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase ): __lowercase = model(**lowercase ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowercase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(lowercase , lowercase ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowercase , ) parser.add_argument( '''--output_dir''' , type=lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=lowercase , default=lowercase , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=lowercase , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=lowercase , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=lowercase , default=1 , help='''Number of train epochs.''' , ) __lowercase = parser.parse_args() __lowercase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
210
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'spiece.model'} lowercase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } lowercase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } lowercase__ ='▁' class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple=True , snake_case_ : Any=True , snake_case_ : List[Any]=False , snake_case_ : List[str]="[CLS]" , snake_case_ : List[Any]="[SEP]" , snake_case_ : List[str]="<unk>" , snake_case_ : Dict="[SEP]" , snake_case_ : Tuple="<pad>" , snake_case_ : str="[CLS]" , snake_case_ : List[str]="[MASK]" , snake_case_ : Optional[Dict[str, Any]] = None , **snake_case_ : Tuple , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a : List[Any] = ( AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token ) __a : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) __a : List[str] = do_lower_case __a : Optional[int] = remove_space __a : int = keep_accents __a : Dict = vocab_file __a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @property def lowerCAmelCase (self : Optional[Any] ): return len(self.sp_model ) def lowerCAmelCase (self : List[Any] ): __a : Optional[Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : Union[str, Any] ): __a : Union[str, Any] = self.__dict__.copy() __a : Optional[int] = None return state def __setstate__(self : Any , snake_case_ : Optional[int] ): __a : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a : Union[str, Any] = {} __a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : Union[str, Any] ): if self.remove_space: __a : int = ''' '''.join(inputs.strip().split() ) else: __a : Union[str, Any] = inputs __a : int = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __a : Dict = unicodedata.normalize('''NFKD''' , snake_case_ ) __a : str = ''''''.join([c for c in outputs if not unicodedata.combining(snake_case_ )] ) if self.do_lower_case: __a : Optional[Any] = outputs.lower() return outputs def lowerCAmelCase (self : Optional[int] , snake_case_ : str ): __a : List[Any] = self.preprocess_text(snake_case_ ) __a : Any = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) __a : str = [] for piece in pieces: if len(snake_case_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __a : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __a : int = cur_pieces[1:] else: __a : str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case_ ) else: new_pieces.append(snake_case_ ) return new_pieces def lowerCAmelCase (self : List[Any] , snake_case_ : Dict ): return self.sp_model.PieceToId(snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : Tuple ): return self.sp_model.IdToPiece(snake_case_ ) def lowerCAmelCase (self : Union[str, Any] , snake_case_ : Union[str, Any] ): __a : Any = [] __a : Optional[Any] = '''''' __a : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token __a : Optional[int] = True __a : int = [] else: current_sub_tokens.append(snake_case_ ) __a : Any = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def lowerCAmelCase (self : List[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : Tuple = [self.sep_token_id] __a : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase (self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase (self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : Union[str, Any] = [self.sep_token_id] __a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase (self : str , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __a : Optional[Any] = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , '''wb''' ) as fi: __a : int = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
90
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = PhobertTokenizer _SCREAMING_SNAKE_CASE : int = False def lowerCAmelCase (self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Optional[int] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] __a : Tuple = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __a : int = ['''#version: 0.2''', '''l à</w>'''] __a : List[Any] = {'''unk_token''': '''<unk>'''} __a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n" ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(snake_case_ ) ) def lowerCAmelCase (self : Union[str, Any] , **snake_case_ : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : Dict ): __a : Union[str, Any] = '''Tôi là VinAI Research''' __a : int = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def lowerCAmelCase (self : Optional[Any] ): __a : Optional[int] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : Any = '''Tôi là VinAI Research''' __a : Union[str, Any] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() __a : List[str] = tokenizer.tokenize(snake_case_ ) print(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __a : str = tokens + [tokenizer.unk_token] __a : str = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
90
1
"""simple docstring""" from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5) SCREAMING_SNAKE_CASE_ : List[Any] = Rectangle(height=0.25 , width=0.25) SCREAMING_SNAKE_CASE_ : List[Any] = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) SCREAMING_SNAKE_CASE_ : Optional[Any] = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : List[str] = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : List[str] = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : Dict = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : Optional[Any] = VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : List[Any] = Text('''CPU''' , font_size=24) SCREAMING_SNAKE_CASE_ : Tuple = Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase_) SCREAMING_SNAKE_CASE_ : Any = [mem.copy() for i in range(4)] SCREAMING_SNAKE_CASE_ : Union[str, Any] = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : List[str] = Text('''GPU''' , font_size=24) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) gpu.move_to([-1, -1, 0]) self.add(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : int = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : List[Any] = Text('''Model''' , font_size=24) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) model.move_to([3, -1.0, 0]) self.add(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Any = [] for i, rect in enumerate(lowercase_): rect.set_stroke(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowercase_ , buff=0.0) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowercase_ , buff=0.0) self.add(lowercase_) model_cpu_arr.append(lowercase_) self.add(*lowercase_ , *lowercase_ , *lowercase_) SCREAMING_SNAKE_CASE_ : Any = [mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : Any = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Text('''Loaded Checkpoint''' , font_size=24) SCREAMING_SNAKE_CASE_ : List[Any] = Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) checkpoint.move_to([3, 0.5, 0]) self.add(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Dict = [] for i, rect in enumerate(lowercase_): SCREAMING_SNAKE_CASE_ : Any = fill.copy().set_fill(lowercase_ , opacity=0.7) target.move_to(lowercase_) ckpt_arr.append(lowercase_) SCREAMING_SNAKE_CASE_ : Any = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.move_to(cpu_right_col_base[i - 5]) ckpt_cpu_arr.append(lowercase_) self.add(*lowercase_ , *lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Square(side_length=2.2) key.move_to([-5, 2, 0]) SCREAMING_SNAKE_CASE_ : int = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0]) SCREAMING_SNAKE_CASE_ : List[str] = [meta_mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : Any = [meta_mem.copy() for i in range(6)] SCREAMING_SNAKE_CASE_ : Any = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : Optional[Any] = VGroup(*lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : List[Any] = VGroup(lowercase_ , lowercase_).arrange(lowercase_ , buff=0) SCREAMING_SNAKE_CASE_ : Dict = Text('''Disk''' , font_size=24) SCREAMING_SNAKE_CASE_ : str = Group(lowercase_ , lowercase_).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_) disk.move_to([-4.0, -1.25, 0]) self.play(Write(lowercase_ , run_time=3) , Write(lowercase_ , run_time=1) , Create(lowercase_ , run_time=1)) SCREAMING_SNAKE_CASE_ : int = [] for i, rect in enumerate(lowercase_): SCREAMING_SNAKE_CASE_ : List[Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i]).scale(0.5) animations.append(MoveToTarget(lowercase_ , run_time=1.5)) self.play(*lowercase_) self.play(FadeOut(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(lowercase_ , run_time=3)) self.play( FadeOut(lowercase_ , lowercase_ , *lowercase_ , *lowercase_) , ) self.wait()
91
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , _A = False , ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = nn.Embedding(_A , _A ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) SCREAMING_SNAKE_CASE_ = TaConfig( vocab_size=_A , d_model=_A , num_heads=_A , d_kv=_A , d_ff=_A , dropout_rate=_A , feed_forward_proj=_A , is_decoder=_A , is_encoder_decoder=_A , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList() for lyr_num in range(_A ): SCREAMING_SNAKE_CASE_ = TaBlock(_A ) self.encoders.append(_A ) SCREAMING_SNAKE_CASE_ = TaLayerNorm(_A ) SCREAMING_SNAKE_CASE_ = nn.Dropout(p=_A ) def _UpperCamelCase ( self , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.token_embedder(_A ) SCREAMING_SNAKE_CASE_ = encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_ = torch.arange(_A , device=encoder_input_tokens.device ) x += self.position_encoding(_A ) SCREAMING_SNAKE_CASE_ = self.dropout_pre(_A ) # inverted the attention mask SCREAMING_SNAKE_CASE_ = encoder_input_tokens.size() SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_A , _A ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_ = lyr(_A , _A )[0] SCREAMING_SNAKE_CASE_ = self.layer_norm(_A ) return self.dropout_post(_A ), encoder_inputs_mask
299
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase :List[str] = logging.get_logger(__name__) lowerCAmelCase :Optional[Any] = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[Any] = """table-transformer""" A_ : Union[str, Any] = ["""past_key_values"""] A_ : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : str , _A : List[Any]=True , _A : Optional[int]=None , _A : int=3 , _A : Dict=100 , _A : Tuple=6 , _A : Union[str, Any]=2048 , _A : Any=8 , _A : Any=6 , _A : Union[str, Any]=2048 , _A : str=8 , _A : List[Any]=0.0 , _A : Optional[int]=0.0 , _A : int=True , _A : str="relu" , _A : str=256 , _A : List[Any]=0.1 , _A : int=0.0 , _A : Union[str, Any]=0.0 , _A : Dict=0.02 , _A : List[str]=1.0 , _A : Union[str, Any]=False , _A : List[str]="sine" , _A : List[Any]="resnet50" , _A : int=True , _A : str=False , _A : Any=1 , _A : Union[str, Any]=5 , _A : Union[str, Any]=2 , _A : Optional[Any]=1 , _A : Any=1 , _A : Tuple=5 , _A : Optional[int]=2 , _A : Union[str, Any]=0.1 , **_A : Optional[int] , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __magic_name__ : Tuple = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(_A , _A ): __magic_name__ : Union[str, Any] = backbone_config.get('model_type' ) __magic_name__ : str = CONFIG_MAPPING[backbone_model_type] __magic_name__ : Optional[int] = config_class.from_dict(_A ) # set timm attributes to None __magic_name__ , __magic_name__ , __magic_name__ : str = None, None, None __magic_name__ : int = use_timm_backbone __magic_name__ : Optional[Any] = backbone_config __magic_name__ : int = num_channels __magic_name__ : int = num_queries __magic_name__ : Any = d_model __magic_name__ : List[Any] = encoder_ffn_dim __magic_name__ : List[Any] = encoder_layers __magic_name__ : str = encoder_attention_heads __magic_name__ : Optional[Any] = decoder_ffn_dim __magic_name__ : Optional[int] = decoder_layers __magic_name__ : List[str] = decoder_attention_heads __magic_name__ : Optional[int] = dropout __magic_name__ : Optional[int] = attention_dropout __magic_name__ : Optional[int] = activation_dropout __magic_name__ : List[str] = activation_function __magic_name__ : Any = init_std __magic_name__ : Union[str, Any] = init_xavier_std __magic_name__ : Union[str, Any] = encoder_layerdrop __magic_name__ : List[str] = decoder_layerdrop __magic_name__ : List[Any] = encoder_layers __magic_name__ : Tuple = auxiliary_loss __magic_name__ : int = position_embedding_type __magic_name__ : Union[str, Any] = backbone __magic_name__ : Dict = use_pretrained_backbone __magic_name__ : Optional[int] = dilation # Hungarian matcher __magic_name__ : Tuple = class_cost __magic_name__ : List[Any] = bbox_cost __magic_name__ : int = giou_cost # Loss coefficients __magic_name__ : Any = mask_loss_coefficient __magic_name__ : Any = dice_loss_coefficient __magic_name__ : List[Any] = bbox_loss_coefficient __magic_name__ : Tuple = giou_loss_coefficient __magic_name__ : Union[str, Any] = eos_coefficient super().__init__(is_encoder_decoder=_A , **_A ) @property def __lowerCAmelCase ( self : int ) -> int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self : Dict ) -> int: return self.d_model class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[Any] = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def __lowerCAmelCase ( self : Any ) -> float: return 1E-5 @property def __lowerCAmelCase ( self : List[str] ) -> int: return 12
275
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase :Optional[int] = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __magic_name__ : Tuple = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowerCAmelCase , id=lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" if exitstatus == 5: __magic_name__ : Any = 0 # Doctest custom flag to ignore output. lowerCAmelCase :List[str] = doctest.register_optionflag('''IGNORE_RESULT''') lowerCAmelCase :Union[str, Any] = doctest.OutputChecker class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Tuple , _A : Tuple , _A : str ) -> int: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _A , _A , _A ) lowerCAmelCase :Optional[Any] = CustomOutputChecker lowerCAmelCase :int = HfDoctestModule lowerCAmelCase :Any = HfDocTestParser
275
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCAmelCase : _lowercase: int _lowercase: TreeNode | None = None _lowercase: TreeNode | None = None A__ : Tuple =namedtuple('''CoinsDistribResult''', '''moves excess''') def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(lowerCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCAmelCase ) != count_coins(lowerCAmelCase ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(lowerCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _lowerCAmelCase , _lowerCAmelCase = get_distrib(node.left ) _lowerCAmelCase , _lowerCAmelCase = get_distrib(node.right ) _lowerCAmelCase = 1 - left_distrib_excess _lowerCAmelCase = 1 - right_distrib_excess _lowerCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(lowerCAmelCase ) + abs(lowerCAmelCase ) ) _lowerCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCAmelCase , lowerCAmelCase ) return get_distrib(lowerCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
70
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE__ = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE__ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE__ = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
150
0
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ ( A ): """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict=1_3 , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : str=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=False , __lowerCamelCase : List[str]=False , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : str=9_9 , __lowerCamelCase : int=0 , __lowerCamelCase : Tuple=3_2 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[Any]=5_1_2 , __lowerCamelCase : List[Any]=1_2 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Tuple=0.0_2 , __lowerCamelCase : Any=3 , __lowerCamelCase : int=4 , __lowerCamelCase : Optional[Any]="last" , __lowerCamelCase : Tuple=None , __lowerCamelCase : str=None , ): """simple docstring""" _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_lengths _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = gelu_activation _SCREAMING_SNAKE_CASE = sinusoidal_embeddings _SCREAMING_SNAKE_CASE = causal _SCREAMING_SNAKE_CASE = asm _SCREAMING_SNAKE_CASE = n_langs _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = n_special _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = summary_type _SCREAMING_SNAKE_CASE = use_proj _SCREAMING_SNAKE_CASE = scope def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_input_lengths: _SCREAMING_SNAKE_CASE = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , 2 ).float() _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCAmelCase_ ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Any , ): """simple docstring""" _SCREAMING_SNAKE_CASE = FlaubertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , lengths=__lowerCamelCase , langs=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , langs=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Dict , ): """simple docstring""" _SCREAMING_SNAKE_CASE = FlaubertWithLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , ): """simple docstring""" _SCREAMING_SNAKE_CASE = FlaubertForQuestionAnsweringSimple(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , ): """simple docstring""" _SCREAMING_SNAKE_CASE = FlaubertForQuestionAnswering(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = model( __lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , cls_index=__lowerCamelCase , is_impossible=__lowerCamelCase , p_mask=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = model( __lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , cls_index=__lowerCamelCase , is_impossible=__lowerCamelCase , ) ((_SCREAMING_SNAKE_CASE), ) = result_with_labels.to_tuple() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase ) ((_SCREAMING_SNAKE_CASE), ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : str , ): """simple docstring""" _SCREAMING_SNAKE_CASE = FlaubertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = FlaubertForTokenClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = FlaubertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ), ( _SCREAMING_SNAKE_CASE ), ( _SCREAMING_SNAKE_CASE ), ( _SCREAMING_SNAKE_CASE ), ( _SCREAMING_SNAKE_CASE ), ( _SCREAMING_SNAKE_CASE ), ( _SCREAMING_SNAKE_CASE ), ( _SCREAMING_SNAKE_CASE ), ( _SCREAMING_SNAKE_CASE ), ) = config_and_inputs _SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowercase_ ( A , A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase_ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase_ ( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : List[str]=False ): """simple docstring""" _SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = FlaubertModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , emb_dim=3_7 ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowerCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowerCamelCase ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__lowerCamelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowerCamelCase ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowerCamelCase ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__lowerCamelCase ) def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__lowerCamelCase ) @slow def lowerCAmelCase_ ( self : str ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = FlaubertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @slow @require_torch_gpu def lowerCAmelCase_ ( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.jit.trace( __lowerCamelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCamelCase , os.path.join(__lowerCamelCase , "traced_model.pt" ) ) _SCREAMING_SNAKE_CASE = torch.jit.load(os.path.join(__lowerCamelCase , "traced_model.pt" ) , map_location=__lowerCamelCase ) loaded(inputs_dict["input_ids"].to(__lowerCamelCase ) , inputs_dict["attention_mask"].to(__lowerCamelCase ) ) @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) _SCREAMING_SNAKE_CASE = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
111
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Tuple , __A : List[str] , __A : List[str] ) -> List[Any]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _SCREAMING_SNAKE_CASE = TOKENIZER_CLASSES else: _SCREAMING_SNAKE_CASE = {tokenizer_name: getattr(__A , tokenizer_name + "Fast" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _SCREAMING_SNAKE_CASE = TOKENIZER_CLASSES[tokenizer_name] _SCREAMING_SNAKE_CASE = True if checkpoint_name is None: _SCREAMING_SNAKE_CASE = list(tokenizer_class.max_model_input_sizes.keys() ) else: _SCREAMING_SNAKE_CASE = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(__A , force_download=__A ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = checkpoint.split("/" ) _SCREAMING_SNAKE_CASE = os.path.join(__A , __A ) elif add_prefix: _SCREAMING_SNAKE_CASE = checkpoint _SCREAMING_SNAKE_CASE = dump_path else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _SCREAMING_SNAKE_CASE = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _SCREAMING_SNAKE_CASE = file_path.split(__A )[-1][0] if next_char == "/": _SCREAMING_SNAKE_CASE = os.path.join(__A , __A ) _SCREAMING_SNAKE_CASE = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _SCREAMING_SNAKE_CASE = tokenizer.save_pretrained( __A , legacy_format=__A , filename_prefix=__A ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(__A ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) lowerCamelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
111
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = 'bloom' __UpperCAmelCase : Dict = ['past_key_values'] __UpperCAmelCase : Union[str, Any] = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__(self : Dict , __UpperCAmelCase : Tuple=2_5_0_8_8_0 , __UpperCAmelCase : Union[str, Any]=6_4 , __UpperCAmelCase : str=2 , __UpperCAmelCase : Tuple=8 , __UpperCAmelCase : str=1E-5 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : str=2 , __UpperCAmelCase : int=False , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : str=False , **__UpperCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" UpperCAmelCase__ = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase__ = kwargs.pop("n_embed" , __UpperCAmelCase ) UpperCAmelCase__ = hidden_size if n_embed is None else n_embed UpperCAmelCase__ = n_layer UpperCAmelCase__ = n_head UpperCAmelCase__ = layer_norm_epsilon UpperCAmelCase__ = initializer_range UpperCAmelCase__ = use_cache UpperCAmelCase__ = pretraining_tp UpperCAmelCase__ = apply_residual_connection_post_layernorm UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = bos_token_id UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = slow_but_exact super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = version.parse('1.12' ) def __init__(self : Dict , __UpperCAmelCase : PretrainedConfig , __UpperCAmelCase : str = "default" , __UpperCAmelCase : List[PatchingSpec] = None , __UpperCAmelCase : bool = False , ) -> Optional[int]: """simple docstring""" super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , "pad_token_id" , __UpperCAmelCase ): # TODO: how to do that better? UpperCAmelCase__ = 0 @property def lowercase_ (self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCAmelCase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__UpperCAmelCase , direction="inputs" , inverted_values_shape=__UpperCAmelCase ) UpperCAmelCase__ = {0: "batch", 1: "past_sequence + sequence"} else: UpperCAmelCase__ = {0: "batch", 1: "sequence"} return common_inputs @property def lowercase_ (self : List[str] ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase_ (self : Dict ) -> int: """simple docstring""" return self._config.n_head @property def lowercase_ (self : Any ) -> float: """simple docstring""" return 1E-3 def lowercase_ (self : int , __UpperCAmelCase : "PreTrainedTokenizer" , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCAmelCase__ = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() UpperCAmelCase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCAmelCase__ = seqlen + 2 UpperCAmelCase__ = self._config.hidden_size // self.num_attention_heads UpperCAmelCase__ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCAmelCase__ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCAmelCase__ = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] UpperCAmelCase__ = common_inputs["attention_mask"] if self.use_past: UpperCAmelCase__ = ordered_inputs["attention_mask"].dtype UpperCAmelCase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def lowercase_ (self : Optional[Any] ) -> int: """simple docstring""" return 1_3
65
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __a ( A__ ): def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Any = 8 # DPR tok UpperCamelCase__ : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase__ : Any = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok UpperCamelCase__ : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__ : int = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase__ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ : Union[str, Any] = {"unk_token": "<unk>"} UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def __lowercase ( self : int ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __lowercase ( self : Tuple ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __lowercase ( self : Optional[int] ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : int = self.get_dummy_dataset() UpperCamelCase__ : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: UpperCamelCase__ : str = dataset UpperCamelCase__ : Optional[int] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __lowercase ( self : int , SCREAMING_SNAKE_CASE : bool ): '''simple docstring''' UpperCamelCase__ : Dict = self.get_dummy_dataset() UpperCamelCase__ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , "dataset" ) UpperCamelCase__ : List[str] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset UpperCamelCase__ : str = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCamelCase__ : List[Any] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , ) return retriever def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase__ : List[str] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) UpperCamelCase__ : Tuple = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , "wb" ) ) UpperCamelCase__ : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) UpperCamelCase__ : List[str] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Tuple = self.get_dummy_canonical_hf_index_retriever() UpperCamelCase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: UpperCamelCase__ : Optional[int] = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Any = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : int = 1 UpperCamelCase__ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Any = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : int = 1 UpperCamelCase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : List[str] = 1 UpperCamelCase__ : Any = self.get_dummy_legacy_index_retriever() UpperCamelCase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : int = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase ( self : int ): '''simple docstring''' import torch UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : Optional[int] = self.get_dummy_canonical_hf_index_retriever() UpperCamelCase__ : Optional[Any] = [[5, 7], [10, 11]] UpperCamelCase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : int = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) UpperCamelCase__ : List[Any] = retriever( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = [[5, 7], [10, 11]] UpperCamelCase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Optional[int] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual( len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
189
0
"""simple docstring""" def UpperCAmelCase ( ): '''simple docstring''' return 1 def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(a_ ) def UpperCAmelCase ( a_ = 200 ): '''simple docstring''' return two_pound(a_ ) if __name__ == "__main__": print(solution(int(input().strip())))
367
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : int = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase : Tuple = key.replace('module.encoder', 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase : str = key.replace('module.decoder', 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase : Any = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase : Dict = key.replace(F"""patch_embed{idx}""", F"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: lowerCamelCase : Optional[int] = key.replace('norm', 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase : List[str] = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase : List[str] = key.replace(F"""layer_norm{idx}""", F"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: lowerCamelCase : List[Any] = key.replace('layer_norm1', 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase : str = key.replace('layer_norm2', 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase : Union[str, Any] = key[key.find('block' ) + len('block' )] lowerCamelCase : List[str] = key.replace(F"""block{idx}""", F"""block.{int(a_ )-1}""" ) if "attn.q" in key: lowerCamelCase : Union[str, Any] = key.replace('attn.q', 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase : Dict = key.replace('attn.proj', 'attention.output.dense' ) if "attn" in key: lowerCamelCase : int = key.replace('attn', 'attention.self' ) if "fc1" in key: lowerCamelCase : Any = key.replace('fc1', 'dense1' ) if "fc2" in key: lowerCamelCase : List[Any] = key.replace('fc2', 'dense2' ) if "linear_pred" in key: lowerCamelCase : Optional[Any] = key.replace('linear_pred', 'classifier' ) if "linear_fuse" in key: lowerCamelCase : Union[str, Any] = key.replace('linear_fuse.conv', 'linear_fuse' ) lowerCamelCase : Optional[int] = key.replace('linear_fuse.bn', 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase : str = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase : List[Any] = key.replace(F"""linear_c{idx}""", F"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: lowerCamelCase : int = key.replace('bot_conv', '0.convolution' ) if "skip_conv1" in key: lowerCamelCase : Any = key.replace('skip_conv1', '1.convolution' ) if "skip_conv2" in key: lowerCamelCase : Optional[Any] = key.replace('skip_conv2', '2.convolution' ) if "fusion1" in key: lowerCamelCase : str = key.replace('fusion1', '1.fusion' ) if "fusion2" in key: lowerCamelCase : Optional[Any] = key.replace('fusion2', '2.fusion' ) if "fusion3" in key: lowerCamelCase : List[str] = key.replace('fusion3', '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase : Optional[int] = key.replace('conv', 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase : Tuple = key.replace('module.last_layer_depth', 'head.head' ) lowerCamelCase : List[Any] = value return new_state_dict def UpperCAmelCase ( a_, a_ ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase : Any = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase : List[Any] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase : List[Any] = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def UpperCAmelCase ( a_, a_, a_=False, a_=None ): '''simple docstring''' lowerCamelCase : int = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase : Any = GLPNImageProcessor() # prepare image lowerCamelCase : int = prepare_img() lowerCamelCase : Tuple = image_processor(images=a_, return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase : Optional[Any] = torch.load(a_, map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase : Any = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict lowerCamelCase : Optional[int] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCamelCase : str = model(a_ ) lowerCamelCase : Any = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase : Any = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: lowerCamelCase : str = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase : int = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization='nielsr', commit_message='Add model', use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization='nielsr', commit_message='Add image processor', use_temp_dir=a_, ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) _A = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
205
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } __lowerCamelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , x.transpose() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , transpose(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , transpose(lowerCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , transpose(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , transpose(lowerCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , np.asarray(transpose(lowerCamelCase__ ) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , np.asarray(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , np.reshape(lowerCamelCase__ , (4, 3) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , np.reshape(lowerCamelCase__ , (12, 5) ) ) ) @require_torch def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , reshape(lowerCamelCase__ , (4, 3) ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , reshape(lowerCamelCase__ , (12, 5) ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , reshape(lowerCamelCase__ , (4, 3) ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , reshape(lowerCamelCase__ , (12, 5) ).numpy() ) ) @require_flax def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , np.asarray(reshape(lowerCamelCase__ , (4, 3) ) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , np.asarray(reshape(lowerCamelCase__ , (12, 5) ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , np.squeeze(lowerCamelCase__ ) ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , np.squeeze(lowerCamelCase__ , axis=2 ) ) ) @require_torch def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , squeeze(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , squeeze(lowerCamelCase__ , axis=2 ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , squeeze(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , squeeze(lowerCamelCase__ , axis=2 ).numpy() ) ) @require_flax def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , np.asarray(squeeze(lowerCamelCase__ ) ) ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , np.asarray(squeeze(lowerCamelCase__ , axis=2 ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , np.expand_dims(lowerCamelCase__ , axis=1 ) ) ) @require_torch def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , expand_dims(lowerCamelCase__ , axis=1 ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , expand_dims(lowerCamelCase__ , axis=1 ).numpy() ) ) @require_flax def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , np.asarray(expand_dims(lowerCamelCase__ , axis=1 ) ) ) )
90
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=16 , lowerCamelCase__=[32, 64, 128] , lowerCamelCase__=[1, 2, 1] , lowerCamelCase__=[2, 2, 4] , lowerCamelCase__=2 , lowerCamelCase__=2.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=10 , lowerCamelCase__=8 , lowerCamelCase__=["stage1", "stage2"] , lowerCamelCase__=[1, 2] , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = patch_norm __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = is_training __lowerCamelCase = scope __lowerCamelCase = use_labels __lowerCamelCase = type_sequence_label_size __lowerCamelCase = encoder_stride __lowerCamelCase = out_features __lowerCamelCase = out_indices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> List[str]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __lowerCamelCase = None __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) snake_case_ = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> str: '''simple docstring''' return def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # FocalNet has a different seq_length __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowerCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = reshaped_hidden_states[0].shape __lowerCamelCase = ( reshaped_hidden_states[0].view(lowerCamelCase__ , lowerCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = 3 __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @slow def lowercase_ ( self ) -> str: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = FocalNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FocalNetBackbone,) if is_torch_available() else () snake_case_ = FocalNetConfig snake_case_ = False def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self )
90
1
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase_ = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize lowerCamelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Optional[int] ) -> Tuple: import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]=0.9 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Union[str, Any]=0.5 ) -> str: if NLTK_VERSION >= version.Version("3.6.5" ): UpperCAmelCase_ : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowercase_ ) , word_tokenize(lowercase_ ) , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] else: UpperCAmelCase_ : Dict = [ meteor_score.single_meteor_score(lowercase_ , lowercase_ , alpha=lowercase_ , beta=lowercase_ , gamma=lowercase_ ) for ref, pred in zip(lowercase_ , lowercase_ ) ] return {"meteor": np.mean(lowercase_ )}
356
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Collection[float] | None = None ) -> None: if components is None: UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[Any] = list(lowerCAmelCase_ ) def __len__( self : Union[str, Any] ) -> int: return len(self.__components ) def __str__( self : List[str] ) -> str: return "(" + ",".join(map(lowerCAmelCase_ , self.__components ) ) + ")" def __add__( self : Dict , lowerCAmelCase_ : Vector ) -> Vector: UpperCAmelCase_ : Optional[int] = len(self ) if size == len(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[Any] = [self.__components[i] + other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: raise Exception("must have the same size" ) def __sub__( self : List[str] , lowerCAmelCase_ : Vector ) -> Vector: UpperCAmelCase_ : List[str] = len(self ) if size == len(lowerCAmelCase_ ): UpperCAmelCase_ : List[Any] = [self.__components[i] - other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : Any , lowerCAmelCase_ : float ) -> Vector: ... @overload def __mul__( self : Optional[int] , lowerCAmelCase_ : Vector ) -> float: ... def __mul__( self : Dict , lowerCAmelCase_ : float | Vector ) -> float | Vector: if isinstance(lowerCAmelCase_ , (float, int) ): UpperCAmelCase_ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(self ) == len(lowerCAmelCase_ ): UpperCAmelCase_ : Dict = len(self ) UpperCAmelCase_ : Dict = [self.__components[i] * other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return sum(lowerCAmelCase_ ) else: # error case raise Exception("invalid operand!" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Vector: return Vector(self.__components ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int ) -> float: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) UpperCAmelCase_ : List[str] = value def _SCREAMING_SNAKE_CASE ( self : Dict ) -> float: if len(self.__components ) == 0: raise Exception("Vector is empty" ) UpperCAmelCase_ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Vector , lowerCAmelCase_ : bool = False ) -> float: UpperCAmelCase_ : int = self * other UpperCAmelCase_ : Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def snake_case ( A__ ): assert isinstance(A__ ,A__ ) return Vector([0] * dimension ) def snake_case ( A__ ,A__ ): assert isinstance(A__ ,A__ ) and (isinstance(A__ ,A__ )) UpperCAmelCase_ : Any = [0] * dimension UpperCAmelCase_ : Dict = 1 return Vector(A__ ) def snake_case ( A__ ,A__ ,A__ ): assert ( isinstance(A__ ,A__ ) and isinstance(A__ ,A__ ) and (isinstance(A__ ,(int, float) )) ) return x * scalar + y def snake_case ( A__ ,A__ ,A__ ): random.seed(A__ ) UpperCAmelCase_ : Tuple = [random.randint(A__ ,A__ ) for _ in range(A__ )] return Vector(A__ ) class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : list[list[float]] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : List[Any] = matrix UpperCAmelCase_ : List[Any] = w UpperCAmelCase_ : List[Any] = h def __str__( self : int ) -> str: UpperCAmelCase_ : Tuple = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Any , lowerCAmelCase_ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase_ : List[Any] = [] for i in range(self.__height ): UpperCAmelCase_ : Optional[Any] = [ self.__matrix[i][j] + other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[int] , lowerCAmelCase_ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase_ : Union[str, Any] = [] for i in range(self.__height ): UpperCAmelCase_ : Union[str, Any] = [ self.__matrix[i][j] - other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Tuple , lowerCAmelCase_ : float ) -> Matrix: ... @overload def __mul__( self : Tuple , lowerCAmelCase_ : Vector ) -> Vector: ... def __mul__( self : Any , lowerCAmelCase_ : float | Vector ) -> Vector | Matrix: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # matrix-vector if len(lowerCAmelCase_ ) == self.__width: UpperCAmelCase_ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): UpperCAmelCase_ : Any = [ self.__matrix[i][j] * other.component(lowerCAmelCase_ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase_ , sum(lowerCAmelCase_ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(lowerCAmelCase_ , (int, float) ): # matrix-scalar UpperCAmelCase_ : int = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase_ , self.__width , self.__height ) return None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.__height def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.__width def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: UpperCAmelCase_ : List[Any] = value else: raise Exception("change_component: indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) UpperCAmelCase_ : Optional[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : Union[str, Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase_ , self.__width - 1 , self.__height - 1 ).determinant() def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase_ , lowerCAmelCase_ ) else: raise Exception("Indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCAmelCase_ : List[Any] = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase_ ) for y in range(self.__width ) ] return sum(lowerCAmelCase_ ) def snake_case ( A__ ): UpperCAmelCase_ : list[list[float]] = [[0] * n for _ in range(A__ )] return Matrix(A__ ,A__ ,A__ ) def snake_case ( A__ ,A__ ,A__ ,A__ ): random.seed(A__ ) UpperCAmelCase_ : list[list[float]] = [ [random.randint(A__ ,A__ ) for _ in range(A__ )] for _ in range(A__ ) ] return Matrix(A__ ,A__ ,A__ )
253
0
from manim import * class lowerCamelCase (_snake_case ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Tuple = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase_ : Optional[Any] = Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase_ : Dict = [mem.copy() for i in range(6 )] UpperCAmelCase_ : List[str] = [mem.copy() for i in range(6 )] UpperCAmelCase_ : List[Any] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCAmelCase_ : List[Any] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCAmelCase_ : int = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCAmelCase_ : Optional[Any] = Text('CPU' , font_size=2_4 ) UpperCAmelCase_ : Union[str, Any] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) UpperCAmelCase_ : str = [mem.copy() for i in range(4 )] UpperCAmelCase_ : List[str] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCAmelCase_ : Any = Text('GPU' , font_size=2_4 ) UpperCAmelCase_ : int = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCAmelCase ) UpperCAmelCase_ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase_ : int = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCAmelCase_ : Any = Text('Model' , font_size=2_4 ) UpperCAmelCase_ : Optional[int] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCAmelCase ) UpperCAmelCase_ : str = [] UpperCAmelCase_ : Any = [] for i, rect in enumerate(__lowerCAmelCase ): UpperCAmelCase_ : Union[str, Any] = fill.copy().set_fill(__lowerCAmelCase , opacity=0.8 ) target.move_to(__lowerCAmelCase ) model_arr.append(__lowerCAmelCase ) UpperCAmelCase_ : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase ) UpperCAmelCase_ : str = [meta_mem.copy() for i in range(6 )] UpperCAmelCase_ : Tuple = [meta_mem.copy() for i in range(6 )] UpperCAmelCase_ : Dict = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCAmelCase_ : int = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCAmelCase_ : Any = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCAmelCase_ : str = Text('Disk' , font_size=2_4 ) UpperCAmelCase_ : List[str] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase_ : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_ : List[Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase_ : List[str] = MarkupText( f"<span fgcolor=\'{BLUE}\'>●</span> Checkpoint" , font_size=1_8 , ) blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCAmelCase ) UpperCAmelCase_ : Any = MarkupText( f"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase ) ) UpperCAmelCase_ : Tuple = Square(0.3 ) input.set_fill(__lowerCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , __lowerCAmelCase , buff=0.5 ) self.play(Write(__lowerCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=__lowerCAmelCase , buff=0.02 ) self.play(MoveToTarget(__lowerCAmelCase ) ) self.play(FadeOut(__lowerCAmelCase ) ) UpperCAmelCase_ : List[str] = Arrow(start=__lowerCAmelCase , end=__lowerCAmelCase , color=__lowerCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , __lowerCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCAmelCase_ : Any = MarkupText( f"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) ) UpperCAmelCase_ : Union[str, Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(__lowerCAmelCase ) , Circumscribe(model_arr[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCAmelCase_ : str = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , __lowerCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) UpperCAmelCase_ : Dict = AnimationGroup( FadeOut(__lowerCAmelCase , run_time=0.5 ) , MoveToTarget(__lowerCAmelCase , run_time=0.5 ) , FadeIn(__lowerCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(__lowerCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCAmelCase_ : Union[str, Any] = 0.7 self.play( Circumscribe(model_arr[i] , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(model_arr[i + 1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCAmelCase_ : Dict = a_c UpperCAmelCase_ : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(__lowerCAmelCase ) , FadeOut(__lowerCAmelCase , run_time=0.5 ) , ) UpperCAmelCase_ : int = MarkupText(f"Inference on a model too large for GPU memory\nis successfully completed." , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) , MoveToTarget(__lowerCAmelCase ) ) self.wait()
29
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __lowerCamelCase ( __a :List[str] , __a :List[Any] , __a :Union[str, Any] , __a :List[Any] ) -> Dict: """simple docstring""" A__ = multiprocessing.Manager() A__ = manager.list() A__ = multiprocessing.Process(target=__a , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __lowerCamelCase ( __a :Optional[Any] , __a :Any , __a :List[Any] ) -> Union[str, Any]: """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil A__ = shutil.rmtree A__ = os.rmdir A__ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: A__ = {} with swallow_io(): with time_limit(__a ): exec(__a , __a ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. A__ = rmtree A__ = rmdir A__ = chdir @contextlib.contextmanager def __lowerCamelCase ( __a :List[str] ) -> Dict: """simple docstring""" def signal_handler(__a :List[Any] , __a :Optional[Any] ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , __a ) signal.signal(signal.SIGALRM , __a ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = WriteOnlyStringIO() with contextlib.redirect_stdout(__a ): with contextlib.redirect_stderr(__a ): with redirect_stdin(__a ): yield @contextlib.contextmanager def __lowerCamelCase ( ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(__a ): yield dirname class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class A (io.StringIO ): '''simple docstring''' def a_ ( self : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str ) -> Dict: """simple docstring""" raise OSError def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" raise OSError def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Any ) -> int: """simple docstring""" raise OSError def a_ ( self : str , *__lowerCAmelCase : Any , **__lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" return False class A (contextlib._RedirectStream ): # type: ignore '''simple docstring''' __lowerCamelCase : Union[str, Any] = '''stdin''' @contextlib.contextmanager def __lowerCamelCase ( __a :Union[str, Any] ) -> List[str]: """simple docstring""" if root == ".": yield return A__ = os.getcwd() os.chdir(__a ) try: yield except BaseException as exc: raise exc finally: os.chdir(__a ) def __lowerCamelCase ( __a :Union[str, Any]=None ) -> Dict: """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins A__ = None A__ = None import os A__ = """1""" A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None import shutil A__ = None A__ = None A__ = None import subprocess A__ = None # type: ignore A__ = None import sys A__ = None A__ = None A__ = None A__ = None A__ = None
274
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def A(__a: Tuple ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def A(__a: int ): class __magic_name__ : def __init__( self , _a ) -> List[str]: lowerCAmelCase_ = metric_id class __magic_name__ : lowerCamelCase__ = [MetricMock(__lowercase ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def __a ( self ) -> Tuple: return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def A(__a: str , __a: Tuple , __a: Tuple , __a: int , __a: Union[str, Any] ): if "tmp_path" in args: lowerCAmelCase_ = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__a , match="https://huggingface.co/docs/evaluate" ): func(*__a )
22
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCAmelCase__ = Features({"""text""": Value("""string""" )} ) lowerCAmelCase__ = Features({"""summary""": Value("""string""" )} ) lowerCAmelCase__ = "text" lowerCAmelCase__ = "summary" @property def UpperCAmelCase__ ( self : Optional[Any] ): return {self.text_column: "text", self.summary_column: "summary"}
111
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
111
1
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py SCREAMING_SNAKE_CASE__ = "." if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = os.path.join(REPO_PATH, "utils/documentation_tests.txt") SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] with open(doctest_file_path) as fp: for line in fp: SCREAMING_SNAKE_CASE__ = line.strip() SCREAMING_SNAKE_CASE__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: SCREAMING_SNAKE_CASE__ = "\n".join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
149
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
149
1
import os import sys import unittest UpperCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCAmelCase__ = os.path.join(git_repo_path, "src", "transformers") UpperCAmelCase__ = "\n{0} = None\n" UpperCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" UpperCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")') self.assertIsNone(A) _UpperCAmelCase = find_backend(' if not is_tokenizers_available():') self.assertEqual(A , 'tokenizers') _UpperCAmelCase = find_backend(' if not is_tensorflow_text_available():') self.assertEqual(A , 'tensorflow_text') _UpperCAmelCase = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):') self.assertEqual(A , 'sentencepiece_and_tokenizers') _UpperCAmelCase = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):') self.assertEqual(A , 'sentencepiece_and_tensorflow_text') _UpperCAmelCase = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):') self.assertEqual(A , 'sentencepiece_and_tokenizers_and_vision') def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , A) self.assertIn('tensorflow_text' , A) self.assertIn('sentencepiece_and_tokenizers' , A) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch']) self.assertIn('TFBertModel' , objects['tf']) self.assertIn('FlaxBertModel' , objects['flax']) self.assertIn('BertModel' , objects['torch']) self.assertIn('TFBertTokenizer' , objects['tensorflow_text']) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers']) def _lowerCamelCase ( self : Any) -> Tuple: """simple docstring""" _UpperCAmelCase = create_dummy_object('CONSTANT' , '\'torch\'') self.assertEqual(A , '\nCONSTANT = None\n') _UpperCAmelCase = create_dummy_object('function' , '\'torch\'') self.assertEqual( A , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n') _UpperCAmelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' _UpperCAmelCase = create_dummy_object('FakeClass' , '\'torch\'') self.assertEqual(A , A) def _lowerCamelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCAmelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' _UpperCAmelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']}) self.assertEqual(dummy_files['torch'] , A)
339
import os def a ( A__ : str = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as input_file: _lowercase =[ [int(A__ ) for element in line.split(',' )] for line in input_file.readlines() ] _lowercase =len(A__ ) _lowercase =len(matrix[0] ) _lowercase =[[-1 for _ in range(A__ )] for _ in range(A__ )] for i in range(A__ ): _lowercase =matrix[i][0] for j in range(1 , A__ ): for i in range(A__ ): _lowercase =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , A__ ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"{solution() = }")
205
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCAmelCase_ = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } lowerCAmelCase_ = logging.WARNING def lowerCamelCase_ ( )-> Dict: _snake_case : Dict = os.getenv('DATASETS_VERBOSITY' , lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowerCamelCase_ ( )-> str: return __name__.split('.' )[0] def lowerCamelCase_ ( )-> logging.Logger: return logging.getLogger(_get_library_name() ) def lowerCamelCase_ ( )-> None: # Apply our default configuration to the library root logger. _snake_case : List[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowerCamelCase_ ( )-> None: _snake_case : Dict = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowerCamelCase_ ( lowerCAmelCase: Optional[str] = None )-> logging.Logger: if name is None: _snake_case : List[str] = _get_library_name() return logging.getLogger(lowerCAmelCase ) def lowerCamelCase_ ( )-> int: return _get_library_root_logger().getEffectiveLevel() def lowerCamelCase_ ( lowerCAmelCase: int )-> None: _get_library_root_logger().setLevel(lowerCAmelCase ) def lowerCamelCase_ ( )-> Any: return set_verbosity(lowerCAmelCase ) def lowerCamelCase_ ( )-> Tuple: return set_verbosity(lowerCAmelCase ) def lowerCamelCase_ ( )-> Tuple: return set_verbosity(lowerCAmelCase ) def lowerCamelCase_ ( )-> Dict: return set_verbosity(lowerCAmelCase ) def lowerCamelCase_ ( )-> None: _snake_case : Tuple = False def lowerCamelCase_ ( )-> None: _snake_case : Union[str, Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowerCAmelCase : '''simple docstring''' def __init__( self : int , *UpperCamelCase : Tuple , **UpperCamelCase : List[str] ): # pylint: disable=unused-argument '''simple docstring''' _snake_case : Union[str, Any] = args[0] if args else None def __iter__( self : Union[str, Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' def empty_fn(*UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : str ): '''simple docstring''' return self def __exit__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] ): '''simple docstring''' return lowerCAmelCase_ = True class _lowerCAmelCase : '''simple docstring''' def __call__( self : Optional[Any] , *UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=False , **UpperCamelCase : Any ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase , **UpperCamelCase ) else: return EmptyTqdm(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCAmelCase_ = _tqdm_cls() def lowerCamelCase_ ( )-> bool: global _tqdm_active return bool(_tqdm_active ) def lowerCamelCase_ ( )-> Optional[Any]: global _tqdm_active _snake_case : Optional[int] = True def lowerCamelCase_ ( )-> Dict: global _tqdm_active _snake_case : Tuple = False
260
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =RobertaTokenizer a_ : Tuple =RobertaTokenizerFast a_ : Union[str, Any] =True a_ : List[Any] ={"""cls_token""": """<s>"""} def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case : Optional[int] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case : List[str] = {'unk_token': '<unk>'} _snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def UpperCamelCase_ ( self : List[str] , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] , **UpperCamelCase : List[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = 'lower newer' _snake_case : int = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : List[str] = 'lower newer' _snake_case : List[str] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case : Any = tokenizer.tokenize(UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : Any = tokens + [tokenizer.unk_token] _snake_case : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Any = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained('roberta-base' ) _snake_case : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=UpperCamelCase ) _snake_case : int = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCamelCase ) _snake_case : Dict = tokenizer.encode( 'sequence builders' , add_special_tokens=UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : Optional[int] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : int = 'Encode this sequence.' _snake_case : str = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _snake_case : int = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase , UpperCamelCase ) _snake_case : Optional[int] = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase , UpperCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _snake_case : List[Any] = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) _snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase , UpperCamelCase ) # Testing spaces after special tokens _snake_case : Dict = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase )} ) # mask token has a left space _snake_case : int = tokenizer.convert_tokens_to_ids(UpperCamelCase ) _snake_case : List[Any] = 'Encode <mask> sequence' _snake_case : Any = 'Encode <mask>sequence' _snake_case : Optional[int] = tokenizer.encode(UpperCamelCase ) _snake_case : str = encoded.index(UpperCamelCase ) _snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase , UpperCamelCase ) _snake_case : Tuple = tokenizer.encode(UpperCamelCase ) _snake_case : Tuple = encoded.index(UpperCamelCase ) _snake_case : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' pass def UpperCamelCase_ ( self : int ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) _snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) _snake_case : Tuple = 'A, <mask> AllenNLP sentence.' _snake_case : str = tokenizer_r.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) _snake_case : Optional[int] = tokenizer_p.encode_plus(UpperCamelCase , add_special_tokens=UpperCamelCase , return_token_type_ids=UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _snake_case : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase ) _snake_case : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , UpperCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , UpperCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] , UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : List[str] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _snake_case : Tuple = f"""{text_of_1_token} {text_of_1_token}""" _snake_case : int = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase ) _snake_case : int = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase ) + 1, len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , ) _snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase ) _snake_case : Tuple = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase ) + 1, len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , ) _snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase ) _snake_case : Optional[int] = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase ), len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , ) _snake_case : Any = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase ) _snake_case : Tuple = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase ), len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , ) _snake_case : str = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase ) _snake_case : Dict = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase ) + 1, 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , ) _snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase ) _snake_case : str = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase ), 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , ) _snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase ) _snake_case : Any = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase ), 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , )
260
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __a = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
import os def A_ ( a = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file: SCREAMING_SNAKE_CASE_ : Dict = in_file.read() SCREAMING_SNAKE_CASE_ : Dict = [[int(a ) for cell in row.split(',' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE_ : str = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE_ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE_ : Any = [[0 for i in range(a )] for j in range(a )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[0][0] for i in range(1 , a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , a ): SCREAMING_SNAKE_CASE_ : Dict = grid[i][0] + dp[i - 1][0] for i in range(1 , a ): for j in range(1 , a ): SCREAMING_SNAKE_CASE_ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
253
0
def lowerCamelCase ( a_ , a_ ) -> int: return int(input_a == input_a == 0 ) def lowerCamelCase ( ) -> None: print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
1
'''simple docstring''' from torch import nn def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> int: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}' )
22
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(__lowercase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = _distribute_shards(**__lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Optional[Any] , __lowercase : int ) -> str: '''simple docstring''' _UpperCAmelCase = _split_gen_kwargs(__lowercase , __lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : List[Any] ) -> List[Any]: '''simple docstring''' if expected is RuntimeError: with pytest.raises(__lowercase ): _number_of_shards_in_gen_kwargs(__lowercase ) else: _UpperCAmelCase = _number_of_shards_in_gen_kwargs(__lowercase ) assert out == expected
22
1
'''simple docstring''' def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = [[0 for _ in range(__A )] for _ in range(m + 1 )] for i in range(m + 1 ): __UpperCamelCase = 1 for n in range(m + 1 ): for k in range(1 ,__A ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: a__ : List[Any] = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: a__ : Tuple = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
243
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Union[str, Any]: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> List[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Optional[int]: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Tuple: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> Dict: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
243
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""")) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""") @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ]) class _a ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , ) assert hasattr(self , "env" ) def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: Any ): '''simple docstring''' UpperCamelCase__: Dict = { "enabled": True, "processes_per_host": 8, } UpperCamelCase__: List[str] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } UpperCamelCase__: int = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} UpperCamelCase__: List[str] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , ) def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' TrainingJobAnalytics(__lowerCamelCase ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(1,)] ) def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: List[str] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.create_estimator(__lowerCamelCase ) # run training estimator.fit() # result dataframe UpperCamelCase__: Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase__: Any = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCamelCase__: Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase__: Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase )
149
from torch import nn def lowerCAmelCase_ ( A_): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"Unsupported activation function: {act_fn}")
149
1
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="attention" ): '''simple docstring''' __lowerCAmelCase = __lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) __lowerCAmelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) __lowerCAmelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) __lowerCAmelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) __lowerCAmelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' if split_mlp_wi: __lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] __lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] __lowerCAmelCase = (wi_a, wi_a) else: __lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] __lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def _lowerCamelCase ( _UpperCamelCase , *, _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False ): '''simple docstring''' __lowerCAmelCase = traverse_util.flatten_dict(variables["target"] ) __lowerCAmelCase = {"/".join(_UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCAmelCase = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , _UpperCamelCase ) __lowerCAmelCase = collections.OrderedDict() # Shared embeddings. __lowerCAmelCase = old["token_embedder/embedding"] # Encoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). __lowerCAmelCase = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_attention_layer_norm" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "attention" ) __lowerCAmelCase = layer_norm __lowerCAmelCase = k.T __lowerCAmelCase = o.T __lowerCAmelCase = q.T __lowerCAmelCase = v.T # Block i, layer 1 (MLP). __lowerCAmelCase = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , "pre_mlp_layer_norm" ) __lowerCAmelCase , __lowerCAmelCase = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "encoder" , _UpperCamelCase ) __lowerCAmelCase = layer_norm if split_mlp_wi: __lowerCAmelCase = wi[0].T __lowerCAmelCase = wi[1].T else: __lowerCAmelCase = wi.T __lowerCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCAmelCase = tax_relpos_bias_lookup( _UpperCamelCase , _UpperCamelCase , "encoder" ).T __lowerCAmelCase = old["encoder/encoder_norm/scale"] if not scalable_attention: __lowerCAmelCase = tax_relpos_bias_lookup( _UpperCamelCase , 0 , "encoder" ).T __lowerCAmelCase = tax_relpos_bias_lookup( _UpperCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(_UpperCamelCase ): # Block i, layer 0 (Self Attention). __lowerCAmelCase = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_self_attention_layer_norm" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "self_attention" ) __lowerCAmelCase = layer_norm __lowerCAmelCase = k.T __lowerCAmelCase = o.T __lowerCAmelCase = q.T __lowerCAmelCase = v.T # Block i, layer 1 (Cross Attention). __lowerCAmelCase = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = tax_attention_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "encoder_decoder_attention" ) __lowerCAmelCase = layer_norm __lowerCAmelCase = k.T __lowerCAmelCase = o.T __lowerCAmelCase = q.T __lowerCAmelCase = v.T # Block i, layer 2 (MLP). __lowerCAmelCase = tax_layer_norm_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , "pre_mlp_layer_norm" ) __lowerCAmelCase , __lowerCAmelCase = tax_mlp_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" , _UpperCamelCase ) __lowerCAmelCase = layer_norm if split_mlp_wi: __lowerCAmelCase = wi[0].T __lowerCAmelCase = wi[1].T else: __lowerCAmelCase = wi.T __lowerCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCAmelCase = tax_relpos_bias_lookup(_UpperCamelCase , _UpperCamelCase , "decoder" ).T __lowerCAmelCase = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCAmelCase = old["decoder/logits_dense/kernel"].T return new def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCAmelCase = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCAmelCase = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __lowerCAmelCase = state_dict["shared.weight"] return state_dict def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = checkpoints.load_tax_checkpoint(_UpperCamelCase ) __lowerCAmelCase = convert_tax_to_pytorch( _UpperCamelCase , num_layers=config.num_layers , is_encoder_only=_UpperCamelCase , scalable_attention=_UpperCamelCase ) __lowerCAmelCase = make_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = False , ): '''simple docstring''' __lowerCAmelCase = MTaConfig.from_json_file(_UpperCamelCase ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCAmelCase = UMTaEncoderModel(_UpperCamelCase ) else: __lowerCAmelCase = UMTaForConditionalGeneration(_UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCamelCase ) print("Done" ) if __name__ == "__main__": A : str = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) A : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
259
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin A : Optional[int] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=16 , __a=13 , __a=7 , __a=14 , __a=10 , __a=19 , __a=5 , __a=4 , __a=True , __a=16 , __a=2 , __a=4 , __a=4 , __a="gelu" , __a=0.1 , __a=0.1 , __a=[1, 2, 3, 4, 5] , __a=25 , __a=5 , ): __lowerCAmelCase = d_model __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = prediction_length __lowerCAmelCase = context_length __lowerCAmelCase = cardinality __lowerCAmelCase = num_time_features __lowerCAmelCase = lags_sequence __lowerCAmelCase = embedding_dimension __lowerCAmelCase = is_training __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = context_length __lowerCAmelCase = prediction_length + label_length __lowerCAmelCase = label_length __lowerCAmelCase = moving_average __lowerCAmelCase = autocorrelation_factor def snake_case ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def snake_case ( self , __a ): __lowerCAmelCase = config.context_length + max(config.lags_sequence ) __lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def snake_case ( self ): __lowerCAmelCase = self.get_config() __lowerCAmelCase = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self , __a , __a ): __lowerCAmelCase = AutoformerModel(config=__a ).to(__a ).eval() __lowerCAmelCase = model(**__a ) __lowerCAmelCase = outputs.encoder_last_hidden_state __lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_encoder() encoder.save_pretrained(__a ) __lowerCAmelCase = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model.create_network_inputs(**__a ) __lowerCAmelCase , __lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = model.get_decoder() decoder.save_pretrained(__a ) __lowerCAmelCase = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowerCAmelCase = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =(AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCAmelCase : List[Any] =(AutoformerForPrediction,) if is_torch_available() else () __UpperCAmelCase : Tuple ={"""feature-extraction""": AutoformerModel} if is_torch_available() else {} __UpperCAmelCase : Tuple =False __UpperCAmelCase : Any =False __UpperCAmelCase : Dict =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Union[str, Any] =False __UpperCAmelCase : Optional[Any] =False def snake_case ( self ): __lowerCAmelCase = AutoformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a , has_text_modality=__a ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowerCAmelCase , __lowerCAmelCase = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["missing_keys"] , [] ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="Model has no tokens embeddings" ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase = inspect.signature(getattr(__a , "forward" ) ) # The main input is the name of the argument after `self` __lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__a ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , "seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "decoder_seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "encoder_seq_length" , __a ) __lowerCAmelCase = getattr(self.model_tester , "d_model" , __a ) __lowerCAmelCase = getattr(self.model_tester , "num_attention_heads" , __a ) __lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) __lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase = len(__a ) __lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def snake_case ( self ): super().test_retain_grad_hidden_states_attentions() def _lowerCamelCase ( _UpperCamelCase="train-batch.pt" ): '''simple docstring''' __lowerCAmelCase = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=_UpperCamelCase , repo_type="dataset" ) __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) return batch @require_torch @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch() with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] __lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def snake_case ( self ): __lowerCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): __lowerCAmelCase = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state __lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowerCAmelCase = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def snake_case ( self ): __lowerCAmelCase = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) __lowerCAmelCase = prepare_batch("val-batch.pt" ) with torch.no_grad(): __lowerCAmelCase = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) __lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowerCAmelCase = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=__a ) __lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1e-1 ) )
259
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , 0 , -1 ): _UpperCAmelCase = False for j in range(_SCREAMING_SNAKE_CASE , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _UpperCAmelCase , _UpperCAmelCase = unsorted[j - 1], unsorted[j] _UpperCAmelCase = True for j in range(_SCREAMING_SNAKE_CASE ): if unsorted[j] > unsorted[j + 1]: _UpperCAmelCase , _UpperCAmelCase = unsorted[j + 1], unsorted[j] _UpperCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[int] = input("Enter numbers separated by a comma:\n").strip() __A : Any = [int(item) for item in user_input.split(",")] print(f'''{cocktail_shaker_sort(unsorted) = }''')
260
"""simple docstring""" def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _UpperCAmelCase = 6 _UpperCAmelCase = 1 _UpperCAmelCase = 1901 _UpperCAmelCase = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _UpperCAmelCase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _UpperCAmelCase = day - 29 else: if day > days_per_month[month - 1]: month += 1 _UpperCAmelCase = day - days_per_month[month - 2] if month > 12: year += 1 _UpperCAmelCase = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
260
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCamelCase_ ( a_ ): _A : Dict = 'unispeech' def __init__( self , snake_case__=32 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=1_28 , snake_case__=16 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__=3_20 , snake_case__=2 , snake_case__=0.1 , snake_case__=1_00 , snake_case__=2_56 , snake_case__=2_56 , snake_case__=0.1 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=2_56 , snake_case__=80 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=0.5 , **snake_case__ , ) -> Dict: """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layerdrop UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = num_ctc_classes UpperCAmelCase = vocab_size UpperCAmelCase = do_stable_layer_norm UpperCAmelCase = use_weighted_layer_sum UpperCAmelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase = num_codevectors_per_group UpperCAmelCase = num_codevector_groups UpperCAmelCase = contrastive_logits_temperature UpperCAmelCase = feat_quantizer_dropout UpperCAmelCase = num_negatives UpperCAmelCase = codevector_dim UpperCAmelCase = proj_codevector_dim UpperCAmelCase = diversity_loss_weight # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # pretraining loss UpperCAmelCase = replace_prob @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
248
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return (data["data"], data["target"]) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase , lowerCAmelCase ) # Predict target for test data UpperCAmelCase = xgb.predict(lowerCAmelCase ) UpperCAmelCase = predictions.reshape(len(lowerCAmelCase ) , 1 ) return predictions def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = fetch_california_housing() UpperCAmelCase , UpperCAmelCase = data_handling(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_test_split( lowerCAmelCase , lowerCAmelCase , test_size=0.25 , random_state=1 ) UpperCAmelCase = xgboost(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowerCAmelCase , lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowerCAmelCase , lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
248
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=7 ,UpperCAmelCase_=3 ,UpperCAmelCase_=18 ,UpperCAmelCase_=30 ,UpperCAmelCase_=4_00 ,UpperCAmelCase_=True ,UpperCAmelCase_=None ,UpperCAmelCase_=True ,UpperCAmelCase_=None ,UpperCAmelCase_=True ,UpperCAmelCase_=[0.5, 0.5, 0.5] ,UpperCAmelCase_=[0.5, 0.5, 0.5] ,): _lowercase : Tuple = size if size is not None else {"""shortest_edge""": 18} _lowercase : int = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowercase : Optional[Any] = parent _lowercase : Tuple = batch_size _lowercase : Optional[int] = num_channels _lowercase : Tuple = image_size _lowercase : Dict = min_resolution _lowercase : int = max_resolution _lowercase : Optional[int] = do_resize _lowercase : Any = size _lowercase : str = do_center_crop _lowercase : Optional[Any] = crop_size _lowercase : Union[str, Any] = do_normalize _lowercase : Union[str, Any] = image_mean _lowercase : Tuple = image_std def lowerCamelCase__ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = LevitImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self ): _lowercase : Tuple = LevitImageProcessingTester(self ) @property def lowerCamelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self ): _lowercase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""do_center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ ,"""size""" ) ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) _lowercase : Any = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): # Initialize image_processing _lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ ,Image.Image ) # Test not batched input _lowercase : str = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched _lowercase : Optional[int] = image_processing(UpperCAmelCase_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def lowerCamelCase__ ( self ): # Initialize image_processing _lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCAmelCase_ ,numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ ,np.ndarray ) # Test not batched input _lowercase : List[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched _lowercase : Optional[Any] = image_processing(UpperCAmelCase_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def lowerCamelCase__ ( self ): # Initialize image_processing _lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCAmelCase_ ,torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ ,torch.Tensor ) # Test not batched input _lowercase : str = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched _lowercase : int = image_processing(UpperCAmelCase_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
353
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
0
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = 0 if start < end: a_ = randint(UpperCAmelCase , UpperCAmelCase ) a_ = a[end] a_ = a[pivot] a_ = temp a_ , a_ = _in_place_partition(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) count += _in_place_quick_sort(UpperCAmelCase , UpperCAmelCase , p - 1 ) count += _in_place_quick_sort(UpperCAmelCase , p + 1 , UpperCAmelCase ) return count def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = 0 a_ = randint(UpperCAmelCase , UpperCAmelCase ) a_ = a[end] a_ = a[pivot] a_ = temp a_ = start - 1 for index in range(UpperCAmelCase , UpperCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value a_ = new_pivot_index + 1 a_ = a[new_pivot_index] a_ = a[index] a_ = temp a_ = a[new_pivot_index + 1] a_ = a[end] a_ = temp return new_pivot_index + 1, count UpperCamelCase_ = TemporaryFile() UpperCamelCase_ = 100 # 1000 elements are to be sorted UpperCamelCase_ , UpperCamelCase_ = 0, 1 # mean and standard deviation UpperCamelCase_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCamelCase_ = np.load(outfile) UpperCamelCase_ = len(M) - 1 UpperCamelCase_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
243
"""simple docstring""" import math import os import sys def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = "" try: with open(UpperCAmelCase , "rb" ) as binary_file: a_ = binary_file.read() for dat in data: a_ = F'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" lexicon.pop(UpperCAmelCase ) a_ = last_match_id if math.loga(UpperCAmelCase ).is_integer(): for curr_key in lexicon: a_ = "0" + lexicon[curr_key] a_ = bin(UpperCAmelCase )[2:] def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" a_ = {"0": "0", "1": "1"} a_ , a_ = "", "" a_ = len(UpperCAmelCase ) for i in range(len(UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a_ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) index += 1 a_ = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": a_ = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = os.path.getsize(UpperCAmelCase ) a_ = bin(UpperCAmelCase )[2:] a_ = len(UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" a_ = 8 try: with open(UpperCAmelCase , "wb" ) as opened_file: a_ = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(UpperCAmelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->None: """simple docstring""" a_ = read_file_binary(UpperCAmelCase ) a_ = compress_data(UpperCAmelCase ) a_ = add_file_length(UpperCAmelCase , UpperCAmelCase ) write_file_binary(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
243
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( A ) -> Dict: # initialize config if "resnet-50" in model_name: lowerCAmelCase__ = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: lowerCAmelCase__ = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) lowerCAmelCase__ = DetrConfig(use_timm_backbone=A , backbone_config=A ) # set label attributes lowerCAmelCase__ = '''panoptic''' in model_name if is_panoptic: lowerCAmelCase__ = 250 else: lowerCAmelCase__ = 91 lowerCAmelCase__ = '''huggingface/label-files''' lowerCAmelCase__ = '''coco-detection-id2label.json''' lowerCAmelCase__ = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase__ = {int(A ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} return config, is_panoptic def _snake_case ( A ) -> Tuple: # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def _snake_case ( A , A , A ) -> Optional[int]: lowerCAmelCase__ = state_dict.pop(A ) lowerCAmelCase__ = val def _snake_case ( A , A=False ) -> str: lowerCAmelCase__ = '''''' if is_panoptic: lowerCAmelCase__ = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:256, :] lowerCAmelCase__ = in_proj_bias[:256] lowerCAmelCase__ = in_proj_weight[256:512, :] lowerCAmelCase__ = in_proj_bias[256:512] lowerCAmelCase__ = in_proj_weight[-256:, :] lowerCAmelCase__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:256, :] lowerCAmelCase__ = in_proj_bias[:256] lowerCAmelCase__ = in_proj_weight[256:512, :] lowerCAmelCase__ = in_proj_bias[256:512] lowerCAmelCase__ = in_proj_weight[-256:, :] lowerCAmelCase__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCAmelCase__ = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowerCAmelCase__ = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCAmelCase__ = in_proj_weight_cross_attn[:256, :] lowerCAmelCase__ = in_proj_bias_cross_attn[:256] lowerCAmelCase__ = in_proj_weight_cross_attn[256:512, :] lowerCAmelCase__ = in_proj_bias_cross_attn[256:512] lowerCAmelCase__ = in_proj_weight_cross_attn[-256:, :] lowerCAmelCase__ = in_proj_bias_cross_attn[-256:] def _snake_case ( ) -> List[Any]: lowerCAmelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def _snake_case ( A , A=None , A=False ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ = get_detr_config(A ) # load original model from torch hub lowerCAmelCase__ = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F"""Converting model {model_name}...""" ) lowerCAmelCase__ = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=A ).eval() lowerCAmelCase__ = detr.state_dict() # rename keys for src, dest in create_rename_keys(A ): if is_panoptic: lowerCAmelCase__ = '''detr.''' + src rename_key(A , A , A ) # query, key and value matrices need special treatment read_in_q_k_v(A , is_panoptic=A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase__ = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowerCAmelCase__ = state_dict.pop(A ) lowerCAmelCase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase__ = state_dict.pop(A ) lowerCAmelCase__ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowerCAmelCase__ = state_dict.pop(A ) lowerCAmelCase__ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowerCAmelCase__ = state_dict.pop(A ) lowerCAmelCase__ = val # finally, create HuggingFace model and load state dict lowerCAmelCase__ = DetrForSegmentation(A ) if is_panoptic else DetrForObjectDetection(A ) model.load_state_dict(A ) model.eval() # verify our conversion on an image lowerCAmelCase__ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowerCAmelCase__ = DetrImageProcessor(format=A ) lowerCAmelCase__ = processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase__ = encoding['''pixel_values'''] lowerCAmelCase__ = detr(A ) lowerCAmelCase__ = model(A ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') __UpperCAmelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
228
'''simple docstring''' from collections.abc import Iterable from typing import Any class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ = None ) -> List[str]: lowerCAmelCase__ = value lowerCAmelCase__ = None # Added in order to delete a node easier lowerCAmelCase__ = None lowerCAmelCase__ = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ = None ) -> Union[str, Any]: lowerCAmelCase__ = root def __str__( self ) -> str: return str(self.root ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: if new_children is not None: # reset its kids lowerCAmelCase__ = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCamelCase_ ): # If it is the right children lowerCAmelCase__ = new_children else: lowerCAmelCase__ = new_children else: lowerCAmelCase__ = new_children def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def __SCREAMING_SNAKE_CASE ( self ) -> bool: return self.root is None def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = Node(lowerCamelCase_ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ = new_node # set its root else: # Tree is not empty lowerCAmelCase__ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ = new_node break else: lowerCAmelCase__ = parent_node.right lowerCAmelCase__ = parent_node def __SCREAMING_SNAKE_CASE ( self , *lowerCamelCase_ ) -> None: for value in values: self.__insert(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Node | None: if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: lowerCAmelCase__ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ = node.left if value < node.value else node.right return node def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = None ) -> Node | None: if node is None: if self.root is None: return None lowerCAmelCase__ = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ = node.right return node def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = None ) -> Node | None: if node is None: lowerCAmelCase__ = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ = self.root while node.left is not None: lowerCAmelCase__ = node.left return node def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = self.search(lowerCamelCase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCamelCase_ , lowerCamelCase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCamelCase_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCamelCase_ , node.left ) else: lowerCAmelCase__ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: if node: self.inorder(lowerCamelCase_ , node.left ) arr.append(node.value ) self.inorder(lowerCamelCase_ , node.right ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> int: lowerCAmelCase__ = [] self.inorder(lowerCamelCase_ , lowerCamelCase_ ) # append all values to list using inorder traversal return arr[k - 1] def _snake_case ( A ) -> list[Node]: lowerCAmelCase__ = [] if curr_node is not None: lowerCAmelCase__ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _snake_case ( ) -> None: lowerCAmelCase__ = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ = BinarySearchTree() for i in testlist: t.insert(A ) # Prints all the elements of the list in order traversal print(A ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(A ) print(A ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
228
1
from __future__ import annotations def _A ( SCREAMING_SNAKE_CASE__ : list[float] , SCREAMING_SNAKE_CASE__ : Dict ): print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(SCREAMING_SNAKE_CASE__ ): print(F'''{i}\t\t{d}''' ) def _A ( SCREAMING_SNAKE_CASE__ : list[dict[str, int]] , SCREAMING_SNAKE_CASE__ : list[float] , SCREAMING_SNAKE_CASE__ : int ): for j in range(SCREAMING_SNAKE_CASE__ ): UpperCamelCase , UpperCamelCase , UpperCamelCase :Any = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( SCREAMING_SNAKE_CASE__ : list[dict[str, int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :Optional[int] = [float('''inf''' )] * vertex_count UpperCamelCase :Any = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE__ ): UpperCamelCase , UpperCamelCase , UpperCamelCase :int = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: UpperCamelCase :str = distance[u] + w UpperCamelCase :Tuple = check_negative_cycle(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __snake_case = int(input("""Enter number of vertices: """).strip()) __snake_case = int(input("""Enter number of edges: """).strip()) __snake_case = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) __snake_case , __snake_case , __snake_case = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) __snake_case = {"""src""": src, """dst""": dest, """weight""": weight} __snake_case = int(input("""\nEnter shortest path source:""").strip()) __snake_case = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
259
def _A ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] ): UpperCamelCase :Tuple = len(SCREAMING_SNAKE_CASE__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCamelCase :Dict = 0 print(SCREAMING_SNAKE_CASE__ , end=''',''' ) # Consider rest of the activities for j in range(SCREAMING_SNAKE_CASE__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(SCREAMING_SNAKE_CASE__ , end=''',''' ) UpperCamelCase :List[str] = j if __name__ == "__main__": import doctest doctest.testmod() __snake_case = [1, 3, 0, 5, 8, 5] __snake_case = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
259
1
"""simple docstring""" def a_ ( _lowercase , _lowercase ): """simple docstring""" _UpperCamelCase : int = [1] for i in range(2 , _lowercase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _UpperCamelCase : str = [] _UpperCamelCase : List[Any] = list(range(_lowercase ) ) # Find permutation while factorials: _UpperCamelCase : Optional[Any] = factorials.pop() _UpperCamelCase : Dict = divmod(_lowercase , _lowercase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" from __future__ import annotations from random import choice def a_ ( _lowercase ): return choice(_lowercase ) def a_ ( _lowercase , _lowercase ): _UpperCamelCase : Optional[int] = random_pivot(_lowercase ) # partition based on pivot # linear time _UpperCamelCase : Union[str, Any] = [e for e in lst if e < pivot] _UpperCamelCase : int = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowercase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowercase ) < k - 1: return kth_number(_lowercase , k - len(_lowercase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowercase , _lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
128
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A__: """simple docstring""" def __init__( self , _lowercase , ) -> Dict: a_ : Union[str, Any] = parent a_ : List[Any] = 13 a_ : Tuple = 7 a_ : str = True a_ : Optional[Any] = True a_ : List[Any] = True a_ : List[str] = 99 a_ : Dict = 32 a_ : int = 2 a_ : str = 4 a_ : Dict = 37 a_ : str = """gelu""" a_ : List[Any] = 0.1 a_ : Optional[int] = 0.1 a_ : str = 512 a_ : Any = 16 a_ : List[Any] = 2 a_ : Union[str, Any] = 0.0_2 a_ : str = 3 a_ : int = 4 a_ : List[Any] = None def UpperCamelCase__ ( self ) -> int: a_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Optional[int] = None if self.use_input_mask: a_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) a_ : int = None a_ : int = None a_ : Union[str, Any] = None if self.use_labels: a_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) a_ : Optional[int] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> Optional[Any]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Optional[int] = self.prepare_config_and_inputs() a_ : Tuple = True a_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: a_ : Dict = TFEsmModel(config=_lowercase ) a_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} a_ : List[str] = model(_lowercase ) a_ : int = [input_ids, input_mask] a_ : Dict = model(_lowercase ) a_ : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> List[str]: a_ : int = True a_ : List[Any] = TFEsmModel(config=_lowercase ) a_ : List[str] = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } a_ : Any = model(_lowercase ) a_ : Dict = [input_ids, input_mask] a_ : Tuple = model(_lowercase , encoder_hidden_states=_lowercase ) # Also check the case where encoder outputs are not passed a_ : str = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: a_ : Dict = TFEsmForMaskedLM(config=_lowercase ) a_ : str = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: a_ : Optional[Any] = self.num_labels a_ : Any = TFEsmForTokenClassification(config=_lowercase ) a_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} a_ : int = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ) -> Any: a_ : List[Any] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : List[str] = config_and_inputs a_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : Union[str, Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _A : Tuple = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _A : List[str] = False _A : Union[str, Any] = False def UpperCamelCase__ ( self ) -> Tuple: a_ : List[str] = TFEsmModelTester(self ) a_ : Union[str, Any] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> str: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ) -> List[str]: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowercase ) def UpperCamelCase__ ( self ) -> str: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def UpperCamelCase__ ( self ) -> int: a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def UpperCamelCase__ ( self ) -> Any: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Dict = TFEsmModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase__ ( self ) -> Optional[int]: pass def UpperCamelCase__ ( self ) -> List[str]: a_ , a_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[int] = model_class(_lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer a_ : List[Any] = model.get_bias() assert isinstance(_lowercase , _lowercase ) for k, v in name.items(): assert isinstance(_lowercase , tf.Variable ) else: a_ : Any = model.get_output_embeddings() assert x is None a_ : List[str] = model.get_bias() assert name is None @require_tf class A__(unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ) -> int: a_ : Tuple = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) a_ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) a_ : List[str] = model(_lowercase )[0] a_ : int = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _lowercase ) # compare the actual values for a slice. a_ : int = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def UpperCamelCase__ ( self ) -> List[Any]: a_ : int = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) a_ : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) a_ : int = model(_lowercase )[0] # compare the actual values for a slice. a_ : str = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
248
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__(a_ ): """simple docstring""" def __init__( self , *_lowercase , _lowercase=None , _lowercase=None , **_lowercase ) -> Optional[Any]: super().__init__(*_lowercase , **_lowercase ) a_ : Optional[int] = eval_examples a_ : Tuple = post_process_function def UpperCamelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase = "eval" ) -> Union[str, Any]: a_ : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset a_ : List[str] = self.get_eval_dataloader(_lowercase ) a_ : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a_ : Optional[int] = self.compute_metrics a_ : List[str] = None a_ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Any = time.time() try: a_ : Union[str, Any] = eval_loop( _lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Dict = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a_ : List[Any] = self.post_process_function(_lowercase , _lowercase , output.predictions ) a_ : Optional[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : List[str] = metrics.pop(_lowercase ) metrics.update(output.metrics ) else: a_ : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a_ : List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowercase ) return metrics def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase = "test" ) -> str: a_ : Tuple = self.get_test_dataloader(_lowercase ) # Temporarily disable metric computation, we will do it in the loop here. a_ : List[Any] = self.compute_metrics a_ : int = None a_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Union[str, Any] = time.time() try: a_ : List[str] = eval_loop( _lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowercase , metric_key_prefix=_lowercase , ) finally: a_ : Optional[Any] = compute_metrics a_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _lowercase , _lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a_ : Optional[int] = self.post_process_function(_lowercase , _lowercase , output.predictions , """predict""" ) a_ : List[Any] = self.compute_metrics(_lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ : int = metrics.pop(_lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowercase )
248
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): __A = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: __A = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def lowerCamelCase_ ( UpperCamelCase__ : Any ) -> List[str]: """simple docstring""" __lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowerCamelCase = numpy_to_pil(UpperCamelCase__ ) return images def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" if images.ndim == 3: __lowerCamelCase = images[None, ...] __lowerCamelCase = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __lowerCamelCase = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __lowerCamelCase = [Image.fromarray(UpperCamelCase__ ) for image in images] return pil_images
348
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Tuple = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = ["DeiTFeatureExtractor"] UpperCAmelCase_ : List[Any] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
200
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
0
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowercase : def __init__( self , snake_case , snake_case , snake_case ): if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) snake_case_ = img snake_case_ = img.shape[1] snake_case_ = img.shape[0] snake_case_ = dst_width snake_case_ = dst_height snake_case_ = self.src_w / self.dst_w snake_case_ = self.src_h / self.dst_h snake_case_ = snake_case_ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def a ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): snake_case_ = self.img[self.get_y(snake_case )][self.get_x(snake_case )] def a ( self , snake_case ): return int(self.ratio_x * x ) def a ( self , snake_case ): return int(self.ratio_y * y ) if __name__ == "__main__": _UpperCAmelCase , _UpperCAmelCase : Optional[int] = 800, 600 _UpperCAmelCase : List[Any] = imread("""image_data/lena.jpg""", 1) _UpperCAmelCase : str = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
200
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : int = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : int = '''canine''' def __init__( self , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_6384 , snake_case=16 , snake_case=0.02 , snake_case=1e-1_2 , snake_case=0 , snake_case=0xE000 , snake_case=0xE001 , snake_case=4 , snake_case=4 , snake_case=8 , snake_case=1_6384 , snake_case=128 , **snake_case , ): super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps # Character config: snake_case_ = downsampling_rate snake_case_ = upsampling_kernel_size snake_case_ = num_hash_functions snake_case_ = num_hash_buckets snake_case_ = local_transformer_stride
200
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = ['''image_processor''', '''tokenizer'''] UpperCamelCase__ = '''FlavaImageProcessor''' UpperCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self :List[str] , __magic_name__ :Tuple=None , __magic_name__ :Dict=None , **__magic_name__ :List[Any] ): '''simple docstring''' a = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) a = kwargs.pop("""feature_extractor""" ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) a = self.image_processor def __call__( self :Union[str, Any] , __magic_name__ :Optional[ImageInput] = None , __magic_name__ :Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __magic_name__ :bool = True , __magic_name__ :Union[bool, str, PaddingStrategy] = False , __magic_name__ :Union[bool, str, TruncationStrategy] = False , __magic_name__ :Optional[int] = None , __magic_name__ :int = 0 , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = True , __magic_name__ :Optional[Union[str, TensorType]] = None , **__magic_name__ :int , ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: a = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if images is not None: a = self.image_processor( __magic_name__ , return_image_mask=__magic_name__ , return_codebook_pixels=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if text is not None and images is not None: encoding.update(__magic_name__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowerCamelCase__ ( self :List[str] , *__magic_name__ :str , **__magic_name__ :str ): '''simple docstring''' return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase__ ( self :Union[str, Any] , *__magic_name__ :Tuple , **__magic_name__ :Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowerCamelCase__ ( self :int ): '''simple docstring''' a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase__ ( self :int ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
228
from __future__ import annotations def __A ( __lowerCamelCase , __lowerCamelCase ) -> float: a = sorted(numsa + numsa ) a , a = divmod(len(__lowerCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] __UpperCamelCase : List[Any] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
228
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: # Initialise PyTorch model UpperCamelCase : Tuple = BertConfig.from_json_file(_lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase : Union[str, Any] = BertForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
361
class A__ : # Public class to implement a graph def __init__( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = row UpperCamelCase : Any = col UpperCamelCase : Optional[Any] = graph def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Any = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCamelCase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCamelCase : Any = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , A_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , A_ ) def __UpperCamelCase( self ): # And finally, count all islands. '''simple docstring''' UpperCamelCase : str = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCamelCase : int = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(A_ , A_ , A_ ) count += 1 return count
140
0
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance _A : Dict =6_378_137.0 _A : str =6_356_752.314_245 _A : Union[str, Any] =6_378_137 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: lowerCamelCase__ : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowerCamelCase__ : str = atan((1 - flattening) * tan(radians(_lowerCAmelCase ) ) ) lowerCamelCase__ : List[Any] = atan((1 - flattening) * tan(radians(_lowerCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowerCamelCase__ : str = haversine_distance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowerCamelCase__ : Any = (b_lata + b_lata) / 2 lowerCamelCase__ : int = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowerCamelCase__ : Optional[int] = (sin(_lowerCAmelCase ) ** 2) * (cos(_lowerCAmelCase ) ** 2) lowerCamelCase__ : int = cos(sigma / 2 ) ** 2 lowerCamelCase__ : Tuple = (sigma - sin(_lowerCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowerCamelCase__ : Tuple = (cos(_lowerCAmelCase ) ** 2) * (sin(_lowerCAmelCase ) ** 2) lowerCamelCase__ : Union[str, Any] = sin(sigma / 2 ) ** 2 lowerCamelCase__ : Tuple = (sigma + sin(_lowerCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
41
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCAmelCase : Tuple =_symbol_database.Default() UpperCAmelCase : List[Any] =_descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) UpperCAmelCase : Optional[int] =globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCAmelCase : str =None UpperCAmelCase : List[Any] =b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCAmelCase : str =45 UpperCAmelCase : Optional[Any] =1581 UpperCAmelCase : Dict =1517 UpperCAmelCase : str =1570 UpperCAmelCase : Optional[int] =1584 UpperCAmelCase : str =1793 UpperCAmelCase : Any =1795 UpperCAmelCase : Dict =1916 UpperCAmelCase : str =1864 UpperCAmelCase : Dict =1905 UpperCAmelCase : Union[str, Any] =1919 UpperCAmelCase : Any =2429 UpperCAmelCase : Dict =2208 UpperCAmelCase : int =2418 UpperCAmelCase : str =2323 UpperCAmelCase : Any =2407 # @@protoc_insertion_point(module_scope)
128
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} _UpperCamelCase = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } _UpperCamelCase = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } _UpperCamelCase = """▁""" class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self ,A ,A="<s>" ,A="</s>" ,A="</s>" ,A="<s>" ,A="<unk>" ,A="<pad>" ,A="<mask>" ,A = None ,**A ,): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) UpperCAmelCase = vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) UpperCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCAmelCase = len(self.sp_model ) - 1 UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _UpperCamelCase ( self ,A ,A = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self ,A ,A = None ,A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _UpperCamelCase ( self ,A ,A = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self ): return len(self.sp_model ) def _UpperCamelCase ( self ): UpperCAmelCase = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self ,A ): return self.sp_model.encode(A ,out_type=A ) def _UpperCamelCase ( self ,A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(A ) return spm_id if spm_id else self.unk_token_id def _UpperCamelCase ( self ,A ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = [] UpperCAmelCase = """""" UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(A ) UpperCAmelCase = False out_string += self.sp_model.decode(A ) return out_string.strip() def __getstate__( self ): UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self ,A ): UpperCAmelCase = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self ,A ,A = None ): if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"""wb""" ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
234
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): __snake_case = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: __snake_case = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def lowerCAmelCase_ ( __lowerCAmelCase )-> Dict: '''simple docstring''' UpperCAmelCase : Dict =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : int =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase : List[str] =numpy_to_pil(__lowerCAmelCase ) return images def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' if images.ndim == 3: UpperCAmelCase : Any =images[None, ...] UpperCAmelCase : Optional[Any] =(images * 2_55).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase : List[str] =[Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: UpperCAmelCase : str =[Image.fromarray(__lowerCAmelCase ) for image in images] return pil_images
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
from math import factorial, radians def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ) -> float: lowercase__ = angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians lowercase__ = radians(_SCREAMING_SNAKE_CASE ) lowercase__ = angle_in_radians lowercase__ = 3 lowercase__ = -1 for _ in range(_SCREAMING_SNAKE_CASE ): result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE ) lowercase__ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __import__("""doctest""").testmod()
269
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase ) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _UpperCamelCase : ClassVar[Features] = Features({'text': Value('string' )} ) _UpperCamelCase : ClassVar[Features] = Features({} ) _UpperCamelCase : str = "text" @property def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
269
1
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = np.max(_outputs , axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) A__ = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) class UpperCamelCase__( UpperCamelCase_ ): lowerCAmelCase__ : Optional[Any] = 'sigmoid' lowerCAmelCase__ : Union[str, Any] = 'softmax' lowerCAmelCase__ : Union[str, Any] = 'none' @add_end_docstrings( UpperCamelCase_ , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class UpperCamelCase__( UpperCamelCase_ ): lowerCAmelCase__ : str = False lowerCAmelCase__ : str = ClassificationFunction.NONE def __init__( self ,**__UpperCAmelCase ) -> List[Any]: super().__init__(**lowercase_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="" ,**__UpperCAmelCase ) -> List[Any]: A__ = tokenizer_kwargs A__ = {} if hasattr(self.model.config ,'return_all_scores' ) and return_all_scores is None: A__ = self.model.config.return_all_scores if isinstance(lowercase_ ,lowercase_ ) or top_k is None: A__ = top_k A__ = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' ,lowercase_ ,) if return_all_scores: A__ = None else: A__ = 1 if isinstance(lowercase_ ,lowercase_ ): A__ = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: A__ = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: A__ = super().__call__(*lowercase_ ,**lowercase_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. A__ = 'top_k' not in kwargs if isinstance(args[0] ,lowercase_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def snake_case__ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict[str, GenericTensor]: A__ = self.framework if isinstance(lowercase_ ,lowercase_ ): return self.tokenizer(**lowercase_ ,return_tensors=lowercase_ ,**lowercase_ ) elif isinstance(lowercase_ ,lowercase_ ) and len(lowercase_ ) == 1 and isinstance(inputs[0] ,lowercase_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=lowercase_ ,**lowercase_ ) elif isinstance(lowercase_ ,lowercase_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(lowercase_ ,return_tensors=lowercase_ ,**lowercase_ ) def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: return self.model(**lowercase_ ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=1 ,__UpperCAmelCase=True ) -> Optional[int]: if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: A__ = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: A__ = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,'function_to_apply' ) and function_to_apply is None: A__ = self.model.config.function_to_apply else: A__ = ClassificationFunction.NONE A__ = model_outputs['logits'][0] A__ = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: A__ = sigmoid(lowercase_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: A__ = softmax(lowercase_ ) elif function_to_apply == ClassificationFunction.NONE: A__ = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} A__ = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(lowercase_ ) ] if not _legacy: dict_scores.sort(key=lambda __UpperCAmelCase : x["score"] ,reverse=lowercase_ ) if top_k is not None: A__ = dict_scores[:top_k] return dict_scores
221
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCamelCase : str =[] _lowerCamelCase : Dict =[] for i in range(self.num_layers ): _lowerCamelCase : Union[str, Any] =self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Any =FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Dict =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : Optional[int] =resnets _lowerCamelCase : Dict =attentions if self.add_downsample: _lowerCamelCase : Union[str, Any] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=True ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple =() for resnet, attn in zip(self.resnets , self.attentions ): _lowerCamelCase : Union[str, Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : Union[str, Any] =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : Optional[int] =self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _lowerCamelCase : str =[] for i in range(self.num_layers ): _lowerCamelCase : Tuple =self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Any =FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Union[str, Any] =resnets if self.add_downsample: _lowerCamelCase : List[str] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=True ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[int] =() for resnet in self.resnets: _lowerCamelCase : Tuple =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : Tuple =self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _lowerCamelCase : str =[] _lowerCamelCase : List[str] =[] for i in range(self.num_layers ): _lowerCamelCase : List[str] =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : Tuple =self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : List[str] =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Tuple =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : int =resnets _lowerCamelCase : Dict =attentions if self.add_upsample: _lowerCamelCase : str =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any]=True ) -> Optional[int]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _lowerCamelCase : Optional[int] =res_hidden_states_tuple[-1] _lowerCamelCase : Union[str, Any] =res_hidden_states_tuple[:-1] _lowerCamelCase : Any =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCamelCase : Optional[Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : List[Any] =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: _lowerCamelCase : Optional[Any] =self.upsamplers_a(lowercase_ ) return hidden_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : List[str] =[] for i in range(self.num_layers ): _lowerCamelCase : Tuple =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : int =self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : str =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : str =resnets if self.add_upsample: _lowerCamelCase : List[str] =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , lowercase_ : str , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Any=True ) -> int: """simple docstring""" for resnet in self.resnets: # pop res hidden states _lowerCamelCase : List[str] =res_hidden_states_tuple[-1] _lowerCamelCase : str =res_hidden_states_tuple[:-1] _lowerCamelCase : List[str] =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCamelCase : Optional[Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: _lowerCamelCase : Union[str, Any] =self.upsamplers_a(lowercase_ ) return hidden_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowerCamelCase : Any =[] for _ in range(self.num_layers ): _lowerCamelCase : Optional[int] =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : Tuple =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : List[Any] =resnets _lowerCamelCase : List[str] =attentions def __call__( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : List[str]=True ) -> int: """simple docstring""" _lowerCamelCase : Dict =self.resnets[0](lowercase_ , lowercase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _lowerCamelCase : Tuple =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : List[str] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) return hidden_states
199
0
import os import sys import unittest _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _snake_case = os.path.join("tests", "models", "bert", "test_modeling_bert.py") _snake_case = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = get_test_to_tester_mapping(__a) _lowerCAmelCase : Tuple = get_test_to_tester_mapping(__a) _lowerCAmelCase : Union[str, Any] = {"BertModelTest": "BertModelTester"} _lowerCAmelCase : Union[str, Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__a), __a) self.assertEqual(get_test_info.to_json(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = get_model_to_test_mapping(__a) _lowerCAmelCase : int = get_model_to_test_mapping(__a) _lowerCAmelCase : str = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } _lowerCAmelCase : str = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__a), __a) self.assertEqual(get_test_info.to_json(__a), __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = get_model_to_tester_mapping(__a) _lowerCAmelCase : Tuple = get_model_to_tester_mapping(__a) _lowerCAmelCase : Tuple = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } _lowerCAmelCase : Any = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__a), __a) self.assertEqual(get_test_info.to_json(__a), __a)
300
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 1 @register_to_config def __init__( self, __a = 2000, __a = 0.15, __a = 0.01, __a = 1_348.0, __a = 1E-5, __a = 1, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : str = None self.set_sigmas(__a, __a, __a, __a) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCAmelCase : Dict = torch.linspace(1, __a, __a, device=__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None): '''simple docstring''' _lowerCAmelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCAmelCase : Tuple = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCAmelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a, __a) _lowerCAmelCase : int = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCAmelCase : Any = torch.exp(torch.linspace(math.log(__a), math.log(__a), __a)) _lowerCAmelCase : int = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def snake_case__ ( self, __a, __a): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def snake_case__ ( self, __a, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") _lowerCAmelCase : Dict = timestep * torch.ones( sample.shape[0], device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCAmelCase : Dict = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCAmelCase : Union[str, Any] = timesteps.to(self.discrete_sigmas.device) _lowerCAmelCase : Any = self.discrete_sigmas[timesteps].to(sample.device) _lowerCAmelCase : List[Any] = self.get_adjacent_sigma(__a, __a).to(sample.device) _lowerCAmelCase : List[str] = torch.zeros_like(__a) _lowerCAmelCase : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCAmelCase : Union[str, Any] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): _lowerCAmelCase : Optional[int] = diffusion.unsqueeze(-1) _lowerCAmelCase : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCAmelCase : Optional[Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__a, device=sample.device, dtype=sample.dtype) _lowerCAmelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCAmelCase : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a, prev_sample_mean=__a) def snake_case__ ( self, __a, __a, __a = None, __a = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCAmelCase : Union[str, Any] = randn_tensor(sample.shape, layout=sample.layout, generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr _lowerCAmelCase : Any = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Dict = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() _lowerCAmelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCAmelCase : Dict = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCAmelCase : List[Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): _lowerCAmelCase : int = step_size.unsqueeze(-1) _lowerCAmelCase : List[Any] = sample + step_size * model_output _lowerCAmelCase : Tuple = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def snake_case__ ( self, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = timesteps.to(original_samples.device) _lowerCAmelCase : Union[str, Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] _lowerCAmelCase : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) _lowerCAmelCase : int = noise + original_samples return noisy_samples def __len__( self): '''simple docstring''' return self.config.num_train_timesteps
300
1
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __a: int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1_6000 ): lowercase__ : Dict = int(round(sample_rate * max_length ) ) if len(__lowercase ) <= sample_length: return wav lowercase__ : Optional[Any] = randint(0 , len(__lowercase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field(default=__A , metadata={"help": "Name of a dataset from the datasets package"} ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={"help": "A file containing the training audio paths and labels."} ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={"help": "A file containing the validation audio paths and labels."} ) SCREAMING_SNAKE_CASE = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } , ) SCREAMING_SNAKE_CASE = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to \'validation\'" ) } , ) SCREAMING_SNAKE_CASE = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to \'audio\'"} , ) SCREAMING_SNAKE_CASE = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to \'label\'"} ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE = field( default=2_0 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) SCREAMING_SNAKE_CASE = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={"help": "Name or path of preprocessor config."} ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) SCREAMING_SNAKE_CASE = field( default=__A , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _lowerCAmelCase( self ) -> Tuple: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def __UpperCamelCase ( ): lowercase__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ : Tuple = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase__ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. lowercase__ : Optional[Any] = DatasetDict() lowercase__ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. """ '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. """ '''Make sure to set `--label_column_name` to the correct text column - one of ''' F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase__ : int = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase__ : Union[str, Any] = feature_extractor.model_input_names[0] def train_transforms(UpperCAmelCase ): lowercase__ : str = [] for audio in batch[data_args.audio_column_name]: lowercase__ : Dict = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowercase ) lowercase__ : Union[str, Any] = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) lowercase__ : Tuple = {model_input_name: inputs.get(__lowercase )} lowercase__ : int = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(UpperCAmelCase ): lowercase__ : Tuple = [audio['array'] for audio in batch[data_args.audio_column_name]] lowercase__ : Optional[Any] = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) lowercase__ : Optional[Any] = {model_input_name: inputs.get(__lowercase )} lowercase__ : Optional[int] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase__ : List[Any] = raw_datasets['train'].features[data_args.label_column_name].names lowercase__ : int = {}, {} for i, label in enumerate(__lowercase ): lowercase__ : Tuple = str(__lowercase ) lowercase__ : str = label # Load the accuracy metric from the datasets package lowercase__ : int = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(UpperCAmelCase ): lowercase__ : Optional[Any] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__lowercase , references=eval_pred.label_ids ) lowercase__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowercase ) , labelaid=__lowercase , idalabel=__lowercase , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ : List[Any] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase__ : str = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowercase , output_all_columns=__lowercase ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase__ : Tuple = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowercase , output_all_columns=__lowercase ) # Initialize our trainer lowercase__ : List[Any] = Trainer( model=__lowercase , args=__lowercase , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=__lowercase , tokenizer=__lowercase , ) # Training if training_args.do_train: lowercase__ : int = None if training_args.resume_from_checkpoint is not None: lowercase__ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ : Optional[Any] = last_checkpoint lowercase__ : List[Any] = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ : Dict = trainer.evaluate() trainer.log_metrics('''eval''' , __lowercase ) trainer.save_metrics('''eval''' , __lowercase ) # Write model card and (optionally) push to hub lowercase__ : int = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
198
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _UpperCAmelCase = """scheduler_config.json""" class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 5 lowerCamelCase_ = 6 lowerCamelCase_ = 7 lowerCamelCase_ = 8 lowerCamelCase_ = 9 lowerCamelCase_ = 1_0 lowerCamelCase_ = 1_1 lowerCamelCase_ = 1_2 lowerCamelCase_ = 1_3 lowerCamelCase_ = 1_4 @dataclass class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 42 class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = SCHEDULER_CONFIG_NAME lowerCamelCase_ = [] lowerCamelCase_ = True @classmethod def lowerCAmelCase_ ( cls , lowercase = None , lowercase = None , lowercase=False , **lowercase , ): """simple docstring""" A_ , A_ , A_ : int = cls.load_config( pretrained_model_name_or_path=lowercase , subfolder=lowercase , return_unused_kwargs=lowercase , return_commit_hash=lowercase , **lowercase , ) return cls.from_config(lowercase , return_unused_kwargs=lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = False , **lowercase ): """simple docstring""" self.save_config(save_directory=lowercase , push_to_hub=lowercase , **lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" A_ : Optional[Any] = list(set([cls.__name__] + cls._compatibles ) ) A_ : Any = importlib.import_module(__name__.split('.' )[0] ) A_ : Tuple = [ getattr(lowercase , lowercase ) for c in compatible_classes_str if hasattr(lowercase , lowercase ) ] return compatible_classes
140
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 16 UpperCamelCase__ = 32 def _a ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ): __lowerCAmelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) __lowerCAmelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : str ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="longest" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ = mocked_dataloaders # noqa: F811 def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , SCREAMING_SNAKE_CASE_ ) == "1": __lowerCAmelCase = 2 # New Code # __lowerCAmelCase = int(args.gradient_accumulation_steps ) # Initialize accelerator __lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["lr"] __lowerCAmelCase = int(config["num_epochs"] ) __lowerCAmelCase = int(config["seed"] ) __lowerCAmelCase = int(config["batch_size"] ) __lowerCAmelCase = evaluate.load("glue" , "mrpc" ) set_seed(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = output.loss accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE_ ) def _a ( ): __lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
102
def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): __lowerCAmelCase , __lowerCAmelCase = [], [] while len(SCREAMING_SNAKE_CASE_ ) > 1: __lowerCAmelCase , __lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) start.append(SCREAMING_SNAKE_CASE_ ) end.append(SCREAMING_SNAKE_CASE_ ) collection.remove(SCREAMING_SNAKE_CASE_ ) collection.remove(SCREAMING_SNAKE_CASE_ ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
102
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _A ( UpperCAmelCase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = RoCBertTokenizer _SCREAMING_SNAKE_CASE : Dict = None _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Optional[Any] = filter_non_english def __A ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() __UpperCAmelCase : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : str = {} for i, value in enumerate(lowerCamelCase__ ): __UpperCAmelCase : Optional[Any] = i __UpperCAmelCase : str = i __UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(lowerCamelCase__ , lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(lowerCamelCase__ , lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(lowerCamelCase__ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowerCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowerCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ , strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ , strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ , strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ , strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = RoCBertBasicTokenizer(do_lower_case=lowerCamelCase__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __UpperCAmelCase : Optional[int] = {} for i, token in enumerate(lowerCamelCase__ ): __UpperCAmelCase : Optional[int] = i __UpperCAmelCase : int = RoCBertWordpieceTokenizer(vocab=lowerCamelCase__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __A ( self ) -> Optional[int]: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __A ( self ) -> int: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: __UpperCAmelCase : str = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def __A ( self ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCAmelCase : List[str] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCAmelCase : List[Any] = tokenizer_r.encode_plus( lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , ) __UpperCAmelCase : Tuple = tokenizer_r.do_lower_case if hasattr(lowerCamelCase__ , """do_lower_case""" ) else False __UpperCAmelCase : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = ["的", "人", "有"] __UpperCAmelCase : Optional[int] = "".join(lowerCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCAmelCase : Any = True __UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCAmelCase : Dict = tokenizer_p.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCAmelCase : List[str] = tokenizer_r.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) __UpperCAmelCase : Tuple = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = tokenizer_r.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCAmelCase : Tuple = tokenizer_p.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCAmelCase : List[Any] = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(lowerCamelCase__ ) ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCAmelCase : Any = tokenizer.encode("""你好""" , add_special_tokens=lowerCamelCase__ ) __UpperCAmelCase : List[str] = tokenizer.encode("""你是谁""" , add_special_tokens=lowerCamelCase__ ) __UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCAmelCase : Optional[Any] = "你好,你是谁" __UpperCAmelCase : int = tokenizer.tokenize(lowerCamelCase__ ) __UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) __UpperCAmelCase : Any = tokenizer.convert_tokens_to_shape_ids(lowerCamelCase__ ) __UpperCAmelCase : int = tokenizer.convert_tokens_to_pronunciation_ids(lowerCamelCase__ ) __UpperCAmelCase : int = tokenizer.prepare_for_model( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = tokenizer.encode_plus(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
254
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 50 ): _UpperCAmelCase : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
234
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def SCREAMING_SNAKE_CASE_ () -> Union[str, Any]: lowerCamelCase__ : Union[str, Any] = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } lowerCamelCase__ : Optional[Any] = Dataset.from_dict(UpperCamelCase ) return dataset class _lowercase ( _lowercase ): def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Any = get_dataset() lowerCamelCase__ : int = make_duplicate_clusters(UpperCamelCase__ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : str = get_dataset() lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = deduplicate_dataset(UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 2 ) print(UpperCamelCase__ ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , UpperCamelCase__ )
129
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _A : str ={ '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Union[str, Any] ={ '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Dict ={ '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Dict ={ '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } _A : str ={ '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } _A : int ={ '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if isinstance(UpperCamelCase , UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ) -> Any: lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] lowerCamelCase__ : Optional[Any] = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] lowerCamelCase__ : str = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.skip_connection.weight'''] lowerCamelCase__ : List[Any] = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ) -> str: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.norm.weight'''] lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.norm.bias'''] lowerCamelCase__ : List[Any] = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : List[Any] = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Any = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Union[str, Any] = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCamelCase__ : str = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Optional[int] = checkpoint["""time_embed.0.weight"""] lowerCamelCase__ : List[Any] = checkpoint["""time_embed.0.bias"""] lowerCamelCase__ : int = checkpoint["""time_embed.2.weight"""] lowerCamelCase__ : Optional[Any] = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: lowerCamelCase__ : Optional[Any] = checkpoint["""label_emb.weight"""] lowerCamelCase__ : Tuple = checkpoint["""input_blocks.0.0.weight"""] lowerCamelCase__ : List[str] = checkpoint["""input_blocks.0.0.bias"""] lowerCamelCase__ : Optional[Any] = unet_config["""down_block_types"""] lowerCamelCase__ : Any = unet_config["""layers_per_block"""] lowerCamelCase__ : Any = unet_config["""attention_head_dim"""] lowerCamelCase__ : List[Any] = unet_config["""block_out_channels"""] lowerCamelCase__ : str = 1 lowerCamelCase__ : str = channels_list[0] for i, layer_type in enumerate(UpperCamelCase ): lowerCamelCase__ : List[Any] = channels_list[i] lowerCamelCase__ : List[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCamelCase ): lowerCamelCase__ : int = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Tuple = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : List[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCamelCase ): lowerCamelCase__ : Tuple = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : str = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) lowerCamelCase__ : Any = f'''down_blocks.{i}.attentions.{j}''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.1''' lowerCamelCase__ : Tuple = convert_attention( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Tuple = f'''down_blocks.{i}.downsamplers.0''' lowerCamelCase__ : str = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 lowerCamelCase__ : Union[str, Any] = current_channels # hardcoded the mid-block for now lowerCamelCase__ : Any = """mid_block.resnets.0""" lowerCamelCase__ : Optional[Any] = """middle_block.0""" lowerCamelCase__ : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : List[Any] = """mid_block.attentions.0""" lowerCamelCase__ : Dict = """middle_block.1""" lowerCamelCase__ : int = convert_attention(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Any = """mid_block.resnets.1""" lowerCamelCase__ : Tuple = """middle_block.2""" lowerCamelCase__ : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Any = unet_config["""up_block_types"""] for i, layer_type in enumerate(UpperCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : int = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Any = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Dict = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : List[str] = f'''output_blocks.{current_layer-1}.1''' lowerCamelCase__ : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : str = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : List[Any] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) lowerCamelCase__ : Optional[Any] = f'''up_blocks.{i}.attentions.{j}''' lowerCamelCase__ : Any = f'''output_blocks.{current_layer}.1''' lowerCamelCase__ : Optional[int] = convert_attention( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Tuple = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : Tuple = f'''output_blocks.{current_layer-1}.2''' lowerCamelCase__ : List[str] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Dict = checkpoint["""out.0.weight"""] lowerCamelCase__ : Dict = checkpoint["""out.0.bias"""] lowerCamelCase__ : Dict = checkpoint["""out.2.weight"""] lowerCamelCase__ : Tuple = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": _A : Tuple =argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') _A : Tuple =parser.parse_args() _A : Optional[int] =strabool(args.class_cond) _A : List[str] =os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: _A : int =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Tuple =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _A : Any =TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: _A : str =None _A : Optional[int] =con_pt_to_diffuser(args.unet_path, unet_config) _A : Optional[int] =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _A : Tuple =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _A : int =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Union[str, Any] =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') _A : str =CMStochasticIterativeScheduler(**scheduler_config) _A : Optional[Any] =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
129
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _lowercase ( ) -> Generator[int, None, None]: __lowerCAmelCase : dict[int, int] = {} __lowerCAmelCase : List[Any] = 2 while True: __lowerCAmelCase : int = factor_map.pop(__snake_case ,__snake_case ) if factor: __lowerCAmelCase : Union[str, Any] = factor + prime while x in factor_map: x += factor __lowerCAmelCase : str = factor else: __lowerCAmelCase : List[str] = prime yield prime prime += 1 def _lowercase ( __snake_case = 1e1_0 ) -> int: __lowerCAmelCase : List[Any] = sieve() __lowerCAmelCase : List[Any] = 1 while True: __lowerCAmelCase : Union[str, Any] = next(__snake_case ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__snake_case ) n += 2 if __name__ == "__main__": print(solution())
269
"""simple docstring""" import os from math import logaa def _lowercase ( __snake_case = "base_exp.txt" ) -> int: __lowerCAmelCase : float = 0 __lowerCAmelCase : Any = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ) ,__snake_case ) ) ): __lowerCAmelCase , __lowerCAmelCase : List[str] = list(map(__snake_case ,line.split("," ) ) ) if x * logaa(__snake_case ) > largest: __lowerCAmelCase : Tuple = x * logaa(__snake_case ) __lowerCAmelCase : Optional[Any] = i + 1 return result if __name__ == "__main__": print(solution())
269
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) UpperCamelCase_ = logging.getLogger(__name__) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) UpperCamelCase_ = parser.parse_args() logger.info(F"Loading data from {args.data_file}") with open(args.data_file, '''rb''') as fp: UpperCamelCase_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') UpperCamelCase_ = Counter() for tk_ids in data: counter.update(tk_ids) UpperCamelCase_ = [0] * args.vocab_size for k, v in counter.items(): UpperCamelCase_ = v logger.info(F"Dump to {args.token_counts_dump}") with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
359
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger() @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : List[nn.Module] = field(default_factory=__snake_case ) A__ : list = field(default_factory=__snake_case ) def A__ ( self: str ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tensor ,lowerCamelCase_: Tensor ) -> Optional[int]: UpperCAmelCase_ : Dict = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase_ ,nn.Convad ) or isinstance(lowerCamelCase_ ,nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase_ ) def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Dict: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase_ ) [x.remove() for x in self.handles] return self @property def A__ ( self: List[str] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : nn.Module A__ : int = 1 A__ : List = field(default_factory=__snake_case ) A__ : List = field(default_factory=__snake_case ) A__ : bool = True def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Optional[Any]: UpperCAmelCase_ : List[str] = Tracker(self.dest )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : Any = Tracker(self.src )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : int = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.src_skip ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.dest_skip ,lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase_ )} operations while''' F''' destination module has {len(lowerCamelCase_ )}.''' ) for dest_m, src_m in zip(lowerCamelCase_ ,lowerCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self: List[str] ,lowerCamelCase_: nn.Module ) -> List[str]: super().__init__() UpperCAmelCase_ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F'''Unexpected layer name {k}''' UpperCAmelCase_ : Tuple = len(lowerCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) UpperCAmelCase_ : Optional[int] = nn.ModuleDict(lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tensor ) -> List[str]: return get_trunk_forward_outputs( lowerCamelCase_ ,out_feat_keys=lowerCamelCase_ ,feature_blocks=self._feature_blocks ,) class _snake_case ( __snake_case ): '''simple docstring''' def A__ ( self: Dict ,lowerCamelCase_: str ) -> str: UpperCAmelCase_ : str = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: UpperCAmelCase_ : str = self.convert_name_to_timm(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = partial(lambda: (timm.create_model(lowerCamelCase_ ,pretrained=lowerCamelCase_ ).eval(), None) ) else: UpperCAmelCase_ : Optional[int] = super().__getitem__(lowerCamelCase_ ) return val class _snake_case ( __snake_case ): '''simple docstring''' def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: UpperCAmelCase_ : Tuple = RegNetModel else: UpperCAmelCase_ : Union[str, Any] = RegNetForImageClassification return val def lowerCamelCase_ ( _a : str , _a : int , _a : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: UpperCAmelCase_ : int = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def lowerCamelCase_ ( _a : str , _a : Callable[[], nn.Module] , _a : Callable[[], nn.Module] , _a : RegNetConfig , _a : Path , _a : bool = True , ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ : Any = from_model_func() UpperCAmelCase_ : str = our_model_func(_a ).eval() UpperCAmelCase_ : List[Any] = ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) UpperCAmelCase_ : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: UpperCAmelCase_ : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : List[Any] = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] UpperCAmelCase_ : str = manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) UpperCAmelCase_ : Union[str, Any] = our_model(_a , output_hidden_states=_a ) UpperCAmelCase_ : int = ( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : Optional[int] = from_model(_a ) UpperCAmelCase_ : List[Any] = from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=_a , ) UpperCAmelCase_ : Union[str, Any] = 224 if """seer""" not in name else 384 # we can use the convnext one UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=_a , ) print(F'''Pushed {name}''' ) def lowerCamelCase_ ( _a : Path , _a : str = None , _a : bool = True ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" UpperCAmelCase_ : List[Any] = 1000 UpperCAmelCase_ : Any = (1, num_labels) UpperCAmelCase_ : Tuple = """huggingface/label-files""" UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase_ : Union[str, Any] = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) UpperCAmelCase_ : List[Any] = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } UpperCAmelCase_ : List[Any] = NameToOurModelFuncMap() UpperCAmelCase_ : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_a : str , _a : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location="""cpu""" ) UpperCAmelCase_ : Union[str, Any] = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Optional[Any] = files["""classy_state_dict"""]["""base_model"""]["""model"""] UpperCAmelCase_ : Optional[Any] = model_state_dict["""trunk"""] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : str = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Tuple = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Any = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
59
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = KandinskyVaaControlnetPipeline __UpperCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] __UpperCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] __UpperCamelCase = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __UpperCamelCase = False @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' torch.manual_seed(0 ) A_ : Union[str, Any] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } A_ : List[Any] = UNetaDConditionModel(**snake_case ) return model @property def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' torch.manual_seed(0 ) A_ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : List[Any] = self.dummy_unet A_ : Union[str, Any] = self.dummy_movq A_ : List[str] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=snake_case , set_alpha_to_one=snake_case , steps_offset=1 , prediction_type="epsilon" , thresholding=snake_case , ) A_ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :List[Any] , snake_case :Optional[int]=0 ): '''simple docstring''' A_ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case ) ).to(snake_case ) A_ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case ) # create hint A_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case ) ).to(snake_case ) if str(snake_case ).startswith("mps" ): A_ : str = torch.manual_seed(snake_case ) else: A_ : Optional[int] = torch.Generator(device=snake_case ).manual_seed(snake_case ) A_ : int = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = "cpu" A_ : List[str] = self.get_dummy_components() A_ : Union[str, Any] = self.pipeline_class(**snake_case ) A_ : Optional[Any] = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A_ : Any = pipe(**self.get_dummy_inputs(snake_case ) ) A_ : Dict = output.images A_ : Union[str, Any] = pipe( **self.get_dummy_inputs(snake_case ) , return_dict=snake_case , )[0] A_ : Union[str, Any] = image[0, -3:, -3:, -1] A_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : int = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) A_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) A_ : Optional[int] = torch.from_numpy(np.array(snake_case ) ).float() / 255.0 A_ : List[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) A_ : List[str] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case ) A_ : Optional[int] = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) A_ : Dict = pipeline.to(snake_case ) pipeline.set_progress_bar_config(disable=snake_case ) A_ : int = "A robot, 4k photo" A_ : Tuple = torch.Generator(device="cuda" ).manual_seed(0 ) A_ , A_ : List[str] = pipe_prior( snake_case , generator=snake_case , num_inference_steps=5 , negative_prompt="" , ).to_tuple() A_ : List[Any] = torch.Generator(device="cuda" ).manual_seed(0 ) A_ : Tuple = pipeline( image_embeds=snake_case , negative_image_embeds=snake_case , hint=snake_case , generator=snake_case , num_inference_steps=100 , output_type="np" , ) A_ : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case , snake_case )
300
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :AutoencoderKL , snake_case :CLIPTextModel , snake_case :CLIPTokenizer , snake_case :UNetaDConditionModel , snake_case :Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case :StableDiffusionSafetyChecker , snake_case :CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self :Any , snake_case :Union[str, List[str]] , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 50 , snake_case :float = 7.5 , snake_case :Optional[Union[str, List[str]]] = None , snake_case :Optional[int] = 1 , snake_case :float = 0.0 , snake_case :Optional[torch.Generator] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case :int = 1 , snake_case :Optional[torch.FloatTensor] = None , **snake_case :Optional[Any] , ): '''simple docstring''' if isinstance(snake_case , snake_case ): A_ : Dict = 1 elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = len(snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case )}." ) # get prompt text embeddings A_ : int = self.tokenizer( snake_case , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A_ : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ : int = text_embeddings.shape A_ : List[str] = text_embeddings.repeat(1 , snake_case , 1 ) A_ : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : List[str] = [""] elif type(snake_case ) is not type(snake_case ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=" f" {type(snake_case )}." ) elif isinstance(snake_case , snake_case ): A_ : Optional[Any] = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: A_ : Any = negative_prompt A_ : Optional[int] = text_input_ids.shape[-1] A_ : Dict = self.tokenizer( snake_case , padding="max_length" , max_length=snake_case , truncation=snake_case , return_tensors="pt" , ) A_ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Tuple = uncond_embeddings.shape[1] A_ : Dict = uncond_embeddings.repeat(snake_case , snake_case , 1 ) A_ : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to(self.device ) A_ : Optional[Any] = torch.randn(snake_case , generator=snake_case , device="cpu" , dtype=snake_case ).to( self.device ) else: A_ : int = torch.randn( snake_case , generator=snake_case , device=self.device , dtype=snake_case ) A_ : Optional[int] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A_ : Tuple = latents_reference.to(self.device ) A_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : Dict = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : List[str] = max(-dx , 0 ) A_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : List[str] = {} if accepts_eta: A_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance A_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual A_ : List[str] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) A_ : List[str] = 1 / 0.18215 * latents A_ : Tuple = self.vae.decode(snake_case ).sample A_ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : int = self.feature_extractor(self.numpy_to_pil(snake_case ) , return_tensors="pt" ).to( self.device ) A_ , A_ : List[str] = self.safety_checker( images=snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : List[str] = None if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
300
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCamelCase_ = logging.get_logger(__name__) # General docstring UpperCamelCase_ = 'ResNetConfig' # Base docstring UpperCamelCase_ = 'microsoft/resnet-50' UpperCamelCase_ = [1, 2048, 7, 7] # Image classification docstring UpperCamelCase_ = 'microsoft/resnet-50' UpperCamelCase_ = 'tiger cat' UpperCamelCase_ = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 3 , __UpperCAmelCase = 1 , __UpperCAmelCase = "relu") ->Union[str, Any]: super().__init__() a_ = nn.Convad( __UpperCAmelCase , __UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=kernel_size // 2 , bias=__UpperCAmelCase) a_ = nn.BatchNormad(__UpperCAmelCase) a_ = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = self.convolution(__UpperCAmelCase) a_ = self.normalization(__UpperCAmelCase) a_ = self.activation(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase) ->Any: super().__init__() a_ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act) a_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1) a_ = config.num_channels def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration.") a_ = self.embedder(__UpperCAmelCase) a_ = self.pooler(__UpperCAmelCase) return embedding class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 2) ->List[str]: super().__init__() a_ = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , stride=__UpperCAmelCase , bias=__UpperCAmelCase) a_ = nn.BatchNormad(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = self.convolution(__UpperCAmelCase) a_ = self.normalization(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = "relu") ->Union[str, Any]: super().__init__() a_ = in_channels != out_channels or stride != 1 a_ = ( ResNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) if should_apply_shortcut else nn.Identity() ) a_ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , activation=__UpperCAmelCase) , ) a_ = ACTaFN[activation] def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[Any]: a_ = hidden_state a_ = self.layer(__UpperCAmelCase) a_ = self.shortcut(__UpperCAmelCase) hidden_state += residual a_ = self.activation(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = "relu" , __UpperCAmelCase = 4) ->Dict: super().__init__() a_ = in_channels != out_channels or stride != 1 a_ = out_channels // reduction a_ = ( ResNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) if should_apply_shortcut else nn.Identity() ) a_ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=__UpperCAmelCase) , ) a_ = ACTaFN[activation] def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: a_ = hidden_state a_ = self.layer(__UpperCAmelCase) a_ = self.shortcut(__UpperCAmelCase) hidden_state += residual a_ = self.activation(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , ) ->str: super().__init__() a_ = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer a_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , activation=config.hidden_act) , *[layer(__UpperCAmelCase , __UpperCAmelCase , activation=config.hidden_act) for _ in range(depth - 1)] , ) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = input for layer in self.layers: a_ = layer(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase) ->List[Any]: super().__init__() a_ = nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) a_ = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(__UpperCAmelCase , config.depths[1:]): self.stages.append(ResNetStage(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , depth=__UpperCAmelCase)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True) ->BaseModelOutputWithNoAttention: a_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a_ = hidden_states + (hidden_state,) a_ = stage_module(__UpperCAmelCase) if output_hidden_states: a_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = ResNetConfig a_ : List[Any] = """resnet""" a_ : Tuple = """pixel_values""" a_ : Any = True def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: if isinstance(__UpperCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu") elif isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False) ->List[Any]: if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = value UpperCamelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase) ->Tuple: super().__init__(__UpperCAmelCase) a_ = config a_ = ResNetEmbeddings(__UpperCAmelCase) a_ = ResNetEncoder(__UpperCAmelCase) a_ = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None) ->BaseModelOutputWithPoolingAndNoAttention: a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.embedder(__UpperCAmelCase) a_ = self.encoder( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase) a_ = encoder_outputs[0] a_ = self.pooler(__UpperCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase , pooler_output=__UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase) ->Union[str, Any]: super().__init__(__UpperCAmelCase) a_ = config.num_labels a_ = ResNetModel(__UpperCAmelCase) # classification head a_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) ->ImageClassifierOutputWithNoAttention: a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.resnet(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase) a_ = outputs.pooler_output if return_dict else outputs[1] a_ = self.classifier(__UpperCAmelCase) a_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a_ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a_ = "single_label_classification" else: a_ = "multi_label_classification" if self.config.problem_type == "regression": a_ = MSELoss() if self.num_labels == 1: a_ = loss_fct(logits.squeeze() , labels.squeeze()) else: a_ = loss_fct(__UpperCAmelCase , __UpperCAmelCase) elif self.config.problem_type == "single_label_classification": a_ = CrossEntropyLoss() a_ = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": a_ = BCEWithLogitsLoss() a_ = loss_fct(__UpperCAmelCase , __UpperCAmelCase) if not return_dict: a_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase) ->Dict: super().__init__(__UpperCAmelCase) super()._init_backbone(__UpperCAmelCase) a_ = [config.embedding_size] + config.hidden_sizes a_ = ResNetEmbeddings(__UpperCAmelCase) a_ = ResNetEncoder(__UpperCAmelCase) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase) @replace_return_docstrings(output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None) ->BackboneOutput: a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = self.embedder(__UpperCAmelCase) a_ = self.encoder(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase) a_ = outputs.hidden_states a_ = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: a_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=__UpperCAmelCase , )
303
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=50 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Dict: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = use_labels a_ = scope def UpperCAmelCase__ ( self) ->Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->List[str]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->str: a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = True a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->List[str]: a_ = True a_ = True a_ = BertGenerationDecoder(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() # first forward pass a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ) ->Tuple: a_ = BertGenerationDecoder(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self) ->str: a_ , a_ , a_ , a_ = self.prepare_config_and_inputs() a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a_ : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () a_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = BertGenerationEncoderTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = "bert" self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__UpperCAmelCase) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->int: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4))
303
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='imagegpt' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={ 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , a_=5_12 + 1 , a_=32 * 32 , a_=5_12 , a_=24 , a_=8 , a_=None , a_="quick_gelu" , a_=0.1 , a_=0.1 , a_=0.1 , a_=1E-5 , a_=0.02 , a_=True , a_=True , a_=False , a_=False , a_=False , **a_ , ): '''simple docstring''' __snake_case : Dict = vocab_size __snake_case : int = n_positions __snake_case : int = n_embd __snake_case : List[Any] = n_layer __snake_case : Any = n_head __snake_case : List[Any] = n_inner __snake_case : Tuple = activation_function __snake_case : Optional[Any] = resid_pdrop __snake_case : str = embd_pdrop __snake_case : List[str] = attn_pdrop __snake_case : Dict = layer_norm_epsilon __snake_case : List[Any] = initializer_range __snake_case : Any = scale_attn_weights __snake_case : List[str] = use_cache __snake_case : int = scale_attn_by_inverse_layer_idx __snake_case : Optional[int] = reorder_and_upcast_attn __snake_case : Dict = tie_word_embeddings super().__init__(tie_word_embeddings=a_ , **a_ ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = 1 , a_ = -1 , a_ = False , a_ = None , a_ = 3 , a_ = 32 , a_ = 32 , ): '''simple docstring''' __snake_case : List[Any] = self._generate_dummy_images(a_ , a_ , a_ , a_ ) __snake_case : List[Any] = dict(preprocessor(images=a_ , return_tensors=a_ ) ) return inputs
102
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' super().__init__() self.register_modules( vae=a_ , text_encoder=a_ , tokenizer=a_ , unet=a_ , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , ) def SCREAMING_SNAKE_CASE (self , a_ = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.enable_attention_slicing(a_ ) @torch.no_grad() def __call__(self , a_ , a_ = 5_12 , a_ = 5_12 , a_ = 50 , a_ = 7.5 , a_ = None , a_ = 1 , a_ = 0.0 , a_ = None , a_ = None , a_ = "pil" , a_ = True , a_ = None , a_ = 1 , a_ = None , **a_ , ): '''simple docstring''' if isinstance(a_ , a_ ): __snake_case : Any = 1 elif isinstance(a_ , a_ ): __snake_case : Any = len(a_ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a_ , a_ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(a_ )}.""" ) # get prompt text embeddings __snake_case : int = self.tokenizer( a_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __snake_case : int = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __snake_case : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __snake_case : Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Union[str, Any] = text_embeddings.shape __snake_case : Optional[int] = text_embeddings.repeat(1 , a_ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , a_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : List[Any] = [''''''] elif type(a_ ) is not type(a_ ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(a_ )} !=""" f""" {type(a_ )}.""" ) elif isinstance(a_ , a_ ): __snake_case : List[str] = [negative_prompt] elif batch_size != len(a_ ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(a_ )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: __snake_case : Optional[int] = negative_prompt __snake_case : Optional[int] = text_input_ids.shape[-1] __snake_case : List[Any] = self.tokenizer( a_ , padding='''max_length''' , max_length=a_ , truncation=a_ , return_tensors='''pt''' , ) __snake_case : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : str = uncond_embeddings.shape[1] __snake_case : int = uncond_embeddings.repeat(a_ , a_ , 1 ) __snake_case : int = uncond_embeddings.view(batch_size * num_images_per_prompt , a_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __snake_case : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Union[str, Any] = torch.randn( a_ , generator=a_ , device='''cpu''' , dtype=a_ ).to(self.device ) __snake_case : Tuple = torch.randn(a_ , generator=a_ , device='''cpu''' , dtype=a_ ).to( self.device ) else: __snake_case : Dict = torch.randn( a_ , generator=a_ , device=self.device , dtype=a_ ) __snake_case : Dict = torch.randn(a_ , generator=a_ , device=self.device , dtype=a_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __snake_case : Union[str, Any] = latents_reference.to(self.device ) __snake_case : Dict = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __snake_case : int = (latents_shape[3] - latents_shape_reference[3]) // 2 __snake_case : Tuple = (latents_shape[2] - latents_shape_reference[2]) // 2 __snake_case : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __snake_case : Union[str, Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __snake_case : int = 0 if dx < 0 else dx __snake_case : Union[str, Any] = 0 if dy < 0 else dy __snake_case : str = max(-dx , 0 ) __snake_case : Tuple = max(-dy , 0 ) # import pdb # pdb.set_trace() __snake_case : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(a_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : Tuple = {} if accepts_eta: __snake_case : List[str] = eta for i, t in enumerate(self.progress_bar(a_ ) ): # expand the latents if we are doing classifier free guidance __snake_case : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Tuple = self.scheduler.scale_model_input(a_ , a_ ) # predict the noise residual __snake_case : int = self.unet(a_ , a_ , encoder_hidden_states=a_ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : Tuple = noise_pred.chunk(2 ) __snake_case : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a_ , a_ , a_ ) __snake_case : Union[str, Any] = 1 / 0.1_8215 * latents __snake_case : Optional[Any] = self.vae.decode(a_ ).sample __snake_case : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __snake_case : Optional[int] = self.feature_extractor(self.numpy_to_pil(a_ ) , return_tensors='''pt''' ).to( self.device ) __snake_case , __snake_case : List[Any] = self.safety_checker( images=a_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __snake_case : Union[str, Any] = None if output_type == "pil": __snake_case : Union[str, Any] = self.numpy_to_pil(a_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=a_ , nsfw_content_detected=a_ )
102
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 snake_case_ = None def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=0.9_99 , UpperCamelCase__ : Dict="cosine" , ) -> Any: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : str ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : int ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowerCamelCase = [] for i in range(UpperCamelCase__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 1_000 , lowerCamelCase__ = "fixed_small_log" , lowerCamelCase__ = True , lowerCamelCase__ = 1.0 , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = "squaredcos_cap_v2" , ) -> Union[str, Any]: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) __lowerCamelCase = betas_for_alpha_bar(lowerCamelCase__ ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) __lowerCamelCase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __lowerCamelCase = 1.0 # setable values __lowerCamelCase = None __lowerCamelCase = torch.from_numpy(np.arange(0 , lowerCamelCase__ )[::-1].copy() ) __lowerCamelCase = variance_type def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' return sample def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = num_inference_steps __lowerCamelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __lowerCamelCase = (np.arange(0 , lowerCamelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __lowerCamelCase = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ) -> Union[str, Any]: '''simple docstring''' if prev_timestep is None: __lowerCamelCase = t - 1 __lowerCamelCase = self.alphas_cumprod[t] __lowerCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowerCamelCase = 1 - alpha_prod_t __lowerCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowerCamelCase = self.betas[t] else: __lowerCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowerCamelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __lowerCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __lowerCamelCase = torch.log(torch.clamp(lowerCamelCase__ , min=1e-20 ) ) __lowerCamelCase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __lowerCamelCase = variance.log() __lowerCamelCase = beta.log() __lowerCamelCase = (predicted_variance + 1) / 2 __lowerCamelCase = frac * max_log + (1 - frac) * min_log return variance def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__=None , lowerCamelCase__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' __lowerCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __lowerCamelCase , __lowerCamelCase = torch.split(lowerCamelCase__ , sample.shape[1] , dim=1 ) else: __lowerCamelCase = None # 1. compute alphas, betas if prev_timestep is None: __lowerCamelCase = t - 1 __lowerCamelCase = self.alphas_cumprod[t] __lowerCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowerCamelCase = 1 - alpha_prod_t __lowerCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowerCamelCase = self.betas[t] __lowerCamelCase = self.alphas[t] else: __lowerCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev __lowerCamelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowerCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowerCamelCase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowerCamelCase = torch.clamp( lowerCamelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __lowerCamelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowerCamelCase = 0 if t > 0: __lowerCamelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase__ , device=model_output.device ) __lowerCamelCase = self._get_variance( lowerCamelCase__ , predicted_variance=lowerCamelCase__ , prev_timestep=lowerCamelCase__ , ) if self.variance_type == "fixed_small_log": __lowerCamelCase = variance elif self.variance_type == "learned_range": __lowerCamelCase = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ' for the UnCLIPScheduler.' ) __lowerCamelCase = variance * variance_noise __lowerCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> torch.FloatTensor: '''simple docstring''' # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __lowerCamelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = alphas_cumprod[timesteps] ** 0.5 __lowerCamelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __lowerCamelCase = sqrt_alpha_prod.unsqueeze(-1 ) __lowerCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCamelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __lowerCamelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __lowerCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
348
import requests __A = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> None: """simple docstring""" __lowerCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
348
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : Optional[Any] ={ 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] =[ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __snake_case : int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __snake_case : Dict =logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,**__lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**__lowerCamelCase ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__(self ,__lowerCamelCase ,**__lowerCamelCase ) -> List[Any]: """simple docstring""" return super().__call__(__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : str = {} if "candidate_labels" in kwargs: lowerCAmelCase__ : List[str] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowerCAmelCase__ : int = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=None ,__lowerCamelCase="This is a sound of {}." ) -> str: """simple docstring""" if isinstance(__lowerCamelCase ,__lowerCamelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCAmelCase__ : List[str] = requests.get(__lowerCamelCase ).content else: with open(__lowerCamelCase ,'''rb''' ) as f: lowerCAmelCase__ : int = f.read() if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Tuple = ffmpeg_read(__lowerCamelCase ,self.feature_extractor.sampling_rate ) if not isinstance(__lowerCamelCase ,np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) lowerCAmelCase__ : Any = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors='''pt''' ) lowerCAmelCase__ : Union[str, Any] = candidate_labels lowerCAmelCase__ : str = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels] lowerCAmelCase__ : Any = self.tokenizer(__lowerCamelCase ,return_tensors=self.framework ,padding=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = [text_inputs] return inputs def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = model_inputs.pop('''candidate_labels''' ) lowerCAmelCase__ : List[str] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,__lowerCamelCase ): lowerCAmelCase__ : List[str] = text_inputs[0] else: # Batching case. lowerCAmelCase__ : List[str] = text_inputs[0][0] lowerCAmelCase__ : Union[str, Any] = self.model(**__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : Any = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[int] = model_outputs.pop('''candidate_labels''' ) lowerCAmelCase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowerCAmelCase__ : str = logits.softmax(dim=0 ) lowerCAmelCase__ : Dict = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) lowerCAmelCase__ : Any = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase ,__lowerCamelCase ) ,key=lambda __lowerCamelCase : -x[0] ) ] return result
129
1
"""simple docstring""" from torch import nn class lowercase( nn.Module ): '''simple docstring''' def __init__( self: List[Any], a_: Optional[int], a_: Union[str, Any] ): '''simple docstring''' super().__init__() _snake_case : Tuple = class_size _snake_case : List[str] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _snake_case : Optional[int] = nn.Linear(a_, a_ ) def UpperCamelCase_ ( self: Dict, a_: Tuple ): '''simple docstring''' _snake_case : str = self.mlp(a_ ) return logits
369
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def UpperCAmelCase__ (snake_case__ : int = 3 ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(snake_case__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) _snake_case : Optional[int] = QuantumRegister(snake_case__ , """qr""" ) _snake_case : List[Any] = ClassicalRegister(snake_case__ , """cr""" ) _snake_case : Optional[int] = QuantumCircuit(snake_case__ , snake_case__ ) _snake_case : Dict = number_of_qubits for i in range(snake_case__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case__ , snake_case__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case__ , snake_case__ ) # simulate with 10000 shots _snake_case : Optional[int] = Aer.get_backend("""qasm_simulator""" ) _snake_case : Optional[int] = execute(snake_case__ , snake_case__ , shots=1_00_00 ) return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
132
0
def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : list[list[int]] = [[0 for _ in range(__snake_case )] for _ in range(m + 1 )] for i in range(m + 1 ): UpperCAmelCase_ : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , __snake_case ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __UpperCAmelCase = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __UpperCAmelCase = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
__lowerCamelCase = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case : List[Any] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
59
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ ={'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={'vocab_file': 'spiece.model'} UpperCamelCase__ ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCamelCase__ ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase__ ='▁' class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _SCREAMING_SNAKE_CASE : List[Any] = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Dict = do_lower_case _SCREAMING_SNAKE_CASE : List[Any] = remove_space _SCREAMING_SNAKE_CASE : str = keep_accents _SCREAMING_SNAKE_CASE : Optional[int] = vocab_file _SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase_ ( self ) -> Optional[Any]: return len(self.sp_model ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.__dict__.copy() _SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE : Optional[int] = {} _SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[int]: if self.remove_space: _SCREAMING_SNAKE_CASE : List[str] = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = inputs _SCREAMING_SNAKE_CASE : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE : str = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE : Dict = outputs.lower() return outputs def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[str]: _SCREAMING_SNAKE_CASE : int = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE : Union[str, Any] = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: return self.sp_model.IdToPiece(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = "" _SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] _SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> List[int]: _SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] _SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
325
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowercase_ = logging.getLogger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : str , _A : Dict , _A : int , _A : int=None ): """simple docstring""" super().__init__( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) __SCREAMING_SNAKE_CASE : Optional[int] = None def UpperCAmelCase__ ( self : List[str] , _A : int ): """simple docstring""" logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually __SCREAMING_SNAKE_CASE : Any = self._infer_socket_ifname() # avoid clash with the NCCL port __SCREAMING_SNAKE_CASE : int = str(distributed_port + 1 ) __SCREAMING_SNAKE_CASE : List[str] = dist.new_group(ranks=_A , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def UpperCAmelCase__ ( self : Tuple , _A : Optional[Any] , _A : Any , _A : Union[str, Any]=torch.floataa ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = torch.empty(_A , dtype=_A ) dist.scatter(_A , src=0 , scatter_list=_A , group=self.process_group ) return target_tensor def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __SCREAMING_SNAKE_CASE : List[str] = next((addr for addr in addrs if addr.startswith('''e''' )) , _A ) return ifname def UpperCAmelCase__ ( self : Any , _A : np.ndarray , _A : int ): """simple docstring""" if not dist.is_initialized(): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(_A , _A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A ) # distributed training __SCREAMING_SNAKE_CASE : Dict = dist.get_world_size(group=self.process_group ) # gather logic __SCREAMING_SNAKE_CASE : Any = None if self._is_main(): __SCREAMING_SNAKE_CASE : Any = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_A )] dist.gather(torch.tensor(_A ) , dst=0 , gather_list=_A , group=self.process_group ) # scatter logic __SCREAMING_SNAKE_CASE : List[Any] = question_hidden_states.shape[0] __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : List[Any] = [] if self._is_main(): assert len(_A ) == world_size __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = self._main_retrieve(torch.cat(_A ).numpy() , _A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = torch.tensor(_A ), torch.tensor(_A ) __SCREAMING_SNAKE_CASE : str = self._chunk_tensor(_A , _A ) __SCREAMING_SNAKE_CASE : Any = self._chunk_tensor(_A , _A ) __SCREAMING_SNAKE_CASE : str = self._scattered(_A , [n_queries, n_docs] , target_type=torch.intaa ) __SCREAMING_SNAKE_CASE : Any = self._scattered(_A , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_A )
303
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
303
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = FunnelConfig.from_json_file(_lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase = FunnelBaseModel(_lowerCamelCase ) if base_model else FunnelModel(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
363
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = TypeVar("""DatasetType""", Dataset, IterableDataset) def lowercase( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(UpperCamelCase_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase_ ).__name__}.""" ) if i == 0: UpperCamelCase , UpperCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , stopping_strategy=UpperCamelCase_ ) else: return _interleave_iterable_datasets( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , stopping_strategy=UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(UpperCamelCase_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase_ ).__name__}.""" ) if i == 0: UpperCamelCase , UpperCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , axis=UpperCamelCase_ ) else: return _concatenate_iterable_datasets(UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , axis=UpperCamelCase_ )
165
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor __lowerCamelCase : Optional[torch.FloatTensor] = None def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=0.999 , __lowerCAmelCase="cosine" , )-> str: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase : Optional[int] =[] for i in range(__lowerCAmelCase ): UpperCAmelCase : Tuple =i / num_diffusion_timesteps UpperCAmelCase : List[Any] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ = 1000 , snake_case__ = "fixed_small_log" , snake_case__ = True , snake_case__ = 1.0 , snake_case__ = "epsilon" , snake_case__ = "squaredcos_cap_v2" , ) -> Optional[int]: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) UpperCAmelCase : Any =betas_for_alpha_bar(snake_case__ ) UpperCAmelCase : Optional[int] =1.0 - self.betas UpperCAmelCase : Optional[int] =torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase : Optional[int] =torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase : Optional[Any] =1.0 # setable values UpperCAmelCase : Any =None UpperCAmelCase : Union[str, Any] =torch.from_numpy(np.arange(0 , snake_case__ )[::-1].copy() ) UpperCAmelCase : List[str] =variance_type def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> torch.FloatTensor: '''simple docstring''' return sample def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =num_inference_steps UpperCAmelCase : Any =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase : List[Any] =(np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase : Tuple =torch.from_numpy(snake_case__ ).to(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None ) -> Tuple: '''simple docstring''' if prev_timestep is None: UpperCAmelCase : str =t - 1 UpperCAmelCase : Optional[int] =self.alphas_cumprod[t] UpperCAmelCase : Dict =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Dict =1 - alpha_prod_t UpperCAmelCase : int =1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : List[str] =self.betas[t] else: UpperCAmelCase : Dict =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase : Dict =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase : int =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase : Union[str, Any] =torch.log(torch.clamp(snake_case__ , min=1e-20 ) ) UpperCAmelCase : Optional[Any] =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase : Any =variance.log() UpperCAmelCase : Dict =beta.log() UpperCAmelCase : Dict =(predicted_variance + 1) / 2 UpperCAmelCase : List[Any] =frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__=None , snake_case__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' UpperCAmelCase : str =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase , UpperCAmelCase : Union[str, Any] =torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: UpperCAmelCase : int =None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase : List[str] =t - 1 UpperCAmelCase : Optional[Any] =self.alphas_cumprod[t] UpperCAmelCase : List[Any] =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Union[str, Any] =1 - alpha_prod_t UpperCAmelCase : int =1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : List[Any] =self.betas[t] UpperCAmelCase : Tuple =self.alphas[t] else: UpperCAmelCase : str =1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase : Optional[int] =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : Tuple =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase : Union[str, Any] =model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase : Dict =torch.clamp( snake_case__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Optional[Any] =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase : List[str] =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : List[Any] =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase : List[Any] =0 if t > 0: UpperCAmelCase : str =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=snake_case__ , device=model_output.device ) UpperCAmelCase : Optional[int] =self._get_variance( snake_case__ , predicted_variance=snake_case__ , prev_timestep=snake_case__ , ) if self.variance_type == "fixed_small_log": UpperCAmelCase : Optional[Any] =variance elif self.variance_type == "learned_range": UpperCAmelCase : Tuple =(0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) UpperCAmelCase : List[Any] =variance * variance_noise UpperCAmelCase : int =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase : str =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase : int =timesteps.to(original_samples.device ) UpperCAmelCase : Union[str, Any] =alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase : Any =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : List[str] =sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Any =(1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase : Optional[int] =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : int =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Any =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
348
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
from __future__ import annotations import collections import pprint from pathlib import Path def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> str: return "".join(sorted(__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: return word_by_signature[signature(__UpperCAmelCase )] lowerCamelCase__ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') lowerCamelCase__ : Any = sorted({word.strip().lower() for word in data.splitlines()}) lowerCamelCase__ : str = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCamelCase__ : Tuple = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
359
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=768 ): super().__init__(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = proj_size SCREAMING_SNAKE_CASE_ = CLIPVisionModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = PaintByExampleMapper(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : int=False ): SCREAMING_SNAKE_CASE_ = self.model(pixel_values=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = clip_output.pooler_output SCREAMING_SNAKE_CASE_ = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE_ = self.final_layer_norm(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.proj_out(_lowerCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE_ = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE_ = config.hidden_size SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = nn.ModuleList( [ BasicTransformerBlock(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , activation_fn='gelu' , attention_bias=_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] ): for block in self.blocks: SCREAMING_SNAKE_CASE_ = block(_lowerCAmelCase ) return hidden_states
210
0