code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowercase = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowercase = json.loads(__SCREAMING_SNAKE_CASE ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowercase = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowercase = json.loads(__SCREAMING_SNAKE_CASE ) if not mpi_options.get('sagemaker_mpi_enabled' , __SCREAMING_SNAKE_CASE ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def SCREAMING_SNAKE_CASE__ ( self ): super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , snake_case , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self ): logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: lowercase = torch.device('cpu' ) lowercase = 0 elif is_sagemaker_model_parallel_available(): lowercase = smp.local_rank() lowercase = torch.device('cuda' , snake_case ) lowercase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) lowercase = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) lowercase = torch.device('cuda' , self.local_rank ) lowercase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowercase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowercase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) lowercase = torch.device('cuda' , self.local_rank ) lowercase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case ) return device @property def SCREAMING_SNAKE_CASE__ ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE__ ( self ): return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE__ ( self ): return False
84
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def UpperCamelCase_ ( snake_case_ : str , snake_case_ : List[str]=10_00 ) -> Dict: '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __lowerCAmelCase = n - 1 __lowerCAmelCase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __lowerCAmelCase = 0 while count < prec: __lowerCAmelCase = random.randint(2 , n - 1 ) __lowerCAmelCase = bin_exp_mod(snake_case_ , snake_case_ , snake_case_ ) if b != 1: __lowerCAmelCase = True for _ in range(snake_case_ ): if b == n - 1: __lowerCAmelCase = False break __lowerCAmelCase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _A : Union[str, Any] = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
427
0
import enum import shutil import sys UpperCAmelCase = shutil.get_terminal_size() UpperCAmelCase = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class __snake_case( enum.Enum ): '''simple docstring''' UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[int] = 1 def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple="" ) -> List[str]: """simple docstring""" sys.stdout.write(str(UpperCAmelCase__ ) + end ) sys.stdout.flush() def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict="" ) -> Tuple: """simple docstring""" forceWrite(f'\u001b[{color}m{content}\u001b[0m' , UpperCAmelCase__ ) def _snake_case ( ) -> List[str]: """simple docstring""" forceWrite("""\r""" ) def _snake_case ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def _snake_case ( ) -> List[Any]: """simple docstring""" forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def _snake_case ( ) -> Dict: """simple docstring""" reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
708
'''simple docstring''' import csv import tweepy # Twitter API credentials UpperCAmelCase = '' UpperCAmelCase = '' UpperCAmelCase = '' UpperCAmelCase = '' def _snake_case ( _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" # authorize twitter, initialize tweepy lowerCAmelCase = tweepy.OAuthHandler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auth.set_access_token(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = tweepy.API(_SCREAMING_SNAKE_CASE ) # initialize a list to hold all the tweepy Tweets lowerCAmelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowerCAmelCase = api.user_timeline(screen_name=_SCREAMING_SNAKE_CASE , count=200 ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # save the id of the oldest tweet less one lowerCAmelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_SCREAMING_SNAKE_CASE ) > 0: print(f'getting tweets before {oldest}' ) # all subsequent requests use the max_id param to prevent duplicates lowerCAmelCase = api.user_timeline( screen_name=_SCREAMING_SNAKE_CASE , count=200 , max_id=_SCREAMING_SNAKE_CASE ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # update the id of the oldest tweet less one lowerCAmelCase = alltweets[-1].id - 1 print(f'...{len(_SCREAMING_SNAKE_CASE )} tweets downloaded so far' ) # transform the tweepy tweets into a 2D array that will populate the csv lowerCAmelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'new_{screen_name}_tweets.csv' , """w""" ) as f: lowerCAmelCase = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
344
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
63
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class UpperCamelCase ( __a ): a__ :int = '''encodec''' def __init__(self , __UpperCamelCase=[1.5, 3.0, 6.0, 12.0, 24.0] , __UpperCamelCase=24_000 , __UpperCamelCase=1 , __UpperCamelCase=False , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=128 , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=[8, 5, 4, 2] , __UpperCamelCase="weight_norm" , __UpperCamelCase=7 , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=True , __UpperCamelCase="reflect" , __UpperCamelCase=2 , __UpperCamelCase=2 , __UpperCamelCase=1.0 , __UpperCamelCase=1_024 , __UpperCamelCase=None , __UpperCamelCase=True , **__UpperCamelCase , ) -> Dict: UpperCamelCase_ : str = target_bandwidths UpperCamelCase_ : Tuple = sampling_rate UpperCamelCase_ : str = audio_channels UpperCamelCase_ : Any = normalize UpperCamelCase_ : Union[str, Any] = chunk_length_s UpperCamelCase_ : Optional[Any] = overlap UpperCamelCase_ : Any = hidden_size UpperCamelCase_ : Dict = num_filters UpperCamelCase_ : List[str] = num_residual_layers UpperCamelCase_ : Optional[int] = upsampling_ratios UpperCamelCase_ : str = norm_type UpperCamelCase_ : str = kernel_size UpperCamelCase_ : Tuple = last_kernel_size UpperCamelCase_ : int = residual_kernel_size UpperCamelCase_ : str = dilation_growth_rate UpperCamelCase_ : str = use_causal_conv UpperCamelCase_ : str = pad_mode UpperCamelCase_ : Union[str, Any] = compress UpperCamelCase_ : Dict = num_lstm_layers UpperCamelCase_ : Optional[int] = trim_right_ratio UpperCamelCase_ : int = codebook_size UpperCamelCase_ : str = codebook_dim if codebook_dim is not None else hidden_size UpperCamelCase_ : Optional[int] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**__UpperCamelCase ) @property def A_ (self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A_ (self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A_ (self ) -> int: UpperCamelCase_ : int = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A_ (self ) -> int: return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
635
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
618
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : str = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """layoutlmv3""" def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=1024 , _UpperCAmelCase=128 , _UpperCAmelCase=128 , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=128 , _UpperCAmelCase=64 , _UpperCAmelCase=256 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=224 , _UpperCAmelCase=3 , _UpperCAmelCase=16 , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> Tuple: super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase_ = max_ad_position_embeddings UpperCamelCase_ = coordinate_size UpperCamelCase_ = shape_size UpperCamelCase_ = has_relative_attention_bias UpperCamelCase_ = rel_pos_bins UpperCamelCase_ = max_rel_pos UpperCamelCase_ = has_spatial_attention_bias UpperCamelCase_ = rel_ad_pos_bins UpperCamelCase_ = max_rel_ad_pos UpperCamelCase_ = text_embed UpperCamelCase_ = visual_embed UpperCamelCase_ = input_size UpperCamelCase_ = num_channels UpperCamelCase_ = patch_size UpperCamelCase_ = classifier_dropout class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.12""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-5 @property def _UpperCAmelCase ( self ) -> int: return 12 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = 3 , _UpperCAmelCase = 40 , _UpperCAmelCase = 40 , ) -> Mapping[str, Any]: setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase_ = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase_ = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) UpperCamelCase_ = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase_ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase_ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase_ = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
618
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE_: int ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[Any] =['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE_: Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
78
import math import sys def A ( _lowerCamelCase ): '''simple docstring''' if number != int(_lowerCamelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 _lowerCAmelCase : Union[str, Any] = [-1] * (number + 1) _lowerCAmelCase : Optional[Any] = 0 for i in range(1 , number + 1 ): _lowerCAmelCase : List[Any] = sys.maxsize _lowerCAmelCase : str = int(math.sqrt(_lowerCamelCase ) ) for j in range(1 , root + 1 ): _lowerCAmelCase : Dict = 1 + answers[i - (j**2)] _lowerCAmelCase : List[str] = min(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
500
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase__ = 2 class UpperCAmelCase_ : """simple docstring""" def __init__( self , *, # begin keyword-only arguments UpperCAmelCase_="<s>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_=None , ): snake_case_ , snake_case_ , snake_case_ , snake_case_ = bos, unk, pad, eos snake_case_ = [] snake_case_ = [] snake_case_ = {} snake_case_ = self.add_symbol(UpperCAmelCase_ ) snake_case_ = self.add_symbol(UpperCAmelCase_ ) snake_case_ = self.add_symbol(UpperCAmelCase_ ) snake_case_ = self.add_symbol(UpperCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase_ ) snake_case_ = len(self.symbols ) def __eq__( self , UpperCAmelCase_ ): return self.indices == other.indices def __getitem__( self , UpperCAmelCase_ ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): return len(self.symbols ) def __contains__( self , UpperCAmelCase_ ): return sym in self.indices @classmethod def _lowercase ( cls , UpperCAmelCase_ ): snake_case_ = cls() d.add_from_file(UpperCAmelCase_ ) return d def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_=1 , UpperCAmelCase_=False ): if word in self.indices and not overwrite: snake_case_ = self.indices[word] snake_case_ = self.count[idx] + n return idx else: snake_case_ = len(self.symbols ) snake_case_ = idx self.symbols.append(UpperCAmelCase_ ) self.count.append(UpperCAmelCase_ ) return idx def _lowercase ( self , UpperCAmelCase_ ): return 0 def _lowercase ( self , UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): try: with open(UpperCAmelCase_ , "r" , encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase_ ) ) return snake_case_ = f.readlines() snake_case_ = self._load_meta(UpperCAmelCase_ ) for line in lines[indices_start_line:]: try: snake_case_ , snake_case_ = line.rstrip().rsplit(" " , 1 ) if field == "#fairseq:overwrite": snake_case_ = True snake_case_ , snake_case_ = line.rsplit(" " , 1 ) else: snake_case_ = False snake_case_ = int(UpperCAmelCase_ ) snake_case_ = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase_ ) ) self.add_symbol(UpperCAmelCase_ , n=UpperCAmelCase_ , overwrite=UpperCAmelCase_ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def __snake_case ( lowercase : Union[str, Any] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} snake_case_ = dict((re.sub(r"@@$" , "" , lowercase ), v) if k.endswith("@@" ) else (re.sub(r"$" , "</w>" , lowercase ), v) for k, v in d.items() ) snake_case_ = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] snake_case_ = d[k] # restore return da def __snake_case ( lowercase : str , lowercase : List[Any] ): # prep if not os.path.exists(lowercase ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(lowercase , exist_ok=lowercase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models snake_case_ = os.path.join(lowercase , "checkpoint.pt" ) if not os.path.isfile(lowercase ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) snake_case_ = torch.load(lowercase , map_location="cpu" ) snake_case_ = chkpt["cfg"]["model"] # dicts snake_case_ = os.path.join(lowercase , "dict.txt" ) if not os.path.isfile(lowercase ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) snake_case_ = Dictionary.load(lowercase ) snake_case_ = rewrite_dict_keys(src_dict.indices ) snake_case_ = len(lowercase ) snake_case_ = os.path.join(lowercase , VOCAB_FILES_NAMES["vocab_file"] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # merges_file (bpecodes) snake_case_ = os.path.join(lowercase , "bpecodes" ) if not os.path.isfile(lowercase ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) snake_case_ = os.path.join(lowercase , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(lowercase , lowercase ) # model config snake_case_ = os.path.join(lowercase , "config.json" ) snake_case_ = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # tokenizer config snake_case_ = os.path.join(lowercase , lowercase ) snake_case_ = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1_024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowercase , ensure_ascii=lowercase , indent=lowercase ) ) # model snake_case_ = chkpt["model"] # remove unneeded keys snake_case_ = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(lowercase , lowercase ) snake_case_ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): snake_case_ = model_state_dict.pop(lowercase ) else: snake_case_ = model_state_dict.pop(lowercase ) snake_case_ = BioGptConfig.from_pretrained(lowercase ) snake_case_ = BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save snake_case_ = os.path.join(lowercase , lowercase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(lowercase , lowercase ) print("Conversion is done!" ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
420
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __snake_case ( lowercase : NDArray[floataa] , lowercase : NDArray[floataa] , lowercase : list[int] , lowercase : int , ): snake_case_ , snake_case_ = coefficient_matrix.shape snake_case_ , snake_case_ = constant_matrix.shape if rowsa != colsa: snake_case_ = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(lowercase ) if colsa != 1: snake_case_ = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(lowercase ) if rowsa != rowsa: snake_case_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(lowercase ) if len(lowercase ) != rowsa: snake_case_ = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(lowercase )} and {rowsa}''' ) raise ValueError(lowercase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) snake_case_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) snake_case_ , snake_case_ = table.shape strictly_diagonally_dominant(lowercase ) # Iterates the whole matrix for given number of times for _ in range(lowercase ): snake_case_ = [] for row in range(lowercase ): snake_case_ = 0 for col in range(lowercase ): if col == row: snake_case_ = table[row][col] elif col == cols - 1: snake_case_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] snake_case_ = (temp + val) / denom new_val.append(lowercase ) snake_case_ = new_val return [float(lowercase ) for i in new_val] def __snake_case ( lowercase : NDArray[floataa] ): snake_case_ , snake_case_ = table.shape snake_case_ = True for i in range(0 , lowercase ): snake_case_ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
420
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _A ( UpperCamelCase_): SCREAMING_SNAKE_CASE : Any = (UnCLIPScheduler,) def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**a__ ) return config def UpperCAmelCase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def UpperCAmelCase ( self ): """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=a__ ) def UpperCAmelCase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=a__ ) def UpperCAmelCase ( self ): """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=a__ ) def UpperCAmelCase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=a__ ) def UpperCAmelCase ( self ): """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=a__ , prev_timestep=a__ ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : str = self.get_scheduler_config(variance_type='fixed_small_log' ) SCREAMING_SNAKE_CASE_ : str = scheduler_class(**a__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_scheduler_config(variance_type='learned_range' ) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**a__ ) SCREAMING_SNAKE_CASE_ : str = 0.5 assert scheduler._get_variance(1 , predicted_variance=a__ ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=a__ ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=a__ ) - -0.0010011 < 1e-5 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**a__ ) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.timesteps SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(a__ ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ : Dict = model(a__ , a__ ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ : str = scheduler.step(a__ , a__ , a__ , generator=a__ ).prev_sample SCREAMING_SNAKE_CASE_ : str = pred_prev_sample SCREAMING_SNAKE_CASE_ : Dict = torch.sum(torch.abs(a__ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Dict = scheduler_class(**a__ ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE_ : Any = scheduler.timesteps SCREAMING_SNAKE_CASE_ : Any = self.dummy_model() SCREAMING_SNAKE_CASE_ : int = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0 ) for i, t in enumerate(a__ ): # 1. predict noise residual SCREAMING_SNAKE_CASE_ : List[Any] = model(a__ , a__ ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE_ : Tuple = None else: SCREAMING_SNAKE_CASE_ : Optional[int] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step( a__ , a__ , a__ , prev_timestep=a__ , generator=a__ ).prev_sample SCREAMING_SNAKE_CASE_ : Optional[int] = pred_prev_sample SCREAMING_SNAKE_CASE_ : Dict = torch.sum(torch.abs(a__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" pass
511
"""simple docstring""" def UpperCAmelCase ( snake_case : int = 100 ): _lowerCAmelCase:Dict = set() _lowerCAmelCase:Optional[Any] = 0 _lowerCAmelCase:int = n + 1 # maximum limit for a in range(2 , snake_case ): for b in range(2 , snake_case ): _lowerCAmelCase:str = a**b # calculates the current power collect_powers.add(snake_case ) # adds the result to the set return len(snake_case ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
227
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __magic_name__ ( unittest.TestCase ): def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): _lowerCAmelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sgugger/tiny-distilbert-classification' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , only_pretrain_model=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , torchscript=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , fpaa=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) # set architectures equal to `None` _lowerCAmelCase = None _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__magic_name__ , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tinier_bart' _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tinier_bart' _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , save_to_csv=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__magic_name__ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(__magic_name__ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(__magic_name__ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(__magic_name__ , 'train_time.csv' ) , env_info_csv_file=os.path.join(__magic_name__ , 'env.csv' ) , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) benchmark.run() self.assertTrue(Path(os.path.join(__magic_name__ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__magic_name__ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__magic_name__ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__magic_name__ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__magic_name__ , 'env.csv' ) ).exists() ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__magic_name__ ): self.assertTrue(hasattr(__magic_name__ , 'sequential' ) ) self.assertTrue(hasattr(__magic_name__ , 'cumulative' ) ) self.assertTrue(hasattr(__magic_name__ , 'current' ) ) self.assertTrue(hasattr(__magic_name__ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__magic_name__ , 'log.txt' ) , log_print=__magic_name__ , trace_memory_line_by_line=__magic_name__ , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__magic_name__ , 'log.txt' ) ).exists() )
702
"""simple docstring""" from __future__ import annotations import numpy as np def A__ ( __lowerCamelCase ): """simple docstring""" return np.maximum(0, __lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['MobileViTFeatureExtractor'] lowercase_ = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
291
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 10**9) -> int: '''simple docstring''' __UpperCamelCase : int = 1 __UpperCamelCase : Any = 2 __UpperCamelCase : Dict = 0 __UpperCamelCase : Any = 0 __UpperCamelCase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __UpperCamelCase : Optional[int] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"{solution() = }")
557
0
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = os.path.abspath(_SCREAMING_SNAKE_CASE ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model snake_case_ = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) snake_case_ = [] snake_case_ = [] snake_case_ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") snake_case_ = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' snake_case_ = name[1:] # figure out how many levels deep the name is snake_case_ = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(_SCREAMING_SNAKE_CASE ) # read data snake_case_ = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) names.append("""/""".join(_SCREAMING_SNAKE_CASE ) ) arrays.append(_SCREAMING_SNAKE_CASE ) logger.info(f"""Read a total of {len(_SCREAMING_SNAKE_CASE ):,} layers""" ) # Sanity check if len(set(_SCREAMING_SNAKE_CASE ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(_SCREAMING_SNAKE_CASE ) )})""" ) snake_case_ = list(set(_SCREAMING_SNAKE_CASE ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = full_name.split("""/""" ) snake_case_ = model snake_case_ = [] for i, m_name in enumerate(_SCREAMING_SNAKE_CASE ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): snake_case_ = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """embeddings""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """encoder""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """layer""" ) snake_case_ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """pooler""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """token_type_embeddings""" ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append("""weight""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """attention""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """attention""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """output""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """attention""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """output""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """output""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """output""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """intermediate""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , """weight""" ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary snake_case_ = """.""".join(_SCREAMING_SNAKE_CASE ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , _SCREAMING_SNAKE_CASE ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" , _SCREAMING_SNAKE_CASE ): snake_case_ = array.reshape(pointer.data.shape ) if "kernel" in full_name: snake_case_ = array.transpose() if pointer.shape == array.shape: snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) snake_case_ = BertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) snake_case_ = BertModel(_SCREAMING_SNAKE_CASE ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
700
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__) class __A (snake_case__): '''simple docstring''' __lowercase: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) __lowercase: ClassVar[Features] = Features({"""audio""": Audio()}) __lowercase: ClassVar[Features] = Features({"""transcription""": Value("""string""")}) __lowercase: str = "audio" __lowercase: str = "transcription" def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->int: """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , UpperCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) snake_case_ = copy.deepcopy(self ) snake_case_ = self.input_schema.copy() snake_case_ = features[self.audio_column] snake_case_ = input_schema return task_template @property def lowerCAmelCase ( self : List[str] ) ->Dict[str, str]: """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
2
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A_ ( ) -> Optional[Any]: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCamelCase : List[Any] = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , _lowerCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A_ ( ) -> int: assert _test_patching.open is open UpperCamelCase : int = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , _lowerCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A_ ( ) -> List[Any]: # pandas.read_csv is not present in _test_patching UpperCamelCase : str = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , _lowerCAmelCase ): pass def A_ ( ) -> Dict: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point UpperCamelCase : int = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , _lowerCAmelCase ) is None with patch_submodule(_test_patching , "len" , _lowerCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def A_ ( ) -> List[Any]: UpperCamelCase : int = "__test_patch_submodule_start_and_stop_mock__" UpperCamelCase : Optional[int] = patch_submodule(_test_patching , "open" , _lowerCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A_ ( ) -> int: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCamelCase : List[str] = "__test_patch_submodule_successive_join__" UpperCamelCase : Tuple = "__test_patch_submodule_successive_dirname__" UpperCamelCase : Tuple = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , _lowerCAmelCase ): with patch_submodule(_test_patching , "os.rename" , _lowerCAmelCase ): with patch_submodule(_test_patching , "os.path.dirname" , _lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , _lowerCAmelCase ): with patch_submodule(_test_patching , "os.path.join" , _lowerCAmelCase ): with patch_submodule(_test_patching , "os.path.dirname" , _lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A_ ( ) -> Tuple: UpperCamelCase : str = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , _lowerCAmelCase ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , _lowerCAmelCase ): pass
629
__lowerCamelCase : Any = 9.8_0_6_6_5 def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = g ) -> float: if fluid_density <= 0: raise ValueError("Impossible fluid density" ) if volume < 0: raise ValueError("Impossible Object volume" ) if gravity <= 0: raise ValueError("Impossible Gravity" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
629
1
import requests SCREAMING_SNAKE_CASE__ : int = """""" # <-- Put your OpenWeatherMap appid here! SCREAMING_SNAKE_CASE__ : Optional[Any] = """https://api.openweathermap.org/data/2.5/""" def _A ( lowerCamelCase = "Chicago" , lowerCamelCase = APPID ): return requests.get(URL_BASE + "weather" , params=locals() ).json() def _A ( lowerCamelCase = "Kolkata, India" , lowerCamelCase = APPID ): return requests.get(URL_BASE + "forecast" , params=locals() ).json() def _A ( lowerCamelCase = 55.68 , lowerCamelCase = 12.57 , lowerCamelCase = APPID ): return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: SCREAMING_SNAKE_CASE__ : Dict = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
701
# Lint as: python3 import itertools import os import re SCREAMING_SNAKE_CASE__ : Tuple = re.compile(R"""([A-Z]+)([A-Z][a-z])""") SCREAMING_SNAKE_CASE__ : List[str] = re.compile(R"""([a-z\d])([A-Z])""") SCREAMING_SNAKE_CASE__ : Tuple = re.compile(R"""(?<!_)_(?!_)""") SCREAMING_SNAKE_CASE__ : Dict = re.compile(R"""(_{2,})""") SCREAMING_SNAKE_CASE__ : List[Any] = R"""^\w+(\.\w+)*$""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = R"""<>:/\|?*""" def _A ( lowerCamelCase ): a__ : List[str] = _uppercase_uppercase_re.sub(r"\1_\2" , lowerCamelCase ) a__ : Dict = _lowercase_uppercase_re.sub(r"\1_\2" , lowerCamelCase ) return name.lower() def _A ( lowerCamelCase ): a__ : Tuple = _single_underscore_re.split(lowerCamelCase ) a__ : Any = [_multiple_underscores_re.split(lowerCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowerCamelCase ) if n != "" ) def _A ( lowerCamelCase ): if os.path.basename(lowerCamelCase ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(lowerCamelCase ) def _A ( lowerCamelCase , lowerCamelCase ): if os.path.basename(lowerCamelCase ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , lowerCamelCase ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(lowerCamelCase )}-{split}""" def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): a__ : Union[str, Any] = filename_prefix_for_split(lowerCamelCase , lowerCamelCase ) if filetype_suffix: prefix += F""".{filetype_suffix}""" a__ : Any = os.path.join(lowerCamelCase , lowerCamelCase ) return F"""{filepath}*""" def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): a__ : List[str] = filename_prefix_for_split(lowerCamelCase , lowerCamelCase ) a__ : Tuple = os.path.join(lowerCamelCase , lowerCamelCase ) if shard_lengths: a__ : List[str] = len(lowerCamelCase ) a__ : str = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(lowerCamelCase )] if filetype_suffix: a__ : Optional[Any] = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: a__ : Optional[int] = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
629
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a__ = logging.get_logger(__name__) a__ = {'''vocab_file''': '''spiece.model'''} a__ = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , _a = None , **_a , ) -> None: _a : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _a : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _a : List[str] = 3 _a : str = do_lower_case _a : Optional[int] = remove_space _a : Optional[Any] = keep_accents _a : Optional[Any] = vocab_file _a : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) _a : Optional[Any] = jieba _a : Optional[int] = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowercase ( self ) -> int: return len(self.sp_model ) def __lowercase ( self ) -> Optional[int]: _a : List[str] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _a : Any = self.__dict__.copy() _a : Optional[Any] = None return state def __setstate__( self , _a ) -> Union[str, Any]: _a : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a : Dict = {} _a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self , _a ) -> Any: if self.remove_space: _a : Optional[Any] = ''' '''.join(inputs.strip().split() ) else: _a : Optional[int] = inputs _a : Optional[int] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: _a : Union[str, Any] = unicodedata.normalize('''NFKD''' , _a ) _a : List[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: _a : Tuple = outputs.lower() return outputs def __lowercase ( self , _a ) -> List[str]: _a : Optional[Any] = self.preprocess_text(_a ) _a : Optional[int] = self.sp_model.encode(_a , out_type=_a ) _a : str = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _a : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _a : List[Any] = cur_pieces[1:] else: _a : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def __lowercase ( self , _a ) -> Dict: return self.sp_model.PieceToId(_a ) def __lowercase ( self , _a ) -> str: return self.sp_model.IdToPiece(_a ) def __lowercase ( self , _a ) -> List[Any]: _a : Union[str, Any] = ''''''.join(_a ).replace(_a , ''' ''' ).strip() return out_string def __lowercase ( self , _a , _a = None ) -> List[int]: _a : str = [self.sep_token_id] _a : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowercase ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1, 1] return ([0] * len(_a )) + [1, 1] def __lowercase ( self , _a , _a = None ) -> List[int]: _a : Tuple = [self.sep_token_id] _a : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowercase ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : int = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: _a : Dict = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def __lowercase ( self , *_a , **_a ) -> Tuple: _a : Any = super()._decode(*_a , **_a ) _a : Union[str, Any] = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
14
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : str = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _UpperCAmelCase ( _A ): def __init__( self : List[Any] , A : Optional[int] , A : Union[str, Any] , A : int ) -> Any: lowercase_ : Tuple = dataset lowercase_ : Optional[int] = process lowercase_ : Dict = params def __len__( self : Tuple ) -> Tuple: return len(self.dataset ) def __getitem__( self : Tuple , A : Optional[int] ) -> int: lowercase_ : Union[str, Any] = self.dataset[i] lowercase_ : Optional[Any] = self.process(UpperCamelCase_ , **self.params ) return processed class _UpperCAmelCase ( _A ): def __init__( self : List[str] , A : Optional[int] , A : Any , A : Optional[Any] , A : List[Any]=None ) -> Optional[Any]: lowercase_ : Optional[Any] = loader lowercase_ : Tuple = infer lowercase_ : int = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowercase_ : Optional[int] = None lowercase_ : List[str] = loader_batch_size # Internal bookkeeping lowercase_ : Optional[Any] = None lowercase_ : Any = None def __len__( self : Tuple ) -> Optional[int]: return len(self.loader ) def __iter__( self : Any ) -> Optional[Any]: lowercase_ : Tuple = iter(self.loader ) return self def A ( self : str ) -> Union[str, Any]: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice lowercase_ : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowercase_ : Any = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Convert ModelOutput to tuple first lowercase_ : int = element.to_tuple() if isinstance(element[0] , torch.Tensor ): lowercase_ : str = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowercase_ : Optional[int] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): lowercase_ : Optional[int] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowercase_ : List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around lowercase_ : int = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowercase_ : str = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowercase_ : List[str] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. lowercase_ : List[str] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowercase_ : Optional[Any] = self._loader_batch_data.__class__(UpperCamelCase_ ) self._loader_batch_index += 1 return result def A ( self : str ) -> Dict: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowercase_ : Optional[int] = next(self.iterator ) lowercase_ : int = self.infer(UpperCamelCase_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase_ , torch.Tensor ): lowercase_ : Optional[int] = processed else: lowercase_ : Dict = list(processed.keys() )[0] lowercase_ : Tuple = processed[key] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ : Any = len(UpperCamelCase_ ) else: lowercase_ : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowercase_ : Optional[int] = observed_batch_size # Setting internal index to unwrap the batch lowercase_ : Tuple = processed lowercase_ : Union[str, Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _UpperCAmelCase ( _A ): def __init__( self : Union[str, Any] , A : str , A : int , A : List[str] , A : Tuple=None ) -> List[Any]: super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __iter__( self : Union[str, Any] ) -> Dict: lowercase_ : Any = iter(self.loader ) lowercase_ : List[Any] = None return self def A ( self : int ) -> str: if self.subiterator is None: lowercase_ : Any = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item lowercase_ : Tuple = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowercase_ : List[str] = self.infer(next(self.iterator ) , **self.params ) lowercase_ : List[Any] = next(self.subiterator ) return processed class _UpperCAmelCase ( _A ): def __iter__( self : Dict ) -> Tuple: lowercase_ : Tuple = iter(self.loader ) return self def A ( self : Union[str, Any] ) -> Optional[int]: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. lowercase_ : Union[str, Any] = False lowercase_ : Any = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowercase_ : int = self.loader_batch_item() lowercase_ : Optional[int] = item.pop('''is_last''' ) accumulator.append(UpperCamelCase_ ) if is_last: return accumulator while not is_last: lowercase_ : List[Any] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase_ , torch.Tensor ): lowercase_ : Dict = processed else: lowercase_ : Tuple = list(processed.keys() )[0] lowercase_ : Optional[Any] = processed[key] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ : Union[str, Any] = len(UpperCamelCase_ ) else: lowercase_ : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowercase_ : List[Any] = observed_batch_size lowercase_ : Union[str, Any] = processed lowercase_ : int = 0 while self._loader_batch_index < self.loader_batch_size: lowercase_ : int = self.loader_batch_item() lowercase_ : str = item.pop('''is_last''' ) accumulator.append(UpperCamelCase_ ) if is_last: return accumulator else: lowercase_ : List[Any] = processed lowercase_ : Optional[int] = item.pop('''is_last''' ) accumulator.append(UpperCamelCase_ ) return accumulator class _UpperCAmelCase ( _A ): def __init__( self : Any , A : Optional[int] , A : str ) -> List[str]: lowercase_ : Union[str, Any] = dataset lowercase_ : List[str] = key def __len__( self : Union[str, Any] ) -> Tuple: return len(self.dataset ) def __getitem__( self : List[str] , A : Optional[int] ) -> Union[str, Any]: return self.dataset[i][self.key] class _UpperCAmelCase ( _A ): def __init__( self : List[Any] , A : int , A : int , A : Tuple ) -> List[str]: lowercase_ : Union[str, Any] = dataset lowercase_ : Union[str, Any] = keya lowercase_ : Optional[Any] = keya def __len__( self : List[str] ) -> List[str]: return len(self.dataset ) def __getitem__( self : List[Any] , A : List[Any] ) -> Union[str, Any]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
710
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def lowercase ( __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowercase_ : Any = state_dict.pop(__snake_case ) lowercase_ : List[Any] = val def lowercase ( __snake_case : Any ): lowercase_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) lowercase_ : Dict = value else: lowercase_ : Tuple = value return new_state_dict def lowercase ( __snake_case : List[str] , __snake_case : Any=False ): lowercase_ : Optional[int] = '''''' if is_panoptic: lowercase_ : Optional[int] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase_ : List[str] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase_ : List[str] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Union[str, Any] = in_proj_weight[:2_5_6, :] lowercase_ : Tuple = in_proj_bias[:2_5_6] lowercase_ : Optional[Any] = in_proj_weight[2_5_6:5_1_2, :] lowercase_ : str = in_proj_bias[2_5_6:5_1_2] lowercase_ : str = in_proj_weight[-2_5_6:, :] lowercase_ : Tuple = in_proj_bias[-2_5_6:] def lowercase ( ): lowercase_ : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase_ : Optional[int] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def lowercase ( __snake_case : str , __snake_case : List[Any] ): lowercase_ : List[str] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase_ : Optional[Any] = '''resnet101''' if "dc5" in model_name: lowercase_ : Any = True lowercase_ : int = '''panoptic''' in model_name if is_panoptic: lowercase_ : List[Any] = 2_5_0 else: lowercase_ : List[Any] = 9_1 lowercase_ : List[str] = '''huggingface/label-files''' lowercase_ : Union[str, Any] = '''coco-detection-id2label.json''' lowercase_ : Optional[Any] = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowercase_ : Union[str, Any] = {int(__snake_case ): v for k, v in idalabel.items()} lowercase_ : Any = idalabel lowercase_ : Any = {v: k for k, v in idalabel.items()} # load image processor lowercase_ : Optional[int] = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowercase_ : Tuple = ConditionalDetrImageProcessor(format=__snake_case ) # prepare image lowercase_ : int = prepare_img() lowercase_ : Dict = image_processor(images=__snake_case , return_tensors='''pt''' ) lowercase_ : List[str] = encoding['''pixel_values'''] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub lowercase_ : Dict = torch.hub.load('''DeppMeng/ConditionalDETR''' , __snake_case , pretrained=__snake_case ).eval() lowercase_ : int = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase_ : Union[str, Any] = '''conditional_detr.''' + src rename_key(__snake_case , __snake_case , __snake_case ) lowercase_ : int = rename_backbone_keys(__snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(__snake_case , is_panoptic=__snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase_ : List[Any] = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowercase_ : Optional[int] = state_dict.pop(__snake_case ) lowercase_ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase_ : str = state_dict.pop(__snake_case ) lowercase_ : str = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowercase_ : Dict = state_dict.pop(__snake_case ) lowercase_ : Tuple = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase_ : Tuple = state_dict.pop(__snake_case ) lowercase_ : List[Any] = val # finally, create HuggingFace model and load state dict lowercase_ : Dict = ConditionalDetrForSegmentation(__snake_case ) if is_panoptic else ConditionalDetrForObjectDetection(__snake_case ) model.load_state_dict(__snake_case ) model.eval() model.push_to_hub(repo_id=__snake_case , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion lowercase_ : Optional[int] = conditional_detr(__snake_case ) lowercase_ : List[str] = model(__snake_case ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __A : Any = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
141
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _snake_case ( ) -> Tuple: lowerCAmelCase__ = HfArgumentParser(A ) lowerCAmelCase__ = parser.parse_args_into_dataclasses()[0] lowerCAmelCase__ = TensorFlowBenchmark(args=A ) try: lowerCAmelCase__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase__ = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' lowerCAmelCase__ = ''' '''.join(str(A ).split(''' ''' )[:-1] ) lowerCAmelCase__ = '''''' lowerCAmelCase__ = eval(str(A ).split(''' ''' )[-1] ) lowerCAmelCase__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A ) if len(A ) > 0: lowerCAmelCase__ = full_error_msg + begin_error_msg + str(A ) raise ValueError(A ) benchmark.run() if __name__ == "__main__": main()
90
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[int] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] ="""gptj""" a : Optional[int] ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_embd __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = rotary_dim __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__( bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' __lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): '''simple docstring''' return 13
689
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowercase (UpperCamelCase_ , unittest.TestCase ): _UpperCamelCase = MobileBertTokenizer _UpperCamelCase = MobileBertTokenizerFast _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = filter_non_english _UpperCamelCase = """google/mobilebert-uncased""" def UpperCamelCase__ ( self ) ->str: '''simple docstring''' super().setUp() __lowerCAmelCase : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __lowerCAmelCase : str = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase__ ( self , A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Any = 'UNwant\u00E9d,running' __lowerCAmelCase : Union[str, Any] = 'unwanted, running' return input_text, output_text def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Dict = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase : int = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCAmelCase : Dict = self.get_tokenizer() __lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() __lowerCAmelCase : int = 'UNwant\u00E9d,running' __lowerCAmelCase : Tuple = tokenizer.tokenize(__a ) __lowerCAmelCase : int = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __lowerCAmelCase : Union[str, Any] = tokenizer.encode(__a , add_special_tokens=__a ) __lowerCAmelCase : int = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() __lowerCAmelCase : List[str] = tokenizer.encode(__a ) __lowerCAmelCase : int = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # With lower casing __lowerCAmelCase : Tuple = self.get_tokenizer(do_lower_case=__a ) __lowerCAmelCase : int = self.get_rust_tokenizer(do_lower_case=__a ) __lowerCAmelCase : Optional[int] = 'UNwant\u00E9d,running' __lowerCAmelCase : str = tokenizer.tokenize(__a ) __lowerCAmelCase : Any = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __lowerCAmelCase : List[str] = tokenizer.encode(__a , add_special_tokens=__a ) __lowerCAmelCase : Dict = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() __lowerCAmelCase : Union[str, Any] = tokenizer.encode(__a ) __lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : int = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : int = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=__a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowerCAmelCase : Optional[Any] = {} for i, token in enumerate(__a ): __lowerCAmelCase : str = i __lowerCAmelCase : Optional[Any] = WordpieceTokenizer(vocab=__a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : int = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __lowerCAmelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__a ) __lowerCAmelCase : Optional[int] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__a ) __lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowerCAmelCase : str = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCamelCase__ ( self ) ->str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowerCAmelCase : Dict = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __lowerCAmelCase : Union[str, Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) __lowerCAmelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , '''do_lower_case''' ) else False __lowerCAmelCase : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Tuple = ['的', '人', '有'] __lowerCAmelCase : List[str] = ''.join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase : Any = True __lowerCAmelCase : int = self.tokenizer_class.from_pretrained(__a , **__a ) __lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowerCAmelCase : List[Any] = tokenizer_p.encode(__a , add_special_tokens=__a ) __lowerCAmelCase : Optional[Any] = tokenizer_r.encode(__a , add_special_tokens=__a ) __lowerCAmelCase : int = tokenizer_r.convert_ids_to_tokens(__a ) __lowerCAmelCase : List[Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) __lowerCAmelCase : Tuple = False __lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowerCAmelCase : str = tokenizer_r.encode(__a , add_special_tokens=__a ) __lowerCAmelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a ) __lowerCAmelCase : str = tokenizer_r.convert_ids_to_tokens(__a ) __lowerCAmelCase : Any = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". __lowerCAmelCase : Optional[Any] = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a )
717
from __future__ import annotations from cmath import sqrt def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) __lowerCAmelCase : Union[str, Any] = b * b - 4 * a * c __lowerCAmelCase : Optional[int] = (-b + sqrt(lowercase__ )) / (2 * a) __lowerCAmelCase : Optional[Any] = (-b - sqrt(lowercase__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _lowercase ( ): __lowerCAmelCase, __lowerCAmelCase : List[Any] = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
583
0
'''simple docstring''' import functools def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str ) -> int: '''simple docstring''' UpperCAmelCase_ = len(snake_case_ ) UpperCAmelCase_ = len(snake_case_ ) @functools.cache def min_distance(snake_case_ : int , snake_case_ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case_ ) , 1 + min_distance(snake_case_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
78
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowercase_ : List[Any] = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowercase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
0
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = int(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = t // 3600, (t // 60) % 60, t % 60 return f'{h}:{m:02d}:{s:02d}' if h != 0 else f'{m:02d}:{s:02d}' def UpperCAmelCase ( A : Any , A : List[Any] , A : List[Any] , A : Union[str, Any] , A : Optional[Any]=300 ): '''simple docstring''' return f'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ' def UpperCAmelCase ( A : Any ): '''simple docstring''' _UpperCAmelCase = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f' <th>{i}</th>\n' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _UpperCAmelCase = f'{elt:.6f}' if isinstance(A , A ) else str(A ) html_code += f' <td>{elt}</td>\n' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowercase__ : '''simple docstring''' _UpperCAmelCase = 5 _UpperCAmelCase = 0.2 def __init__( self , snake_case , snake_case = None , snake_case = True , snake_case = None , snake_case = 300 , ) -> Any: _UpperCAmelCase = total _UpperCAmelCase = '' if prefix is None else prefix _UpperCAmelCase = leave _UpperCAmelCase = parent _UpperCAmelCase = width _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None def lowerCamelCase_ ( self , snake_case , snake_case = False , snake_case = None ) -> Tuple: _UpperCAmelCase = value if comment is not None: _UpperCAmelCase = comment if self.last_value is None: _UpperCAmelCase = _UpperCAmelCase = time.time() _UpperCAmelCase = _UpperCAmelCase = value _UpperCAmelCase = _UpperCAmelCase = None _UpperCAmelCase = self.warmup _UpperCAmelCase = 1 self.update_bar(snake_case ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _UpperCAmelCase = time.time() _UpperCAmelCase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _UpperCAmelCase = self.elapsed_time / (value - self.start_value) else: _UpperCAmelCase = None if value >= self.total: _UpperCAmelCase = self.total _UpperCAmelCase = None if not self.leave: self.close() elif self.average_time_per_item is not None: _UpperCAmelCase = self.average_time_per_item * (self.total - value) self.update_bar(snake_case ) _UpperCAmelCase = value _UpperCAmelCase = current_time if self.average_time_per_item is None: _UpperCAmelCase = 1 else: _UpperCAmelCase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def lowerCamelCase_ ( self , snake_case , snake_case=None ) -> int: _UpperCAmelCase = ' ' * (len(str(self.total ) ) - len(str(snake_case ) )) + str(snake_case ) if self.elapsed_time is None: _UpperCAmelCase = f'[{spaced_value}/{self.total} : < :' elif self.predicted_remaining is None: _UpperCAmelCase = f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )}' else: _UpperCAmelCase = ( f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <' f' {format_time(self.predicted_remaining )}' ) self.label += f', {1/self.average_time_per_item:.2f} it/s' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f', {self.comment}]' self.display() def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _UpperCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def lowerCamelCase_ ( self ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class lowercase__ ( A ): '''simple docstring''' def __init__( self , snake_case , snake_case=None ) -> Union[str, Any]: super().__init__(snake_case ) _UpperCAmelCase = None if column_names is None else [column_names] _UpperCAmelCase = None def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _UpperCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def lowerCamelCase_ ( self , snake_case ) -> List[str]: if self.inner_table is None: _UpperCAmelCase = [list(values.keys() ), list(values.values() )] else: _UpperCAmelCase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(snake_case ) _UpperCAmelCase = columns self.inner_table.append([values[c] for c in columns] ) def lowerCamelCase_ ( self , snake_case , snake_case=None , snake_case=300 ) -> Dict: _UpperCAmelCase = NotebookProgressBar(snake_case , prefix=snake_case , parent=self , width=snake_case ) return self.child_bar def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = None self.display() class lowercase__ ( A ): '''simple docstring''' def __init__( self ) -> Tuple: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = False def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , **snake_case ) -> int: _UpperCAmelCase = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) _UpperCAmelCase = NotebookTrainingTracker(state.max_steps , snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , **snake_case ) -> Union[str, Any]: _UpperCAmelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else f'{state.epoch:.2f}' self.training_tracker.update( state.global_step + 1 , comment=f'Epoch {epoch}/{state.num_train_epochs}' , force_update=self._force_next_update , ) _UpperCAmelCase = False def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case=None , **snake_case ) -> Dict: if not has_length(snake_case ): return if self.prediction_bar is None: if self.training_tracker is not None: _UpperCAmelCase = self.training_tracker.add_child(len(snake_case ) ) else: _UpperCAmelCase = NotebookProgressBar(len(snake_case ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , **snake_case ) -> List[str]: if self.prediction_bar is not None: self.prediction_bar.close() _UpperCAmelCase = None def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case=None , **snake_case ) -> Union[str, Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _UpperCAmelCase = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy _UpperCAmelCase = state.global_step self.training_tracker.write_line(snake_case ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , snake_case=None , **snake_case ) -> Tuple: if self.training_tracker is not None: _UpperCAmelCase = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: _UpperCAmelCase = log['loss'] break if self.first_column == "Epoch": _UpperCAmelCase = int(state.epoch ) else: _UpperCAmelCase = state.global_step _UpperCAmelCase = 'eval' for k in metrics: if k.endswith('_loss' ): _UpperCAmelCase = re.sub(r'\_loss$' , '' , snake_case ) _UpperCAmelCase = metrics.pop('total_flos' , snake_case ) _UpperCAmelCase = metrics.pop('epoch' , snake_case ) _UpperCAmelCase = metrics.pop(f'{metric_key_prefix}_runtime' , snake_case ) _UpperCAmelCase = metrics.pop(f'{metric_key_prefix}_samples_per_second' , snake_case ) _UpperCAmelCase = metrics.pop(f'{metric_key_prefix}_steps_per_second' , snake_case ) _UpperCAmelCase = metrics.pop(f'{metric_key_prefix}_jit_compilation_time' , snake_case ) for k, v in metrics.items(): if k == f'{metric_key_prefix}_loss': _UpperCAmelCase = v else: _UpperCAmelCase = k.split('_' ) _UpperCAmelCase = ' '.join([part.capitalize() for part in splits[1:]] ) _UpperCAmelCase = v self.training_tracker.write_line(snake_case ) self.training_tracker.remove_child() _UpperCAmelCase = None # Evaluation takes a long time so we should force the next update. _UpperCAmelCase = True def lowerCamelCase_ ( self , snake_case , snake_case , snake_case , **snake_case ) -> Any: self.training_tracker.update( state.global_step , comment=f'Epoch {int(state.epoch )}/{state.num_train_epochs}' , force_update=snake_case ) _UpperCAmelCase = None
24
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
1
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase_ ( _lowerCamelCase ): '''simple docstring''' def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = 8 # DPR tok UpperCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] UpperCAmelCase = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) UpperCAmelCase = os.path.join(lowercase_ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok UpperCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCAmelCase = {'unk_token': '<unk>'} UpperCAmelCase = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) UpperCAmelCase = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase_ ) ) def snake_case_ ( self ) -> Any: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def snake_case_ ( self ) -> Dict: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def snake_case_ ( self ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = os.path.join(self.tmpdirname , 'rag_tokenizer' ) UpperCAmelCase = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) UpperCAmelCase = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowercase_ ) rag_tokenizer.save_pretrained(lowercase_ ) UpperCAmelCase = RagTokenizer.from_pretrained(lowercase_ , config=lowercase_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowercase_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowercase_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) UpperCAmelCase = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] UpperCAmelCase = tokenizer(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) UpperCAmelCase = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] UpperCAmelCase = tokenizer(lowercase_ ) self.assertIsNotNone(lowercase_ )
447
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a ( _lowerCamelCase ): def __init__( self : Optional[int] , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[str] = None , lowercase_ : Optional[int] = None , **lowercase_ : Optional[Any] , ): super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) snake_case_ = field snake_case_ = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths} snake_case_ = Json( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , field=lowercase_ , **lowercase_ , ) def A_ ( self : Optional[Any] ): # Build iterable dataset if self.streaming: snake_case_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) snake_case_ = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset class a : def __init__( self : Dict , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , **lowercase_ : List[str] , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) snake_case_ = dataset snake_case_ = path_or_buf snake_case_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case_ = num_proc snake_case_ = '''utf-8''' snake_case_ = to_json_kwargs def A_ ( self : str ): snake_case_ = self.to_json_kwargs.pop('''path_or_buf''' , lowercase_ ) snake_case_ = self.to_json_kwargs.pop('''orient''' , '''records''' ) snake_case_ = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) snake_case_ = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) snake_case_ = self.to_json_kwargs.pop('''compression''' , lowercase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"`datasets` currently does not support {compression} compression" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=lowercase_ ) as buffer: snake_case_ = self._write(file_obj=lowercase_ , orient=lowercase_ , lines=lowercase_ , index=lowercase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"The compression parameter is not supported when writing to a buffer, but compression={compression}" ''' was passed. Please provide a local path instead.''' ) snake_case_ = self._write( file_obj=self.path_or_buf , orient=lowercase_ , lines=lowercase_ , index=lowercase_ , **self.to_json_kwargs ) return written def A_ ( self : List[str] , lowercase_ : Dict ): snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = args snake_case_ = query_table( table=self.dataset.data , key=slice(lowercase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) snake_case_ = batch.to_pandas().to_json( path_or_buf=lowercase_ , orient=lowercase_ , lines=lowercase_ , index=lowercase_ , **lowercase_ ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def A_ ( self : Optional[int] , lowercase_ : BinaryIO , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : int , **lowercase_ : Optional[int] , ): snake_case_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): snake_case_ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase_ ) else: snake_case_ ,snake_case_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase_ , lowercase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(lowercase_ ) return written
640
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Dict = logging.get_logger(__name__) def __lowerCamelCase ( A__ : List[str] ) -> Any: lowerCamelCase_ : str = """huggingface/label-files""" lowerCamelCase_ : Tuple = """imagenet-1k-id2label.json""" lowerCamelCase_ : Optional[Any] = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase_ : Optional[int] = {int(A__ ): v for k, v in idalabel.items()} lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} lowerCamelCase_ : Union[str, Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCamelCase_ : Optional[int] = BitConfig( conv_layer=A__ , num_labels=1000 , idalabel=A__ , labelaid=A__ , ) return config def __lowerCamelCase ( A__ : int ) -> List[Any]: if "stem.conv" in name: lowerCamelCase_ : Dict = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase_ : Optional[Any] = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCamelCase_ : Optional[int] = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCamelCase_ : Optional[int] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCamelCase_ : Tuple = """bit.encoder.""" + name return name def __lowerCamelCase ( ) -> List[str]: lowerCamelCase_ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase_ : Dict = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( A__ : Union[str, Any] , A__ : str , A__ : Any=False ) -> Optional[Any]: lowerCamelCase_ : str = get_config(A__ ) # load original model from timm lowerCamelCase_ : List[str] = create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model lowerCamelCase_ : Optional[int] = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCamelCase_ : Optional[Any] = state_dict.pop(A__ ) lowerCamelCase_ : Optional[int] = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCamelCase_ : Tuple = BitForImageClassification(A__ ) model.eval() model.load_state_dict(A__ ) # create image processor lowerCamelCase_ : Dict = create_transform(**resolve_data_config({} , model=A__ ) ) lowerCamelCase_ : Optional[int] = transform.transforms lowerCamelCase_ : Optional[Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCamelCase_ : str = BitImageProcessor( do_resize=A__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=A__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase_ : Dict = prepare_img() lowerCamelCase_ : Any = transform(A__ ).unsqueeze(0 ) lowerCamelCase_ : Any = processor(A__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(A__ , A__ ) # verify logits with torch.no_grad(): lowerCamelCase_ : List[Any] = model(A__ ) lowerCamelCase_ : Tuple = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCamelCase_ : Optional[int] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(A__ ).mkdir(exist_ok=A__ ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) processor.save_pretrained(A__ ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": snake_case__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) snake_case__ : Tuple = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
711
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Optional[int] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "detr" _a = ["past_key_values"] _a = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : int , __a : Dict=True , __a : Union[str, Any]=None , __a : Union[str, Any]=3 , __a : Dict=100 , __a : str=6 , __a : List[str]=2_048 , __a : Any=8 , __a : List[str]=6 , __a : List[str]=2_048 , __a : str=8 , __a : Tuple=0.0 , __a : Dict=0.0 , __a : Optional[int]=True , __a : Union[str, Any]="relu" , __a : Optional[int]=256 , __a : Tuple=0.1 , __a : List[str]=0.0 , __a : Tuple=0.0 , __a : Tuple=0.02 , __a : Optional[Any]=1.0 , __a : List[str]=False , __a : Optional[int]="sine" , __a : Optional[Any]="resnet50" , __a : Optional[int]=True , __a : Dict=False , __a : Union[str, Any]=1 , __a : Optional[Any]=5 , __a : List[Any]=2 , __a : Any=1 , __a : int=1 , __a : List[str]=5 , __a : int=2 , __a : Any=0.1 , **__a : List[Any] , ) ->str: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase_ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__a , __a ): lowerCamelCase_ : List[Any] = backbone_config.get("""model_type""" ) lowerCamelCase_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] lowerCamelCase_ : List[str] = config_class.from_dict(__a ) # set timm attributes to None lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Any = None, None, None lowerCamelCase_ : Dict = use_timm_backbone lowerCamelCase_ : Optional[Any] = backbone_config lowerCamelCase_ : List[Any] = num_channels lowerCamelCase_ : int = num_queries lowerCamelCase_ : int = d_model lowerCamelCase_ : Union[str, Any] = encoder_ffn_dim lowerCamelCase_ : Union[str, Any] = encoder_layers lowerCamelCase_ : List[str] = encoder_attention_heads lowerCamelCase_ : Any = decoder_ffn_dim lowerCamelCase_ : Union[str, Any] = decoder_layers lowerCamelCase_ : List[Any] = decoder_attention_heads lowerCamelCase_ : Optional[Any] = dropout lowerCamelCase_ : List[str] = attention_dropout lowerCamelCase_ : List[Any] = activation_dropout lowerCamelCase_ : Union[str, Any] = activation_function lowerCamelCase_ : int = init_std lowerCamelCase_ : Optional[Any] = init_xavier_std lowerCamelCase_ : Any = encoder_layerdrop lowerCamelCase_ : List[Any] = decoder_layerdrop lowerCamelCase_ : Union[str, Any] = encoder_layers lowerCamelCase_ : Any = auxiliary_loss lowerCamelCase_ : Tuple = position_embedding_type lowerCamelCase_ : Optional[int] = backbone lowerCamelCase_ : Union[str, Any] = use_pretrained_backbone lowerCamelCase_ : int = dilation # Hungarian matcher lowerCamelCase_ : str = class_cost lowerCamelCase_ : Union[str, Any] = bbox_cost lowerCamelCase_ : Tuple = giou_cost # Loss coefficients lowerCamelCase_ : Optional[int] = mask_loss_coefficient lowerCamelCase_ : int = dice_loss_coefficient lowerCamelCase_ : str = bbox_loss_coefficient lowerCamelCase_ : List[str] = giou_loss_coefficient lowerCamelCase_ : int = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a ) @property def _lowerCAmelCase ( self : Union[str, Any] ) ->int: return self.encoder_attention_heads @property def _lowerCAmelCase ( self : List[str] ) ->int: return self.d_model @classmethod def _lowerCAmelCase ( cls : Tuple , __a : PretrainedConfig , **__a : Dict ) ->Optional[int]: return cls(backbone_config=__a , **__a ) def _lowerCAmelCase ( self : List[Any] ) ->Dict[str, any]: lowerCamelCase_ : Optional[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCamelCase_ : List[str] = self.backbone_config.to_dict() lowerCamelCase_ : Union[str, Any] = self.__class__.model_type return output class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = version.parse("1.11" ) @property def _lowerCAmelCase ( self : List[str] ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowerCAmelCase ( self : Optional[Any] ) ->float: return 1e-5 @property def _lowerCAmelCase ( self : Union[str, Any] ) ->int: return 12
171
0
"""simple docstring""" def _snake_case ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ) or number < 0: raise ValueError('Input must be a non-negative integer' ) _lowerCamelCase : int = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
630
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase = None , lowercase = None ): super().__init__() _lowerCamelCase : Optional[Any] = pad_token_id _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = vocab _lowerCamelCase : List[str] = merges _lowerCamelCase : int = BytePairTokenizer(lowercase , lowercase , sequence_length=lowercase ) @classmethod def A_ ( cls , lowercase , *lowercase , **lowercase ): _lowerCamelCase : str = [' '.join(lowercase ) for m in tokenizer.bpe_ranks.keys()] _lowerCamelCase : Union[str, Any] = tokenizer.get_vocab() return cls(lowercase , lowercase , *lowercase , **lowercase ) @classmethod def A_ ( cls , lowercase , *lowercase , **lowercase ): _lowerCamelCase : Optional[int] = GPTaTokenizer.from_pretrained(lowercase , *lowercase , **lowercase ) return cls.from_tokenizer(lowercase , *lowercase , **lowercase ) @classmethod def A_ ( cls , lowercase ): return cls(**lowercase ) def A_ ( self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : int = self.tf_tokenizer(lowercase ) _lowerCamelCase : Optional[int] = tf.ones_like(lowercase ) if self.pad_token_id is not None: # pad the tokens up to max length _lowerCamelCase : str = max_length if max_length is not None else self.max_length if max_length is not None: _lowerCamelCase, _lowerCamelCase : Union[str, Any] = pad_model_inputs( lowercase , max_seq_length=lowercase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
630
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A =get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A =25_00_04 A =25_00_20 @require_sentencepiece @require_tokenizers class _a ( __lowercase , unittest.TestCase ): __a : int = MBartTokenizer __a : Optional[int] = MBartTokenizerFast __a : Optional[int] = True __a : str = True def A ( self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = MBartTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = MBartTokenizer(__a , keep_accents=__a ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def A ( self : Optional[Any] ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase = self.tokenizer_class.from_pretrained(__a , **__a ) UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(__a ) UpperCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(__a ) UpperCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(__a , legacy_format=__a ) UpperCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(__a ) UpperCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(__a , legacy_format=__a ) UpperCAmelCase = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(__a ) UpperCAmelCase = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): __a : Dict = '''facebook/mbart-large-en-ro''' __a : int = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __a : Optional[int] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __a : Optional[int] = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def A ( cls : int ): '''simple docstring''' UpperCAmelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) UpperCAmelCase = 1 return cls def A ( self : Tuple ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250_020 ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def A ( self : Optional[int] ): '''simple docstring''' self.assertIn(__a , self.tokenizer.all_special_ids ) UpperCAmelCase = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] UpperCAmelCase = self.tokenizer.decode(__a , skip_special_tokens=__a ) UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , __a ) UpperCAmelCase = 10 UpperCAmelCase = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __a ) self.assertEqual(len(__a ) , __a ) def A ( self : str ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250_026, 250_001] ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) UpperCAmelCase = MBartTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors='''pt''' ) UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors='''pt''' ) UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=10 , return_tensors='''pt''' ) UpperCAmelCase = targets["""input_ids"""] UpperCAmelCase = shift_tokens_right(__a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(__a ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3_034, 2, 250_004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250_001, } , )
720
'''simple docstring''' from __future__ import annotations import math class _a : def __init__( self : Dict , lowercase : int ): '''simple docstring''' UpperCAmelCase = size # approximate the overall size of segment tree with given value UpperCAmelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase = [0 for i in range(0 , 4 * size )] UpperCAmelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def A ( self : List[str] , lowercase : int ): '''simple docstring''' return idx * 2 def A ( self : Optional[Any] , lowercase : int ): '''simple docstring''' return idx * 2 + 1 def A ( self : Dict , lowercase : int , lowercase : int , lowercase : int , lowercase : list[int] ): '''simple docstring''' if left_element == right_element: UpperCAmelCase = a[left_element - 1] else: UpperCAmelCase = (left_element + right_element) // 2 self.build(self.left(lowercase ) , lowercase , lowercase , lowercase ) self.build(self.right(lowercase ) , mid + 1 , lowercase , lowercase ) UpperCAmelCase = max( self.segment_tree[self.left(lowercase )] , self.segment_tree[self.right(lowercase )] ) def A ( self : Union[str, Any] , lowercase : int , lowercase : int , lowercase : int , lowercase : int , lowercase : int , lowercase : int ): '''simple docstring''' if self.flag[idx] is True: UpperCAmelCase = self.lazy[idx] UpperCAmelCase = False if left_element != right_element: UpperCAmelCase = self.lazy[idx] UpperCAmelCase = self.lazy[idx] UpperCAmelCase = True UpperCAmelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase = val if left_element != right_element: UpperCAmelCase = val UpperCAmelCase = val UpperCAmelCase = True UpperCAmelCase = True return True UpperCAmelCase = (left_element + right_element) // 2 self.update(self.left(lowercase ) , lowercase , lowercase , lowercase , lowercase , lowercase ) self.update(self.right(lowercase ) , mid + 1 , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = max( self.segment_tree[self.left(lowercase )] , self.segment_tree[self.right(lowercase )] ) return True def A ( self : Any , lowercase : int , lowercase : int , lowercase : int , lowercase : int , lowercase : int ): '''simple docstring''' if self.flag[idx] is True: UpperCAmelCase = self.lazy[idx] UpperCAmelCase = False if left_element != right_element: UpperCAmelCase = self.lazy[idx] UpperCAmelCase = self.lazy[idx] UpperCAmelCase = True UpperCAmelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase = (left_element + right_element) // 2 UpperCAmelCase = self.query(self.left(lowercase ) , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = self.query(self.right(lowercase ) , mid + 1 , lowercase , lowercase , lowercase ) return max(lowercase , lowercase ) def __str__( self : Any ): '''simple docstring''' return str([self.query(1 , 1 , self.size , lowercase , lowercase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": A =[1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] A =15 A =SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
358
0
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int ): if number > 0: raise ValueError("input must be a negative integer" ) lowercase_ :Optional[Any] = len(bin(__lowerCamelCase )[3:] ) lowercase_ :Optional[int] = bin(abs(__lowerCamelCase ) - (1 << binary_number_length) )[3:] lowercase_ :Dict = ( ( "1" + "0" * (binary_number_length - len(__lowerCamelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
172
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ): lowercase_ :List[str] = {} lowercase_ :int = job["started_at"] lowercase_ :List[Any] = job["completed_at"] lowercase_ :str = date_parser.parse(__lowerCamelCase ) lowercase_ :List[str] = date_parser.parse(__lowerCamelCase ) lowercase_ :Union[str, Any] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowercase_ :Union[str, Any] = start lowercase_ :int = end lowercase_ :Any = duration_in_min return job_info def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Union[str, Any]=None ): lowercase_ :Any = None if token is not None: lowercase_ :Optional[int] = {"Accept": "application/vnd.github+json", "Authorization": F'Bearer {token}'} lowercase_ :str = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' lowercase_ :Optional[int] = requests.get(__lowerCamelCase ,headers=__lowerCamelCase ).json() lowercase_ :Any = {} try: job_time.update({job["name"]: extract_time_from_single_job(__lowerCamelCase ) for job in result["jobs"]} ) lowercase_ :Dict = math.ceil((result["total_count"] - 1_00) / 1_00 ) for i in range(__lowerCamelCase ): lowercase_ :List[Any] = requests.get(url + F'&page={i + 2}' ,headers=__lowerCamelCase ).json() job_time.update({job["name"]: extract_time_from_single_job(__lowerCamelCase ) for job in result["jobs"]} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') lowerCAmelCase : Tuple =parser.parse_args() lowerCAmelCase : int =get_job_time(args.workflow_run_id) lowerCAmelCase : Optional[int] =dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
172
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase = logging.get_logger("""transformers.models.encodec""") lowercase = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } lowercase = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } lowercase = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } lowercase = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } lowercase = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } lowercase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase = [] lowercase = [] def lowerCamelCase_ ( UpperCamelCase__ : Any, UpperCamelCase__ : int, UpperCamelCase__ : List[str], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' for attribute in key.split('''.''' ): UpperCamelCase__ = getattr(UpperCamelCase__, UpperCamelCase__ ) if weight_type is not None: UpperCamelCase__ = getattr(UpperCamelCase__, UpperCamelCase__ ).shape else: UpperCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value elif weight_type == "running_mean": UpperCamelCase__ = value elif weight_type == "running_var": UpperCamelCase__ = value elif weight_type == "num_batches_tracked": UpperCamelCase__ = value elif weight_type == "weight_ih_l0": UpperCamelCase__ = value elif weight_type == "weight_hh_l0": UpperCamelCase__ = value elif weight_type == "bias_ih_l0": UpperCamelCase__ = value elif weight_type == "bias_hh_l0": UpperCamelCase__ = value elif weight_type == "weight_ih_l1": UpperCamelCase__ = value elif weight_type == "weight_hh_l1": UpperCamelCase__ = value elif weight_type == "bias_ih_l1": UpperCamelCase__ = value elif weight_type == "bias_hh_l1": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any], UpperCamelCase__ : Dict ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase__ , UpperCamelCase__ = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : Tuple, UpperCamelCase__ : int, UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCamelCase__ = MAPPING_24K elif model_name == "encodec_48khz": UpperCamelCase__ = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(UpperCamelCase__, UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue UpperCamelCase__ = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCamelCase__ , UpperCamelCase__ = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCamelCase__ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(UpperCamelCase__ )[0].split('''.''' )[-2] UpperCamelCase__ = mapped_key.replace('''*''', UpperCamelCase__ ) if "weight_g" in name: UpperCamelCase__ = '''weight_g''' elif "weight_v" in name: UpperCamelCase__ = '''weight_v''' elif "weight_ih_l0" in name: UpperCamelCase__ = '''weight_ih_l0''' elif "weight_hh_l0" in name: UpperCamelCase__ = '''weight_hh_l0''' elif "bias_ih_l0" in name: UpperCamelCase__ = '''bias_ih_l0''' elif "bias_hh_l0" in name: UpperCamelCase__ = '''bias_hh_l0''' elif "weight_ih_l1" in name: UpperCamelCase__ = '''weight_ih_l1''' elif "weight_hh_l1" in name: UpperCamelCase__ = '''weight_hh_l1''' elif "bias_ih_l1" in name: UpperCamelCase__ = '''bias_ih_l1''' elif "bias_hh_l1" in name: UpperCamelCase__ = '''bias_hh_l1''' elif "bias" in name: UpperCamelCase__ = '''bias''' elif "weight" in name: UpperCamelCase__ = '''weight''' elif "running_mean" in name: UpperCamelCase__ = '''running_mean''' elif "running_var" in name: UpperCamelCase__ = '''running_var''' elif "num_batches_tracked" in name: UpperCamelCase__ = '''num_batches_tracked''' else: UpperCamelCase__ = None set_recursively(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Dict, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Any, UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : List[str]=None, ): '''simple docstring''' if config_path is not None: UpperCamelCase__ = EncodecConfig.from_pretrained(UpperCamelCase__ ) else: UpperCamelCase__ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCamelCase__ = [8, 5, 4, 4] UpperCamelCase__ = [2.2] UpperCamelCase__ = 64 UpperCamelCase__ = 3_2000 UpperCamelCase__ = 2048 UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False elif model_name == "encodec_48khz": UpperCamelCase__ = [8, 5, 4, 2] UpperCamelCase__ = [3.0, 6.0, 12.0, 24.0] UpperCamelCase__ = 4_8000 UpperCamelCase__ = 2 UpperCamelCase__ = False UpperCamelCase__ = '''time_group_norm''' UpperCamelCase__ = True UpperCamelCase__ = 1.0 UpperCamelCase__ = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCamelCase__ = EncodecModel(UpperCamelCase__ ) UpperCamelCase__ = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(UpperCamelCase__ ) UpperCamelCase__ = torch.load(UpperCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCamelCase__ = original_checkpoint['''best_state'''] recursively_load_weights(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowercase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
591
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowercase = get_logger() lowercase = None class __lowercase ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): '''simple docstring''' def __init__( self : List[str] , _a : Optional[Any]=None , _a : Any=None , **_a : List[Any] ): super().__init__(features=_a ) import jax from jaxlib.xla_client import Device if isinstance(_a , _a ): raise ValueError( F"""Expected {device} to be a `str` not {type(_a )}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) UpperCamelCase__ = device if isinstance(_a , _a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) UpperCamelCase__ = str(jax.devices()[0] ) UpperCamelCase__ = jnp_array_kwargs @staticmethod def A_ ( ): import jax return {str(_a ): device for device in jax.devices()} def A_ ( self : Optional[int] , _a : Tuple ): import jax import jax.numpy as jnp if isinstance(_a , _a ) and column: if all( isinstance(_a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_a , axis=0 ) return column def A_ ( self : Optional[int] , _a : List[Any] ): import jax import jax.numpy as jnp if isinstance(_a , (str, bytes, type(_a )) ): return value elif isinstance(_a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase__ = {} if isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase__ = {'''dtype''': jnp.intaa} else: UpperCamelCase__ = {'''dtype''': jnp.intaa} elif isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase__ = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_a , PIL.Image.Image ): UpperCamelCase__ = np.asarray(_a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_a , **{**default_dtype, **self.jnp_array_kwargs} ) def A_ ( self : Optional[Any] , _a : Any ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_a , '''__array__''' ) and not isinstance(_a , jax.Array ): UpperCamelCase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) elif isinstance(_a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) return self._tensorize(_a ) def A_ ( self : int , _a : dict ): return map_nested(self._recursive_tensorize , _a , map_list=_a ) def A_ ( self : List[Any] , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_row(_a ) UpperCamelCase__ = self.python_features_decoder.decode_row(_a ) return self.recursive_tensorize(_a ) def A_ ( self : Optional[int] , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_column(_a ) UpperCamelCase__ = self.python_features_decoder.decode_column(_a , pa_table.column_names[0] ) UpperCamelCase__ = self.recursive_tensorize(_a ) UpperCamelCase__ = self._consolidate(_a ) return column def A_ ( self : int , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_batch(_a ) UpperCamelCase__ = self.python_features_decoder.decode_batch(_a ) UpperCamelCase__ = self.recursive_tensorize(_a ) for column_name in batch: UpperCamelCase__ = self._consolidate(batch[column_name] ) return batch
591
1
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , lowerCamelCase : int , lowerCamelCase : List[Any]=100 , lowerCamelCase : int=13 , lowerCamelCase : Tuple=30 , lowerCamelCase : int=2 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : int=True , lowerCamelCase : Any=True , lowerCamelCase : Optional[Any]=32 , lowerCamelCase : Optional[Any]=5 , lowerCamelCase : Dict=4 , lowerCamelCase : Union[str, Any]=37 , lowerCamelCase : Union[str, Any]="gelu" , lowerCamelCase : str=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : List[Any]=10 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=3 , ) -> str: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = vocab_size _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowerCamelCase ( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase = FlaxBeitModel(config=lowerCamelCase ) _UpperCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self : Dict , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = FlaxBeitForMaskedImageModeling(config=lowerCamelCase ) _UpperCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCamelCase ( self : str , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FlaxBeitForImageClassification(config=lowerCamelCase ) _UpperCAmelCase = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FlaxBeitForImageClassification(lowerCamelCase ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(lowerCamelCase ) def lowerCamelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowerCamelCase ( self : str ) -> None: """simple docstring""" _UpperCAmelCase = FlaxBeitModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCamelCase ( self : Dict ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : Union[str, Any] , **lowerCamelCase : Dict ): return model(pixel_values=lowerCamelCase , **lowerCamelCase ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def lowerCamelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) _UpperCAmelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( ) -> List[str]: _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""np""" ).pixel_values # prepare bool_masked_pos _UpperCAmelCase = np.ones((1, 196) , dtype=lowerCamelCase ) # forward pass _UpperCAmelCase = model(pixel_values=lowerCamelCase , bool_masked_pos=lowerCamelCase ) _UpperCAmelCase = outputs.logits # verify the logits _UpperCAmelCase = (1, 196, 8192) self.assertEqual(logits.shape , lowerCamelCase ) _UpperCAmelCase = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase , atol=1E-2 ) ) @slow def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""np""" ) # forward pass _UpperCAmelCase = model(**lowerCamelCase ) _UpperCAmelCase = outputs.logits # verify the logits _UpperCAmelCase = (1, 1000) self.assertEqual(logits.shape , lowerCamelCase ) _UpperCAmelCase = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) _UpperCAmelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase ) @slow def lowerCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""np""" ) # forward pass _UpperCAmelCase = model(**lowerCamelCase ) _UpperCAmelCase = outputs.logits # verify the logits _UpperCAmelCase = (1, 2_1841) self.assertEqual(logits.shape , lowerCamelCase ) _UpperCAmelCase = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) _UpperCAmelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase )
108
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __A : Optional[Any] = 10 def lowerCAmelCase_ ( a : int , a : int , a : list[int] , a : int ): for i in range(a , a ): if array[i] == target: return i return -1 def lowerCAmelCase_ ( a : list[int] , a : int ): a__ = 0 a__ = len(a ) while left <= right: if right - left < precision: return lin_search(a , a , a , a ) a__ = (left + right) // 3 + 1 a__ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: a__ = one_third - 1 elif array[two_third] < target: a__ = two_third + 1 else: a__ = one_third + 1 a__ = two_third - 1 else: return -1 def lowerCAmelCase_ ( a : int , a : int , a : list[int] , a : int ): if left < right: if right - left < precision: return lin_search(a , a , a , a ) a__ = (left + right) // 3 + 1 a__ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a , one_third - 1 , a , a ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , a , a , a ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , a , a ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __A : int = input('Enter numbers separated by comma:\n').strip() __A : int = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __A : Dict = int(input('Enter the number to be found in the list:\n').strip()) __A : Optional[int] = ite_ternary_search(collection, target) __A : Tuple = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
394
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __SCREAMING_SNAKE_CASE : snake_case : Dict = PegasusConfig snake_case : Any = {} snake_case : int = """gelu""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=40 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def _lowerCamelCase ( self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase__ = prepare_pegasus_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = TFPegasusModel(config=__lowerCAmelCase ).get_decoder() UpperCamelCase__ = inputs_dict["""input_ids"""] UpperCamelCase__ = input_ids[:1, :] UpperCamelCase__ = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase__ = inputs_dict["""head_mask"""] UpperCamelCase__ = 1 # first forward pass UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , head_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , rtol=1E-3 ) def _UpperCamelCase (a__ :List[str] , a__ :Any , a__ :str , a__ :Optional[int]=None , a__ :Union[str, Any]=None , a__ :Optional[int]=None , a__ :Optional[int]=None , a__ :List[str]=None , ): """simple docstring""" if attention_mask is None: UpperCamelCase__ = tf.cast(tf.math.not_equal(a__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case : Optional[int] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () snake_case : Dict = (TFPegasusForConditionalGeneration,) if is_tf_available() else () snake_case : Optional[int] = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) snake_case : Optional[Any] = True snake_case : int = False snake_case : int = False def _lowerCamelCase ( self ): UpperCamelCase__ = TFPegasusModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case : str = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] snake_case : List[Any] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers snake_case : Dict = """google/pegasus-xsum""" @cached_property def _lowerCamelCase ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowerCamelCase ( self ): UpperCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowerCamelCase ( self , **__lowerCAmelCase ): UpperCamelCase__ = self.translate_src_text(**__lowerCAmelCase ) assert self.expected_text == generated_words def _lowerCamelCase ( self , **__lowerCAmelCase ): UpperCamelCase__ = self.tokenizer(self.src_text , **__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors="""tf""" ) UpperCamelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCAmelCase , ) UpperCamelCase__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCAmelCase ) return generated_words @slow def _lowerCamelCase ( self ): self._assert_generated_batch_equal_expected()
548
from argparse import ArgumentParser from .env import EnvironmentCommand def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) UpperCamelCase__ = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(a__ ) # Let's go UpperCamelCase__ = parser.parse_args() if not hasattr(a__ , """func""" ): parser.print_help() exit(1 ) # Run UpperCamelCase__ = args.func(a__ ) service.run() if __name__ == "__main__": main()
548
1
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _snake_case : List[str] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _snake_case : Union[str, Any] = 'main' # Default branch name _snake_case : Dict = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) _snake_case : Dict = 'aaaaaaa' # This commit does not exist, so we should 404. _snake_case : str = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes _snake_case : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def snake_case_ (): '''simple docstring''' print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def snake_case_ (): '''simple docstring''' print('''Bonjour!''' ) yield print('''Au revoir!''' ) class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class A ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : str ) -> int: """simple docstring""" with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] ) -> Any: """simple docstring""" with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] ) -> str: """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels'''] ) self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''start_positions''', '''end_positions'''] ) class A ( _a ): pass self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels'''] ) @require_tf def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels'''] ) self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''start_positions''', '''end_positions'''] ) class A ( _a ): pass self.assertEqual(find_labels(lowerCAmelCase_ ) , ['''labels'''] ) @require_flax def __lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" self.assertEqual(find_labels(lowerCAmelCase_ ) , [] ) self.assertEqual(find_labels(lowerCAmelCase_ ) , [] ) self.assertEqual(find_labels(lowerCAmelCase_ ) , [] ) class A ( _a ): pass self.assertEqual(find_labels(lowerCAmelCase_ ) , [] )
22
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase_ ( _a): def _snake_case ( self : Any ) ->Tuple: """simple docstring""" a__ :List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , "tf_padding" ) ) self.parent.assertTrue(hasattr(__A , "depth_multiplier" ) ) class lowerCAmelCase_ : def __init__( self : Optional[int] , __A : Optional[Any] , __A : Optional[int]=13 , __A : Dict=3 , __A : Dict=32 , __A : List[str]=0.25 , __A : Optional[Any]=8 , __A : Any=8 , __A : Any=6 , __A : Optional[int]=32 , __A : Optional[int]=True , __A : Dict=True , __A : int=True , __A : str="relu6" , __A : Any=1280 , __A : int=0.1 , __A : List[str]=0.02 , __A : List[Any]=True , __A : int=True , __A : Union[str, Any]=10 , __A : Union[str, Any]=None , ) ->int: """simple docstring""" a__ :Optional[Any] = parent a__ :Dict = batch_size a__ :Union[str, Any] = num_channels a__ :Any = image_size a__ :Dict = depth_multiplier a__ :int = depth_divisible_by a__ :Union[str, Any] = min_depth a__ :Optional[int] = expand_ratio a__ :List[Any] = tf_padding a__ :Union[str, Any] = output_stride a__ :Union[str, Any] = first_layer_is_expansion a__ :Any = finegrained_output a__ :int = hidden_act a__ :Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) a__ :List[Any] = classifier_dropout_prob a__ :Dict = use_labels a__ :Dict = is_training a__ :Optional[int] = num_labels a__ :Any = initializer_range a__ :int = scope def _snake_case ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a__ :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ :str = None a__ :Any = None if self.use_labels: a__ :Tuple = ids_tensor([self.batch_size] , self.num_labels ) a__ :Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ :Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case ( self : List[str] ) ->str: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _snake_case ( self : Optional[int] , __A : Optional[int] , __A : List[Any] , __A : Tuple , __A : Union[str, Any] ) ->Optional[Any]: """simple docstring""" a__ :List[str] = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() a__ :Optional[int] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def _snake_case ( self : List[str] , __A : Dict , __A : Union[str, Any] , __A : Dict , __A : List[str] ) ->int: """simple docstring""" a__ :Dict = self.num_labels a__ :Optional[int] = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() a__ :Union[str, Any] = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : str , __A : Any , __A : Any , __A : Optional[Any] , __A : Any ) ->int: """simple docstring""" a__ :Any = self.num_labels a__ :Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() a__ :int = model(__A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a__ :List[Any] = model(__A , labels=__A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" a__ :Optional[Any] = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ :int = config_and_inputs a__ :Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _a ,_a ,unittest.TestCase): lowerCamelCase_ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase_ = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" a__ :List[str] = MobileNetVaModelTester(self ) a__ :List[str] = MobileNetVaConfigTester(self , config_class=__A , has_text_modality=__A ) def _snake_case ( self : str ) ->str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def _snake_case ( self : Dict ) ->Tuple: """simple docstring""" pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def _snake_case ( self : List[Any] ) ->List[Any]: """simple docstring""" pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def _snake_case ( self : Tuple ) ->Optional[int]: """simple docstring""" pass def _snake_case ( self : List[str] ) ->Any: """simple docstring""" a__ , a__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ :int = model_class(__A ) a__ :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ :Union[str, Any] = [*signature.parameters.keys()] a__ :List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def _snake_case ( self : List[Any] ) ->Tuple: """simple docstring""" a__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _snake_case ( self : str ) ->Optional[Any]: """simple docstring""" def check_hidden_states_output(__A : Union[str, Any] , __A : Dict , __A : Any ): a__ :int = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a__ :Optional[Any] = model(**self._prepare_for_class(__A , __A ) ) a__ :Tuple = outputs.hidden_states a__ :Any = 16 self.assertEqual(len(__A ) , __A ) a__ , a__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ :Optional[Any] = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ :Optional[Any] = True check_hidden_states_output(__A , __A , __A ) def _snake_case ( self : List[str] ) ->Dict: """simple docstring""" a__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def _snake_case ( self : str ) ->Tuple: """simple docstring""" a__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def _snake_case ( self : int ) ->Tuple: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ :List[str] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" a__ :Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase): @cached_property def _snake_case ( self : Optional[int] ) ->str: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def _snake_case ( self : int ) ->Optional[int]: """simple docstring""" a__ :Any = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(__A ) a__ :List[Any] = self.default_image_processor a__ :str = prepare_img() a__ :Dict = image_processor(images=__A , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): a__ :Tuple = model(**__A ) # verify the logits a__ :List[Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __A ) a__ :Union[str, Any] = torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1E-4 ) ) @slow def _snake_case ( self : Any ) ->Tuple: """simple docstring""" a__ :Any = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) a__ :Union[str, Any] = model.to(__A ) a__ :str = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) a__ :List[str] = prepare_img() a__ :str = image_processor(images=__A , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): a__ :Dict = model(**__A ) a__ :Optional[int] = outputs.logits # verify the logits a__ :int = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __A ) a__ :Optional[Any] = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]], [[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]], ] , device=__A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __A , atol=1E-4 ) )
395
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A_ ( snake_case : NDArray[floataa] , snake_case : NDArray[floataa] , snake_case : list[int] , snake_case : int , ) -> list[float]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = coefficient_matrix.shape __UpperCamelCase , __UpperCamelCase = constant_matrix.shape if rowsa != colsa: __UpperCamelCase = f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(snake_case ) if colsa != 1: __UpperCamelCase = f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(snake_case ) if rowsa != rowsa: __UpperCamelCase = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(snake_case ) if len(snake_case ) != rowsa: __UpperCamelCase = ( '''Number of initial values must be equal to number of rows in coefficient ''' f"matrix but received {len(snake_case )} and {rowsa}" ) raise ValueError(snake_case ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) __UpperCamelCase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCamelCase , __UpperCamelCase = table.shape strictly_diagonally_dominant(snake_case ) # Iterates the whole matrix for given number of times for _ in range(snake_case ): __UpperCamelCase = [] for row in range(snake_case ): __UpperCamelCase = 0 for col in range(snake_case ): if col == row: __UpperCamelCase = table[row][col] elif col == cols - 1: __UpperCamelCase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCamelCase = (temp + val) / denom new_val.append(snake_case ) __UpperCamelCase = new_val return [float(snake_case ) for i in new_val] def A_ ( snake_case : NDArray[floataa] ) -> bool: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = table.shape __UpperCamelCase = True for i in range(0 , snake_case ): __UpperCamelCase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
451
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __UpperCamelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __UpperCamelCase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __UpperCamelCase = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCamelCase = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCamelCase = self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , use_clipped_model_output=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample __UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
451
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowercase_ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : str , *_A : Optional[int] , _A : Optional[int]=None , _A : Dict=None , _A : List[Any]=None , **_A : Optional[Any] ): """simple docstring""" super().__init__(*_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = eval_examples __SCREAMING_SNAKE_CASE : Optional[Any] = post_process_function __SCREAMING_SNAKE_CASE : Tuple = quant_trainer_args __SCREAMING_SNAKE_CASE : int = 128 # default number of calibration samples def UpperCAmelCase__ ( self : int , _A : Optional[int]=None ): """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) __SCREAMING_SNAKE_CASE : Tuple = calib_dataset if calib_dataset is not None else self.calib_dataset __SCREAMING_SNAKE_CASE : str = self._remove_unused_columns(_A , description='''Calibration''' ) return DataLoader( _A , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_A , ) def UpperCAmelCase__ ( self : Optional[int] , _A : Tuple=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.train_dataset if calib_dataset is None else calib_dataset __SCREAMING_SNAKE_CASE : Tuple = self.get_calib_dataloader(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.model quant_trainer.configure_model(_A , self.quant_trainer_args , calib=_A ) model.eval() quant_trainer.enable_calibration(_A ) logger.info('''***** Running calibration *****''' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(_A ): # Prediction step __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = self.prediction_step(_A , _A , prediction_loss_only=_A ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_A , self.quant_trainer_args ) __SCREAMING_SNAKE_CASE : Dict = model def UpperCAmelCase__ ( self : List[str] , _A : int=None , _A : Optional[Any]=None , _A : List[Any]=None , _A : str = "eval" ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset __SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_A ) __SCREAMING_SNAKE_CASE : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __SCREAMING_SNAKE_CASE : List[str] = self.compute_metrics __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __SCREAMING_SNAKE_CASE : Optional[int] = eval_loop( _A , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , ) finally: __SCREAMING_SNAKE_CASE : List[str] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: __SCREAMING_SNAKE_CASE : Dict = self.post_process_function(_A , _A , output.predictions ) __SCREAMING_SNAKE_CASE : str = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __SCREAMING_SNAKE_CASE : Tuple = metrics.pop(_A ) self.log(_A ) else: __SCREAMING_SNAKE_CASE : str = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __SCREAMING_SNAKE_CASE : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _A ) return metrics def UpperCAmelCase__ ( self : Tuple , _A : int , _A : Optional[int] , _A : str=None , _A : str = "test" ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. __SCREAMING_SNAKE_CASE : str = self.compute_metrics __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __SCREAMING_SNAKE_CASE : Union[str, Any] = eval_loop( _A , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , ) finally: __SCREAMING_SNAKE_CASE : Tuple = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output __SCREAMING_SNAKE_CASE : Dict = self.post_process_function(_A , _A , output.predictions , '''predict''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __SCREAMING_SNAKE_CASE : List[str] = metrics.pop(_A ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_A ) def UpperCAmelCase__ ( self : Dict , _A : List[Any]="./" ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.eval_dataset __SCREAMING_SNAKE_CASE : int = self.get_eval_dataloader(_A ) __SCREAMING_SNAKE_CASE : str = next(iter(_A ) ) # saving device - to make it consistent __SCREAMING_SNAKE_CASE : str = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple __SCREAMING_SNAKE_CASE : List[Any] = tuple(v.to(_A ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : Dict = self.model.to(_A ) model.eval() model.float() __SCREAMING_SNAKE_CASE : str = model.module if hasattr(_A , '''module''' ) else model quant_trainer.configure_model(_A , self.quant_trainer_args ) __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(_A , '''model.onnx''' ) logger.info(F'''exporting model to {output_model_file}''' ) __SCREAMING_SNAKE_CASE : List[str] = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( _A , _A , _A , export_params=_A , opset_version=13 , do_constant_folding=_A , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=_A , ) logger.info('''onnx export finished''' )
74
def __a ( __lowerCAmelCase , __lowerCAmelCase = 0 ) -> list: SCREAMING_SNAKE_CASE : int = length or len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : Any = True return list_data if not swapped else bubble_sort(__lowerCAmelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
352
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __A ( ): """simple docstring""" __a = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } __a = Dataset.from_dict(_A ) return dataset class A_ ( a_ ): def _UpperCAmelCase ( self : Tuple ): __a = get_dataset() __a = make_duplicate_clusters(__SCREAMING_SNAKE_CASE , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _UpperCAmelCase ( self : int ): __a = get_dataset() __a , __a = deduplicate_dataset(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) print(__SCREAMING_SNAKE_CASE ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , __SCREAMING_SNAKE_CASE )
525
from ... import PretrainedConfig SCREAMING_SNAKE_CASE : Any = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class A_ ( a_ ): _SCREAMING_SNAKE_CASE = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP _SCREAMING_SNAKE_CASE = """nezha""" def __init__( self : Any , __SCREAMING_SNAKE_CASE : List[str]=2_11_28 , __SCREAMING_SNAKE_CASE : Dict=7_68 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=30_72 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : int=5_12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=64 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-12 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Any=0 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=True , **__SCREAMING_SNAKE_CASE : List[str] , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = max_relative_position __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout __a = use_cache
525
1
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A__( __lowerCAmelCase ): if hor == 1_28: _snake_case : Dict = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') _snake_case : Any = (32, 1_28, 2_56) _snake_case : List[Any] = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: _snake_case : Optional[Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') _snake_case : Union[str, Any] = (32, 64, 1_28, 2_56) _snake_case : Union[str, Any] = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') _snake_case : List[Any] = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) _snake_case : Union[str, Any] = model.state_dict() _snake_case : Any = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } _snake_case : List[Any] = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) _snake_case : Dict = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : List[Any] = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def A__( ): _snake_case : List[str] = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } _snake_case : Optional[Any] = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) _snake_case : Optional[Any] = model _snake_case : List[str] = UNetaDModel(**__lowerCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) _snake_case : Optional[Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : Union[str, Any] = state_dict.pop(__lowerCAmelCase ) hf_value_function.load_state_dict(__lowerCAmelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
304
from math import pow def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _snake_case : Any = int(pow(__lowerCAmelCase , __lowerCAmelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _snake_case , _snake_case : str = backtrack( __lowerCAmelCase , __lowerCAmelCase , current_number + 1 , __lowerCAmelCase , __lowerCAmelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _snake_case , _snake_case : Optional[Any] = backtrack( __lowerCAmelCase , __lowerCAmelCase , current_number + 1 , __lowerCAmelCase , __lowerCAmelCase ) return current_sum, solutions_count def A__( __lowerCAmelCase , __lowerCAmelCase ): if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(__lowerCAmelCase , __lowerCAmelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
304
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) UpperCamelCase_ = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def _lowerCAmelCase ( __magic_name__ : Tuple ) -> List[Any]: lowercase : Union[str, Any] ={} state_dict.pop('''pixel_mean''' , A_ ) state_dict.pop('''pixel_std''' , A_ ) lowercase : List[str] =R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase : int =key.replace(A_ , A_ ) if re.match(A_ , A_ ): lowercase : str =int(re.match(A_ , A_ ).group(2 ) ) if layer_nb == 0: lowercase : Optional[int] =key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: lowercase : Optional[int] =key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: lowercase : List[str] =key.replace('''layers.2''' , '''proj_out''' ) lowercase : Dict =value lowercase : Dict =model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def _lowerCAmelCase ( __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple="ybelkada/segment-anything" ) -> Optional[Any]: lowercase : List[Any] =hf_hub_download(A_ , f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: lowercase : Tuple =SamConfig() elif "sam_vit_l" in model_name: lowercase : Dict =SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowercase : Dict =SamConfig( vision_config=A_ , ) elif "sam_vit_h" in model_name: lowercase : int =SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowercase : Optional[Any] =SamConfig( vision_config=A_ , ) lowercase : List[str] =torch.load(A_ , map_location='''cpu''' ) lowercase : Optional[int] =replace_keys(A_ ) lowercase : List[str] =SamImageProcessor() lowercase : Dict =SamProcessor(image_processor=A_ ) lowercase : int =SamModel(A_ ) hf_model.load_state_dict(A_ ) lowercase : Optional[Any] =hf_model.to('''cuda''' ) lowercase : Optional[int] ='''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' lowercase : Dict =Image.open(requests.get(A_ , stream=A_ ).raw ).convert('''RGB''' ) lowercase : Tuple =[[[400, 650]]] lowercase : List[Any] =[[1]] lowercase : Dict =processor(images=np.array(A_ ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowercase : List[Any] =hf_model(**A_ ) lowercase : List[Any] =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 lowercase : str =processor( images=np.array(A_ ) , input_points=A_ , input_labels=A_ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowercase : int =hf_model(**A_ ) lowercase : Dict =output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 lowercase : str =((75, 275, 1725, 850),) lowercase : List[Any] =processor(images=np.array(A_ ) , input_boxes=A_ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowercase : Tuple =hf_model(**A_ ) lowercase : Optional[Any] =output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. lowercase : Union[str, Any] =[[[400, 650], [800, 650]]] lowercase : int =[[1, 1]] lowercase : Tuple =processor( images=np.array(A_ ) , input_points=A_ , input_labels=A_ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowercase : Tuple =hf_model(**A_ ) lowercase : List[Any] =output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) UpperCamelCase_ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
710
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE ( lowercase__ ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowercase : Any =DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self : List[Any] , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , ): '''simple docstring''' # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCAmelCase__ ): lowercase : Optional[int] =( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowercase : Optional[int] =(batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCAmelCase__ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase : str =randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase : Dict =self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase : Dict =self.scheduler.step( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , eta=UpperCAmelCase__ , use_clipped_model_output=UpperCAmelCase__ , generator=UpperCAmelCase__ ).prev_sample lowercase : Optional[Any] =(image / 2 + 0.5).clamp(0 , 1 ) lowercase : Optional[Any] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase : List[str] =self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
88
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __A = logging.get_logger(__name__) __A = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Optional[Any] = 'dpt' def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str=768 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : Any=3072 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1e-12 , __SCREAMING_SNAKE_CASE : Optional[Any]=384 , __SCREAMING_SNAKE_CASE : List[str]=16 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=[2, 5, 8, 11] , __SCREAMING_SNAKE_CASE : Dict="project" , __SCREAMING_SNAKE_CASE : int=[4, 2, 1, 0.5] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[96, 192, 384, 768] , __SCREAMING_SNAKE_CASE : str=256 , __SCREAMING_SNAKE_CASE : int=-1 , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : str=0.4 , __SCREAMING_SNAKE_CASE : Any=255 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 1024, 24, 24] , __SCREAMING_SNAKE_CASE : Tuple=[0, 1] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> Optional[int]: super().__init__(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =hidden_size __UpperCAmelCase =is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) __UpperCAmelCase ={ """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } __UpperCAmelCase =BitConfig(**__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): logger.info("""Initializing the config with a `BiT` backbone.""" ) __UpperCAmelCase =BitConfig(**__SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase =backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) __UpperCAmelCase =backbone_featmap_shape __UpperCAmelCase =neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =[] __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_act __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =initializer_range __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =image_size __UpperCAmelCase =patch_size __UpperCAmelCase =num_channels __UpperCAmelCase =qkv_bias __UpperCAmelCase =backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) __UpperCAmelCase =readout_type __UpperCAmelCase =reassemble_factors __UpperCAmelCase =neck_hidden_sizes __UpperCAmelCase =fusion_hidden_size __UpperCAmelCase =head_in_index __UpperCAmelCase =use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __UpperCAmelCase =use_auxiliary_head __UpperCAmelCase =auxiliary_loss_weight __UpperCAmelCase =semantic_loss_ignore_index __UpperCAmelCase =semantic_classifier_dropout def _a ( self : str ) -> Any: __UpperCAmelCase =copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase =self.backbone_config.to_dict() __UpperCAmelCase =self.__class__.model_type return output
68
def lowercase__ ( A_: int , A_: int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def lowercase__ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
68
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( _snake_case : str ): '''simple docstring''' lowercase__ = [True] * limit lowercase__ = False lowercase__ = False lowercase__ = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): lowercase__ = i * 2 while index < limit: lowercase__ = False lowercase__ = index + i lowercase__ = [2] for i in range(3 ,_SCREAMING_SNAKE_CASE ,2 ): if is_prime[i]: primes.append(_SCREAMING_SNAKE_CASE ) return primes def lowerCamelCase ( _snake_case : List[str] = 1_000_000 ): '''simple docstring''' lowercase__ = prime_sieve(_SCREAMING_SNAKE_CASE ) lowercase__ = 0 lowercase__ = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + length ,len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase__ = j - i lowercase__ = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
701
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort SCREAMING_SNAKE_CASE__ = "1" SCREAMING_SNAKE_CASE__ = "0" SCREAMING_SNAKE_CASE__ = "1" SCREAMING_SNAKE_CASE__ = ort.SessionOptions() SCREAMING_SNAKE_CASE__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") SCREAMING_SNAKE_CASE__ = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] SCREAMING_SNAKE_CASE__ = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) SCREAMING_SNAKE_CASE__ = ort.RunOptions() SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = np.ones((batch, sequence), dtype=np.intaa) SCREAMING_SNAKE_CASE__ = np.ones((batch, sequence), dtype=np.intaa) SCREAMING_SNAKE_CASE__ = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = 2000 SCREAMING_SNAKE_CASE__ = {} for iter in range(max_iters): SCREAMING_SNAKE_CASE__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1000 / max_iters))
539
0
from scipy.stats import spearmanr import datasets __lowerCamelCase : Tuple = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" __lowerCamelCase : Any = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" __lowerCamelCase : List[Any] = R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self )-> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False )-> int: '''simple docstring''' A__ : int =spearmanr(__UpperCamelCase , __UpperCamelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
416
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: A__ : Tuple =1 for i in range(1, num + 1 ): fact *= i return fact def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: A__ : Optional[Any] =0 while number > 0: A__ : List[Any] =number % 1_0 sum_of_digits += last_digit A__ : str =number // 1_0 # Removing the last_digit from the given number return sum_of_digits def SCREAMING_SNAKE_CASE__ ( snake_case_ = 1_0_0 ) -> int: A__ : List[str] =factorial(snake_case_ ) A__ : str =split_and_add(snake_case_ ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
416
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Any = ['''flax'''] def __init__( self : Optional[Any] ,*A_ : int ,**A_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,*A_ : Any ,**A_ : List[Any] ) -> int: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] ,*A_ : Optional[Any] ,**A_ : Union[str, Any] ) -> str: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = ['''flax'''] def __init__( self : Any ,*A_ : List[str] ,**A_ : Tuple ) -> Any: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : Tuple ,**A_ : str ) -> Optional[int]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] ,*A_ : List[Any] ,**A_ : List[str] ) -> int: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''flax'''] def __init__( self : int ,*A_ : List[Any] ,**A_ : int ) -> str: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ,*A_ : str ,**A_ : List[str] ) -> Union[str, Any]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : List[str] ,**A_ : Any ) -> Optional[Any]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = ['''flax'''] def __init__( self : Union[str, Any] ,*A_ : Tuple ,**A_ : List[Any] ) -> Tuple: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : str ,**A_ : Tuple ) -> Union[str, Any]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ,*A_ : Dict ,**A_ : Union[str, Any] ) -> List[Any]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''flax'''] def __init__( self : int ,*A_ : Union[str, Any] ,**A_ : List[Any] ) -> List[Any]: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ,*A_ : int ,**A_ : List[str] ) -> List[str]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ,*A_ : List[Any] ,**A_ : Optional[Any] ) -> Tuple: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = ['''flax'''] def __init__( self : int ,*A_ : Tuple ,**A_ : str ) -> Union[str, Any]: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ,*A_ : Optional[Any] ,**A_ : Optional[int] ) -> Tuple: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,*A_ : Tuple ,**A_ : int ) -> Optional[Any]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''flax'''] def __init__( self : Any ,*A_ : List[str] ,**A_ : Union[str, Any] ) -> Tuple: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : Optional[int] ,**A_ : Any ) -> Dict: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] ,*A_ : Dict ,**A_ : Optional[Any] ) -> Dict: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = ['''flax'''] def __init__( self : Optional[int] ,*A_ : Optional[int] ,**A_ : Dict ) -> List[str]: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,*A_ : Tuple ,**A_ : str ) -> Optional[int]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : List[str] ,**A_ : Dict ) -> Union[str, Any]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Dict = ['''flax'''] def __init__( self : List[str] ,*A_ : Optional[Any] ,**A_ : Dict ) -> Tuple: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ,*A_ : List[str] ,**A_ : Tuple ) -> Optional[int]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str ,*A_ : Union[str, Any] ,**A_ : Any ) -> Optional[int]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Any = ['''flax'''] def __init__( self : Optional[Any] ,*A_ : List[Any] ,**A_ : Optional[int] ) -> Any: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ,*A_ : str ,**A_ : Union[str, Any] ) -> Dict: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,*A_ : Tuple ,**A_ : Any ) -> Dict: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = ['''flax'''] def __init__( self : Optional[Any] ,*A_ : List[Any] ,**A_ : int ) -> List[Any]: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,*A_ : int ,**A_ : Union[str, Any] ) -> Tuple: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ,*A_ : int ,**A_ : Optional[Any] ) -> Optional[int]: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''flax'''] def __init__( self : List[Any] ,*A_ : List[str] ,**A_ : List[str] ) -> str: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ,*A_ : List[str] ,**A_ : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ,*A_ : Any ,**A_ : List[str] ) -> Dict: requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=_lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = ['''flax'''] def __init__( self : List[str] ,*A_ : List[Any] ,**A_ : Dict ) -> Dict: requires_backends(self ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ,*A_ : Optional[Any] ,**A_ : List[str] ) -> Any: requires_backends(cls ,['flax'] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int ,*A_ : Tuple ,**A_ : Any ) -> Dict: requires_backends(cls ,['flax'] )
22
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spm_char.model'''} _lowercase = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _lowercase = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] ,A_ : int ,A_ : List[str]="<s>" ,A_ : Optional[Any]="</s>" ,A_ : Optional[Any]="<unk>" ,A_ : str="<pad>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : List[str] ,) -> None: A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,pad_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.sp_model.get_piece_size() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: A = self.__dict__.copy() A = None return state def __setstate__( self : Optional[int] ,A_ : str ) -> Tuple: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any] ) -> Union[str, Any]: return self.sp_model.piece_to_id(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict ) -> List[Any]: A = self.sp_model.IdToPiece(A_ ) return token def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> List[str]: A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token A = [] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) A = [1] if token_ids_a is None: return ([0] * len(A_ )) + suffix_ones return ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
22
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : str = """data2vec-audio""" def __init__( self :List[Any] , lowerCamelCase__ :List[str]=32 , lowerCamelCase__ :Optional[Any]=7_68 , lowerCamelCase__ :int=12 , lowerCamelCase__ :List[Any]=12 , lowerCamelCase__ :List[str]=30_72 , lowerCamelCase__ :int="gelu" , lowerCamelCase__ :Tuple=0.1 , lowerCamelCase__ :List[str]=0.1 , lowerCamelCase__ :Dict=0.1 , lowerCamelCase__ :Optional[Any]=0.0 , lowerCamelCase__ :Any=0.1 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :Dict=0.02 , lowerCamelCase__ :List[str]=1e-5 , lowerCamelCase__ :Union[str, Any]="gelu" , lowerCamelCase__ :Optional[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCamelCase__ :int=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase__ :Dict=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase__ :List[Any]=False , lowerCamelCase__ :List[Any]=16 , lowerCamelCase__ :Union[str, Any]=19 , lowerCamelCase__ :int=5 , lowerCamelCase__ :Dict=0.05 , lowerCamelCase__ :Union[str, Any]=10 , lowerCamelCase__ :Optional[int]=2 , lowerCamelCase__ :int=0.0 , lowerCamelCase__ :Dict=10 , lowerCamelCase__ :List[str]=0 , lowerCamelCase__ :Dict="sum" , lowerCamelCase__ :Optional[int]=False , lowerCamelCase__ :int=False , lowerCamelCase__ :Dict=2_56 , lowerCamelCase__ :Any=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCamelCase__ :int=(5, 3, 3, 1, 1) , lowerCamelCase__ :Union[str, Any]=(1, 2, 3, 1, 1) , lowerCamelCase__ :List[Any]=5_12 , lowerCamelCase__ :str=0 , lowerCamelCase__ :str=1 , lowerCamelCase__ :Optional[int]=2 , lowerCamelCase__ :Optional[Any]=False , lowerCamelCase__ :Optional[Any]=3 , lowerCamelCase__ :List[str]=2 , lowerCamelCase__ :List[str]=3 , lowerCamelCase__ :List[str]=None , **lowerCamelCase__ :Any , ): super().__init__(**lowerCamelCase__ , pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) UpperCamelCase__ :int = hidden_size UpperCamelCase__ :int = feat_extract_activation UpperCamelCase__ :str = list(lowerCamelCase__ ) UpperCamelCase__ :Tuple = list(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = list(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = conv_bias UpperCamelCase__ :Any = num_conv_pos_embeddings UpperCamelCase__ :Optional[Any] = num_conv_pos_embedding_groups UpperCamelCase__ :Optional[Any] = conv_pos_kernel_size UpperCamelCase__ :int = len(self.conv_dim ) UpperCamelCase__ :List[str] = num_hidden_layers UpperCamelCase__ :List[Any] = intermediate_size UpperCamelCase__ :Any = hidden_act UpperCamelCase__ :List[Any] = num_attention_heads UpperCamelCase__ :int = hidden_dropout UpperCamelCase__ :Dict = attention_dropout UpperCamelCase__ :Any = activation_dropout UpperCamelCase__ :int = feat_proj_dropout UpperCamelCase__ :List[Any] = final_dropout UpperCamelCase__ :List[Any] = layerdrop UpperCamelCase__ :List[Any] = layer_norm_eps UpperCamelCase__ :Any = initializer_range UpperCamelCase__ :Any = vocab_size UpperCamelCase__ :str = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ :Tuple = mask_time_prob UpperCamelCase__ :Union[str, Any] = mask_time_length UpperCamelCase__ :Any = mask_time_min_masks UpperCamelCase__ :Tuple = mask_feature_prob UpperCamelCase__ :Optional[Any] = mask_feature_length UpperCamelCase__ :Tuple = mask_feature_min_masks # ctc loss UpperCamelCase__ :List[str] = ctc_loss_reduction UpperCamelCase__ :Optional[int] = ctc_zero_infinity # adapter UpperCamelCase__ :Optional[int] = add_adapter UpperCamelCase__ :List[str] = adapter_kernel_size UpperCamelCase__ :Dict = adapter_stride UpperCamelCase__ :Optional[Any] = num_adapter_layers UpperCamelCase__ :Union[str, Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ :Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ :List[str] = list(lowerCamelCase__ ) UpperCamelCase__ :int = list(lowerCamelCase__ ) UpperCamelCase__ :List[str] = list(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = xvector_output_dim @property def __a ( self :Optional[Any] ): return math.prod(self.conv_stride )
45
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
2
0
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _SCREAMING_SNAKE_CASE : List[Any] = pytest.mark.integration @require_faiss class a ( __lowercase ): def UpperCamelCase ( self : Dict ) -> int: lowerCamelCase_ = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__SCREAMING_SNAKE_CASE ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase ( self : Tuple ) -> Any: import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase ( self : int ) -> List[str]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__SCREAMING_SNAKE_CASE ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(__SCREAMING_SNAKE_CASE , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase ( self : Optional[Any] ) -> int: from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( __lowercase ): def UpperCamelCase ( self : Optional[int] ) -> str: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ = index.search(__SCREAMING_SNAKE_CASE ) self.assertRaises(__SCREAMING_SNAKE_CASE , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ = index.search_batch(__SCREAMING_SNAKE_CASE ) self.assertRaises(__SCREAMING_SNAKE_CASE , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__SCREAMING_SNAKE_CASE ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[Any] ) -> Any: import faiss lowerCamelCase_ = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowerCamelCase_ = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase ( self : List[str] ) -> Optional[Any]: import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=__SCREAMING_SNAKE_CASE ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase ( self : Any ) -> Any: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__SCREAMING_SNAKE_CASE ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ = index.search(__SCREAMING_SNAKE_CASE ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase__ ( _lowerCamelCase : Dict ) -> Any: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'''mock://{index_name}''' index.save(_lowerCamelCase , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(_lowerCamelCase , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ = index.search(_lowerCamelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( __lowercase ): def UpperCamelCase ( self : List[str] ) -> str: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=__SCREAMING_SNAKE_CASE ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ = index.search(__SCREAMING_SNAKE_CASE ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ = index.search(__SCREAMING_SNAKE_CASE , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ = index.search_batch(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__SCREAMING_SNAKE_CASE ) , 0 ) self.assertListEqual([1, 1, 1] , __SCREAMING_SNAKE_CASE ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ = index.search_batch(__SCREAMING_SNAKE_CASE , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__SCREAMING_SNAKE_CASE ) , 0 ) self.assertListEqual([1, 1, 1] , __SCREAMING_SNAKE_CASE )
706
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class a ( unittest.TestCase ): def UpperCamelCase ( self : Tuple ) -> str: lowerCamelCase_ = [10, 20, 30, 40, 50, 60] lowerCamelCase_ = [2, 4, 6, 8, 10, 12] lowerCamelCase_ = 100 self.assertEqual(kp.calc_profit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 210 ) def UpperCamelCase ( self : Tuple ) -> Dict: self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , 'max_weight must greater than zero.' ) def UpperCamelCase ( self : Dict ) -> str: self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , 'Weight can not be negative.' ) def UpperCamelCase ( self : List[str] ) -> Any: self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , 'Profit can not be negative.' ) def UpperCamelCase ( self : Any ) -> Dict: self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , 'max_weight must greater than zero.' ) def UpperCamelCase ( self : List[str] ) -> str: self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
137
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Optional[Any] )-> Optional[Any]: __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __UpperCamelCase = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], "do_convert_rgb": True, } __UpperCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A_ , A_ ) def A ( self : List[Any] , **A_ : Any )-> Any: return BertTokenizer.from_pretrained(self.tmpdirname , **A_ ) def A ( self : int , **A_ : Dict )-> str: return BertTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def A ( self : Dict , **A_ : int )-> Union[str, Any]: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def A ( self : Optional[Any] )-> Tuple: shutil.rmtree(self.tmpdirname ) def A ( self : str )-> str: __UpperCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __UpperCamelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : str )-> Tuple: __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = self.get_rust_tokenizer() __UpperCamelCase = self.get_image_processor() __UpperCamelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCamelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) __UpperCamelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCamelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def A ( self : Dict )-> Union[str, Any]: __UpperCamelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) __UpperCamelCase = self.get_image_processor(do_normalize=A_ ) __UpperCamelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def A ( self : List[str] )-> str: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = image_processor(A_ , return_tensors="np" ) __UpperCamelCase = processor(images=A_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self : List[str] )-> List[Any]: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase = processor(text=A_ ) __UpperCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A ( self : str )-> str: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def A ( self : Tuple )-> Dict: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase = processor.batch_decode(A_ ) __UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def A ( self : Dict )-> str: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
505
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : str = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) _snake_case : ClassVar[Features] = Features({'text': Value('string' )} ) _snake_case : ClassVar[Features] = Features({'summary': Value('string' )} ) _snake_case : str = "text" _snake_case : str = "summary" @property def A ( self : Any )-> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
505
1
"""simple docstring""" A_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int , snake_case__ : int ): """simple docstring""" assert len(str(UpperCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _snake_case : Optional[Any] = year // 1_00 _snake_case : Optional[Any] = (5 * (century % 4) + 2) % 7 _snake_case : Tuple = year % 1_00 _snake_case : Optional[Any] = centurian % 12 _snake_case : int = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _snake_case : Dict = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) _snake_case : Optional[Any] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase: '''simple docstring''' def __init__( self: Optional[Any], a_: Union[str, Any], a_: int=100, a_: int=13, a_: List[Any]=30, a_: str=2, a_: Optional[Any]=3, a_: Optional[int]=True, a_: Any=True, a_: Optional[Any]=32, a_: Tuple=4, a_: str=4, a_: List[Any]=37, a_: List[str]="gelu", a_: str=0.1, a_: Optional[int]=0.1, a_: Any=10, a_: List[str]=0.02, a_: Dict=3, a_: str=None, a_: Optional[int]=[0, 1, 2, 3], ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Optional[Any] = 100 _snake_case : Any = batch_size _snake_case : List[Any] = image_size _snake_case : Optional[Any] = patch_size _snake_case : str = num_channels _snake_case : Tuple = is_training _snake_case : Tuple = use_labels _snake_case : Any = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Optional[Any] = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[str] = scope _snake_case : int = out_indices _snake_case : Optional[Any] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Dict = (image_size // patch_size) ** 2 _snake_case : str = num_patches + 1 def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Any, a_: Optional[Any], a_: List[str] ): '''simple docstring''' _snake_case : str = BeitModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : Dict = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self: str, a_: List[Any], a_: Optional[Any], a_: Optional[int], a_: List[Any] ): '''simple docstring''' _snake_case : List[str] = BeitForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() _snake_case : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase_ ( self: Any, a_: List[str], a_: Any, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' _snake_case : Any = self.type_sequence_label_size _snake_case : Any = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : Any = 1 _snake_case : str = BeitForImageClassification(a_ ) model.to(a_ ) model.eval() _snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Optional[Any] = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self: List[Any], a_: Optional[int], a_: List[Any], a_: str, a_: int ): '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : List[Any] = BeitForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _snake_case : str = model(a_, labels=a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = BeitModelTester(self ) _snake_case : int = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def UpperCamelCase_ ( self: str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCamelCase_ ( self: str ): '''simple docstring''' pass def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[str] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(a_ ) _snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[Any] = [*signature.parameters.keys()] _snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' if not self.model_tester.is_training: return _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a_ ), BeitForMaskedImageModeling]: continue _snake_case : List[Any] = model_class(a_ ) model.to(a_ ) model.train() _snake_case : Dict = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : List[Any] = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _snake_case : Dict = False _snake_case : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _snake_case : Any = model_class(a_ ) model.gradient_checkpointing_enable() model.to(a_ ) model.train() _snake_case : Any = self._prepare_for_class(a_, a_, return_labels=a_ ) _snake_case : int = model(**a_ ).loss loss.backward() def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : int = _config_zero_init(a_ ) for model_class in self.all_model_classes: _snake_case : Tuple = model_class(config=a_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = BeitModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(a_ ) _snake_case : Dict = self.default_image_processor _snake_case : Dict = prepare_img() _snake_case : List[str] = image_processor(images=a_, return_tensors="""pt""" ).pixel_values.to(a_ ) # prepare bool_masked_pos _snake_case : Optional[int] = torch.ones((1, 196), dtype=torch.bool ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(pixel_values=a_, bool_masked_pos=a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Optional[int] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(a_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], a_, atol=1E-2 ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(a_ ) _snake_case : List[Any] = self.default_image_processor _snake_case : Any = prepare_img() _snake_case : Any = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : int = model(**a_ ) _snake_case : Optional[int] = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(logits.shape, a_ ) _snake_case : Any = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : str = 281 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : int = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( a_ ) _snake_case : int = self.default_image_processor _snake_case : Optional[Any] = prepare_img() _snake_case : Union[str, Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Union[str, Any] = model(**a_ ) _snake_case : Dict = outputs.logits # verify the logits _snake_case : Tuple = torch.Size((1, 21_841) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(a_ ) self.assertTrue(torch.allclose(logits[0, :3], a_, atol=1E-4 ) ) _snake_case : List[str] = 2_396 self.assertEqual(logits.argmax(-1 ).item(), a_ ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[str] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : int = model.to(a_ ) _snake_case : List[str] = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : Union[str, Any] = Image.open(ds[0]["""file"""] ) _snake_case : List[Any] = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits # verify the logits _snake_case : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape, a_ ) _snake_case : Optional[int] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: _snake_case : Any = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ], device=a_, ) else: _snake_case : Optional[Any] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ], device=a_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : int = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _snake_case : List[Any] = model.to(a_ ) _snake_case : Tuple = BeitImageProcessor(do_resize=a_, size=640, do_center_crop=a_ ) _snake_case : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_ade20k""", split="""test""" ) _snake_case : str = Image.open(ds[0]["""file"""] ) _snake_case : Tuple = image_processor(images=a_, return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): _snake_case : Optional[int] = model(**a_ ) _snake_case : Union[str, Any] = outputs.logits.detach().cpu() _snake_case : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=a_, target_sizes=[(500, 300)] ) _snake_case : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, a_ ) _snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=a_ ) _snake_case : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape, a_ )
28
0
"""simple docstring""" from itertools import count def __UpperCAmelCase ( lowercase = 50 ): """simple docstring""" _UpperCAmelCase = [1] * min_block_length for n in count(UpperCamelCase_ ): fill_count_functions.append(1 ) for block_length in range(UpperCamelCase_ ,n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(F'''{solution() = }''')
277
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __snake_case (_a ): lowerCAmelCase__ = "naver-clova-ix/donut-base-finetuned-docvqa" lowerCAmelCase__ = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) lowerCAmelCase__ = "document_qa" lowerCAmelCase__ = AutoProcessor lowerCAmelCase__ = VisionEncoderDecoderModel lowerCAmelCase__ = ["image", "text"] lowerCAmelCase__ = ["text"] def __init__( self : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : "Image" , _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : List[str] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _lowerCAmelCase : Dict = task_prompt.replace("""{user_input}""" , _UpperCAmelCase ) _lowerCAmelCase : str = self.pre_processor.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors="""pt""" ).input_ids _lowerCAmelCase : Dict = self.pre_processor(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Dict = self.pre_processor.batch_decode(_UpperCAmelCase )[0] _lowerCAmelCase : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) _lowerCAmelCase : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) _lowerCAmelCase : List[Any] = re.sub(R"""<.*?>""" , """""" , _UpperCAmelCase , count=1 ).strip() # remove first task start token _lowerCAmelCase : Tuple = self.pre_processor.tokenajson(_UpperCAmelCase ) return sequence["answer"]
429
0
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def UpperCAmelCase ( A__: Any , A__: str=10 ) -> Union[str, Any]: __lowerCamelCase : str = [] for _ in range(A__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def UpperCAmelCase ( A__: List[str] , A__: str=10 ) -> Optional[int]: __lowerCamelCase : str = [] for step in range(A__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : Dict = os.path.join(A__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , A__ ) __lowerCamelCase : Union[str, Any] = torch.load(A__ ) scheduler.load_state_dict(A__ ) return lrs @require_torch class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self , __a , __a , __a ): self.assertEqual(len(__a ) , len(__a ) ) for a, b in zip(__a , __a ): self.assertAlmostEqual(__a , __a , delta=__a ) def snake_case_ ( self ): __lowerCamelCase : List[str] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__a ) __lowerCamelCase : Any = torch.tensor([0.4, 0.2, -0.5] ) __lowerCamelCase : Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCamelCase : Optional[Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): __lowerCamelCase : str = criterion(__a , __a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def snake_case_ ( self ): __lowerCamelCase : List[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__a ) __lowerCamelCase : int = torch.tensor([0.4, 0.2, -0.5] ) __lowerCamelCase : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCamelCase : str = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__a , weight_decay=0.0 , relative_step=__a , scale_parameter=__a , warmup_init=__a , ) for _ in range(1000 ): __lowerCamelCase : int = criterion(__a , __a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __lowercase( unittest.TestCase ): '''simple docstring''' __a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None __a : List[str] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __a : List[Any] = 10 def snake_case_ ( self , __a , __a , __a , __a=None ): self.assertEqual(len(__a ) , len(__a ) ) for a, b in zip(__a , __a ): self.assertAlmostEqual(__a , __a , delta=__a , msg=__a ) def snake_case_ ( self ): __lowerCamelCase : List[str] = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __lowerCamelCase : str = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __lowerCamelCase : int = data __lowerCamelCase : List[Any] = scheduler_func(self.optimizer , **__a ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __lowerCamelCase : Tuple = unwrap_schedule(__a , self.num_steps ) self.assertListAlmostEqual( __a , __a , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) __lowerCamelCase : Any = scheduler_func(self.optimizer , **__a ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__a ) # wrap to test picklability of the schedule __lowerCamelCase : str = unwrap_and_save_reload_schedule(__a , self.num_steps ) self.assertListEqual(__a , __a , msg=f'''failed for {scheduler_func} in save and reload''' ) class __lowercase: '''simple docstring''' def __init__( self , __a ): __lowerCamelCase : Optional[Any] = fn def __call__( self , *__a , **__a ): return self.fn(*__a , **__a ) @classmethod def snake_case_ ( self , __a ): __lowerCamelCase : Optional[Any] = list(map(self , scheduler.lr_lambdas ) )
707
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a , __a = None , __a = None , __a = None , __a = False , __a = False , __a = None , __a = None , **__a , ): super().__init__( __a , split=__a , features=__a , cache_dir=__a , keep_in_memory=__a , streaming=__a , num_proc=__a , **__a , ) __lowerCamelCase : List[Any] = field __lowerCamelCase : Dict = path_or_paths if isinstance(__a , __a ) else {self.split: path_or_paths} __lowerCamelCase : str = Json( cache_dir=__a , data_files=__a , features=__a , field=__a , **__a , ) def snake_case_ ( self ): # Build iterable dataset if self.streaming: __lowerCamelCase : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase : Any = None __lowerCamelCase : Any = None __lowerCamelCase : str = None __lowerCamelCase : int = None self.builder.download_and_prepare( download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , num_proc=self.num_proc , ) __lowerCamelCase : List[Any] = self.builder.as_dataset( split=self.split , verification_mode=__a , in_memory=self.keep_in_memory ) return dataset class __lowercase: '''simple docstring''' def __init__( self , __a , __a , __a = None , __a = None , **__a , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __lowerCamelCase : Optional[int] = dataset __lowerCamelCase : Optional[int] = path_or_buf __lowerCamelCase : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowerCamelCase : str = num_proc __lowerCamelCase : Optional[Any] = 'utf-8' __lowerCamelCase : Optional[int] = to_json_kwargs def snake_case_ ( self ): __lowerCamelCase : Tuple = self.to_json_kwargs.pop('path_or_buf' , __a ) __lowerCamelCase : Any = self.to_json_kwargs.pop('orient' , 'records' ) __lowerCamelCase : List[Any] = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) __lowerCamelCase : Tuple = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) __lowerCamelCase : int = self.to_json_kwargs.pop('compression' , __a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=__a ) as buffer: __lowerCamelCase : int = self._write(file_obj=__a , orient=__a , lines=__a , index=__a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ' was passed. Please provide a local path instead.' ) __lowerCamelCase : Dict = self._write( file_obj=self.path_or_buf , orient=__a , lines=__a , index=__a , **self.to_json_kwargs ) return written def snake_case_ ( self , __a ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = args __lowerCamelCase : int = query_table( table=self.dataset.data , key=slice(__a , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowerCamelCase : List[str] = batch.to_pandas().to_json( path_or_buf=__a , orient=__a , lines=__a , index=__a , **__a ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def snake_case_ ( self , __a , __a , __a , __a , **__a , ): __lowerCamelCase : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): __lowerCamelCase : List[str] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__a ) else: __lowerCamelCase , __lowerCamelCase : Optional[int] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __a , __a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(__a ) return written
263
0
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = CustomTokenizer pass
396
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase : List[str] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowercase( unittest.TestCase ): """simple docstring""" __lowerCamelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowerCamelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __lowerCamelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __lowerCamelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case ( self: Optional[Any] ,a: Optional[int] ,a: Tuple ,a: Tuple ): __UpperCAmelCase = ZeroShotClassificationPipeline( model=a ,tokenizer=a ,candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case ( self: int ,a: Union[str, Any] ,a: List[str] ): __UpperCAmelCase = classifier('Who are you voting for in 2020?' ,candidate_labels='politics' ) self.assertEqual(a ,{'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) # No kwarg __UpperCAmelCase = classifier('Who are you voting for in 2020?' ,['politics'] ) self.assertEqual(a ,{'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) __UpperCAmelCase = classifier('Who are you voting for in 2020?' ,candidate_labels=['politics'] ) self.assertEqual(a ,{'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) __UpperCAmelCase = classifier('Who are you voting for in 2020?' ,candidate_labels='politics, public health' ) self.assertEqual( a ,{'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) ,1.0 ) __UpperCAmelCase = classifier('Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health'] ) self.assertEqual( a ,{'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) ,1.0 ) __UpperCAmelCase = classifier( 'Who are you voting for in 2020?' ,candidate_labels='politics' ,hypothesis_template='This text is about {}' ) self.assertEqual(a ,{'sequence': ANY(a ), 'labels': [ANY(a )], 'scores': [ANY(a )]} ) # https://github.com/huggingface/transformers/issues/13846 __UpperCAmelCase = classifier(['I am happy'] ,['positive', 'negative'] ) self.assertEqual( a ,[ {'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} for i in range(1 ) ] ,) __UpperCAmelCase = classifier(['I am happy', 'I am sad'] ,['positive', 'negative'] ) self.assertEqual( a ,[ {'sequence': ANY(a ), 'labels': [ANY(a ), ANY(a )], 'scores': [ANY(a ), ANY(a )]} for i in range(2 ) ] ,) with self.assertRaises(a ): classifier('' ,candidate_labels='politics' ) with self.assertRaises(a ): classifier(a ,candidate_labels='politics' ) with self.assertRaises(a ): classifier('Who are you voting for in 2020?' ,candidate_labels='' ) with self.assertRaises(a ): classifier('Who are you voting for in 2020?' ,candidate_labels=a ) with self.assertRaises(a ): classifier( 'Who are you voting for in 2020?' ,candidate_labels='politics' ,hypothesis_template='Not formatting template' ,) with self.assertRaises(a ): classifier( 'Who are you voting for in 2020?' ,candidate_labels='politics' ,hypothesis_template=a ,) self.run_entailment_id(a ) def snake_case ( self: int ,a: Pipeline ): __UpperCAmelCase = zero_shot_classifier.model.config __UpperCAmelCase = config.labelaid __UpperCAmelCase = zero_shot_classifier.entailment_id __UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id ,-1 ) __UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) __UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id ,0 ) __UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id ,2 ) __UpperCAmelCase = original_labelaid self.assertEqual(a ,zero_shot_classifier.entailment_id ) @require_torch def snake_case ( self: List[Any] ): __UpperCAmelCase = pipeline( 'zero-shot-classification' ,model='sshleifer/tiny-distilbert-base-cased-distilled-squad' ,framework='pt' ,) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 ,candidate_labels=['politics', 'public health', 'science'] ) @require_torch def snake_case ( self: Tuple ): __UpperCAmelCase = pipeline( 'zero-shot-classification' ,model='sshleifer/tiny-distilbert-base-cased-distilled-squad' ,framework='pt' ,) __UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } ,) @require_tf def snake_case ( self: int ): __UpperCAmelCase = pipeline( 'zero-shot-classification' ,model='sshleifer/tiny-distilbert-base-cased-distilled-squad' ,framework='tf' ,) __UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } ,) @slow @require_torch def snake_case ( self: int ): __UpperCAmelCase = pipeline('zero-shot-classification' ,model='roberta-large-mnli' ,framework='pt' ) __UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } ,) __UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' ,candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] ,multi_label=a ,) self.assertEqual( nested_simplify(a ) ,{ 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } ,) @slow @require_tf def snake_case ( self: str ): __UpperCAmelCase = pipeline('zero-shot-classification' ,model='roberta-large-mnli' ,framework='tf' ) __UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' ,candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(a ) ,{ 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } ,) __UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' ,candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] ,multi_label=a ,) self.assertEqual( nested_simplify(a ) ,{ 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } ,)
396
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer a : str = '''bart''' a : Optional[int] = True @st.cache(allow_output_mutation=_UpperCamelCase ) def lowercase_ ( ): '''simple docstring''' if LOAD_DENSE_INDEX: __lowercase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __lowercase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __lowercase = qar_model.eval() else: __lowercase , __lowercase = (None, None) if MODEL_TYPE == "bart": __lowercase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __lowercase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __lowercase = sas_model.eval() else: __lowercase , __lowercase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_UpperCamelCase ) def lowercase_ ( ): '''simple docstring''' if LOAD_DENSE_INDEX: __lowercase = faiss.StandardGpuResources() __lowercase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __lowercase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) __lowercase = faiss.IndexFlatIP(1_28 ) __lowercase = faiss.index_cpu_to_gpu(_UpperCamelCase , 1 , _UpperCamelCase ) wikiaab_gpu_index_flat.add(_UpperCamelCase ) # TODO fix for larger GPU else: __lowercase , __lowercase = (None, None) __lowercase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_UpperCamelCase ) def lowercase_ ( ): '''simple docstring''' __lowercase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __lowercase = elia['''train_eli5'''] __lowercase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) __lowercase = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(_UpperCamelCase ) return (elia_train, eli5_train_q_index) a , a , a : Dict = load_indexes() a , a , a , a : Optional[int] = load_models() a , a : List[str] = load_train_data() def lowercase_ ( _UpperCamelCase , _UpperCamelCase=10 ): '''simple docstring''' __lowercase = embed_questions_for_retrieval([question] , _UpperCamelCase , _UpperCamelCase ) __lowercase , __lowercase = eli5_train_q_index.search(_UpperCamelCase , _UpperCamelCase ) __lowercase = [elia_train[int(_UpperCamelCase )] for i in I[0]] return nn_examples def lowercase_ ( _UpperCamelCase , _UpperCamelCase="wiki40b" , _UpperCamelCase="dense" , _UpperCamelCase=10 ): '''simple docstring''' if source == "none": __lowercase , __lowercase = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowercase , __lowercase = query_qa_dense_index( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: __lowercase , __lowercase = query_es_index( _UpperCamelCase , _UpperCamelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=_UpperCamelCase , ) __lowercase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __lowercase = '''question: {} context: {}'''.format(_UpperCamelCase , _UpperCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCamelCase : None), } ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=64 , _UpperCamelCase=2_56 , _UpperCamelCase=False , _UpperCamelCase=2 , _UpperCamelCase=0.95 , _UpperCamelCase=0.8 ): '''simple docstring''' with torch.no_grad(): __lowercase = qa_sas_generate( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , num_answers=1 , num_beams=_UpperCamelCase , min_len=_UpperCamelCase , max_len=_UpperCamelCase , do_sample=_UpperCamelCase , temp=_UpperCamelCase , top_p=_UpperCamelCase , top_k=_UpperCamelCase , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar a : Any = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' a : List[str] = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia a : Any = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) a : int = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] a : Optional[Any] = st.sidebar.checkbox('''Demo options''') if demo_options: a : Union[str, Any] = st.sidebar.selectbox( '''''', action_list, index=3, ) a : str = action_list.index(action_st) a : List[Any] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) a : Optional[Any] = show_type == '''Show full text of passages''' else: a : List[str] = 3 a : List[str] = True a : int = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: a : Dict = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) a : Optional[int] = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) a : Any = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: a : str = '''wiki40b''' a : List[Any] = '''dense''' a : Union[str, Any] = '''beam''' a : str = 2 a : Tuple = 64 a : Optional[int] = 256 a : int = None a : Dict = None a : List[str] = st.sidebar.checkbox('''Generation options''') if generate_options: a : List[Any] = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) a : str = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) a : List[Any] = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) a : Tuple = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": a : str = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: a : List[Any] = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) a : Tuple = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) a : int = None # start main text a : List[str] = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] a : Dict = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": a : List[Any] = st.text_input('''Enter your question here:''', '''''') else: a : Union[str, Any] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": a , a : Any = make_support(question, source=wiki_source, method='''dense''', n_results=10) a , a : Optional[Any] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) a : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] a : Union[str, Any] = support_list[:10] a : Tuple = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: a , a : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: a , a : str = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): a : Union[str, Any] = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) a : str = res[1].strip() if sec_titles == "": a : int = '''[{}]({})'''.format(res[0], wiki_url) else: a : Optional[int] = sec_titles.split(''' & ''') a : Tuple = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: a : Union[str, Any] = find_nearest_training(question) a : Union[str, Any] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) a : Optional[int] = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) a : Optional[int] = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
527
import unittest from knapsack import knapsack as k class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def A ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = 0 __lowercase = [0] __lowercase = [0] __lowercase = len(snake_case_ ) self.assertEqual(k.knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , 0 ) __lowercase = [6_0] __lowercase = [1_0] __lowercase = len(snake_case_ ) self.assertEqual(k.knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , 0 ) def A ( self ) -> Tuple: '''simple docstring''' __lowercase = 3 __lowercase = [1, 2, 3] __lowercase = [3, 2, 1] __lowercase = len(snake_case_ ) self.assertEqual(k.knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , 5 ) def A ( self ) -> str: '''simple docstring''' __lowercase = 5_0 __lowercase = [6_0, 1_0_0, 1_2_0] __lowercase = [1_0, 2_0, 3_0] __lowercase = len(snake_case_ ) self.assertEqual(k.knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , 2_2_0 ) if __name__ == "__main__": unittest.main()
527
1
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _UpperCamelCase (_lowerCamelCase : List[Any] )-> List[Any]: '''simple docstring''' return x + 2 class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = '''x = 3''' __snake_case = {} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3} ) __snake_case = '''x = y''' __snake_case = {'''y''': 5} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 5, '''y''': 5} ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = '''y = add_two(x)''' __snake_case = {'''x''': 3} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = '''x = 3''' __snake_case = {} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3} ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' __snake_case = {'''x''': 3} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = '''x = 3\ny = 5''' __snake_case = {} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 5} ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = '''text = f\'This is x: {x}.\'''' __snake_case = {'''x''': 3} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = '''if x <= 3:\n y = 2\nelse:\n y = 5''' __snake_case = {'''x''': 3} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 2} ) __snake_case = {'''x''': 8} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 8, '''y''': 5} ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = '''test_list = [x, add_two(x)]''' __snake_case = {'''x''': 3} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_list''': [3, 5]} ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = '''y = x''' __snake_case = {'''x''': 3} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''y''': 3} ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = '''test_list = [x, add_two(x)]\ntest_list[1]''' __snake_case = {'''x''': 3} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_list''': [3, 5]} ) __snake_case = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' __snake_case = {'''x''': 3} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {'''add_two''': add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = '''x = 0\nfor i in range(3):\n x = i''' __snake_case = {} __snake_case = evaluate(__SCREAMING_SNAKE_CASE , {'''range''': range} , state=__SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''x''': 2, '''i''': 2} )
24
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : int = BarthezTokenizer __lowercase : Any = BarthezTokenizerFast __lowercase : Dict = True __lowercase : Optional[int] = True def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' super().setUp() __snake_case = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = '''<pad>''' __snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_1122 ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __snake_case = [0, 57, 3018, 7_0307, 91, 2] __snake_case = self.tokenizer( __SCREAMING_SNAKE_CASE , max_length=len(__SCREAMING_SNAKE_CASE ) , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __snake_case = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = {'''input_ids''': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __snake_case = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__SCREAMING_SNAKE_CASE , )
24
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class lowerCAmelCase ( snake_case ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) _UpperCAmelCase = {} def __A ( self , a__ , *a__ , **a__ ): _UpperCAmelCase = super().add_tokens(a__ , *a__ , **a__ ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.' ) def __A ( self , a__ , *a__ , a__=1 , **a__ ): _UpperCAmelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(a__ , *a__ , **a__ ) output.append(a__ ) else: _UpperCAmelCase = [] for i in range(a__ ): _UpperCAmelCase = placeholder_token + f"""_{i}""" self.try_adding_tokens(a__ , *a__ , **a__ ) output.append(a__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) _UpperCAmelCase = output def __A ( self , a__ , a__=False , a__=1.0 ): if isinstance(a__ , a__ ): _UpperCAmelCase = [] for i in range(len(a__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=a__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _UpperCAmelCase = self.token_map[placeholder_token] _UpperCAmelCase = tokens[: 1 + int(len(a__ ) * prop_tokens_to_load )] if vector_shuffle: _UpperCAmelCase = copy.copy(a__ ) random.shuffle(a__ ) _UpperCAmelCase = text.replace(a__ , ' '.join(a__ ) ) return text def __call__( self , a__ , *a__ , a__=False , a__=1.0 , **a__ ): return super().__call__( self.replace_placeholder_tokens_in_text( a__ , vector_shuffle=a__ , prop_tokens_to_load=a__ ) , *a__ , **a__ , ) def __A ( self , a__ , *a__ , a__=False , a__=1.0 , **a__ ): return super().encode( self.replace_placeholder_tokens_in_text( a__ , vector_shuffle=a__ , prop_tokens_to_load=a__ ) , *a__ , **a__ , )
714
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } lowerCAmelCase_ = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } lowerCAmelCase_ = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } lowerCAmelCase_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase_ = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase_ = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = DPRContextEncoderTokenizer class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = DPRQuestionEncoderTokenizer lowerCAmelCase_ = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCAmelCase_ = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCAmelCase_ = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(snake_case ) class lowerCAmelCase : def __call__( self , a__ , a__ = None , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , **a__ , ): if titles is None and texts is None: return super().__call__( a__ , padding=a__ , truncation=a__ , max_length=a__ , return_tensors=a__ , return_attention_mask=a__ , **a__ , ) elif titles is None or texts is None: _UpperCAmelCase = titles if texts is None else texts return super().__call__( a__ , a__ , padding=a__ , truncation=a__ , max_length=a__ , return_tensors=a__ , return_attention_mask=a__ , **a__ , ) _UpperCAmelCase = titles if not isinstance(a__ , a__ ) else [titles] _UpperCAmelCase = texts if not isinstance(a__ , a__ ) else [texts] _UpperCAmelCase = len(a__ ) _UpperCAmelCase = questions if not isinstance(a__ , a__ ) else [questions] * n_passages assert len(a__ ) == len( a__ ), f"""There should be as many titles than texts but got {len(a__ )} titles and {len(a__ )} texts.""" _UpperCAmelCase = super().__call__(a__ , a__ , padding=a__ , truncation=a__ )['input_ids'] _UpperCAmelCase = super().__call__(a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ )['input_ids'] _UpperCAmelCase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(a__ , a__ ) ] } if return_attention_mask is not False: _UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _UpperCAmelCase = attention_mask return self.pad(a__ , padding=a__ , max_length=a__ , return_tensors=a__ ) def __A ( self , a__ , a__ , a__ = 16 , a__ = 64 , a__ = 4 , ): _UpperCAmelCase = reader_input['input_ids'] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reader_output[:3] _UpperCAmelCase = len(a__ ) _UpperCAmelCase = sorted(range(a__ ) , reverse=a__ , key=relevance_logits.__getitem__ ) _UpperCAmelCase = [] for doc_id in sorted_docs: _UpperCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCAmelCase = sequence_ids.index(self.pad_token_id ) else: _UpperCAmelCase = len(a__ ) _UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=a__ , top_spans=a__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=a__ , start_index=a__ , end_index=a__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(a__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __A ( self , a__ , a__ , a__ , a__ , ): _UpperCAmelCase = [] for start_index, start_score in enumerate(a__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _UpperCAmelCase = sorted(a__ , key=lambda a__ : x[1] , reverse=a__ ) _UpperCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" _UpperCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(a__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case ) class lowerCAmelCase ( snake_case , snake_case ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ = DPRReaderTokenizer
494
0
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
416
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: random.seed(snake_case_ ) np.random.seed(snake_case_ ) torch.manual_seed(snake_case_ ) torch.cuda.manual_seed_all(snake_case_ ) # ^^ safe to call this function even if cuda is not available class a : def __init__( self , __UpperCamelCase , __UpperCamelCase = 0.9999 , __UpperCamelCase = 0.0 , __UpperCamelCase = 0 , __UpperCamelCase = False , __UpperCamelCase = 1.0 , __UpperCamelCase = 2 / 3 , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> int: '''simple docstring''' if isinstance(__UpperCamelCase , torch.nn.Module ): A__ : str =( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : str =True if kwargs.get('''max_value''' , __UpperCamelCase ) is not None: A__ : List[str] ='''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) A__ : Union[str, Any] =kwargs['''max_value'''] if kwargs.get('''min_value''' , __UpperCamelCase ) is not None: A__ : int ='''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) A__ : Union[str, Any] =kwargs['''min_value'''] A__ : List[str] =list(__UpperCamelCase ) A__ : Dict =[p.clone().detach() for p in parameters] if kwargs.get('''device''' , __UpperCamelCase ) is not None: A__ : Any ='''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) self.to(device=kwargs['''device'''] ) A__ : List[Any] =None A__ : Optional[int] =decay A__ : int =min_decay A__ : int =update_after_step A__ : Optional[int] =use_ema_warmup A__ : Tuple =inv_gamma A__ : Union[str, Any] =power A__ : Optional[Any] =0 A__ : Union[str, Any] =None # set in `step()` A__ : Optional[int] =model_cls A__ : Dict =model_config @classmethod def lowerCAmelCase_ ( cls , __UpperCamelCase , __UpperCamelCase )-> "EMAModel": '''simple docstring''' A__ , A__ : Dict =model_cls.load_config(__UpperCamelCase , return_unused_kwargs=__UpperCamelCase ) A__ : Tuple =model_cls.from_pretrained(__UpperCamelCase ) A__ : List[Any] =cls(model.parameters() , model_cls=__UpperCamelCase , model_config=model.config ) ema_model.load_state_dict(__UpperCamelCase ) return ema_model def lowerCAmelCase_ ( self , __UpperCamelCase )-> List[str]: '''simple docstring''' if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) A__ : Tuple =self.model_cls.from_config(self.model_config ) A__ : int =self.state_dict() state_dict.pop('''shadow_params''' , __UpperCamelCase ) model.register_to_config(**__UpperCamelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase )-> float: '''simple docstring''' A__ : List[Any] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : Optional[int] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Dict =(1 + step) / (10 + step) A__ : int =min(__UpperCamelCase , self.decay ) # make sure decay is not smaller than min_decay A__ : Optional[int] =max(__UpperCamelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase_ ( self , __UpperCamelCase )-> Dict: '''simple docstring''' if isinstance(__UpperCamelCase , torch.nn.Module ): A__ : str =( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase , ) A__ : Union[str, Any] =parameters.parameters() A__ : List[str] =list(__UpperCamelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Optional[Any] =self.get_decay(self.optimization_step ) A__ : Any =decay A__ : List[Any] =1 - decay A__ : Tuple =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __UpperCamelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : Optional[Any] =deepspeed.zero.GatheredParameters(__UpperCamelCase , modifier_rank=__UpperCamelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase )-> None: '''simple docstring''' A__ : List[Any] =list(__UpperCamelCase ) for s_param, param in zip(self.shadow_params , __UpperCamelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase_ ( self , __UpperCamelCase=None , __UpperCamelCase=None )-> None: '''simple docstring''' A__ : Union[str, Any] =[ p.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if p.is_floating_point() else p.to(device=__UpperCamelCase ) for p in self.shadow_params ] def lowerCAmelCase_ ( self )-> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase_ ( self , __UpperCamelCase )-> None: '''simple docstring''' A__ : List[Any] =[param.detach().cpu().clone() for param in parameters] def lowerCAmelCase_ ( self , __UpperCamelCase )-> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , __UpperCamelCase ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowerCAmelCase_ ( self , __UpperCamelCase )-> None: '''simple docstring''' A__ : List[str] =copy.deepcopy(__UpperCamelCase ) A__ : Any =state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) A__ : Optional[int] =state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , __UpperCamelCase ): raise ValueError('''Invalid min_decay''' ) A__ : List[Any] =state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , __UpperCamelCase ): raise ValueError('''Invalid optimization_step''' ) A__ : str =state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , __UpperCamelCase ): raise ValueError('''Invalid update_after_step''' ) A__ : int =state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __UpperCamelCase ): raise ValueError('''Invalid use_ema_warmup''' ) A__ : str =state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) A__ : List[Any] =state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) A__ : Union[str, Any] =state_dict.get('''shadow_params''' , __UpperCamelCase ) if shadow_params is not None: A__ : str =shadow_params if not isinstance(self.shadow_params , __UpperCamelCase ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(__UpperCamelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
416
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } lowerCamelCase_ : Optional[int] = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } lowerCamelCase_ : Union[str, Any] = "</w>" lowerCamelCase_ : Dict = "@@ " def __lowercase( __snake_case : List[str] ) -> Optional[int]: __snake_case = set() __snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case = char return pairs # Speech2Text2 has no max input length lowerCamelCase_ : Optional[Any] = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class _lowerCamelCase (lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): super().__init__( unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case = do_lower_case with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle: __snake_case = json.load(SCREAMING_SNAKE_CASE_ ) __snake_case = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) __snake_case = None __snake_case = None else: with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle: __snake_case = merges_handle.read().split('\n' )[:-1] __snake_case = [tuple(merge.split()[:2] ) for merge in merges] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = {} @property def __lowerCamelCase ( self ): return len(self.decoder ) def __lowerCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __snake_case = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: __snake_case = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case = bigram __snake_case = [] __snake_case = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: __snake_case = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case = tuple(SCREAMING_SNAKE_CASE_ ) __snake_case = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: __snake_case = get_pairs(SCREAMING_SNAKE_CASE_ ) __snake_case = ' '.join(SCREAMING_SNAKE_CASE_ ) if word == "\n " + BPE_TOKEN_MERGES: __snake_case = '\n' + BPE_TOKEN_MERGES if word.endswith(SCREAMING_SNAKE_CASE_ ): __snake_case = word.replace(SCREAMING_SNAKE_CASE_ , '' ) __snake_case = word.replace(' ' , SCREAMING_SNAKE_CASE_ ) __snake_case = word return word def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: __snake_case = text.lower() __snake_case = text.split() __snake_case = [] for token in text: if token: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case = self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) return result def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case = ' '.join(SCREAMING_SNAKE_CASE_ ) # make sure @@ tokens are concatenated __snake_case = ''.join(string.split(SCREAMING_SNAKE_CASE_ ) ) return string def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) __snake_case = 0 if self.bpe_ranks is None: return (vocab_file,) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) __snake_case = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return (vocab_file, merges_file)
718
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase (lowerCamelCase , unittest.TestCase ): lowercase__ = MgpstrTokenizer lowercase__ = False lowercase__ = {} lowercase__ = False def __lowerCamelCase ( self ): super().setUp() # fmt: off __snake_case = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE_ ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case = 'tester' __snake_case = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __snake_case = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __snake_case = tokenizer.encode([special_token] , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertTrue(special_token not in decoded ) def __lowerCamelCase ( self ): __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(len(SCREAMING_SNAKE_CASE_ ) , 0 ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(text_a.replace(' ' , '' ) , SCREAMING_SNAKE_CASE_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def __lowerCamelCase ( self ): pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def __lowerCamelCase ( self ): pass
345
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A : List[Any] = logging.get_logger(__name__) _A : str = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _A : int = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } _A : Optional[Any] = { """gpt2""": 10_24, """gpt2-medium""": 10_24, """gpt2-large""": 10_24, """gpt2-xl""": 10_24, """distilgpt2""": 10_24, } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] lowerCamelCase__ : Tuple = GPTaTokenizer def __init__( self , A_=None , A_=None , A_=None , A_="<|endoftext|>" , A_="<|endoftext|>" , A_="<|endoftext|>" , A_=False , **A_ , ): '''simple docstring''' super().__init__( A_ , A_ , tokenizer_file=A_ , unk_token=A_ , bos_token=A_ , eos_token=A_ , add_prefix_space=A_ , **A_ , ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''add_bos_token''' , A_ ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A_ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = getattr(A_ , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = pre_tok_class(**A_ ) SCREAMING_SNAKE_CASE__ = add_prefix_space def lowercase_ ( self , *A_ , **A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def lowercase_ ( self , *A_ , **A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def lowercase_ ( self , A_ , A_ = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A_ , add_special_tokens=A_ ) + [self.eos_token_id] ) if len(A_ ) > self.model_max_length: SCREAMING_SNAKE_CASE__ = input_ids[-self.model_max_length :] return input_ids
100
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class snake_case__ ( _UpperCamelCase ): _SCREAMING_SNAKE_CASE : Dict = "git_vision_model" def __init__( self : int , A__ : Union[str, Any]=7_68 , A__ : List[Any]=30_72 , A__ : Tuple=12 , A__ : Optional[Any]=12 , A__ : Optional[int]=3 , A__ : List[str]=2_24 , A__ : Dict=16 , A__ : int="quick_gelu" , A__ : Any=1E-5 , A__ : Tuple=0.0 , A__ : Optional[int]=0.02 , **A__ : List[str] , ) -> Optional[int]: '''simple docstring''' super().__init__(**A__ ) snake_case_ : Optional[Any] = hidden_size snake_case_ : str = intermediate_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = patch_size snake_case_ : List[str] = image_size snake_case_ : List[Any] = initializer_range snake_case_ : Any = attention_dropout snake_case_ : Any = layer_norm_eps snake_case_ : int = hidden_act @classmethod def UpperCAmelCase__ ( cls : List[Any] , A__ : Union[str, os.PathLike] , **A__ : Optional[int] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(A__ ) snake_case_ ,snake_case_ : Tuple = cls.get_config_dict(A__ , **A__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": snake_case_ : Any = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(A__ , **A__ ) class snake_case__ ( _UpperCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = "git" def __init__( self : Any , A__ : List[str]=None , A__ : List[str]=3_05_22 , A__ : Tuple=7_68 , A__ : Tuple=6 , A__ : str=12 , A__ : Any=30_72 , A__ : List[str]="gelu" , A__ : int=0.1 , A__ : Dict=0.1 , A__ : Any=10_24 , A__ : Optional[Any]=0.02 , A__ : Optional[Any]=1E-12 , A__ : Dict=0 , A__ : Any="absolute" , A__ : Tuple=True , A__ : Any=False , A__ : Tuple=1_01 , A__ : Tuple=1_02 , A__ : List[Any]=None , **A__ : List[str] , ) -> int: '''simple docstring''' super().__init__(bos_token_id=A__ , eos_token_id=A__ , pad_token_id=A__ , **A__ ) if vision_config is None: snake_case_ : int = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) snake_case_ : str = GitVisionConfig(**A__ ) snake_case_ : int = vocab_size snake_case_ : List[Any] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : List[str] = initializer_range snake_case_ : List[str] = layer_norm_eps snake_case_ : Any = position_embedding_type snake_case_ : Union[str, Any] = use_cache snake_case_ : str = tie_word_embeddings snake_case_ : List[Any] = num_image_with_embedding snake_case_ : Dict = bos_token_id snake_case_ : int = eos_token_id def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' snake_case_ : Tuple = copy.deepcopy(self.__dict__ ) snake_case_ : Optional[int] = self.vision_config.to_dict() snake_case_ : Tuple = self.__class__.model_type return output
666
0
def _a ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int ): """simple docstring""" snake_case__ : Optional[int] = len(__lowerCAmelCase ) snake_case__ : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): snake_case__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): snake_case__ : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: snake_case__ : int = subset[i - 1][j] if arr[i - 1] <= j: snake_case__ : List[Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = FlaxAutoencoderKL @property def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : Any = 4 snake_case__ : Optional[Any] = 3 snake_case__ : Optional[int] = (3_2, 3_2) snake_case__ : Optional[int] = jax.random.PRNGKey(0 ) snake_case__ : Union[str, Any] = jax.random.uniform(snake_case_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ : Any = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } snake_case__ : Dict = self.dummy_input return init_dict, inputs_dict
502
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase : Tuple = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def snake_case ( lowerCamelCase ): '''simple docstring''' config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main __lowercase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(lowerCamelCase , id=lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if exitstatus == 5: __lowercase = 0 # Doctest custom flag to ignore output. __UpperCamelCase : Optional[Any] = doctest.register_optionflag("""IGNORE_RESULT""") __UpperCamelCase : List[Any] = doctest.OutputChecker class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Optional[int] = CustomOutputChecker __UpperCamelCase : Optional[Any] = HfDoctestModule __UpperCamelCase : Any = HfDocTestParser
80
from __future__ import annotations from collections.abc import MutableSequence class __UpperCamelCase : def __init__( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : MutableSequence[float] ) -> None: """simple docstring""" if len(_lowerCAmelCase ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) __lowercase = list(_lowerCAmelCase ) __lowercase = degree def __add__( self : Optional[int] , _lowerCAmelCase : Polynomial ) -> Polynomial: """simple docstring""" if self.degree > polynomial_a.degree: __lowercase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _lowerCAmelCase ) else: __lowercase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _lowerCAmelCase ) def __sub__( self : int , _lowerCAmelCase : Polynomial ) -> Polynomial: """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Union[str, Any] ) -> Polynomial: """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Optional[int] , _lowerCAmelCase : Polynomial ) -> Polynomial: """simple docstring""" __lowercase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _lowerCAmelCase ) def _a ( self : Optional[int] , _lowerCAmelCase : int | float ) -> int | float: """simple docstring""" __lowercase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Dict ) -> str: """simple docstring""" __lowercase = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_lowerCAmelCase ) return polynomial def __repr__( self : Union[str, Any] ) -> str: """simple docstring""" return self.__str__() def _a ( self : List[str] ) -> Polynomial: """simple docstring""" __lowercase = [0] * self.degree for i in range(self.degree ): __lowercase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : int | float = 0 ) -> Polynomial: """simple docstring""" __lowercase = [0] * (self.degree + 2) __lowercase = constant for i in range(self.degree + 1 ): __lowercase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _lowerCAmelCase ) def __eq__( self : List[str] , _lowerCAmelCase : object ) -> bool: """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Dict , _lowerCAmelCase : object ) -> bool: """simple docstring""" return not self.__eq__(_lowerCAmelCase )
80
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() _UpperCamelCase : int = BlipImageProcessor() _UpperCamelCase : List[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) _UpperCamelCase : Any = BlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def lowercase_ (self , **lowerCAmelCase__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer def lowercase_ (self , **lowerCAmelCase__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor def lowercase_ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _UpperCamelCase : int = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : List[Any] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase : List[str] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCamelCase : str = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) _UpperCamelCase : Tuple = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.get_image_processor() _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : Any = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = self.prepare_image_inputs() _UpperCamelCase : Union[str, Any] = image_processor(lowerCAmelCase__ , return_tensors="np" ) _UpperCamelCase : List[str] = processor(images=lowerCAmelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Any = self.get_image_processor() _UpperCamelCase : Union[str, Any] = self.get_tokenizer() _UpperCamelCase : str = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCamelCase : str = "lower newer" _UpperCamelCase : List[str] = processor(text=lowerCAmelCase__ ) _UpperCamelCase : str = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.get_image_processor() _UpperCamelCase : Any = self.get_tokenizer() _UpperCamelCase : Dict = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCamelCase : int = "lower newer" _UpperCamelCase : List[Any] = self.prepare_image_inputs() _UpperCamelCase : int = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : str = self.get_image_processor() _UpperCamelCase : str = self.get_tokenizer() _UpperCamelCase : Dict = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCamelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCamelCase : str = processor.batch_decode(lowerCAmelCase__ ) _UpperCamelCase : int = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : List[str] = self.get_image_processor() _UpperCamelCase : Optional[int] = self.get_tokenizer() _UpperCamelCase : Optional[int] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCamelCase : List[str] = "lower newer" _UpperCamelCase : Tuple = self.prepare_image_inputs() _UpperCamelCase : Optional[int] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
239
"""simple docstring""" _SCREAMING_SNAKE_CASE = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 1_0: """a""", 1_1: """b""", 1_2: """c""", 1_3: """d""", 1_4: """e""", 1_5: """f""", } def __lowerCAmelCase ( __lowerCAmelCase : float ) -> str: assert type(__lowerCAmelCase ) in (int, float) and decimal == int(__lowerCAmelCase ) _UpperCamelCase : Optional[Any] = int(__lowerCAmelCase ) _UpperCamelCase : Optional[int] = "" _UpperCamelCase : List[str] = False if decimal < 0: _UpperCamelCase : List[str] = True decimal *= -1 while decimal > 0: _UpperCamelCase , _UpperCamelCase : str = divmod(__lowerCAmelCase , 16 ) _UpperCamelCase : Any = values[remainder] + hexadecimal _UpperCamelCase : Dict = "0x" + hexadecimal if negative: _UpperCamelCase : int = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
239
1
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def a ( __snake_case : str, __snake_case : str = "cpu", __snake_case : Union[str, None] = None ): '''simple docstring''' UpperCAmelCase_ :str = torch.load(__snake_case, map_location=__snake_case ) for k, v in tqdm(state_dict.items() ): if not isinstance(__snake_case, torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) UpperCAmelCase_ :Tuple = v.half() if save_path is None: # overwrite src_path UpperCAmelCase_ :int = src_path torch.save(__snake_case, __snake_case ) if __name__ == "__main__": fire.Fire(convert)
608
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def a ( __snake_case : Any, __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ :Any = b.T UpperCAmelCase_ :Tuple = np.sum(np.square(__snake_case ), axis=1 ) UpperCAmelCase_ :List[str] = np.sum(np.square(__snake_case ), axis=0 ) UpperCAmelCase_ :Optional[Any] = np.matmul(__snake_case, __snake_case ) UpperCAmelCase_ :str = aa[:, None] - 2 * ab + ba[None, :] return d def a ( __snake_case : Union[str, Any], __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ :List[str] = x.reshape(-1, 3 ) UpperCAmelCase_ :List[str] = squared_euclidean_distance(__snake_case, __snake_case ) return np.argmin(__snake_case, axis=1 ) class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ =["""pixel_values"""] def __init__( self : Any , snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : bool = True , snake_case : bool = True , **snake_case : Optional[Any] , ): super().__init__(**snake_case ) UpperCAmelCase_ :List[str] = size if size is not None else {'''height''': 256, '''width''': 256} UpperCAmelCase_ :Any = get_size_dict(snake_case ) UpperCAmelCase_ :str = np.array(snake_case ) if clusters is not None else None UpperCAmelCase_ :List[Any] = do_resize UpperCAmelCase_ :Optional[int] = size UpperCAmelCase_ :Union[str, Any] = resample UpperCAmelCase_ :Dict = do_normalize UpperCAmelCase_ :Optional[Any] = do_color_quantize def snake_case_ ( self : Any , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Dict , ): UpperCAmelCase_ :Any = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( snake_case , size=(size['''height'''], size['''width''']) , resample=snake_case , data_format=snake_case , **snake_case ) def snake_case_ ( self : Tuple , snake_case : np.ndarray , snake_case : Optional[Union[str, ChannelDimension]] = None , ): UpperCAmelCase_ :Optional[int] = rescale(image=snake_case , scale=1 / 127.5 , data_format=snake_case ) UpperCAmelCase_ :str = image - 1 return image def snake_case_ ( self : Any , snake_case : ImageInput , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **snake_case : List[Any] , ): UpperCAmelCase_ :Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ :List[Any] = size if size is not None else self.size UpperCAmelCase_ :Optional[int] = get_size_dict(snake_case ) UpperCAmelCase_ :Optional[int] = resample if resample is not None else self.resample UpperCAmelCase_ :str = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ :str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCAmelCase_ :Optional[int] = clusters if clusters is not None else self.clusters UpperCAmelCase_ :Any = np.array(snake_case ) UpperCAmelCase_ :Tuple = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ :Optional[Any] = [to_numpy_array(snake_case ) for image in images] if do_resize: UpperCAmelCase_ :Optional[Any] = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_normalize: UpperCAmelCase_ :Optional[Any] = [self.normalize(image=snake_case ) for image in images] if do_color_quantize: UpperCAmelCase_ :List[Any] = [to_channel_dimension_format(snake_case , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCAmelCase_ :str = np.array(snake_case ) UpperCAmelCase_ :Dict = color_quantize(snake_case , snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCAmelCase_ :Tuple = images.shape[0] UpperCAmelCase_ :int = images.reshape(snake_case , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCAmelCase_ :int = list(snake_case ) else: UpperCAmelCase_ :Any = [to_channel_dimension_format(snake_case , snake_case ) for image in images] UpperCAmelCase_ :Optional[Any] = {'''input_ids''': images} return BatchFeature(data=snake_case , tensor_type=snake_case )
608
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowercase_ = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if "xprophetnet" in prophetnet_checkpoint_path: __lowerCamelCase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE__ , output_loading_info=SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase : Tuple = ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : str = ProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE__ , output_loading_info=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = ['key_proj', 'value_proj', 'query_proj'] __lowerCamelCase : List[Any] = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: __lowerCamelCase : Dict = key.split('.' ) if attributes[0] == "lm_head": __lowerCamelCase : List[Any] = prophet __lowerCamelCase : Optional[int] = prophet_old else: __lowerCamelCase : Dict = prophet.prophetnet __lowerCamelCase : List[str] = prophet_old.model __lowerCamelCase : Union[str, Any] = False for attribute in attributes: if attribute in mapping: __lowerCamelCase : Any = mapping[attribute] if not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0: __lowerCamelCase : Union[str, Any] = attribute elif hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowerCamelCase : Tuple = old_model.weight logger.info(f'{attribute} is initialized.' ) __lowerCamelCase : Tuple = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowerCamelCase : Tuple = old_model.bias logger.info(f'{attribute} is initialized' ) __lowerCamelCase : List[str] = True break elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE__ , 'in_proj_weight' ): __lowerCamelCase : Union[str, Any] = old_model.in_proj_weight.shape[0] // 3 __lowerCamelCase : str = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowerCamelCase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowerCamelCase : Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowerCamelCase : Optional[int] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowerCamelCase : Any = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowerCamelCase : Optional[int] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowerCamelCase : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowerCamelCase : Optional[Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowerCamelCase : Optional[int] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowerCamelCase : Dict = True break if attribute.isdigit(): __lowerCamelCase : Optional[int] = model[int(SCREAMING_SNAKE_CASE__ )] __lowerCamelCase : Union[str, Any] = old_model[int(SCREAMING_SNAKE_CASE__ )] else: __lowerCamelCase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if old_attribute == "": __lowerCamelCase : Tuple = old_model else: if not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError(f'{old_model} does not have {old_attribute}' ) __lowerCamelCase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
230
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
230
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def __lowerCamelCase ( __lowerCAmelCase : Optional[int] ) -> Union[str, Any]: snake_case = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__lowerCAmelCase , max_perimeter + 1 ): snake_case = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCAmelCase ): snake_case = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCamelCase ( __lowerCAmelCase : Optional[int] = 10_00 ) -> str: snake_case = pythagorean_triple(__lowerCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"""Perimeter {solution()} has maximum solutions""")
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _A( lowerCAmelCase , lowerCAmelCase=False ): A__ : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): for i in range(config.num_hidden_layers ): if base_model: A__ : List[str] = """""" else: A__ : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : List[str] = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) A__ : Tuple = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A__ : Tuple = in_proj_weight[ : config.hidden_size, : ] A__ : Union[str, Any] = in_proj_bias[: config.hidden_size] A__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : int = in_proj_weight[ -config.hidden_size :, : ] A__ : List[Any] = in_proj_bias[-config.hidden_size :] def _A( lowerCAmelCase ): A__ : str = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def _A( lowerCAmelCase ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. A__ : Dict = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): A__ : Optional[Any] = dct.pop(lowerCAmelCase ) A__ : List[Any] = val def _A( lowerCAmelCase , lowerCAmelCase ): A__ : str = ViTMSNConfig() A__ : List[str] = 1000 A__ : Optional[int] = """datasets/huggingface/label-files""" A__ : Optional[int] = """imagenet-1k-id2label.json""" A__ : str = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase ) , """r""" ) ) A__ : Tuple = {int(lowerCAmelCase ): v for k, v in idalabel.items()} A__ : Optional[Any] = idalabel A__ : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: A__ : Tuple = 384 A__ : int = 1536 A__ : Union[str, Any] = 6 elif "l16" in checkpoint_url: A__ : int = 1024 A__ : int = 4096 A__ : Any = 24 A__ : int = 16 A__ : Union[str, Any] = 0.1 elif "b4" in checkpoint_url: A__ : Dict = 4 elif "l7" in checkpoint_url: A__ : List[str] = 7 A__ : Optional[int] = 1024 A__ : Optional[int] = 4096 A__ : Any = 24 A__ : Union[str, Any] = 16 A__ : Tuple = 0.1 A__ : List[str] = ViTMSNModel(lowerCAmelCase ) A__ : Any = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] A__ : List[str] = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCAmelCase ) A__ : List[str] = create_rename_keys(lowerCAmelCase , base_model=lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , base_model=lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() A__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) A__ : List[Any] = ViTImageProcessor( size=config.image_size , image_mean=lowerCAmelCase , image_std=lowerCAmelCase ) A__ : Any = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) A__ : Tuple = model(**lowerCAmelCase ) A__ : Union[str, Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: A__ : Union[str, Any] = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: A__ : int = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: A__ : List[Any] = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: A__ : Optional[Any] = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: A__ : str = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _UpperCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
363
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = "https://openaipublic.azureedge.net/jukebox/models/" a_ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def a__ ( _UpperCamelCase : Tuple ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: __lowerCamelCase = key.replace('''.model.1.bias''' ,'''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: __lowerCamelCase = key.replace('''.model.1.weight''' ,'''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: __lowerCamelCase = key.replace('''.model.3.bias''' ,'''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: __lowerCamelCase = key.replace('''.model.3.weight''' ,'''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __lowerCamelCase = key.replace('''conditioner_blocks.0''' ,'''conditioner_blocks''' ) if "prime_prior" in key: __lowerCamelCase = key.replace('''prime_prior''' ,'''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __lowerCamelCase = key.replace('''.emb.''' ,'''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' ,'''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' ,'''metadata_embedding.''' ) if "x_emb.emb." in key: __lowerCamelCase = key.replace('''0.x_emb.emb''' ,'''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' ,'''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' ,'''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' ,'''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' ,'''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' ,'''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' ,'''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' ,'''embed_tokens''' ) return key def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : List[Any] ): __lowerCamelCase = {} import re __lowerCamelCase = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __lowerCamelCase = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __lowerCamelCase = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __lowerCamelCase = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __lowerCamelCase = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __lowerCamelCase = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __lowerCamelCase = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __lowerCamelCase = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __lowerCamelCase = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCamelCase ): __lowerCamelCase = re_encoder_block_conv_in.match(_UpperCamelCase ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCamelCase = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" __lowerCamelCase = re_encoder_block_conv_in.sub(_UpperCamelCase ,_UpperCamelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCamelCase ): __lowerCamelCase = re_encoder_block_resnet.match(_UpperCamelCase ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCamelCase = {'''1''': 1, '''3''': 2}[groups[-2]] __lowerCamelCase = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" __lowerCamelCase = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_encoder_block_resnet.sub(_UpperCamelCase ,_UpperCamelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCamelCase ): __lowerCamelCase = re_encoder_block_proj_out.match(_UpperCamelCase ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" __lowerCamelCase = re_encoder_block_proj_out.sub(_UpperCamelCase ,_UpperCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCamelCase ): __lowerCamelCase = re_decoder_block_conv_out.match(_UpperCamelCase ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCamelCase = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" __lowerCamelCase = re_decoder_block_conv_out.sub(_UpperCamelCase ,_UpperCamelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCamelCase ): __lowerCamelCase = re_decoder_block_resnet.match(_UpperCamelCase ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCamelCase = {'''1''': 1, '''3''': 2}[groups[-2]] __lowerCamelCase = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" __lowerCamelCase = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_decoder_block_resnet.sub(_UpperCamelCase ,_UpperCamelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCamelCase ): __lowerCamelCase = re_decoder_block_proj_in.match(_UpperCamelCase ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" __lowerCamelCase = re_decoder_block_proj_in.sub(_UpperCamelCase ,_UpperCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCamelCase ): __lowerCamelCase = re_prior_cond_conv_out.match(_UpperCamelCase ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCamelCase = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" __lowerCamelCase = re_prior_cond_conv_out.sub(_UpperCamelCase ,_UpperCamelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCamelCase ): __lowerCamelCase = re_prior_cond_resnet.match(_UpperCamelCase ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCamelCase = {'''1''': 1, '''3''': 2}[groups[-2]] __lowerCamelCase = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" __lowerCamelCase = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_prior_cond_resnet.sub(_UpperCamelCase ,_UpperCamelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCamelCase ): __lowerCamelCase = re_prior_cond_proj_in.match(_UpperCamelCase ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" __lowerCamelCase = re_prior_cond_proj_in.sub(_UpperCamelCase ,_UpperCamelCase ) # keep original key else: __lowerCamelCase = original_key __lowerCamelCase = replace_key(_UpperCamelCase ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: __lowerCamelCase = model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) __lowerCamelCase = original_key __lowerCamelCase = original_key __lowerCamelCase = value return new_dict @torch.no_grad() def a__ ( _UpperCamelCase : List[Any]=None ,_UpperCamelCase : int=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): __lowerCamelCase = requests.get(F"""{PREFIX}{file}""" ,allow_redirects=_UpperCamelCase ) os.makedirs(F"""{pytorch_dump_folder_path}/""" ,exist_ok=_UpperCamelCase ) open(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ,'''wb''' ).write(r.content ) __lowerCamelCase = MODEL_MAPPING[model_name.split('''/''' )[-1]] __lowerCamelCase = JukeboxConfig.from_pretrained(_UpperCamelCase ) __lowerCamelCase = JukeboxModel(_UpperCamelCase ) __lowerCamelCase = [] __lowerCamelCase = {} for i, dict_name in enumerate(_UpperCamelCase ): __lowerCamelCase = torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )['''model'''] __lowerCamelCase = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __lowerCamelCase = old_dic[k] elif k.endswith('''.w''' ): __lowerCamelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __lowerCamelCase = old_dic[k] else: __lowerCamelCase = old_dic[k] __lowerCamelCase = '''vqvae''' if i == 0 else F"""priors.{3 - i}""" __lowerCamelCase = fix_jukebox_keys(_UpperCamelCase ,model.state_dict() ,_UpperCamelCase ,_UpperCamelCase ) weight_dict.append(_UpperCamelCase ) __lowerCamelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" ,'''w''' ) as txtfile: json.dump(_UpperCamelCase ,_UpperCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) return weight_dict if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
705
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = XLMProphetNetTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''[PAD]''' __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(__UpperCAmelCase ) , 1012 ) def lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def lowerCamelCase ( self ): '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''Hello World!''' __lowerCamelCase = [35389, 6672, 49, 2] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' # fmt: off __lowerCamelCase = {'''input_ids''': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
622
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase = logging.get_logger(__name__) class A ( UpperCamelCase_ ): def __init__( self : Optional[Any] , *lowercase_ : str , **lowercase_ : List[Any] ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
464
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Dict =DebertaVaTokenizer UpperCamelCase__ : Union[str, Any] =DebertaVaTokenizerFast UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : Tuple =True def lowerCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Optional[Any] =DebertaVaTokenizer(lowercase_ , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Optional[Any] , lowercase_ : List[Any] ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Dict ='this is a test' _lowerCamelCase : List[Any] ='this is a test' return input_text, output_text def lowerCamelCase ( self : int ) -> str: """simple docstring""" _lowerCamelCase : Union[str, Any] ='<pad>' _lowerCamelCase : Union[str, Any] =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _lowerCamelCase : Optional[Any] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(lowercase_ ) , 3_0001 ) def lowerCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : List[str] =' \tHeLLo!how \n Are yoU? ' _lowerCamelCase : List[Any] =['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on _lowerCamelCase : Any =DebertaVaTokenizer(lowercase_ , do_lower_case=lowercase_ ) _lowerCamelCase : Dict =tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Optional[Any] =DebertaVaTokenizerFast(lowercase_ , do_lower_case=lowercase_ ) _lowerCamelCase : Optional[Any] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def lowerCamelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def lowerCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _lowerCamelCase : Optional[Any] ='I was born in 92000, and this is falsé.' _lowerCamelCase : int =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _lowerCamelCase : int =DebertaVaTokenizer(lowercase_ , split_by_punct=lowercase_ ) _lowerCamelCase : List[Any] =tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Union[str, Any] =DebertaVaTokenizerFast(lowercase_ , split_by_punct=lowercase_ ) _lowerCamelCase : Tuple =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Union[str, Any] ='I was born in 92000, and this is falsé.' _lowerCamelCase : Union[str, Any] =['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _lowerCamelCase : Optional[int] =DebertaVaTokenizer(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) _lowerCamelCase : Any =tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : List[Any] =DebertaVaTokenizerFast(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) _lowerCamelCase : Optional[int] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCamelCase : int ='I was born in 92000, and this is falsé.' _lowerCamelCase : Union[str, Any] =['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _lowerCamelCase : Any =DebertaVaTokenizer(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) _lowerCamelCase : Tuple =tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Tuple =DebertaVaTokenizerFast(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) _lowerCamelCase : str =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _lowerCamelCase : Any ='I was born in 92000, and this is falsé.' _lowerCamelCase : Optional[int] =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _lowerCamelCase : Optional[Any] =DebertaVaTokenizer(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) _lowerCamelCase : Dict =tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : List[str] =DebertaVaTokenizerFast(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) _lowerCamelCase : Optional[Any] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _lowerCamelCase : int =' \tHeLLo!how \n Are yoU? ' _lowerCamelCase : Optional[Any] =['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on _lowerCamelCase : Optional[int] =DebertaVaTokenizer(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) _lowerCamelCase : Any =tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Optional[Any] =DebertaVaTokenizerFast(lowercase_ , do_lower_case=lowercase_ , split_by_punct=lowercase_ ) _lowerCamelCase : Any =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _lowerCamelCase : List[Any] =self.get_tokenizer() _lowerCamelCase : Dict =self.get_rust_tokenizer() _lowerCamelCase : str ='I was born in 92000, and this is falsé.' _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) _lowerCamelCase : Union[str, Any] =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : List[str] =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _lowerCamelCase : Optional[int] =rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Any =self.get_rust_tokenizer() _lowerCamelCase : List[Any] =tokenizer.encode(lowercase_ ) _lowerCamelCase : str =rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] ='This is a test' _lowerCamelCase : Optional[int] =[13, 1, 4398, 25, 21, 1289] _lowerCamelCase : List[Any] =['▁', 'T', 'his', '▁is', '▁a', '▁test'] _lowerCamelCase : Optional[int] =['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] _lowerCamelCase : Optional[Any] =DebertaVaTokenizer(lowercase_ , keep_accents=lowercase_ ) _lowerCamelCase : Any =DebertaVaTokenizerFast(lowercase_ , keep_accents=lowercase_ ) _lowerCamelCase : Any =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Tuple =tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Union[str, Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Dict =rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Optional[int] =rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Any =rust_tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # fmt: off _lowerCamelCase : Optional[Any] ='I was born in 92000, and this is falsé.' _lowerCamelCase : str =[13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] _lowerCamelCase : Optional[int] =['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] _lowerCamelCase : Dict =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _lowerCamelCase : Any =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : List[Any] =tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Union[str, Any] =rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : List[str] =rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Union[str, Any] =rust_tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _lowerCamelCase : int =DebertaVaTokenizer(lowercase_ ) _lowerCamelCase : str =tokenizer.encode('sequence builders' ) _lowerCamelCase : List[Any] =tokenizer.encode('multi-sequence build' ) _lowerCamelCase : List[Any] =tokenizer.build_inputs_with_special_tokens(lowercase_ ) _lowerCamelCase : Dict =tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowercase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowercase_ , ) @slow def lowerCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Dict ={'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
464
1
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _SCREAMING_SNAKE_CASE = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] _SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'ChineseCLIPImageProcessor' SCREAMING_SNAKE_CASE = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , A__=None , A__=None , **A__ ) -> int: _SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A__ , ) _SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) _SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _SCREAMING_SNAKE_CASE = self.tokenizer(A__ , return_tensors=A__ , **A__ ) if images is not None: _SCREAMING_SNAKE_CASE = self.image_processor(A__ , return_tensors=A__ , **A__ ) if text is not None and images is not None: _SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Dict: return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[Any]: return self.tokenizer.decode(*A__ , **A__ ) @property def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase ( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A__ , ) return self.image_processor_class
0
0
from ... import PretrainedConfig __UpperCamelCase : int = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __snake_case :Dict = 'nezha' def __init__( self : int , _lowerCAmelCase : List[Any]=2_1128 , _lowerCAmelCase : Tuple=768 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=3072 , _lowerCAmelCase : Union[str, Any]="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : List[Any]=512 , _lowerCAmelCase : List[Any]=64 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : int=0 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : int=True , **_lowerCAmelCase : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = max_relative_position __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = classifier_dropout __lowercase = use_cache
80
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ): """simple docstring""" if radian_mode: return [magnitude * cos(UpperCamelCase__ ), magnitude * sin(UpperCamelCase__ )] return [magnitude * cos(radians(UpperCamelCase__ ) ), magnitude * sin(radians(UpperCamelCase__ ) )] def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 10**-1 ): """simple docstring""" __magic_name__ : NDArray[floataa] = cross(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ : float = sum(UpperCamelCase__ ) return abs(UpperCamelCase__ ) < eps if __name__ == "__main__": # Test to check if it works _SCREAMING_SNAKE_CASE : List[str] = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) _SCREAMING_SNAKE_CASE : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _SCREAMING_SNAKE_CASE : int = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) _SCREAMING_SNAKE_CASE : int = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _SCREAMING_SNAKE_CASE : str = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) _SCREAMING_SNAKE_CASE : Optional[Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
436
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowercase = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE ) __lowercase = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) TestCommand.register_subcommand(SCREAMING_SNAKE_CASE ) RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE ) DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Parse args __lowercase , __lowercase = parser.parse_known_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) __lowercase = parse_unknown_args(SCREAMING_SNAKE_CASE ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
708
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: __snake_case = F'''The input value of [n={number}] has to be > 0''' raise ValueError(_UpperCAmelCase ) else: __snake_case = sylvester(number - 1 ) __snake_case = num - 1 __snake_case = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
69
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" __magic_name__ : str = 0 # if input_string is "aba" than new_input_string become "a|b|a" __magic_name__ : Optional[Any] = '' __magic_name__ : Optional[int] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCAmelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __magic_name__ , __magic_name__ : str = 0, 0 # length[i] shows the length of palindromic substring with center i __magic_name__ : Dict = [1 for i in range(len(lowerCAmelCase ) )] # for each character in new_string find corresponding palindromic string __magic_name__ : Tuple = 0 for j in range(len(lowerCAmelCase ) ): __magic_name__ : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(lowerCAmelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __magic_name__ : Union[str, Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __magic_name__ : Union[str, Any] = j - k + 1 # noqa: E741 __magic_name__ : Any = j + k - 1 # update max_length and start position if max_length < length[j]: __magic_name__ : Tuple = length[j] __magic_name__ : Tuple = j # create that string __magic_name__ : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
561
0
import math def A_ ( _lowerCAmelCase ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase : List[Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(_lowerCAmelCase ) if number < 1: UpperCamelCase : Union[str, Any] = F"""Input value of [number={number}] must be > 0""" raise ValueError(_lowerCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: UpperCamelCase : List[Any] = int(math.log(number // 3 , 2 ) ) + 2 UpperCamelCase : Optional[Any] = [3, 5] UpperCamelCase : Optional[int] = 2 UpperCamelCase : int = 3 for block in range(1 , _lowerCAmelCase ): for _ in range(_lowerCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __lowerCamelCase : List[str] = 0 try: __lowerCamelCase : Optional[Any] = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
38
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class A__ ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=3 , A_=10 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=None , ): '''simple docstring''' UpperCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 18} UpperCamelCase : Tuple = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCamelCase : Optional[Any] = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : List[Any] = num_channels UpperCamelCase : Union[str, Any] = num_frames UpperCamelCase : Any = image_size UpperCamelCase : Tuple = min_resolution UpperCamelCase : Optional[Any] = max_resolution UpperCamelCase : Any = do_resize UpperCamelCase : Tuple = size UpperCamelCase : List[Any] = do_normalize UpperCamelCase : Optional[int] = image_mean UpperCamelCase : Any = image_std UpperCamelCase : str = crop_size def __UpperCamelCase( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :List[str] = VivitImageProcessor if is_vision_available() else None def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = VivitImageProcessingTester(self ) @property def __UpperCamelCase( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , "image_mean" ) ) self.assertTrue(hasattr(A_ , "image_std" ) ) self.assertTrue(hasattr(A_ , "do_normalize" ) ) self.assertTrue(hasattr(A_ , "do_resize" ) ) self.assertTrue(hasattr(A_ , "do_center_crop" ) ) self.assertTrue(hasattr(A_ , "size" ) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos UpperCamelCase : Union[str, Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input UpperCamelCase : Any = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase : str = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : str = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input UpperCamelCase : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase : Any = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : Union[str, Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input UpperCamelCase : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase : List[Any] = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
38
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Tuple ): '''simple docstring''' _a = checkpoint _a = {} _a = vae_state_dict['''encoder.conv_in.weight'''] _a = vae_state_dict['''encoder.conv_in.bias'''] _a = vae_state_dict['''encoder.conv_out.weight'''] _a = vae_state_dict['''encoder.conv_out.bias'''] _a = vae_state_dict['''encoder.norm_out.weight'''] _a = vae_state_dict['''encoder.norm_out.bias'''] _a = vae_state_dict['''decoder.conv_in.weight'''] _a = vae_state_dict['''decoder.conv_in.bias'''] _a = vae_state_dict['''decoder.conv_out.weight'''] _a = vae_state_dict['''decoder.conv_out.bias'''] _a = vae_state_dict['''decoder.norm_out.weight'''] _a = vae_state_dict['''decoder.norm_out.bias'''] _a = vae_state_dict['''quant_conv.weight'''] _a = vae_state_dict['''quant_conv.bias'''] _a = vae_state_dict['''post_quant_conv.weight'''] _a = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only _a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) _a = { layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(UpperCamelCase ) } # Retrieves the keys for the decoder up blocks only _a = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) _a = { layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(UpperCamelCase ) } for i in range(UpperCamelCase ): _a = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: _a = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.weight' ) _a = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.bias' ) _a = renew_vae_resnet_paths(UpperCamelCase ) _a = {'''old''': f'down.{i}.block', '''new''': f'down_blocks.{i}.resnets'} assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase ) _a = [key for key in vae_state_dict if '''encoder.mid.block''' in key] _a = 2 for i in range(1 , num_mid_res_blocks + 1 ): _a = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] _a = renew_vae_resnet_paths(UpperCamelCase ) _a = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase ) _a = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] _a = renew_vae_attention_paths(UpperCamelCase ) _a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase ) conv_attn_to_linear(UpperCamelCase ) for i in range(UpperCamelCase ): _a = num_up_blocks - 1 - i _a = [ key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key ] if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: _a = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.weight' ] _a = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.bias' ] _a = renew_vae_resnet_paths(UpperCamelCase ) _a = {'''old''': f'up.{block_id}.block', '''new''': f'up_blocks.{i}.resnets'} assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase ) _a = [key for key in vae_state_dict if '''decoder.mid.block''' in key] _a = 2 for i in range(1 , num_mid_res_blocks + 1 ): _a = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] _a = renew_vae_resnet_paths(UpperCamelCase ) _a = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase ) _a = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] _a = renew_vae_attention_paths(UpperCamelCase ) _a = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(UpperCamelCase , UpperCamelCase , UpperCamelCase , additional_replacements=[meta_path] , config=UpperCamelCase ) conv_attn_to_linear(UpperCamelCase ) return new_checkpoint def snake_case_ (UpperCamelCase : str , UpperCamelCase : str , ): '''simple docstring''' _a = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) _a = io.BytesIO(r.content ) _a = OmegaConf.load(UpperCamelCase ) _a = 512 _a = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open _a = {} with safe_open(UpperCamelCase , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): _a = f.get_tensor(UpperCamelCase ) else: _a = torch.load(UpperCamelCase , map_location=UpperCamelCase )['''state_dict'''] # Convert the VAE model. _a = create_vae_diffusers_config(UpperCamelCase , image_size=UpperCamelCase ) _a = custom_convert_ldm_vae_checkpoint(UpperCamelCase , UpperCamelCase ) _a = AutoencoderKL(**UpperCamelCase ) vae.load_state_dict(UpperCamelCase ) vae.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') _snake_case : Tuple = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _snake_case : Tuple = logging.get_logger(__name__) class A ( _a ): lowercase_ = ['pixel_values'] def __init__( self : str , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : Any , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase_ ) _a = size if size is not None else {'''shortest_edge''': 2_56} _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Tuple ) -> np.ndarray: """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _a = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Tuple] = None ) -> Any: """simple docstring""" _a = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCAmelCase_ ): _a = target_sizes.numpy() _a = [] for idx in range(len(lowerCAmelCase_ ) ): _a = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase_ ) _a = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase_ ) else: _a = logits.argmax(dim=1 ) _a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
22
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase: Any = logging.get_logger(__name__) # General docstring lowerCAmelCase: Any = 'MobileNetV1Config' # Base docstring lowerCAmelCase: Union[str, Any] = 'google/mobilenet_v1_1.0_224' lowerCAmelCase: Dict = [1, 1_0_2_4, 7, 7] # Image classification docstring lowerCAmelCase: Dict = 'google/mobilenet_v1_1.0_224' lowerCAmelCase: List[Any] = 'tabby, tabby cat' lowerCAmelCase: Tuple = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase__ ( _A , _A , _A=None ): a : str = {} if isinstance(_A , _A ): a : Optional[int] = model.mobilenet_va else: a : List[Any] = model a : List[str] = 'MobilenetV1/Conv2d_0/' a : List[str] = backbone.conv_stem.convolution.weight a : Optional[int] = backbone.conv_stem.normalization.bias a : Tuple = backbone.conv_stem.normalization.weight a : Any = backbone.conv_stem.normalization.running_mean a : Dict = backbone.conv_stem.normalization.running_var for i in range(13 ): a : Any = i + 1 a : Tuple = i * 2 a : Any = backbone.layer[pt_index] a : Optional[int] = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" a : Dict = pointer.convolution.weight a : List[str] = pointer.normalization.bias a : Optional[Any] = pointer.normalization.weight a : Optional[int] = pointer.normalization.running_mean a : Any = pointer.normalization.running_var a : Any = backbone.layer[pt_index + 1] a : List[Any] = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" a : str = pointer.convolution.weight a : List[Any] = pointer.normalization.bias a : List[Any] = pointer.normalization.weight a : str = pointer.normalization.running_mean a : Tuple = pointer.normalization.running_var if isinstance(_A , _A ): a : List[str] = 'MobilenetV1/Logits/Conv2d_1c_1x1/' a : List[str] = model.classifier.weight a : Tuple = model.classifier.bias return tf_to_pt_map def lowerCamelCase__ ( _A , _A , _A ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model a : Dict = tf.train.list_variables(_A ) a : Any = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) a : int = tf.train.load_variable(_A , _A ) a : Dict = array # Build TF to PyTorch weights loading map a : Union[str, Any] = _build_tf_to_pytorch_map(_A , _A , _A ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue a : Dict = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) a : Any = np.transpose(_A , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer a : Optional[Any] = array.squeeze().transpose() else: a : Union[str, Any] = np.transpose(_A , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) a : Optional[Any] = torch.from_numpy(_A ) tf_weights.pop(_A , _A ) tf_weights.pop(name + '/RMSProp' , _A ) tf_weights.pop(name + '/RMSProp_1' , _A ) tf_weights.pop(name + '/ExponentialMovingAverage' , _A ) logger.info(f"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def lowerCamelCase__ ( _A , _A ): a , a : Optional[Any] = features.shape[-2:] a , a : Any = conv_layer.stride a , a : List[str] = conv_layer.kernel_size if in_height % stride_height == 0: a : str = max(kernel_height - stride_height , 0 ) else: a : Dict = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: a : int = max(kernel_width - stride_width , 0 ) else: a : str = max(kernel_width - (in_width % stride_width) , 0 ) a : Dict = pad_along_width // 2 a : str = pad_along_width - pad_left a : Union[str, Any] = pad_along_height // 2 a : Optional[int] = pad_along_height - pad_top a : List[str] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_A , _A , 'constant' , 0.0 ) class a__( nn.Module ): def __init__( self : Union[str, Any] , __snake_case : MobileNetVaConfig , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : Optional[int] = 1 , __snake_case : Optional[int] = 1 , __snake_case : bool = False , __snake_case : Optional[bool] = True , __snake_case : Optional[bool or str] = True , ): super().__init__() a : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) a : Dict = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) a : Dict = nn.Convad( in_channels=__snake_case , out_channels=__snake_case , kernel_size=__snake_case , stride=__snake_case , padding=__snake_case , groups=__snake_case , bias=__snake_case , padding_mode='zeros' , ) if use_normalization: a : int = nn.BatchNormad( num_features=__snake_case , eps=config.layer_norm_eps , momentum=0.9997 , affine=__snake_case , track_running_stats=__snake_case , ) else: a : Any = None if use_activation: if isinstance(__snake_case , __snake_case ): a : Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , __snake_case ): a : Dict = ACTaFN[config.hidden_act] else: a : List[str] = config.hidden_act else: a : int = None def lowercase_ ( self : str , __snake_case : torch.Tensor ): if self.config.tf_padding: a : str = apply_tf_padding(__snake_case , self.convolution ) a : Any = self.convolution(__snake_case ) if self.normalization is not None: a : int = self.normalization(__snake_case ) if self.activation is not None: a : Union[str, Any] = self.activation(__snake_case ) return features class a__( lowerCamelCase__ ): lowercase__ = MobileNetVaConfig lowercase__ = load_tf_weights_in_mobilenet_va lowercase__ = """mobilenet_v1""" lowercase__ = """pixel_values""" lowercase__ = False def lowercase_ ( self : Dict , __snake_case : Union[nn.Linear, nn.Convad] ): if isinstance(__snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__snake_case , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCAmelCase: Optional[Any] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase: Any = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , lowerCamelCase__ , ) class a__( lowerCamelCase__ ): def __init__( self : Union[str, Any] , __snake_case : MobileNetVaConfig , __snake_case : bool = True ): super().__init__(__snake_case ) a : Any = config a : Any = 32 a : Dict = max(int(depth * config.depth_multiplier ) , config.min_depth ) a : List[Any] = MobileNetVaConvLayer( __snake_case , in_channels=config.num_channels , out_channels=__snake_case , kernel_size=3 , stride=2 , ) a : int = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] a : Optional[int] = nn.ModuleList() for i in range(13 ): a : Any = out_channels if strides[i] == 2 or i == 0: depth *= 2 a : List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __snake_case , in_channels=__snake_case , out_channels=__snake_case , kernel_size=3 , stride=strides[i] , groups=__snake_case , ) ) self.layer.append( MobileNetVaConvLayer( __snake_case , in_channels=__snake_case , out_channels=__snake_case , kernel_size=1 , ) ) a : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowercase_ ( self : Optional[int] , __snake_case : int ): raise NotImplementedError @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase_ ( self : Any , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , ): a : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) a : int = self.conv_stem(__snake_case ) a : Optional[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): a : Tuple = layer_module(__snake_case ) if output_hidden_states: a : int = all_hidden_states + (hidden_states,) a : List[Any] = hidden_states if self.pooler is not None: a : Optional[int] = torch.flatten(self.pooler(__snake_case ) , start_dim=1 ) else: a : Tuple = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=__snake_case , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowerCamelCase__ , ) class a__( lowerCamelCase__ ): def __init__( self : str , __snake_case : MobileNetVaConfig ): super().__init__(__snake_case ) a : List[str] = config.num_labels a : str = MobileNetVaModel(__snake_case ) a : Any = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head a : List[str] = nn.Dropout(config.classifier_dropout_prob , inplace=__snake_case ) a : Optional[Any] = nn.Linear(__snake_case , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase_ ( self : int , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[bool] = None , ): a : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict a : List[str] = self.mobilenet_va(__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case ) a : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] a : Any = self.classifier(self.dropout(__snake_case ) ) a : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a : Dict = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a : Any = 'single_label_classification' else: a : Any = 'multi_label_classification' if self.config.problem_type == "regression": a : List[Any] = MSELoss() if self.num_labels == 1: a : str = loss_fct(logits.squeeze() , labels.squeeze() ) else: a : List[str] = loss_fct(__snake_case , __snake_case ) elif self.config.problem_type == "single_label_classification": a : Tuple = CrossEntropyLoss() a : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a : List[Any] = BCEWithLogitsLoss() a : Optional[int] = loss_fct(__snake_case , __snake_case ) if not return_dict: a : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states , )
195
'''simple docstring''' from pathlib import Path import fire def lowerCamelCase__ ( _A , _A , _A ): a : Optional[Any] = Path(_A ) a : Tuple = Path(_A ) dest_dir.mkdir(exist_ok=_A ) for path in src_dir.iterdir(): a : Tuple = [x.rstrip() for x in list(path.open().readlines() )][:n] a : List[str] = dest_dir.joinpath(path.name ) print(_A ) dest_path.open('w' ).write('\n'.join(_A ) ) if __name__ == "__main__": fire.Fire(minify)
195
1
"""simple docstring""" # Function to print upper half of diamond (pyramid) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for i in range(0 , UpperCamelCase__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' for i in range(UpperCamelCase__ , 0 , -1 ): for _ in range(UpperCamelCase__ , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(UpperCamelCase__ ) # upper half reverse_floyd(UpperCamelCase__ ) # lower half if __name__ == "__main__": print(r'| /\ | |- | |- |--| |\ /| |-') print(r'|/ \| |- |_ |_ |__| | \/ | |_') _snake_case = 1 while K: _snake_case = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) _snake_case = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
389
"""simple docstring""" _snake_case = 6_5521 def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = 1 _a : Optional[int] = 0 for plain_chr in plain_text: _a : Dict = (a + ord(UpperCamelCase__ )) % MOD_ADLER _a : List[Any] = (b + a) % MOD_ADLER return (b << 1_6) | a
389
1
from ....utils import logging __a : List[str] = logging.get_logger(__name__) class UpperCAmelCase( snake_case_ ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=2048 ) -> Optional[Any]: """simple docstring""" lowercase__ : List[Any] = config.__dict__ lowercase__ : Union[str, Any] = modal_hidden_size if num_labels: lowercase__ : Union[str, Any] = num_labels
298
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" ,[ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,) -> List[Any]: lowercase__ : List[str] = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } lowercase__ , lowercase__ : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase__ : List[Any] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE_ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase__ : Tuple = file_path.read_text(encoding="utf-8" ) else: lowercase__ : List[str] = output_path.read_text(encoding="utf-8" ) lowercase__ : Dict = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" ,[ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,) -> Optional[Any]: lowercase__ : Optional[Any] = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } lowercase__ : List[Any] = input_paths[compression_format] if input_path is None: lowercase__ : Union[str, Any] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) assert extractor_format is not None lowercase__ : Optional[int] = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase__ : Tuple = file_path.read_text(encoding="utf-8" ) else: lowercase__ : Dict = output_path.read_text(encoding="utf-8" ) lowercase__ : Optional[Any] = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> int: import tarfile lowercase__ : Any = tmp_path / "data_dot_dot" directory.mkdir() lowercase__ : Union[str, Any] = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.add(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join(".." ,text_file.name ) ) return path @pytest.fixture def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: import tarfile lowercase__ : List[str] = tmp_path / "data_sym_link" directory.mkdir() lowercase__ : Tuple = directory / "tar_file_with_sym_link.tar" os.symlink(".." ,directory / "subdir" ,target_is_directory=SCREAMING_SNAKE_CASE_ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.add(str(directory / "subdir" ) ,arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" ,[("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Tuple: lowercase__ : Dict = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } lowercase__ : Dict = insecure_tar_files[insecure_tar_file] lowercase__ : Optional[int] = tmp_path / "extracted" TarExtractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase__ : Dict = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 lowercase__ : str = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE_ ) # but we're right
298
1
from __future__ import annotations import requests lowerCamelCase__ : int = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int = 1 , __UpperCAmelCase : str = "new" , __UpperCAmelCase : list | None = None ) -> dict: SCREAMING_SNAKE_CASE_ = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__UpperCAmelCase ) - valid_terms ) ): SCREAMING_SNAKE_CASE_ = f"Invalid search term: {invalid_search_terms}" raise ValueError(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={'User-agent': 'A random string'} , ) if response.status_code == 4_29: raise requests.HTTPError SCREAMING_SNAKE_CASE_ = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__UpperCAmelCase )} SCREAMING_SNAKE_CASE_ = {} for id_ in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
31
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : '''simple docstring''' def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = device SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.resize(A ) SCREAMING_SNAKE_CASE : Any = self.center_crop(A ) SCREAMING_SNAKE_CASE : str = self.normalize(A ) return images def __call__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A ) SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module ): '''simple docstring''' def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE : Optional[Any] = vqgan else: SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE : List[str] = clip else: SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = iterations SCREAMING_SNAKE_CASE : Tuple = lr SCREAMING_SNAKE_CASE : Tuple = log SCREAMING_SNAKE_CASE : str = make_grid SCREAMING_SNAKE_CASE : Dict = return_val SCREAMING_SNAKE_CASE : Union[str, Any] = quantize SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] if output_path is None: SCREAMING_SNAKE_CASE : int = './animation.gif' if input_path is None: SCREAMING_SNAKE_CASE : Optional[int] = self.save_path SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) ) if not len(A ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(A ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A ) SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A ) if extend_frames: SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : int = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(A ) ) imageio.mimsave(A, A, duration=A ) print(F"gif saved to {output_path}" ) def UpperCamelCase_ ( self, A=None, A=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A ) SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A ) return z def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent return self.vqgan.decode(A ) def UpperCamelCase_ ( self, A, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A ) SCREAMING_SNAKE_CASE : str = self.clip(**A ) SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) ) if neg_prompts: SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] ) else: SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device ) SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A ) return loss def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device ) SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A ) SCREAMING_SNAKE_CASE : Dict = loop_post_process(A ) SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A ) print('CLIP loss', A ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' wandb.init(reinit=A, project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE : Tuple = Image.open(A ) SCREAMING_SNAKE_CASE : int = image.resize((256, 256) ) wandb.log('Original Image', wandb.Image(A ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not prompts: return [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = [] if isinstance(A, A ): SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(A, (tuple, list) ): SCREAMING_SNAKE_CASE : List[str] = prompt[0] SCREAMING_SNAKE_CASE : Any = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' ) SCREAMING_SNAKE_CASE : Any = float(A ) else: SCREAMING_SNAKE_CASE : Dict = prompt SCREAMING_SNAKE_CASE : List[Any] = 1.0 processed_prompts.append(A ) weights.append(A ) return { "prompts": processed_prompts, "weights": torch.tensor(A, device=self.device ), } def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ): '''simple docstring''' if image_path: SCREAMING_SNAKE_CASE : int = self._get_latent(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(A, A, A ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A ) if save_final and save_path is None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(A ): os.makedirs(A ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp() os.makedirs(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = save_path SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(A ) ) SCREAMING_SNAKE_CASE : int = loop_post_process(A ) for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ): if show_intermediate: show_pil(A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(A )} ) if show_final: show_pil(A ) if save_final: transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
28
0
import sys __lowercase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def snake_case__ ( _A: str ) -> List[str]: '''simple docstring''' lowerCAmelCase = 1 for digit in s: product *= int(_A ) return product def snake_case__ ( _A: str = N ) -> Dict: '''simple docstring''' lowerCAmelCase = -sys.maxsize - 1 lowerCAmelCase = n[:13] lowerCAmelCase = 13 while cur_index < len(_A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): lowerCAmelCase = substr[1:] + n[cur_index] cur_index += 1 else: lowerCAmelCase = max(_A , str_eval(_A ) ) lowerCAmelCase = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
702
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCAmelCase = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCAmelCase = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCAmelCase = tf_top_k_top_p_filtering(__lowerCAmelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4) lowerCAmelCase = output[output != -float("""inf""")] lowerCAmelCase = tf.cast( tf.where(tf.not_equal(__lowerCAmelCase , tf.constant(-float("""inf""") , dtype=tf.floataa))) , dtype=tf.intaa , ) tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , rtol=1E-1_2) tf.debugging.assert_equal(__lowerCAmelCase , __lowerCAmelCase) @require_tf class a__( unittest.TestCase , lowerCAmelCase__ ): '''simple docstring''' if is_tf_available(): UpperCAmelCase_ : Dict = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def a_ ( self): """simple docstring""" lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") lowerCAmelCase = 2 lowerCAmelCase = 2 class a__( tf.Module ): '''simple docstring''' def __init__( self , __lowerCAmelCase): """simple docstring""" super(__lowerCAmelCase , self).__init__() lowerCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids"""), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask"""), ) , jit_compile=__lowerCAmelCase , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.model.generate( input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , max_new_tokens=__lowerCAmelCase , return_dict_in_generate=__lowerCAmelCase , ) return {"sequences": outputs["sequences"]} lowerCAmelCase = [[2, 0], [102, 103]] lowerCAmelCase = [[1, 0], [1, 1]] lowerCAmelCase = DummyModel(model=__lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__lowerCAmelCase , __lowerCAmelCase , signatures={"""serving_default""": dummy_model.serving}) lowerCAmelCase = tf.saved_model.load(__lowerCAmelCase).signatures["""serving_default"""] for batch_size in range(1 , len(__lowerCAmelCase) + 1): lowerCAmelCase = { """input_ids""": tf.constant(dummy_input_ids[:batch_size]), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size]), } lowerCAmelCase = serving_func(**__lowerCAmelCase)["""sequences"""] lowerCAmelCase = test_model.generate(**__lowerCAmelCase , max_new_tokens=__lowerCAmelCase) tf.debugging.assert_equal(__lowerCAmelCase , __lowerCAmelCase) @slow def a_ ( self): """simple docstring""" lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") lowerCAmelCase = 1 lowerCAmelCase = 2 class a__( tf.Module ): '''simple docstring''' def __init__( self , __lowerCAmelCase): """simple docstring""" super(__lowerCAmelCase , self).__init__() lowerCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids"""), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask"""), ) , jit_compile=__lowerCAmelCase , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.model.generate( input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , max_new_tokens=__lowerCAmelCase , return_dict_in_generate=__lowerCAmelCase , ) return {"sequences": outputs["sequences"]} lowerCAmelCase = [[2], [102, 103]] lowerCAmelCase = [[1], [1, 1]] lowerCAmelCase = DummyModel(model=__lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__lowerCAmelCase , __lowerCAmelCase , signatures={"""serving_default""": dummy_model.serving}) lowerCAmelCase = tf.saved_model.load(__lowerCAmelCase).signatures["""serving_default"""] for input_row in range(len(__lowerCAmelCase)): lowerCAmelCase = { """input_ids""": tf.constant([dummy_input_ids[input_row]]), """attention_mask""": tf.constant([dummy_attention_masks[input_row]]), } lowerCAmelCase = serving_func(**__lowerCAmelCase)["""sequences"""] lowerCAmelCase = test_model.generate(**__lowerCAmelCase , max_new_tokens=__lowerCAmelCase) tf.debugging.assert_equal(__lowerCAmelCase , __lowerCAmelCase) @slow @require_tensorflow_text def a_ ( self): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__lowerCAmelCase) class a__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self): """simple docstring""" super().__init__() lowerCAmelCase = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__lowerCAmelCase , """spiece.model""") , """rb""").read()) lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""") def a_ ( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.tokenizer.tokenize(__lowerCAmelCase) lowerCAmelCase , lowerCAmelCase = text.pad_model_inputs( __lowerCAmelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id) lowerCAmelCase = self.model.generate(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase) return self.tokenizer.detokenize(__lowerCAmelCase) lowerCAmelCase = CompleteSentenceTransformer() lowerCAmelCase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""") lowerCAmelCase = complete_model(__lowerCAmelCase) lowerCAmelCase = tf.keras.Model(__lowerCAmelCase , __lowerCAmelCase) keras_model.save(__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } lowerCAmelCase = 14 lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") lowerCAmelCase = """Hello, my dog is cute and""" lowerCAmelCase = tokenizer(__lowerCAmelCase , return_tensors="""tf""") lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""") lowerCAmelCase = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0"""): tf.random.set_seed(0) lowerCAmelCase = model.generate(**__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase) self.assertTrue(expectation == len(generated_tokens[0])) lowerCAmelCase = [638, 198] with tf.device(""":/CPU:0"""): tf.random.set_seed(0) lowerCAmelCase = model.generate(**__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase) self.assertTrue(expectation == len(generated_tokens[0])) def a_ ( self): """simple docstring""" lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""") lowerCAmelCase = """Hugging Face is a technology company based in New York and Paris.""" lowerCAmelCase = bart_tokenizer(__lowerCAmelCase , return_tensors="""tf""").input_ids lowerCAmelCase = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""") lowerCAmelCase = bart_model.generate(__lowerCAmelCase).numpy() class a__( lowerCAmelCase__ ): '''simple docstring''' def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" return super().call(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""") lowerCAmelCase = bart_model.generate(__lowerCAmelCase , foo="""bar""").numpy() self.assertTrue(np.array_equal(__lowerCAmelCase , __lowerCAmelCase)) class a__( bart_model.model.encoder.__class__ ): '''simple docstring''' def a_ ( self , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return super().call(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = FakeEncoder(bart_model.config , bart_model.model.shared) lowerCAmelCase = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase = bart_model.generate(__lowerCAmelCase).numpy() with self.assertRaises(__lowerCAmelCase): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__lowerCAmelCase , foo="""bar""")
605
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _A ( lowerCamelCase ): a__ : Optional[int] = torch.exp(lowerCamelCase ) a__ : Optional[Any] = torch.sum(lowerCamelCase , dim=1 ) # sum of exp(x_i) a__ : int = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowerCamelCase ) - B / A class __lowerCAmelCase ( nn.Module ): def __init__( self , snake_case ) -> Tuple: """simple docstring""" super().__init__() a__ : Dict = config.output_attentions a__ : Tuple = config.output_hidden_states a__ : Optional[Any] = nn.ModuleList([BertLayer(snake_case ) for _ in range(config.num_hidden_layers )] ) a__ : Optional[int] = nn.ModuleList([BertHighway(snake_case ) for _ in range(config.num_hidden_layers )] ) a__ : Union[str, Any] = [-1 for _ in range(config.num_hidden_layers )] def _snake_case ( self , snake_case ) -> str: """simple docstring""" if (type(snake_case ) is float) or (type(snake_case ) is int): for i in range(len(self.early_exit_entropy ) ): a__ : Optional[Any] = x else: a__ : Optional[int] = x def _snake_case ( self , snake_case ) -> Optional[Any]: """simple docstring""" a__ : Any = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def _snake_case ( self , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ) -> List[str]: """simple docstring""" a__ : Optional[int] = () a__ : List[str] = () a__ : Any = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: a__ : List[str] = all_hidden_states + (hidden_states,) a__ : Dict = layer_module( snake_case , snake_case , head_mask[i] , snake_case , snake_case ) a__ : Optional[Any] = layer_outputs[0] if self.output_attentions: a__ : Optional[Any] = all_attentions + (layer_outputs[1],) a__ : Optional[int] = (hidden_states,) if self.output_hidden_states: a__ : Optional[Any] = current_outputs + (all_hidden_states,) if self.output_attentions: a__ : Union[str, Any] = current_outputs + (all_attentions,) a__ : List[str] = self.highway[i](snake_case ) # logits, pooled_output if not self.training: a__ : Optional[int] = highway_exit[0] a__ : int = entropy(snake_case ) a__ : List[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy a__ : int = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: a__ : int = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(snake_case , i + 1 ) else: a__ : Optional[Any] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: a__ : Optional[int] = all_hidden_states + (hidden_states,) a__ : Any = (hidden_states,) if self.output_hidden_states: a__ : Tuple = outputs + (all_hidden_states,) if self.output_attentions: a__ : List[Any] = outputs + (all_attentions,) a__ : Tuple = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ ,_UpperCamelCase ,) class __lowerCAmelCase ( _UpperCamelCase ): def __init__( self , snake_case ) -> Optional[Any]: """simple docstring""" super().__init__(snake_case ) a__ : List[Any] = config a__ : str = BertEmbeddings(snake_case ) a__ : List[str] = DeeBertEncoder(snake_case ) a__ : int = BertPooler(snake_case ) self.init_weights() def _snake_case ( self ) -> str: """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def _snake_case ( self ) -> Optional[int]: """simple docstring""" return self.embeddings.word_embeddings def _snake_case ( self , snake_case ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = value def _snake_case ( self , snake_case ) -> Union[str, Any]: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(snake_case ) @add_start_docstrings_to_model_forward(snake_case ) def _snake_case ( self , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ) -> List[Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: a__ : Dict = input_ids.size() elif inputs_embeds is not None: a__ : Optional[Any] = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) a__ : Tuple = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: a__ : Tuple = torch.ones(snake_case , device=snake_case ) if encoder_attention_mask is None: a__ : Optional[int] = torch.ones(snake_case , device=snake_case ) if token_type_ids is None: a__ : Tuple = torch.zeros(snake_case , dtype=torch.long , device=snake_case ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. a__ : torch.Tensor = self.get_extended_attention_mask(snake_case , snake_case , snake_case ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: a__ : List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: a__ : List[str] = encoder_attention_mask[:, None, None, :] a__ : Optional[Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility a__ : Any = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] a__ : List[str] = self.get_head_mask(snake_case , self.config.num_hidden_layers ) a__ : Optional[Any] = self.embeddings( input_ids=snake_case , position_ids=snake_case , token_type_ids=snake_case , inputs_embeds=snake_case ) a__ : str = self.encoder( snake_case , attention_mask=snake_case , head_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) a__ : str = encoder_outputs[0] a__ : Any = self.pooler(snake_case ) a__ : Dict = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __lowerCAmelCase ( _UpperCamelCase ): def __init__( self , snake_case , snake_case ) -> Optional[int]: """simple docstring""" a__ : List[str] = message a__ : List[Any] = exit_layer # start from 1! class __lowerCAmelCase ( nn.Module ): def __init__( self , snake_case ) -> Optional[Any]: """simple docstring""" super().__init__() a__ : str = BertPooler(snake_case ) a__ : Tuple = nn.Dropout(config.hidden_dropout_prob ) a__ : Tuple = nn.Linear(config.hidden_size , config.num_labels ) def _snake_case ( self , snake_case ) -> List[str]: """simple docstring""" a__ : List[str] = encoder_outputs[0] a__ : Optional[int] = self.pooler(snake_case ) # "return" pooler_output # BertModel a__ : int = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification a__ : Any = bmodel_output[1] a__ : List[str] = self.dropout(snake_case ) a__ : int = self.classifier(snake_case ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ ,_UpperCamelCase ,) class __lowerCAmelCase ( _UpperCamelCase ): def __init__( self , snake_case ) -> str: """simple docstring""" super().__init__(snake_case ) a__ : Optional[Any] = config.num_labels a__ : Any = config.num_hidden_layers a__ : Any = DeeBertModel(snake_case ) a__ : List[str] = nn.Dropout(config.hidden_dropout_prob ) a__ : Any = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(snake_case ) def _snake_case ( self , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=-1 , snake_case=False , ) -> int: """simple docstring""" a__ : Union[str, Any] = self.num_layers try: a__ : Dict = self.bert( snake_case , attention_mask=snake_case , token_type_ids=snake_case , position_ids=snake_case , head_mask=snake_case , inputs_embeds=snake_case , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits a__ : Any = outputs[1] a__ : Any = self.dropout(snake_case ) a__ : Union[str, Any] = self.classifier(snake_case ) a__ : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: a__ : int = e.message a__ : Optional[Any] = e.exit_layer a__ : Optional[int] = outputs[0] if not self.training: a__ : Optional[int] = entropy(snake_case ) a__ : List[Any] = [] a__ : List[str] = [] if labels is not None: if self.num_labels == 1: # We are doing regression a__ : str = MSELoss() a__ : Optional[int] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: a__ : Optional[Any] = CrossEntropyLoss() a__ : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits a__ : Dict = [] for highway_exit in outputs[-1]: a__ : List[Any] = highway_exit[0] if not self.training: highway_logits_all.append(snake_case ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression a__ : int = MSELoss() a__ : List[str] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: a__ : Tuple = CrossEntropyLoss() a__ : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(snake_case ) if train_highway: a__ : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: a__ : Any = (loss,) + outputs if not self.training: a__ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: a__ : int = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
112
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() SCREAMING_SNAKE_CASE__ : int = """cpu""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" SCREAMING_SNAKE_CASE__ : List[Any] = """path-to-your-trained-model""" SCREAMING_SNAKE_CASE__ : Tuple = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: SCREAMING_SNAKE_CASE__ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) SCREAMING_SNAKE_CASE__ : Optional[int] = pipe.to(device) # to channels last SCREAMING_SNAKE_CASE__ : int = pipe.unet.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE__ : List[Any] = pipe.vae.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE__ : List[str] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex SCREAMING_SNAKE_CASE__ : Optional[int] = torch.randn(2, 4, 6_4, 6_4) SCREAMING_SNAKE_CASE__ : Any = torch.rand(1) * 9_9_9 SCREAMING_SNAKE_CASE__ : List[Any] = torch.randn(2, 7_7, 7_6_8) SCREAMING_SNAKE_CASE__ : Optional[Any] = (sample, timestep, encoder_hidden_status) try: SCREAMING_SNAKE_CASE__ : Any = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: SCREAMING_SNAKE_CASE__ : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE__ : str = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute SCREAMING_SNAKE_CASE__ : Optional[Any] = 6_6_6 SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device).manual_seed(seed) SCREAMING_SNAKE_CASE__ : int = {"""generator""": generator} if args.steps is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): SCREAMING_SNAKE_CASE__ : Dict = pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
112
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } lowerCAmelCase_: Tuple = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __a ( A ): '''simple docstring''' lowercase__ = {} with open(_lowerCamelCase , "r" ) as file: for line_number, line in enumerate(_lowerCamelCase ): lowercase__ = line.strip() if line: lowercase__ = line.split() lowercase__ = line_number lowercase__ = words[0] lowercase__ = value return result def __a ( A , A , A , A , A ): '''simple docstring''' for attribute in key.split("." ): lowercase__ = getattr(_lowerCamelCase , _lowerCamelCase ) lowercase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): lowercase__ = PARAM_MAPPING[full_name.split("." )[-1]] lowercase__ = 'param' if weight_type is not None and weight_type != "param": lowercase__ = getattr(_lowerCamelCase , _lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": lowercase__ = hf_pointer for attribute in hf_param_name.split("." ): lowercase__ = getattr(_lowerCamelCase , _lowerCamelCase ) lowercase__ = shape_pointer.shape # let's reduce dimension lowercase__ = value[0] else: lowercase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): lowercase__ = getattr(_lowerCamelCase , _lowerCamelCase ) lowercase__ = value else: lowercase__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __a ( A , A , A , A , A ): '''simple docstring''' lowercase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): lowercase__ = PARAM_MAPPING[full_name.split("." )[-1]] lowercase__ = 'param' if weight_type is not None and weight_type != "param": lowercase__ = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowercase__ = '.'.join([key, hf_param_name] ) else: lowercase__ = key lowercase__ = value if 'lm_head' in full_key else value[0] lowerCAmelCase_: List[Any] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __a ( A , A , A=None , A=None ): '''simple docstring''' lowercase__ = False for key, mapped_key in MAPPING.items(): lowercase__ = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(_lowerCamelCase )[0].split("." )[-2] lowercase__ = mapped_key.replace("*" , _lowerCamelCase ) if "weight_g" in name: lowercase__ = 'weight_g' elif "weight_v" in name: lowercase__ = 'weight_v' elif "bias" in name: lowercase__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = 'weight' else: lowercase__ = None if hf_dict is not None: rename_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return is_used return is_used def __a ( A , A , A ): '''simple docstring''' lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase__ = True else: lowercase__ = load_wavaveca_layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __a ( A , A , A , A , A ): '''simple docstring''' lowercase__ = full_name.split("conv_layers." )[-1] lowercase__ = name.split("." ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def __a ( A , A , A=None , A=None , A=True , A=False ): '''simple docstring''' if config_path is not None: lowercase__ = WavaVecaConfig.from_pretrained(_lowerCamelCase ) else: lowercase__ = WavaVecaConfig() if is_seq_class: lowercase__ = read_txt_into_dict(_lowerCamelCase ) lowercase__ = idalabel lowercase__ = WavaVecaForSequenceClassification(_lowerCamelCase ) lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) feature_extractor.save_pretrained(_lowerCamelCase ) elif is_finetuned: if dict_path: lowercase__ = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.eos_index lowercase__ = len(target_dict.symbols ) lowercase__ = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) lowercase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ = 0 lowercase__ = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) lowercase__ = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) lowercase__ = True if config.feat_extract_norm == 'layer' else False lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) lowercase__ = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) lowercase__ = WavaVecaForCTC(_lowerCamelCase ) else: lowercase__ = WavaVecaForPreTraining(_lowerCamelCase ) if is_finetuned or is_seq_class: lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowercase__ = argparse.Namespace(task="audio_pretraining" ) lowercase__ = fairseq.tasks.setup_task(_lowerCamelCase ) lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) lowercase__ = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_: int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) lowerCAmelCase_: List[Any] = parser.parse_args() lowerCAmelCase_: List[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Union[str, Any] = {} class a ( _lowerCamelCase ): snake_case_ = "llama" snake_case_ = ["past_key_values"] def __init__( self : Optional[Any] , lowercase_ : Optional[int]=3_2000 , lowercase_ : Union[str, Any]=4096 , lowercase_ : List[str]=1_1008 , lowercase_ : str=32 , lowercase_ : List[Any]=32 , lowercase_ : List[str]=None , lowercase_ : Tuple="silu" , lowercase_ : Optional[int]=2048 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Optional[int]=1e-6 , lowercase_ : int=True , lowercase_ : List[str]=0 , lowercase_ : Dict=1 , lowercase_ : Dict=2 , lowercase_ : Union[str, Any]=1 , lowercase_ : str=False , lowercase_ : int=None , **lowercase_ : Union[str, Any] , ): snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = intermediate_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: snake_case_ = num_attention_heads snake_case_ = num_key_value_heads snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = rms_norm_eps snake_case_ = pretraining_tp snake_case_ = use_cache snake_case_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , tie_word_embeddings=_A , **_A , ) def A_ ( self : Tuple ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _A ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"got {self.rope_scaling}" ) snake_case_ = self.rope_scaling.get('''type''' , _A ) snake_case_ = self.rope_scaling.get('''factor''' , _A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_A , _A ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
640
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Any = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
255
0
"""simple docstring""" from torch import nn def A__ ( A__ ) -> Optional[int]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
579
"""simple docstring""" import datasets SCREAMING_SNAKE_CASE_ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' SCREAMING_SNAKE_CASE_ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' SCREAMING_SNAKE_CASE_ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A__ ( A__ , A__ ) -> Tuple: '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __A ( self , snake_case_ , snake_case_ ) -> Dict: return {"accuracy": simple_accuracy(snake_case_ , snake_case_ )}
579
1
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A_( A : Optional[int] , A : Optional[Any]): UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' UpperCamelCase = Image.open(requests.get(A , stream=A).raw).convert('RGB') UpperCamelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711)), ]) UpperCamelCase = transform(A).unsqueeze(0).to(A) return image def A_( A : Any): if "visual_encoder" in key: UpperCamelCase = re.sub('visual_encoder*' , 'vision_model.encoder' , A) if "blocks" in key: UpperCamelCase = re.sub(r'blocks' , 'layers' , A) if "attn" in key: UpperCamelCase = re.sub(r'attn' , 'self_attn' , A) if "norm1" in key: UpperCamelCase = re.sub(r'norm1' , 'layer_norm1' , A) if "norm2" in key: UpperCamelCase = re.sub(r'norm2' , 'layer_norm2' , A) if "encoder.norm" in key: UpperCamelCase = re.sub(r'encoder.norm' , 'post_layernorm' , A) if "encoder.patch_embed.proj" in key: UpperCamelCase = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , A) if "encoder.pos_embed" in key: UpperCamelCase = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , A) if "encoder.cls_token" in key: UpperCamelCase = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , A) if "self_attn" in key: UpperCamelCase = re.sub(r'self_attn.proj' , 'self_attn.projection' , A) return key @torch.no_grad() def A_( A : List[str] , A : Any=None): if config_path is not None: UpperCamelCase = BlipConfig.from_pretrained(A) else: UpperCamelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={}) UpperCamelCase = BlipForConditionalGeneration(A).eval() UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' UpperCamelCase = blip_decoder(pretrained=A , image_size=384 , vit='base') UpperCamelCase = pt_model.eval() UpperCamelCase = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase = modified_state_dict.pop(A) UpperCamelCase = rename_key(A) UpperCamelCase = value hf_model.load_state_dict(A) UpperCamelCase = 384 UpperCamelCase = load_demo_image(image_size=A , device='cpu') UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased') UpperCamelCase = tokenizer(['a picture of']).input_ids UpperCamelCase = hf_model.generate(A , A) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] UpperCamelCase = hf_model.generate(A) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(A) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCamelCase = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) UpperCamelCase = blip_vqa(pretrained=A , image_size=A , vit='base') vqa_model.eval() UpperCamelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase = modified_state_dict.pop(A) UpperCamelCase = rename_key(A) UpperCamelCase = value UpperCamelCase = BlipForQuestionAnswering(A) hf_vqa_model.load_state_dict(A) UpperCamelCase = ['How many dogs are in this image?'] UpperCamelCase = tokenizer(A , return_tensors='pt').input_ids UpperCamelCase = hf_vqa_model.generate(A , A) print(tokenizer.decode(answer[0])) assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa') UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' UpperCamelCase = blip_itm(pretrained=A , image_size=A , vit='base') itm_model.eval() UpperCamelCase = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCamelCase = modified_state_dict.pop(A) UpperCamelCase = rename_key(A) UpperCamelCase = value UpperCamelCase = BlipForImageTextRetrieval(A) UpperCamelCase = ['A picture of a woman with a dog sitting in a beach'] UpperCamelCase = tokenizer( A , return_tensors='pt' , padding='max_length' , truncation=A , max_length=35 , ).input_ids hf_itm_model.load_state_dict(A) hf_itm_model.eval() UpperCamelCase = hf_itm_model(A , A , use_itm_head=A) UpperCamelCase = hf_itm_model(A , A , use_itm_head=A) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1)[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm') if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowerCAmelCase : Optional[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
3
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : List[Any] ,*SCREAMING_SNAKE_CASE_ : Union[str, Any] ,**SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : str ,**SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : int ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : int ,*SCREAMING_SNAKE_CASE_ : str ,**SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[str] ,*SCREAMING_SNAKE_CASE_ : List[str] ,**SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : Tuple ,*SCREAMING_SNAKE_CASE_ : Optional[int] ,**SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : Tuple ,*SCREAMING_SNAKE_CASE_ : Dict ,**SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : Tuple ,*SCREAMING_SNAKE_CASE_ : Tuple ,**SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class lowercase ( metaclass=lowercase__ ): lowercase = ['''flax''', '''transformers'''] def __init__(self : Optional[Any] ,*SCREAMING_SNAKE_CASE_ : Any ,**SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : Optional[Any] ,**SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase (cls : List[Any] ,*SCREAMING_SNAKE_CASE_ : List[Any] ,**SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] )
535
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ) -> Optional[Any]: __lowerCAmelCase : List[Any] = get_activation('swish' ) self.assertIsInstance(A__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case ( self ) -> Dict: __lowerCAmelCase : Tuple = get_activation('silu' ) self.assertIsInstance(A__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case ( self ) -> List[str]: __lowerCAmelCase : Optional[int] = get_activation('mish' ) self.assertIsInstance(A__ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case ( self ) -> List[Any]: __lowerCAmelCase : Optional[int] = get_activation('gelu' ) self.assertIsInstance(A__ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
720
'''simple docstring''' from math import sqrt def A ( _UpperCAmelCase : int ) -> bool: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase : Any = False for divisor in range(2 ,int(round(sqrt(_UpperCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase : int = False break # precondition assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ), "'status' must been from type bool" return status def A ( _UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase : Optional[int] = list(range(2 ,n + 1 ) ) __lowerCAmelCase : Any = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCAmelCase ) ): for j in range(i + 1 ,len(_UpperCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase : Dict = 0 # filters actual prime numbers. __lowerCAmelCase : str = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ), "'ans' must been from type list" return ans def A ( _UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase : Any = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 ,n + 1 ): if is_prime(_UpperCAmelCase ): ans.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ), "'ans' must been from type list" return ans def A ( _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase : List[str] = 2 __lowerCAmelCase : Tuple = number if number == 0 or number == 1: ans.append(_UpperCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCAmelCase ): while quotient != 1: if is_prime(_UpperCAmelCase ) and (quotient % factor == 0): ans.append(_UpperCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ), "'ans' must been from type list" return ans def A ( _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase : int = 0 # prime factorization of 'number' __lowerCAmelCase : Optional[Any] = prime_factorization(_UpperCAmelCase ) __lowerCAmelCase : str = max(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ), "'ans' must been from type int" return ans def A ( _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase : List[Any] = 0 # prime factorization of 'number' __lowerCAmelCase : Dict = prime_factorization(_UpperCAmelCase ) __lowerCAmelCase : Optional[Any] = min(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ), "'ans' must been from type int" return ans def A ( _UpperCAmelCase : Optional[Any] ) -> Any: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 ,_UpperCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def A ( _UpperCAmelCase : int ) -> List[str]: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 ,_UpperCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def A ( _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (number > 2) and is_even(_UpperCAmelCase ) ), "'number' must been an int, even and > 2" __lowerCAmelCase : Any = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase : List[Any] = get_prime_numbers(_UpperCAmelCase ) __lowerCAmelCase : Union[str, Any] = len(_UpperCAmelCase ) # run variable for while-loops. __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Union[str, Any] = None # exit variable. for break up the loops __lowerCAmelCase : List[str] = True while i < len_pn and loop: __lowerCAmelCase : Optional[int] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase : Tuple = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (len(_UpperCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase : List[Any] = 0 while numbera != 0: __lowerCAmelCase : Tuple = numbera % numbera __lowerCAmelCase : str = numbera __lowerCAmelCase : Optional[int] = rest # precondition assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : int ) -> str: '''simple docstring''' assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase : Tuple = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase : Dict = prime_factorization(_UpperCAmelCase ) __lowerCAmelCase : str = prime_factorization(_UpperCAmelCase ) elif numbera == 1 or numbera == 1: __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : int = [] __lowerCAmelCase : Any = max(_UpperCAmelCase ,_UpperCAmelCase ) __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Dict = 0 __lowerCAmelCase : List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase : Tuple = prime_fac_a.count(_UpperCAmelCase ) __lowerCAmelCase : Dict = prime_fac_a.count(_UpperCAmelCase ) for _ in range(max(_UpperCAmelCase ,_UpperCAmelCase ) ): ans *= n else: __lowerCAmelCase : int = prime_fac_a.count(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): ans *= n done.append(_UpperCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase : Optional[int] = prime_fac_a.count(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): ans *= n done.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A ( _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : int = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCAmelCase ): ans += 1 # precondition assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and is_prime( _UpperCAmelCase ), "'ans' must been a prime number and from type int" return ans def A ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' assert ( is_prime(_UpperCAmelCase ) and is_prime(_UpperCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase : Dict = p_number_a + 1 # jump to the next number __lowerCAmelCase : Union[str, Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCAmelCase ): number += 1 while number < p_number_a: ans.append(_UpperCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCAmelCase ): number += 1 # precondition assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and ans[0] != p_number_a and ans[len(_UpperCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A ( _UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase : str = [] # will be returned. for divisor in range(1 ,n + 1 ): if n % divisor == 0: ans.append(_UpperCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def A ( _UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase : List[str] = get_divisors(_UpperCAmelCase ) # precondition assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> Dict: '''simple docstring''' assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase : str = gcd(abs(_UpperCAmelCase ) ,abs(_UpperCAmelCase ) ) # precondition assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A ( _UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 ,n + 1 ): ans *= factor return ans def A ( _UpperCAmelCase : str ) -> Any: '''simple docstring''' assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Union[str, Any] = 1 __lowerCAmelCase : Any = 1 # this will be return for _ in range(n - 1 ): __lowerCAmelCase : Optional[Any] = ans ans += fiba __lowerCAmelCase : Dict = tmp return ans
123
0
from __future__ import annotations def __magic_name__ ( lowercase_ ) -> Dict: '''simple docstring''' if not nums: return 0 UpperCamelCase = nums[0] UpperCamelCase = 0 for num in nums[1:]: UpperCamelCase , UpperCamelCase = ( max_excluding + num, max(UpperCamelCase_ , UpperCamelCase_ ), ) return max(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
606
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def a_ ( UpperCamelCase_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: A_ = k.replace(UpperCamelCase_ , UpperCamelCase_ ) if k.startswith("encoder" ): A_ = k.replace(".attn" , ".self_attn" ) A_ = k.replace("norm1" , "self_attn_layer_norm" ) A_ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): A_ = k.replace("norm1" , "self_attn_layer_norm" ) A_ = k.replace("norm2" , "encoder_attn_layer_norm" ) A_ = k.replace("norm3" , "final_layer_norm" ) return k def a_ ( UpperCamelCase_ ): A_ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: A_ = sd.pop(UpperCamelCase_ ) A_ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd A_ = v __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''START'''] @torch.no_grad() def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): A_ = torch.load(UpperCamelCase_ , map_location="cpu" ) A_ = model["model"] A_ = BlenderbotConfig.from_json_file(UpperCamelCase_ ) A_ = BlenderbotForConditionalGeneration(UpperCamelCase_ ) A_ = m.model.state_dict().keys() A_ = [] A_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue A_ = rename_state_dict_key(UpperCamelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: A_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCamelCase_ ) m.model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) m.half() m.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
452
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Tuple = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __snake_case : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A ( a ): __UpperCAmelCase : Union[str, Any] = """wav2vec2""" def __init__( self , snake_case_=3_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , snake_case_=(5, 2, 2, 2, 2, 2, 2) , snake_case_=(1_0, 3, 3, 3, 3, 2, 2) , snake_case_=False , snake_case_=1_2_8 , snake_case_=1_6 , snake_case_=False , snake_case_=True , snake_case_=0.05 , snake_case_=1_0 , snake_case_=2 , snake_case_=0.0 , snake_case_=1_0 , snake_case_=0 , snake_case_=3_2_0 , snake_case_=2 , snake_case_=0.1 , snake_case_=1_0_0 , snake_case_=2_5_6 , snake_case_=2_5_6 , snake_case_=0.1 , snake_case_="sum" , snake_case_=False , snake_case_=False , snake_case_=2_5_6 , snake_case_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , snake_case_=(5, 3, 3, 1, 1) , snake_case_=(1, 2, 3, 1, 1) , snake_case_=5_1_2 , snake_case_=0 , snake_case_=1 , snake_case_=2 , snake_case_=False , snake_case_=3 , snake_case_=2 , snake_case_=3 , snake_case_=None , snake_case_=None , **snake_case_ , ) -> List[str]: super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(snake_case_ ) _a = list(snake_case_ ) _a = list(snake_case_ ) _a = xvector_output_dim @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
691
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCAmelCase = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } UpperCAmelCase = {"""facebook/blenderbot_small-90M""": 512} def _snake_case ( __snake_case : Tuple ): """simple docstring""" _lowerCamelCase : Optional[Any] = set() _lowerCamelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase : Tuple = char _lowerCamelCase : Tuple = set(__snake_case ) return pairs class lowercase__ ( A_ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="__start__" , SCREAMING_SNAKE_CASE="__end__" , SCREAMING_SNAKE_CASE="__unk__" , SCREAMING_SNAKE_CASE="__null__" , **SCREAMING_SNAKE_CASE , ) -> List[str]: super().__init__(unk_token=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) with open(SCREAMING_SNAKE_CASE , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : List[str] = json.load(SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE , encoding="""utf-8""") as merges_handle: _lowerCamelCase : Dict = merges_handle.read().split("""\n""")[1:-1] _lowerCamelCase : Optional[int] = [tuple(merge.split()) for merge in merges] _lowerCamelCase : int = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE)))) _lowerCamelCase : Dict = {} @property def UpperCamelCase_ ( self) -> int: return len(self.encoder) def UpperCamelCase_ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> str: if token in self.cache: return self.cache[token] _lowerCamelCase : List[Any] = re.sub("""([.,!?()])""" , r""" \1""" , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = re.sub("""(')""" , r""" \1 """ , SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = re.sub(r"""\s{2,}""" , """ """ , SCREAMING_SNAKE_CASE) if "\n" in token: _lowerCamelCase : Tuple = token.replace("""\n""" , """ __newln__""") _lowerCamelCase : Any = token.split(""" """) _lowerCamelCase : str = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE): continue _lowerCamelCase : str = token.lower() _lowerCamelCase : Any = tuple(SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = tuple(list(word[:-1]) + [word[-1] + """</w>"""]) _lowerCamelCase : Tuple = get_pairs(SCREAMING_SNAKE_CASE) if not pairs: words.append(SCREAMING_SNAKE_CASE) continue while True: _lowerCamelCase : Optional[Any] = min(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE: self.bpe_ranks.get(SCREAMING_SNAKE_CASE , float("""inf"""))) if bigram not in self.bpe_ranks: break _lowerCamelCase , _lowerCamelCase : Tuple = bigram _lowerCamelCase : Dict = [] _lowerCamelCase : Union[str, Any] = 0 while i < len(SCREAMING_SNAKE_CASE): try: _lowerCamelCase : List[Any] = word.index(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) new_word.extend(word[i:j]) _lowerCamelCase : List[str] = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _lowerCamelCase : Any = tuple(SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = new_word if len(SCREAMING_SNAKE_CASE) == 1: break else: _lowerCamelCase : Optional[int] = get_pairs(SCREAMING_SNAKE_CASE) _lowerCamelCase : int = """@@ """.join(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = word[:-4] _lowerCamelCase : Dict = word words.append(SCREAMING_SNAKE_CASE) return " ".join(SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : Any = [] _lowerCamelCase : Any = re.findall(r"""\S+\n?""" , SCREAMING_SNAKE_CASE) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE).split(""" """))) return split_tokens def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : Tuple = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE , self.unk_token) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> str: _lowerCamelCase : str = """ """.join(SCREAMING_SNAKE_CASE).replace("""@@ """ , """""").strip() return out_string def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return _lowerCamelCase : int = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) _lowerCamelCase : Tuple = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""]) with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE , ensure_ascii=SCREAMING_SNAKE_CASE) + """\n""") _lowerCamelCase : List[Any] = 0 with open(SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""") as writer: writer.write("""#version: 0.2\n""") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""") _lowerCamelCase : int = token_index writer.write(""" """.join(SCREAMING_SNAKE_CASE) + """\n""") index += 1 return vocab_file, merge_file
88
# Function to print upper half of diamond (pyramid) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Tuple ) -> Optional[Any]: """simple docstring""" for i in range(0 ,lowerCAmelCase_ ): for _ in range(0 ,n - i - 1 ): # printing spaces print(' ' ,end='' ) for _ in range(0 ,i + 1 ): # printing stars print('* ' ,end='' ) print() def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[str] ) -> str: """simple docstring""" for i in range(lowerCAmelCase_ ,0 ,-1 ): for _ in range(lowerCAmelCase_ ,0 ,-1 ): # printing stars print('* ' ,end='' ) print() for _ in range(n - i + 1 ,0 ,-1 ): # printing spaces print(' ' ,end='' ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase_ ) # upper half reverse_floyd(lowerCAmelCase_ ) # lower half if __name__ == "__main__": print(r'| /\ | |- | |- |--| |\ /| |-') print(r'|/ \| |- |_ |_ |__| | \/ | |_') __SCREAMING_SNAKE_CASE = 1 while K: __SCREAMING_SNAKE_CASE = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __SCREAMING_SNAKE_CASE = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
220
0
'''simple docstring''' import math class lowerCamelCase__ : '''simple docstring''' def lowercase__ ( self : Union[str, Any] , __A : list[list[float]] , __A : list[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 0.0 for i in range(len(__A ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowercase__ ( self : str , __A : list[list[int | float]] , __A : list[int] , __A : int , __A : float ) -> List[str]: '''simple docstring''' for i in range(len(__A ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowerCAmelCase( ) -> None: # Training Examples ( m, n ) lowerCAmelCase__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowerCAmelCase__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowerCAmelCase__ = SelfOrganizingMap() lowerCAmelCase__ = 3 lowerCAmelCase__ = 0.5 for _ in range(SCREAMING_SNAKE_CASE_ ): for j in range(len(SCREAMING_SNAKE_CASE_ ) ): # training sample lowerCAmelCase__ = training_samples[j] # Compute the winning vector lowerCAmelCase__ = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Update the winning vector lowerCAmelCase__ = self_organizing_map.update(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # classify test sample lowerCAmelCase__ = [0, 0, 0, 1] lowerCAmelCase__ = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
703
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : '''simple docstring''' def __init__( self : int , __A : str , __A : Union[str, Any]=12 , __A : List[Any]=7 , __A : Tuple=True , __A : Any=True , __A : str=True , __A : Union[str, Any]=99 , __A : Union[str, Any]=32 , __A : Dict=32 , __A : List[Any]=2 , __A : Union[str, Any]=4 , __A : int=37 , __A : Tuple=0.1 , __A : Optional[Any]=0.1 , __A : str=512 , __A : Dict=0.0_2 , __A : str=0 , __A : Optional[int]=None , ) -> int: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = projection_dim lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = bos_token_id def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCAmelCase__ = input_mask.numpy() lowerCAmelCase__ ,lowerCAmelCase__ = input_mask.shape lowerCAmelCase__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__A ): lowerCAmelCase__ = 1 lowerCAmelCase__ = 0 lowerCAmelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(__A ) def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : List[str] , __A : str , __A : Tuple , __A : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = TFBlipTextModel(config=__A ) lowerCAmelCase__ = model(__A , attention_mask=__A , training=__A ) lowerCAmelCase__ = model(__A , training=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( _A, unittest.TestCase ): '''simple docstring''' A__ = (TFBlipTextModel,) if is_tf_available() else () A__ = False A__ = False A__ = False def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = BlipTextModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__A , hidden_size=37 ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' pass def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' pass @slow def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFBlipTextModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowercase__ ( self : Union[str, Any] , __A : Optional[Any]=True ) -> Union[str, Any]: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=__A )
211
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = '''▁''' __lowercase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} __lowercase = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } __lowercase = {'''vinai/bartpho-syllable''': 1024} class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Union[str, Any] = VOCAB_FILES_NAMES a__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , __lowercase , __lowercase , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase = None , **__lowercase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase :int = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else mask_token __UpperCamelCase :Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __UpperCamelCase :List[Any] = vocab_file __UpperCamelCase :Optional[int] = monolingual_vocab_file __UpperCamelCase :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__lowercase)) # Load the reduced vocab # Keep order of special tokens for backward compatibility __UpperCamelCase :Dict = {} __UpperCamelCase :Dict = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowercase) not in self.fairseq_tokens_to_ids: __UpperCamelCase :str = cnt cnt += 1 with open(__lowercase , '''r''' , encoding='''utf-8''') as f: for line in f.readlines(): __UpperCamelCase :Optional[Any] = line.strip().split()[0] __UpperCamelCase :str = len(self.fairseq_tokens_to_ids) if str(__lowercase) not in self.fairseq_tokens_to_ids: __UpperCamelCase :str = len(self.fairseq_tokens_to_ids) __UpperCamelCase :int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self) -> Dict: __UpperCamelCase :Union[str, Any] = self.__dict__.copy() __UpperCamelCase :Optional[int] = None __UpperCamelCase :Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __lowercase) -> Tuple: __UpperCamelCase :Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __UpperCamelCase :Any = {} __UpperCamelCase :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase :Optional[int] = [self.cls_token_id] __UpperCamelCase :str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase) if token_ids_a is None: return [1] + ([0] * len(__lowercase)) + [1] return [1] + ([0] * len(__lowercase)) + [1, 1] + ([0] * len(__lowercase)) + [1] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: __UpperCamelCase :int = [self.sep_token_id] __UpperCamelCase :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def UpperCamelCase__ ( self) -> str: return len(self.fairseq_ids_to_tokens) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :int = {self.convert_ids_to_tokens(__lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def UpperCamelCase__ ( self , __lowercase) -> List[str]: return self.sp_model.encode(__lowercase , out_type=__lowercase) def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCamelCase__ ( self , __lowercase) -> str: return self.fairseq_ids_to_tokens[index] def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: __UpperCamelCase :int = ''''''.join(__lowercase).replace(__lowercase , ''' ''').strip() return out_string def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]: if not os.path.isdir(__lowercase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __UpperCamelCase :int = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :str = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __lowercase) elif not os.path.isfile(self.vocab_file): with open(__lowercase , '''wb''') as fi: __UpperCamelCase :str = self.sp_model.serialized_model_proto() fi.write(__lowercase) if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath( __lowercase) and os.path.isfile(self.monolingual_vocab_file): copyfile(self.monolingual_vocab_file , __lowercase) elif not os.path.isfile(self.monolingual_vocab_file): with open(__lowercase , '''w''' , encoding='''utf-8''') as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(__lowercase)} \n""") return out_vocab_file, out_monolingual_vocab_file
167
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') __lowercase = int(input('''Enter number: ''').strip()) print(F'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
167
1
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A : str = threading.Lock() A : Optional[logging.Handler] = None A : Tuple = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } A : List[str] = logging.WARNING A : Tuple = True def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = os.getenv("TRANSFORMERS_VERBOSITY" , _snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def snake_case__ ( ): """simple docstring""" return __name__.split("." )[0] def snake_case__ ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def snake_case__ ( ): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCamelCase__ = logging.StreamHandler() # Set sys.stderr as stream. UpperCamelCase__ = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCamelCase__ = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCamelCase__ = False def snake_case__ ( ): """simple docstring""" global _default_handler with _lock: if not _default_handler: return UpperCamelCase__ = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCamelCase__ = None def snake_case__ ( ): """simple docstring""" return log_levels def snake_case__ ( _snake_case : Optional[str] = None ): """simple docstring""" if name is None: UpperCamelCase__ = _get_library_name() _configure_library_root_logger() return logging.getLogger(_snake_case ) def snake_case__ ( ): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def snake_case__ ( _snake_case : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(_snake_case ) def snake_case__ ( ): """simple docstring""" return set_verbosity(_snake_case ) def snake_case__ ( ): """simple docstring""" return set_verbosity(_snake_case ) def snake_case__ ( ): """simple docstring""" return set_verbosity(_snake_case ) def snake_case__ ( ): """simple docstring""" return set_verbosity(_snake_case ) def snake_case__ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def snake_case__ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def snake_case__ ( _snake_case : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_snake_case ) def snake_case__ ( _snake_case : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_snake_case ) def snake_case__ ( ): """simple docstring""" _configure_library_root_logger() UpperCamelCase__ = False def snake_case__ ( ): """simple docstring""" _configure_library_root_logger() UpperCamelCase__ = True def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = _get_library_root_logger().handlers for handler in handlers: UpperCamelCase__ = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(_snake_case ) def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_snake_case ) def snake_case__ ( self : Union[str, Any] , *_snake_case : int , **_snake_case : Any ): """simple docstring""" UpperCamelCase__ = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , _snake_case ) if no_advisory_warnings: return self.warning(*_snake_case , **_snake_case ) A : List[str] = warning_advice @functools.lru_cache(_snake_case ) def snake_case__ ( self : int , *_snake_case : List[str] , **_snake_case : Dict ): """simple docstring""" self.warning(*_snake_case , **_snake_case ) A : Any = warning_once class lowerCAmelCase : '''simple docstring''' def __init__( self :Union[str, Any] , *lowerCamelCase_ :Dict , **lowerCamelCase_ :Any ) -> Any: # pylint: disable=unused-argument """simple docstring""" UpperCamelCase__ = args[0] if args else None def __iter__( self :List[str] ) -> str: """simple docstring""" return iter(self._iterator ) def __getattr__( self :Optional[Any] , lowerCamelCase_ :List[Any] ) -> Tuple: """simple docstring""" def empty_fn(*lowerCamelCase_ :int , **lowerCamelCase_ :Optional[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self :List[Any] ) -> Tuple: """simple docstring""" return self def __exit__( self :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] ) -> Any: """simple docstring""" return class lowerCAmelCase : '''simple docstring''' def __call__( self :int , *lowerCamelCase_ :Union[str, Any] , **lowerCamelCase_ :Tuple ) -> List[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*lowerCamelCase_ , **lowerCamelCase_ ) else: return EmptyTqdm(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase__ ( self :Any , *lowerCamelCase_ :Any , **lowerCamelCase_ :int ) -> List[Any]: """simple docstring""" UpperCamelCase__ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase__ ( self :Optional[int] ) -> Union[str, Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() A : Dict = _tqdm_cls() def snake_case__ ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def snake_case__ ( ): """simple docstring""" global _tqdm_active UpperCamelCase__ = True hf_hub_utils.enable_progress_bars() def snake_case__ ( ): """simple docstring""" global _tqdm_active UpperCamelCase__ = False hf_hub_utils.disable_progress_bars()
718
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A : List[str] = logging.getLogger(__name__) A : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) A : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase : '''simple docstring''' A = field( default=snake_case__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) A = field( default=snake_case__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(snake_case__ )} , ) A = field( default=snake_case__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A = field( default=snake_case__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class lowerCAmelCase : '''simple docstring''' A = field( default=snake_case__ , metadata={'help': 'The input training data file (a text file).'} ) A = field( default=snake_case__ , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) A = field( default=snake_case__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) A = field( default=snake_case__ , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) A = field( default=snake_case__ , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) A = field( default=snake_case__ , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) A = field( default=snake_case__ , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) A = field(default=snake_case__ , metadata={'help': 'Whether ot not to use whole word mask.'} ) A = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) A = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) A = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) A = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) A = field( default=snake_case__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case__ ( _snake_case : DataTrainingArguments , _snake_case : PreTrainedTokenizer , _snake_case : bool = False , _snake_case : Optional[str] = None , ): """simple docstring""" def _dataset(_snake_case : str , _snake_case : int=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size , ref_path=_snake_case , ) return LineByLineTextDataset(tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size ) else: return TextDataset( tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_snake_case , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_snake_case ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCamelCase__ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCamelCase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCamelCase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: UpperCamelCase__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCamelCase__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: UpperCamelCase__ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) UpperCamelCase__ = AutoModelWithLMHead.from_config(_snake_case ) model.resize_token_embeddings(len(_snake_case ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: UpperCamelCase__ = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCamelCase__ = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCamelCase__ = ( get_dataset(_snake_case , tokenizer=_snake_case , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCamelCase__ = ( get_dataset(_snake_case , tokenizer=_snake_case , evaluate=_snake_case , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCamelCase__ = DataCollatorForPermutationLanguageModeling( tokenizer=_snake_case , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCamelCase__ = DataCollatorForWholeWordMask( tokenizer=_snake_case , mlm_probability=data_args.mlm_probability ) else: UpperCamelCase__ = DataCollatorForLanguageModeling( tokenizer=_snake_case , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCamelCase__ = Trainer( model=_snake_case , args=_snake_case , data_collator=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , prediction_loss_only=_snake_case , ) # Training if training_args.do_train: UpperCamelCase__ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_snake_case ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase__ = trainer.evaluate() UpperCamelCase__ = math.exp(eval_output["eval_loss"] ) UpperCamelCase__ = {"perplexity": perplexity} UpperCamelCase__ = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(_snake_case , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _snake_case , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(_snake_case ) return results def snake_case__ ( _snake_case : List[str] ): """simple docstring""" main() if __name__ == "__main__": main()
304
0
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging lowercase__ : Tuple = logging.get_logger(__name__) def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = os.getenv('''SM_HP_MP_PARAMETERS''', '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. _UpperCamelCase = json.loads(lowercase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. _UpperCamelCase = os.getenv('''SM_FRAMEWORK_PARAMS''', '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". _UpperCamelCase = json.loads(lowercase ) if not mpi_options.get('''sagemaker_mpi_enabled''', lowercase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def snake_case__ ( self : List[str] ) -> Any: '''simple docstring''' super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , lowerCAmelCase__ , ) @cached_property def snake_case__ ( self : Any ) -> "torch.device": '''simple docstring''' logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: _UpperCamelCase = torch.device('''cpu''' ) _UpperCamelCase = 0 elif is_sagemaker_model_parallel_available(): _UpperCamelCase = smp.local_rank() _UpperCamelCase = torch.device('''cuda''' , lowerCAmelCase__ ) _UpperCamelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) _UpperCamelCase = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) _UpperCamelCase = torch.device('''cuda''' , self.local_rank ) _UpperCamelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 _UpperCamelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. _UpperCamelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) _UpperCamelCase = torch.device('''cuda''' , self.local_rank ) _UpperCamelCase = 1 if device.type == "cuda": torch.cuda.set_device(lowerCAmelCase__ ) return device @property def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def snake_case__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' return False
98
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = '''gpt_neox_japanese''' def __init__( self : Union[str, Any] , __UpperCamelCase : str=3_2_0_0_0 , __UpperCamelCase : List[Any]=2_5_6_0 , __UpperCamelCase : Any=3_2 , __UpperCamelCase : List[str]=3_2 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : List[Any]=1.00 , __UpperCamelCase : Any=1_0_0_0_0 , __UpperCamelCase : Optional[Any]=2_0_4_8 , __UpperCamelCase : Tuple=0.02 , __UpperCamelCase : List[str]=1E-5 , __UpperCamelCase : str=True , __UpperCamelCase : str=3_1_9_9_6 , __UpperCamelCase : int=3_1_9_9_9 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Tuple=0.0 , **__UpperCamelCase : List[str] , ): super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
272
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def A__ ( UpperCamelCase ): A = 384 A = 7 if "tiny" in model_name: A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif "small" in model_name: A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif "base" in model_name: A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) A = 12 A = 512 elif "large" in model_name: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) A = 12 A = 768 # set label information A = 150 A = "huggingface/label-files" A = "ade20k-id2label.json" A = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="dataset" ) , "r" ) ) A = {int(UpperCamelCase ): v for k, v in idalabel.items()} A = {v: k for k, v in idalabel.items()} A = SwinConfig( embed_dim=UpperCamelCase , depths=UpperCamelCase , num_heads=UpperCamelCase , window_size=UpperCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) A = UperNetConfig( backbone_config=UpperCamelCase , auxiliary_in_channels=UpperCamelCase , num_labels=UpperCamelCase , idalabel=UpperCamelCase , labelaid=UpperCamelCase , ) return config def A__ ( UpperCamelCase ): A = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm1.weight", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm1.bias", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", F"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", F"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", F"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", F"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm2.weight", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.norm2.bias", F"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", F"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", F"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", F"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", F"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.stages.{i}.downsample.reduction.weight", F"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.stages.{i}.downsample.norm.weight", F"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.stages.{i}.downsample.norm.bias", F"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = dct.pop(UpperCamelCase ) A = val def A__ ( UpperCamelCase , UpperCamelCase ): A = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A = state_dict.pop(F"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) A = state_dict.pop(F"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:dim, :] A = in_proj_bias[: dim] A = in_proj_weight[ dim : dim * 2, : ] A = in_proj_bias[ dim : dim * 2 ] A = in_proj_weight[ -dim :, : ] A = in_proj_bias[-dim :] # fmt: on def A__ ( UpperCamelCase ): A, A = x.shape A = x.reshape(UpperCamelCase , 4 , in_channel // 4 ) A = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(UpperCamelCase , UpperCamelCase ) return x def A__ ( UpperCamelCase ): A, A = x.shape A = x.reshape(UpperCamelCase , in_channel // 4 , 4 ) A = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(UpperCamelCase , UpperCamelCase ) return x def A__ ( UpperCamelCase ): A = x.shape[0] A = x.reshape(4 , in_channel // 4 ) A = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(UpperCamelCase ) return x def A__ ( UpperCamelCase ): A = x.shape[0] A = x.reshape(in_channel // 4 , 4 ) A = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(UpperCamelCase ) return x def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): A = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } A = model_name_to_url[model_name] A = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="cpu" , file_name=UpperCamelCase )[ "state_dict" ] for name, param in state_dict.items(): print(UpperCamelCase , param.shape ) A = get_upernet_config(UpperCamelCase ) A = UperNetForSemanticSegmentation(UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A = state_dict.pop(UpperCamelCase ) if "bn" in key: A = key.replace("bn" , "batch_norm" ) A = val # rename keys A = create_rename_keys(UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A = reverse_correct_unfold_reduction_order(UpperCamelCase ) if "norm" in key: A = reverse_correct_unfold_norm_order(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) # verify on image A = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" A = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert("RGB" ) A = SegformerImageProcessor() A = processor(UpperCamelCase , return_tensors="pt" ).pixel_values with torch.no_grad(): A = model(UpperCamelCase ) A = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": A = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": A = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": A = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(F"openmmlab/{model_name}" ) processor.push_to_hub(F"openmmlab/{model_name}" ) if __name__ == "__main__": _snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
524
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _snake_case : List[str] = Lock() def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase , UpperCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase , UpperCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase ) def A__ ( UpperCamelCase ): A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase , args=( len(UpperCamelCase ) - 1, arr[len(UpperCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def A__ ( ): A = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*UpperCamelCase ) A = odd_even_transposition(UpperCamelCase ) print("Sorted List\n" ) print(*UpperCamelCase ) if __name__ == "__main__": main()
524
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = filter(lambda _lowercase : p.requires_grad , model.parameters() ) UpperCAmelCase_ : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params __a = logging.getLogger(__name__) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if metric == "rouge2": UpperCAmelCase_ : List[Any] = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": UpperCAmelCase_ : int = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": UpperCAmelCase_ : Any = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) UpperCAmelCase_ : List[Any] = ModelCheckpoint( dirpath=_lowercase , filename=_lowercase , monitor=f'''val_{metric}''' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return EarlyStopping( monitor=f'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=_lowercase , verbose=_lowercase , ) class __a( pl.Callback ): """simple docstring""" def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : Tuple = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE ) @rank_zero_only def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCAmelCase_ : List[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results UpperCAmelCase_ : str = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase_ : Dict = od / '''test_results.txt''' UpperCAmelCase_ : Union[str, Any] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase_ : Tuple = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCAmelCase_ : int = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) generations_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ,'''a+''' ) as writer: for key in sorted(_SCREAMING_SNAKE_CASE ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase_ : Dict = metrics[key] if isinstance(_SCREAMING_SNAKE_CASE ,torch.Tensor ): UpperCAmelCase_ : Any = val.item() UpperCAmelCase_ : Any = f'''{key}: {val:.6f}\n''' writer.write(_SCREAMING_SNAKE_CASE ) if not save_generations: return if "preds" in metrics: UpperCAmelCase_ : Union[str, Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_SCREAMING_SNAKE_CASE ) @rank_zero_only def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: try: UpperCAmelCase_ : Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase_ : Tuple = pl_module.model.num_parameters() UpperCAmelCase_ : Optional[int] = count_trainable_parameters(_SCREAMING_SNAKE_CASE ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: save_json(pl_module.metrics ,pl_module.metrics_save_path ) return self._write_logs(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,'''test''' ) @rank_zero_only def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: save_json(pl_module.metrics ,pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
30
from ...configuration_utils import PretrainedConfig class snake_case__ ( _UpperCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "bert-generation" def __init__( self : Optional[int] , A__ : List[Any]=5_03_58 , A__ : Any=10_24 , A__ : Any=24 , A__ : List[Any]=16 , A__ : List[Any]=40_96 , A__ : int="gelu" , A__ : List[str]=0.1 , A__ : List[str]=0.1 , A__ : str=5_12 , A__ : int=0.02 , A__ : Any=1E-12 , A__ : Optional[Any]=0 , A__ : List[str]=2 , A__ : Optional[int]=1 , A__ : str="absolute" , A__ : Any=True , **A__ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) snake_case_ : str = vocab_size snake_case_ : int = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = intermediate_size snake_case_ : str = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : Optional[Any] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : str = position_embedding_type snake_case_ : Dict = use_cache
666
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _snake_case = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self , lowerCAmelCase_ = 1 , lowerCAmelCase_ = None , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 50 , lowerCAmelCase_ = None , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , ): """simple docstring""" if isinstance(self.unet.config.sample_size , lowerCAmelCase_ ): _snake_case = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _snake_case = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _snake_case = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _snake_case = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , eta=lowerCAmelCase_ , use_clipped_model_output=lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _snake_case = (image / 2 + 0.5).clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
703
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def lowerCamelCase ( *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __UpperCAmelCase ( unittest.TestCase ): __lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) _snake_case = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = object_detector(examples[0] , threshold=0.0 ) _snake_case = len(lowerCAmelCase_ ) self.assertGreater(lowerCAmelCase_ , 0 ) self.assertEqual( lowerCAmelCase_ , [ { 'score': ANY(lowerCAmelCase_ ), 'label': ANY(lowerCAmelCase_ ), 'box': {'xmin': ANY(lowerCAmelCase_ ), 'ymin': ANY(lowerCAmelCase_ ), 'xmax': ANY(lowerCAmelCase_ ), 'ymax': ANY(lowerCAmelCase_ )}, } for i in range(lowerCAmelCase_ ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def lowerCamelCase ( self ): """simple docstring""" pass @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) _snake_case = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) _snake_case = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = pipeline('zero-shot-object-detection' ) _snake_case = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) _snake_case = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def lowerCamelCase ( self ): """simple docstring""" pass @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 0.2 _snake_case = pipeline('zero-shot-object-detection' ) _snake_case = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 2 _snake_case = pipeline('zero-shot-object-detection' ) _snake_case = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
542
0
def _a ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" _validate_point(UpperCAmelCase ) _validate_point(UpperCAmelCase ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ) ) ) def _a ( UpperCAmelCase ) -> Any: """simple docstring""" if point: if isinstance(UpperCAmelCase , UpperCAmelCase ): for item in point: if not isinstance(UpperCAmelCase , (int, float) ): lowerCamelCase__ : str = ( '''Expected a list of numbers as input, found ''' f"{type(UpperCAmelCase ).__name__}" ) raise TypeError(UpperCAmelCase ) else: lowerCamelCase__ : List[Any] = f"Expected a list of numbers as input, found {type(UpperCAmelCase ).__name__}" raise TypeError(UpperCAmelCase ) else: raise ValueError('''Missing an input''' ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: """simple docstring""" _validate_point(UpperCAmelCase ) _validate_point(UpperCAmelCase ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase , UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
315
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase_ ( lowerCamelCase ): a__ = ['''image_processor''', '''tokenizer'''] a__ = '''ChineseCLIPImageProcessor''' a__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) __magic_name__ :Optional[Any] = kwargs.pop('''feature_extractor''' ) __magic_name__ :Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :List[Any] = self.image_processor def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __magic_name__ :int = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if images is not None: __magic_name__ :Dict = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and images is not None: __magic_name__ :Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.tokenizer.model_input_names __magic_name__ :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class
0
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __magic_name__ = 16 __magic_name__ = 32 def lowerCamelCase ( lowerCamelCase : Accelerator , lowerCamelCase : int = 16 , lowerCamelCase : str = "bert-base-cased"): A_ : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase) A_ : Tuple = load_dataset("""glue""" , """mrpc""") def tokenize_function(lowerCamelCase : Any): # max_length=None => use the model max length (it's actually the default) A_ : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A_ : str = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""") def collate_fn(lowerCamelCase : str): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""") return tokenizer.pad(lowerCamelCase , padding="""longest""" , return_tensors="""pt""") # Instantiate dataloaders. A_ : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase) A_ : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase) return train_dataloader, eval_dataloader def lowerCamelCase ( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : Tuple): model.eval() A_ : Union[str, Any] = 0 for step, batch in enumerate(lowerCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): A_ : Union[str, Any] = model(**lowerCamelCase) A_ : Optional[int] = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times A_ : Tuple = accelerator.gather( (predictions, batch["""labels"""])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCamelCase) - 1: A_ : int = predictions[: len(eval_dataloader.dataset) - samples_seen] A_ : List[str] = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) A_ : str = metric.compute() return eval_metric["accuracy"] def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : str): # Initialize accelerator A_ : Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ : List[str] = config["""lr"""] A_ : Optional[int] = int(config["""num_epochs"""]) A_ : Optional[Any] = int(config["""seed"""]) A_ : str = int(config["""batch_size"""]) A_ : Any = args.model_name_or_path set_seed(lowerCamelCase) A_ : Optional[Any] = get_dataloaders(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ : str = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase , return_dict=lowerCamelCase) # Instantiate optimizer A_ : Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A_ : Any = optimizer_cls(params=model.parameters() , lr=lowerCamelCase) if accelerator.state.deepspeed_plugin is not None: A_ : List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: A_ : Dict = 1 A_ : Optional[int] = (len(lowerCamelCase) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A_ : Any = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=0 , num_training_steps=lowerCamelCase , ) else: A_ : Optional[Any] = DummyScheduler(lowerCamelCase , total_num_steps=lowerCamelCase , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ : Optional[Any] = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) # We need to keep track of how many total steps we have iterated over A_ : List[str] = 0 # We also need to keep track of the stating epoch so files are named properly A_ : Dict = 0 A_ : Optional[Any] = evaluate.load("""glue""" , """mrpc""") A_ : str = num_epochs if args.partial_train_epoch is not None: A_ : Optional[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint) A_ : List[str] = args.resume_from_checkpoint.split("""epoch_""")[1] A_ : Optional[Any] = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A_ : Optional[Any] = int(lowerCamelCase) + 1 A_ : Dict = evaluation_loop(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) accelerator.print("""resumed checkpoint performance:""" , lowerCamelCase) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0]) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""]) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json') , """r""") as f: A_ : Union[str, Any] = json.load(lowerCamelCase) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A_ : Tuple = {} for epoch in range(lowerCamelCase , lowerCamelCase): model.train() for step, batch in enumerate(lowerCamelCase): A_ : Dict = model(**lowerCamelCase) A_ : str = outputs.loss A_ : List[str] = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A_ : List[str] = F'epoch_{epoch}' A_ : Optional[Any] = os.path.join(args.output_dir , lowerCamelCase) accelerator.save_state(lowerCamelCase) A_ : List[Any] = evaluation_loop(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase) A_ : str = accuracy A_ : List[Any] = lr_scheduler.get_lr()[0] A_ : int = optimizer.param_groups[0]["""lr"""] A_ : Any = epoch A_ : Optional[Any] = overall_step accelerator.print(F'epoch {epoch}:' , lowerCamelCase) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json') , """w""") as f: json.dump(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( ): A_ : List[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""") parser.add_argument( """--model_name_or_path""" , type=lowerCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase , ) parser.add_argument( """--output_dir""" , type=lowerCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowerCamelCase , default=lowerCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowerCamelCase , default=lowerCamelCase , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase , default=2 , help="""Number of train epochs.""" , ) A_ : Tuple = parser.parse_args() A_ : Union[str, Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase) if __name__ == "__main__": main()
702
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""torch""", """torchsde"""] def __init__( self : Any ,*_a : Union[str, Any] ,**_a : Optional[int] ): '''simple docstring''' requires_backends(self ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : Optional[int] ,*_a : List[Any] ,**_a : Any ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] ) @classmethod def _a ( cls : List[Any] ,*_a : Tuple ,**_a : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,["""torch""", """torchsde"""] )
27
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'philschmid/bart-large-cnn-samsum' SCREAMING_SNAKE_CASE_ = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) SCREAMING_SNAKE_CASE_ = 'summarizer' SCREAMING_SNAKE_CASE_ = AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE_ = ['text'] SCREAMING_SNAKE_CASE_ = ['text'] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' return self.pre_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' , truncation=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.model.generate(**SCREAMING_SNAKE_CASE_ )[0] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' return self.pre_processor.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
42
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :List[str] = logging.get_logger(__name__) lowercase__ :List[str] = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : int = 'bridgetower_vision_model' def __init__( self : str , __lowercase : Optional[Any]=768 , __lowercase : Tuple=12 , __lowercase : List[str]=3 , __lowercase : Any=16 , __lowercase : int=288 , __lowercase : List[Any]=1 , __lowercase : Any=1e-05 , __lowercase : int=False , __lowercase : Any=True , __lowercase : Any=False , **__lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**__lowercase ) __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[int] = patch_size __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Union[str, Any] = initializer_factor __UpperCAmelCase : List[str] = layer_norm_eps __UpperCAmelCase : Optional[int] = stop_gradient __UpperCAmelCase : List[str] = share_layernorm __UpperCAmelCase : int = remove_last_layer @classmethod def A_ ( cls : Optional[int] , __lowercase : Union[str, os.PathLike] , **__lowercase : Dict ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = cls.get_config_dict(__lowercase , **__lowercase ) if config_dict.get('''model_type''' ) == "bridgetower": __UpperCAmelCase : Optional[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowercase , **__lowercase ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : str = 'bridgetower_text_model' def __init__( self : Any , __lowercase : Dict=50_265 , __lowercase : int=768 , __lowercase : str=12 , __lowercase : Union[str, Any]=12 , __lowercase : str=1 , __lowercase : List[Any]=3_072 , __lowercase : Optional[Any]="gelu" , __lowercase : str=0.1 , __lowercase : Dict=0.1 , __lowercase : List[str]=514 , __lowercase : List[str]=1 , __lowercase : Any=1e-05 , __lowercase : Tuple=1 , __lowercase : str=0 , __lowercase : Optional[Any]=2 , __lowercase : Optional[int]="absolute" , __lowercase : Tuple=True , **__lowercase : str , ): '''simple docstring''' super().__init__(**__lowercase ) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : str = hidden_act __UpperCAmelCase : List[Any] = initializer_factor __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Dict = position_embedding_type __UpperCAmelCase : List[Any] = use_cache __UpperCAmelCase : Optional[Any] = pad_token_id __UpperCAmelCase : Dict = bos_token_id __UpperCAmelCase : Tuple = eos_token_id @classmethod def A_ ( cls : str , __lowercase : Union[str, os.PathLike] , **__lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = cls.get_config_dict(__lowercase , **__lowercase ) if config_dict.get('''model_type''' ) == "bridgetower": __UpperCAmelCase : List[str] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowercase , **__lowercase ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Optional[int] = 'bridgetower' def __init__( self : int , __lowercase : Any=True , __lowercase : List[Any]="gelu" , __lowercase : int=768 , __lowercase : Tuple=1 , __lowercase : List[Any]=1e-05 , __lowercase : Optional[Any]=False , __lowercase : str="add" , __lowercase : int=12 , __lowercase : Optional[int]=6 , __lowercase : List[str]=False , __lowercase : Union[str, Any]=False , __lowercase : Tuple=None , __lowercase : str=None , **__lowercase : List[str] , ): '''simple docstring''' __UpperCAmelCase : List[Any] = kwargs.pop('''text_config_dict''' , __lowercase ) __UpperCAmelCase : Any = kwargs.pop('''vision_config_dict''' , __lowercase ) super().__init__(**__lowercase ) __UpperCAmelCase : Optional[Any] = share_cross_modal_transformer_layers __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : List[Any] = initializer_factor __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : Dict = share_link_tower_layers __UpperCAmelCase : Any = link_tower_type __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Optional[int] = tie_word_embeddings __UpperCAmelCase : Union[str, Any] = init_layernorm_from_vision_encoder if text_config is None: __UpperCAmelCase : List[str] = {} logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''' ) if vision_config is None: __UpperCAmelCase : Optional[Any] = {} logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''' ) __UpperCAmelCase : List[str] = BridgeTowerTextConfig(**__lowercase ) __UpperCAmelCase : List[Any] = BridgeTowerVisionConfig(**__lowercase ) @classmethod def A_ ( cls : Any , __lowercase : BridgeTowerTextConfig , __lowercase : BridgeTowerVisionConfig , **__lowercase : Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowercase ) def A_ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Union[str, Any] = self.text_config.to_dict() __UpperCAmelCase : int = self.vision_config.to_dict() __UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output
522
0
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A = NewType('DataClass', Any) A = NewType('DataClassType', Any) def UpperCAmelCase ( UpperCAmelCase__ : Dict): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''') def UpperCAmelCase ( UpperCAmelCase__ : List[Any]): lowerCamelCase : Tuple = {str(SCREAMING_SNAKE_CASE_): choice for choice in choices} return lambda UpperCAmelCase__: str_to_choice.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def UpperCAmelCase ( *, UpperCAmelCase__ : Any = None , UpperCAmelCase__ : Optional[Any] = None , UpperCAmelCase__ : List[str] = dataclasses.MISSING , UpperCAmelCase__ : int = dataclasses.MISSING , UpperCAmelCase__ : Optional[Any] = None , **UpperCAmelCase__ : Union[str, Any] , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCamelCase : Optional[Any] = {} if aliases is not None: lowerCamelCase : Dict = aliases if help is not None: lowerCamelCase : int = help return dataclasses.field(metadata=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , default_factory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) class __snake_case ( a__): _lowerCAmelCase = 42 def __init__( self, A, **A ): """simple docstring""" if "formatter_class" not in kwargs: lowerCamelCase : Any = ArgumentDefaultsHelpFormatter super().__init__(**A ) if dataclasses.is_dataclass(A ): lowerCamelCase : Tuple = [dataclass_types] lowerCamelCase : Optional[int] = list(A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A ) @staticmethod def UpperCAmelCase_ ( A, A ): """simple docstring""" lowerCamelCase : Tuple = F'''--{field.name}''' lowerCamelCase : Union[str, Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type, A ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) lowerCamelCase : Dict = kwargs.pop('aliases', [] ) if isinstance(A, A ): lowerCamelCase : Union[str, Any] = [aliases] lowerCamelCase : Union[str, Any] = getattr(field.type, '__origin__', field.type ) if origin_type is Union or (hasattr(A, 'UnionType' ) and isinstance(A, types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F''' Problem encountered in field \'{field.name}\'.''' ) if type(A ) not in field.type.__args__: # filter `str` in Union lowerCamelCase : Dict = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCamelCase : Optional[Any] = getattr(field.type, '__origin__', field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCamelCase : Optional[int] = ( field.type.__args__[0] if isinstance(A, field.type.__args__[1] ) else field.type.__args__[1] ) lowerCamelCase : Optional[Any] = getattr(field.type, '__origin__', field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCamelCase : Any = {} if origin_type is Literal or (isinstance(field.type, A ) and issubclass(field.type, A )): if origin_type is Literal: lowerCamelCase : Optional[Any] = field.type.__args__ else: lowerCamelCase : List[str] = [x.value for x in field.type] lowerCamelCase : Optional[int] = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: lowerCamelCase : Union[str, Any] = field.default else: lowerCamelCase : Union[str, Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCamelCase : List[str] = copy(A ) # Hack because type=bool in argparse does not behave as we want. lowerCamelCase : Any = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCamelCase : Tuple = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCamelCase : List[Any] = default # This tells argparse we accept 0 or 1 value after --field_name lowerCamelCase : List[str] = '?' # This is the value that will get picked if we do --field_name (without value) lowerCamelCase : List[Any] = True elif isclass(A ) and issubclass(A, A ): lowerCamelCase : str = field.type.__args__[0] lowerCamelCase : List[Any] = '+' if field.default_factory is not dataclasses.MISSING: lowerCamelCase : Optional[int] = field.default_factory() elif field.default is dataclasses.MISSING: lowerCamelCase : Any = True else: lowerCamelCase : List[Any] = field.type if field.default is not dataclasses.MISSING: lowerCamelCase : Tuple = field.default elif field.default_factory is not dataclasses.MISSING: lowerCamelCase : Dict = field.default_factory() else: lowerCamelCase : Dict = True parser.add_argument(A, *A, **A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCamelCase : str = False parser.add_argument(F'''--no_{field.name}''', action='store_false', dest=field.name, **A ) def UpperCAmelCase_ ( self, A ): """simple docstring""" if hasattr(A, '_argument_group_name' ): lowerCamelCase : Union[str, Any] = self.add_argument_group(dtype._argument_group_name ) else: lowerCamelCase : Optional[Any] = self try: lowerCamelCase : Dict[str, type] = get_type_hints(A ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ): lowerCamelCase : List[str] = '.'.join(map(A, sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(A ): if not field.init: continue lowerCamelCase : Dict = type_hints[field.name] self._parse_dataclass_field(A, A ) def UpperCAmelCase_ ( self, A=None, A=False, A=True, A=None, A=None, ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCamelCase : List[str] = [] if args_filename: args_files.append(Path(A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCamelCase : Tuple = ArgumentParser() args_file_parser.add_argument(A, type=A, action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCamelCase : Dict = args_file_parser.parse_known_args(args=A ) lowerCamelCase : Optional[int] = vars(A ).get(args_file_flag.lstrip('-' ), A ) if cmd_args_file_paths: args_files.extend([Path(A ) for p in cmd_args_file_paths] ) lowerCamelCase : Tuple = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCamelCase : int = file_args + args if args is not None else file_args + sys.argv[1:] lowerCamelCase : Optional[Any] = self.parse_known_args(args=A ) lowerCamelCase : Union[str, Any] = [] for dtype in self.dataclass_types: lowerCamelCase : Union[str, Any] = {f.name for f in dataclasses.fields(A ) if f.init} lowerCamelCase : Optional[int] = {k: v for k, v in vars(A ).items() if k in keys} for k in keys: delattr(A, A ) lowerCamelCase : Optional[int] = dtype(**A ) outputs.append(A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCAmelCase_ ( self, A, A = False ): """simple docstring""" lowerCamelCase : int = set(args.keys() ) lowerCamelCase : List[Any] = [] for dtype in self.dataclass_types: lowerCamelCase : List[str] = {f.name for f in dataclasses.fields(A ) if f.init} lowerCamelCase : str = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCamelCase : str = dtype(**A ) outputs.append(A ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' ) return tuple(A ) def UpperCAmelCase_ ( self, A, A = False ): """simple docstring""" with open(Path(A ), encoding='utf-8' ) as open_json_file: lowerCamelCase : int = json.loads(open_json_file.read() ) lowerCamelCase : List[Any] = self.parse_dict(A, allow_extra_keys=A ) return tuple(A ) def UpperCAmelCase_ ( self, A, A = False ): """simple docstring""" lowerCamelCase : str = self.parse_dict(yaml.safe_load(Path(A ).read_text() ), allow_extra_keys=A ) return tuple(A )
703
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __snake_case ( a__ , unittest.TestCase): _lowerCAmelCase = BertTokenizer _lowerCAmelCase = BertTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = filter_non_english def UpperCAmelCase_ ( self ): """simple docstring""" super().setUp() lowerCamelCase : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : str = 'UNwant\u00E9d,running' lowerCamelCase : List[str] = 'unwanted, running' return input_text, output_text def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase : List[str] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A, ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase_ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase : Dict = 'UNwant\u00E9d,running' lowerCamelCase : Tuple = tokenizer.tokenize(A ) lowerCamelCase : Optional[int] = rust_tokenizer.tokenize(A ) self.assertListEqual(A, A ) lowerCamelCase : Optional[Any] = tokenizer.encode(A, add_special_tokens=A ) lowerCamelCase : List[Any] = rust_tokenizer.encode(A, add_special_tokens=A ) self.assertListEqual(A, A ) lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase : Optional[Any] = tokenizer.encode(A ) lowerCamelCase : Tuple = rust_tokenizer.encode(A ) self.assertListEqual(A, A ) # With lower casing lowerCamelCase : Union[str, Any] = self.get_tokenizer(do_lower_case=A ) lowerCamelCase : List[Any] = self.get_rust_tokenizer(do_lower_case=A ) lowerCamelCase : Optional[int] = 'UNwant\u00E9d,running' lowerCamelCase : Optional[Any] = tokenizer.tokenize(A ) lowerCamelCase : str = rust_tokenizer.tokenize(A ) self.assertListEqual(A, A ) lowerCamelCase : Optional[Any] = tokenizer.encode(A, add_special_tokens=A ) lowerCamelCase : Union[str, Any] = rust_tokenizer.encode(A, add_special_tokens=A ) self.assertListEqual(A, A ) lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase : Any = tokenizer.encode(A ) lowerCamelCase : Dict = rust_tokenizer.encode(A ) self.assertListEqual(A, A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ), ['ah', '\u535A', '\u63A8', 'zz'] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : int = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ), ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = BasicTokenizer(do_lower_case=A, strip_accents=A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['h\u00E9llo'] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=A, strip_accents=A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ), ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : int = BasicTokenizer(do_lower_case=A, strip_accents=A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = BasicTokenizer(do_lower_case=A, strip_accents=A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=A, never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ), ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = BasicTokenizer() lowerCamelCase : Optional[Any] = 'a\n\'ll !!to?\'d of, can\'t.' lowerCamelCase : int = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A ), A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase : Optional[int] = {} for i, token in enumerate(A ): lowerCamelCase : int = i lowerCamelCase : List[Any] = WordpieceTokenizer(vocab=A, unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ), [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ), ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ), ['[UNK]', 'runn', '##ing'] ) def UpperCAmelCase_ ( self ): """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def UpperCAmelCase_ ( self ): """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def UpperCAmelCase_ ( self ): """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = self.get_tokenizer() lowerCamelCase : Optional[int] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A ) for t in ['Test', '\xad', 'test']], [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A ) for t in ['Test', '\xad', 'test']], [['[UNK]'], [], ['[UNK]']] ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCamelCase : Any = tokenizer.encode('sequence builders', add_special_tokens=A ) lowerCamelCase : Tuple = tokenizer.encode('multi-sequence build', add_special_tokens=A ) lowerCamelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(A ) lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCAmelCase_ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(A, **A ) lowerCamelCase : Optional[int] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' lowerCamelCase : List[str] = tokenizer_r.encode_plus( A, return_attention_mask=A, return_token_type_ids=A, return_offsets_mapping=A, add_special_tokens=A, ) lowerCamelCase : int = tokenizer_r.do_lower_case if hasattr(A, 'do_lower_case' ) else False lowerCamelCase : Union[str, Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results], tokens['offset_mapping'] ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = ['的', '人', '有'] lowerCamelCase : List[str] = ''.join(A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase : Dict = True lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(A, **A ) lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained(A, **A ) lowerCamelCase : Union[str, Any] = tokenizer_p.encode(A, add_special_tokens=A ) lowerCamelCase : Dict = tokenizer_r.encode(A, add_special_tokens=A ) lowerCamelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(A ) lowerCamelCase : str = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A, A ) self.assertListEqual(A, A ) lowerCamelCase : int = False lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained(A, **A ) lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(A, **A ) lowerCamelCase : int = tokenizer_r.encode(A, add_special_tokens=A ) lowerCamelCase : List[str] = tokenizer_p.encode(A, add_special_tokens=A ) lowerCamelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(A ) lowerCamelCase : Tuple = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase : Tuple = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(A ) ] self.assertListEqual(A, A ) self.assertListEqual(A, A )
449
0
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ): snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : List[Any] = num_channels snake_case__ : str = image_size snake_case__ : Union[str, Any] = min_resolution snake_case__ : List[Any] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : int = size snake_case__ : Tuple = do_normalize snake_case__ : Dict = image_mean snake_case__ : Union[str, Any] = image_std def __UpperCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ): snake_case__ : str = DPTImageProcessingTester(self ) @property def __UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) def __UpperCamelCase ( self ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
38
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = None if token is not None: snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : Dict = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : Any = result.headers["""Location"""] snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" ) with open(__magic_name__ , """wb""" ) as fp: fp.write(response.content ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = [] snake_case__ : Any = None with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__magic_name__ ) as f: for line in f: snake_case__ : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case__ : str = line[: line.index(""": """ )] snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed snake_case__ : Dict = line[len("""FAILED """ ) :] failed_tests.append(__magic_name__ ) elif filename == "job_name.txt": snake_case__ : Optional[Any] = line if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` " f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) snake_case__ : Optional[Any] = None if job_name and job_links: snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ ) # A list with elements of the form (line of error, error, failed test) snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )] return result def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = [] snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) ) return errors def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]: '''simple docstring''' snake_case__ : Any = Counter() counter.update([x[1] for x in logs] ) snake_case__ : Dict = counter.most_common() snake_case__ : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case__ : str = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): snake_case__ : Tuple = test.split("""/""" )[2] else: snake_case__ : Any = None return test def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case__ : List[Any] = [x for x in logs if x[2] is not None] snake_case__ : Any = {x[2] for x in logs} snake_case__ : Optional[Any] = {} for test in tests: snake_case__ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case__ : Optional[int] = counter.most_common() snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case__ : int = sum(error_counts.values() ) if n_errors > 0: snake_case__ : str = {"""count""": n_errors, """errors""": error_counts} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = """| no. | error | status |""" snake_case__ : int = """|-:|:-|:-|""" snake_case__ : int = [header, sep] for error in reduced_by_error: snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""] snake_case__ : Dict = f"| {count} | {error[:1_00]} | |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = """| model | no. of errors | major error | count |""" snake_case__ : Optional[int] = """|-:|-:|-:|-:|""" snake_case__ : Dict = [header, sep] for model in reduced_by_model: snake_case__ : Tuple = reduced_by_model[model]["""count"""] snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0] snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") A_ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) A_ : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : int = k.find(" / ") A_ : List[Any] = k[index + len(" / ") :] A_ : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : List[str] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : Any = reduce_by_error(errors) A_ : Union[str, Any] = reduce_by_model(errors) A_ : Any = make_github_table(reduced_by_error) A_ : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
38
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=[30, 30] , lowercase__=2 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=10 , lowercase__=0.02 , lowercase__=3 , lowercase__=None , lowercase__=8 , lowercase__=10 , ) -> int: __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = scope __A = n_targets __A = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A = num_patches + 1 + self.num_detection_tokens def _lowerCamelCase ( self ) -> Dict: __A = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) __A = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A = [] for i in range(self.batch_size ): __A = {} __A = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=lowercase__ ) __A = torch.rand(self.n_targets , 4 , device=lowercase__ ) labels.append(lowercase__ ) __A = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ) -> str: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> Dict: __A = YolosModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __A = model(lowercase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> int: __A = YolosForObjectDetection(lowercase__ ) model.to(lowercase__ ) model.eval() __A = model(pixel_values=lowercase__ ) __A = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) __A = model(pixel_values=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _lowerCamelCase ( self ) -> str: __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): UpperCAmelCase_ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCAmelCase_ : List[Any] = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) UpperCAmelCase_ : int = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : List[str] = False def _lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__=False ) -> Union[str, Any]: __A = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A = [] for i in range(self.model_tester.batch_size ): __A = {} __A = torch.ones( size=(self.model_tester.n_targets,) , device=lowercase__ , dtype=torch.long ) __A = torch.ones( self.model_tester.n_targets , 4 , device=lowercase__ , dtype=torch.float ) labels.append(lowercase__ ) __A = labels return inputs_dict def _lowerCamelCase ( self ) -> int: __A = YolosModelTester(self ) __A = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def _lowerCamelCase ( self ) -> int: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Optional[Any]: # YOLOS does not use inputs_embeds pass def _lowerCamelCase ( self ) -> List[Any]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def _lowerCamelCase ( self ) -> Optional[Any]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(lowercase__ ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase__ ) def _lowerCamelCase ( self ) -> Dict: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def _lowerCamelCase ( self ) -> int: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True # in YOLOS, the seq_len is different __A = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A = True __A = False __A = True __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __A = outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A = True __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __A = outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A = len(lowercase__ ) # Check attention is always last and order is fine __A = True __A = True __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __A = 1 self.assertEqual(out_len + added_hidden_states , len(lowercase__ ) ) __A = outputs.attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCamelCase ( self ) -> Any: def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): __A = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __A = outputs.hidden_states __A = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowercase__ ) , lowercase__ ) # YOLOS has a different seq_length __A = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def _lowerCamelCase ( self ) -> List[str]: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowercase__ ) @slow def _lowerCamelCase ( self ) -> List[str]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = YolosModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def UpperCAmelCase ( ): '''simple docstring''' __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ) -> List[str]: return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def _lowerCamelCase ( self ) -> Optional[int]: __A = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(lowercase__ ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=lowercase__ , return_tensors="pt" ).to(lowercase__ ) # forward pass with torch.no_grad(): __A = model(inputs.pixel_values ) # verify outputs __A = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __A = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=lowercase__ , ) __A = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , lowercase__ , atol=1e-4 ) ) # verify postprocessing __A = image_processor.post_process_object_detection( lowercase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] __A = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(lowercase__ ) __A = [75, 75, 17, 63, 17] __A = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(lowercase__ ) self.assertEqual(len(results["scores"] ) , 5 ) self.assertTrue(torch.allclose(results["scores"] , lowercase__ , atol=1e-4 ) ) self.assertSequenceEqual(results["labels"].tolist() , lowercase__ ) self.assertTrue(torch.allclose(results["boxes"][0, :] , lowercase__ ) )
205
import operator as op snake_case_ : Optional[Any] ='''scaler.pt''' snake_case_ : Any ='''pytorch_model''' snake_case_ : Optional[Any] ='''random_states''' snake_case_ : Tuple ='''optimizer''' snake_case_ : str ='''scheduler''' snake_case_ : str ='''pytorch_model.bin''' snake_case_ : Optional[Any] ='''pytorch_model.bin.index.json''' snake_case_ : str ='''model.safetensors''' snake_case_ : Optional[int] ='''model.safetensors.index.json''' snake_case_ : Dict ='''1.10.2''' snake_case_ : List[str] ='''py38''' snake_case_ : List[str] ='''4.17.0''' snake_case_ : Optional[int] =['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] snake_case_ : Optional[int] =['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] snake_case_ : Any =['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] snake_case_ : Optional[int] =['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] snake_case_ : Optional[Any] =['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] snake_case_ : str ='''2.0.1''' snake_case_ : Tuple =['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] snake_case_ : Union[str, Any] =['''default''', '''reduce-overhead''', '''max-autotune'''] snake_case_ : Optional[int] ={'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 snake_case_ : Dict =[ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] snake_case_ : Tuple =['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] snake_case_ : Union[str, Any] =['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
205
1
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase_ = logging.get_logger(__name__) def snake_case ( A__ ,A__ ,A__ ): return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def snake_case ( A__ ,A__ ,A__ = None ): UpperCAmelCase_ : Optional[Any] = tesseract_config if tesseract_config is not None else "" # apply OCR UpperCAmelCase_ : Tuple = to_pil_image(snake_case__ ) UpperCAmelCase_ , UpperCAmelCase_ : str = pil_image.size UpperCAmelCase_ : Optional[int] = pytesseract.image_to_data(snake_case__ ,lang=snake_case__ ,output_type="dict" ,config=snake_case__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates UpperCAmelCase_ : Optional[Any] = [idx for idx, word in enumerate(snake_case__ ) if not word.strip()] UpperCAmelCase_ : Any = [word for idx, word in enumerate(snake_case__ ) if idx not in irrelevant_indices] UpperCAmelCase_ : str = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] UpperCAmelCase_ : Optional[int] = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] UpperCAmelCase_ : Dict = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] UpperCAmelCase_ : List[Any] = [coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase_ : int = [] for x, y, w, h in zip(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): UpperCAmelCase_ : Optional[int] = [x, y, x + w, y + h] actual_boxes.append(snake_case__ ) # finally, normalize the bounding boxes UpperCAmelCase_ : int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(snake_case__ ,snake_case__ ,snake_case__ ) ) assert len(snake_case__ ) == len(snake_case__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCamelCase_ (__A ): __magic_name__ = ['pixel_values'] def __init__( self : int , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[str] = "" , **lowerCAmelCase_ : Optional[Any] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : int = size if size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : str = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : List[str] = do_resize UpperCAmelCase_ : List[Any] = size UpperCAmelCase_ : Dict = resample UpperCAmelCase_ : List[Any] = apply_ocr UpperCAmelCase_ : Union[str, Any] = ocr_lang UpperCAmelCase_ : Optional[int] = tesseract_config def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: UpperCAmelCase_ : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}""" ) UpperCAmelCase_ : Optional[int] = (size["height"], size["width"]) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> PIL.Image.Image: UpperCAmelCase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[str] = size if size is not None else self.size UpperCAmelCase_ : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Any = resample if resample is not None else self.resample UpperCAmelCase_ : List[str] = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase_ : str = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase_ : List[str] = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase_ : Optional[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : List[str] = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Optional[Any] = [] for image in images: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = apply_tesseract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) words_batch.append(SCREAMING_SNAKE_CASE_ ) boxes_batch.append(SCREAMING_SNAKE_CASE_ ) if do_resize: UpperCAmelCase_ : Any = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCAmelCase_ : str = [flip_channel_order(SCREAMING_SNAKE_CASE_ ) for image in images] UpperCAmelCase_ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCAmelCase_ : Tuple = BatchFeature(data={"pixel_values": images} , tensor_type=SCREAMING_SNAKE_CASE_ ) if apply_ocr: UpperCAmelCase_ : List[Any] = words_batch UpperCAmelCase_ : int = boxes_batch return data
95
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowercase__( unittest.TestCase ): """simple docstring""" a :List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING a :Tuple = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _lowercase ( self : Tuple ) -> Dict: lowercase_ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output lowercase_ = text_generator('''This is a test''' , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) lowercase_ = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) lowercase_ = text_generator('''This is a test''' , do_sample=SCREAMING_SNAKE_CASE_ , num_return_sequences=2 , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) lowercase_ = text_generator.model.config.eos_token_id lowercase_ = '''<pad>''' lowercase_ = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=SCREAMING_SNAKE_CASE_ , num_return_sequences=2 , batch_size=2 , return_tensors=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, ], [ {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_token_ids''': ANY(SCREAMING_SNAKE_CASE_ )}, ], ] , ) @require_tf def _lowercase ( self : str ) -> Optional[int]: lowercase_ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output lowercase_ = text_generator('''This is a test''' , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) lowercase_ = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: lowercase_ = TextGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) return text_generator, ["This is a test", "Another test"] def _lowercase ( self : List[Any] ) -> Optional[int]: lowercase_ = '''Hello I believe in''' lowercase_ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) lowercase_ = text_generator(SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) lowercase_ = text_generator(SCREAMING_SNAKE_CASE_ , stop_sequence=''' fe''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': '''Hello I believe in fe'''}] ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: lowercase_ = text_generator.model lowercase_ = text_generator.tokenizer lowercase_ = text_generator('''This is a test''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowercase_ = text_generator('''This is a test''' , return_full_text=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowercase_ = pipeline(task='''text-generation''' , model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , return_full_text=SCREAMING_SNAKE_CASE_ ) lowercase_ = text_generator('''This is a test''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowercase_ = text_generator('''This is a test''' , return_full_text=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowercase_ = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}], [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowercase_ = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}], [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = text_generator('''test''' , return_full_text=SCREAMING_SNAKE_CASE_ , return_text=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = text_generator('''test''' , return_full_text=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase_ = text_generator('''test''' , return_text=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowercase_ = text_generator('''''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'''generated_text''': ANY(SCREAMING_SNAKE_CASE_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowercase_ = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowercase_ = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_0_0 , max_new_tokens=2_0 ) lowercase_ = text_generator('''This is a test''' * 5_0_0 , handle_long_generation='''hole''' , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(SCREAMING_SNAKE_CASE_ ): text_generator( '''This is a test''' * 5_0_0 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def _lowercase ( self : Union[str, Any] ) -> Tuple: import torch # Classic `model_kwargs` lowercase_ = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowercase_ = pipe('''This is a test''' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowercase_ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowercase_ = pipe('''This is a test''' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowercase_ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowercase_ = pipe('''This is a test''' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def _lowercase ( self : Optional[int] ) -> List[Any]: import torch lowercase_ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def _lowercase ( self : int ) -> Dict: import torch lowercase_ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=SCREAMING_SNAKE_CASE_ , top_p=0.5 ) def _lowercase ( self : List[Any] ) -> int: lowercase_ = '''Hello world''' lowercase_ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": lowercase_ = logging.get_logger('''transformers.generation.tf_utils''' ) else: lowercase_ = logging.get_logger('''transformers.generation.utils''' ) lowercase_ = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: lowercase_ = text_generator(SCREAMING_SNAKE_CASE_ , max_length=1_0 , max_new_tokens=1 ) self.assertIn(SCREAMING_SNAKE_CASE_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: lowercase_ = text_generator(SCREAMING_SNAKE_CASE_ , max_new_tokens=1 ) self.assertNotIn(SCREAMING_SNAKE_CASE_ , cl.out ) with CaptureLogger(SCREAMING_SNAKE_CASE_ ) as cl: lowercase_ = text_generator(SCREAMING_SNAKE_CASE_ , max_length=1_0 ) self.assertNotIn(SCREAMING_SNAKE_CASE_ , cl.out )
97
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class a : def __init__( self :int ,__lowercase :Union[str, Any] ,__lowercase :Optional[int]=1_3 ,__lowercase :Dict=7 ,__lowercase :Union[str, Any]=True ,__lowercase :List[Any]=True ,__lowercase :Tuple=False ,__lowercase :Optional[int]=True ,__lowercase :Optional[int]=9_9 ,__lowercase :Optional[Any]=3_2 ,__lowercase :Union[str, Any]=5 ,__lowercase :Dict=4 ,__lowercase :Optional[Any]=3_7 ,__lowercase :Optional[int]="gelu" ,__lowercase :Optional[int]=0.1 ,__lowercase :Dict=0.1 ,__lowercase :str=5_1_2 ,__lowercase :str=1_6 ,__lowercase :Optional[Any]=2 ,__lowercase :Union[str, Any]=0.02 ,__lowercase :Optional[int]=3 ,__lowercase :Optional[Any]=4 ,__lowercase :Any=None ,): snake_case__ : Union[str, Any] = parent snake_case__ : Any = batch_size snake_case__ : Dict = seq_length snake_case__ : Tuple = is_training snake_case__ : List[str] = use_input_mask snake_case__ : int = use_token_type_ids snake_case__ : List[str] = use_labels snake_case__ : List[str] = vocab_size snake_case__ : str = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Optional[int] = intermediate_size snake_case__ : Union[str, Any] = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : Optional[Any] = type_vocab_size snake_case__ : List[Any] = type_sequence_label_size snake_case__ : List[str] = initializer_range snake_case__ : List[Any] = num_labels snake_case__ : List[Any] = num_choices snake_case__ : Optional[int] = scope def __lowerCamelCase ( self :Tuple ): snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : Tuple = None if self.use_input_mask: snake_case__ : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Tuple = None if self.use_token_type_ids: snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ : List[Any] = None snake_case__ : Union[str, Any] = None snake_case__ : int = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ : Dict = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self :Optional[Any] ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self :int ,__lowercase :List[str] ,__lowercase :int ,__lowercase :Dict ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :Any ,__lowercase :Optional[int] ): snake_case__ : int = LlamaModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Any = model(__lowercase ,attention_mask=__lowercase ) snake_case__ : Union[str, Any] = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :int ,__lowercase :str ,__lowercase :Optional[Any] ,__lowercase :Tuple ,__lowercase :int ,__lowercase :Tuple ,__lowercase :Tuple ,__lowercase :Any ,__lowercase :Dict ,__lowercase :List[Any] ,): snake_case__ : List[str] = True snake_case__ : Union[str, Any] = LlamaModel(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Optional[int] = model( __lowercase ,attention_mask=__lowercase ,encoder_hidden_states=__lowercase ,encoder_attention_mask=__lowercase ,) snake_case__ : str = model( __lowercase ,attention_mask=__lowercase ,encoder_hidden_states=__lowercase ,) snake_case__ : Union[str, Any] = model(__lowercase ,attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :int ,__lowercase :int ,__lowercase :Tuple ,__lowercase :Optional[Any] ,__lowercase :Optional[Any] ,__lowercase :Dict ,__lowercase :Union[str, Any] ,__lowercase :Dict ,__lowercase :List[Any] ,): snake_case__ : Optional[int] = LlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : int = model(__lowercase ,attention_mask=__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self :Any ,__lowercase :Tuple ,__lowercase :str ,__lowercase :int ,__lowercase :Any ,__lowercase :Any ,__lowercase :Dict ,__lowercase :Tuple ,__lowercase :Tuple ,__lowercase :List[str] ,): snake_case__ : int = True snake_case__ : Union[str, Any] = True snake_case__ : List[str] = LlamaForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass snake_case__ : Tuple = model( __lowercase ,attention_mask=__lowercase ,encoder_hidden_states=__lowercase ,encoder_attention_mask=__lowercase ,use_cache=__lowercase ,) snake_case__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) snake_case__ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and snake_case__ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) snake_case__ : Dict = torch.cat([input_mask, next_mask] ,dim=-1 ) snake_case__ : Dict = model( __lowercase ,attention_mask=__lowercase ,encoder_hidden_states=__lowercase ,encoder_attention_mask=__lowercase ,output_hidden_states=__lowercase ,)['''hidden_states'''][0] snake_case__ : Any = model( __lowercase ,attention_mask=__lowercase ,encoder_hidden_states=__lowercase ,encoder_attention_mask=__lowercase ,past_key_values=__lowercase ,output_hidden_states=__lowercase ,)['''hidden_states'''][0] # select random slice snake_case__ : Tuple = ids_tensor((1,) ,output_from_past.shape[-1] ).item() snake_case__ : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase ,__lowercase ,atol=1e-3 ) ) def __lowerCamelCase ( self :Dict ): snake_case__ : Any = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : int = config_and_inputs snake_case__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : List[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = (LlamaForCausalLM,) if is_torch_available() else () __lowerCAmelCase : List[str] = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : str = False __lowerCAmelCase : Any = False def __lowerCamelCase ( self :List[Any] ): snake_case__ : Any = LlamaModelTester(self ) snake_case__ : Dict = ConfigTester(self ,config_class=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :Dict ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :Tuple ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : Union[str, Any] = type self.model_tester.create_and_check_model(*__lowercase ) def __lowerCamelCase ( self :List[str] ): snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = 3 snake_case__ : Union[str, Any] = input_dict['''input_ids'''] snake_case__ : Tuple = input_ids.ne(1 ).to(__lowercase ) snake_case__ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) snake_case__ : Union[str, Any] = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : List[str] = model(__lowercase ,attention_mask=__lowercase ,labels=__lowercase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self :str ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = 3 snake_case__ : List[Any] = '''single_label_classification''' snake_case__ : Tuple = input_dict['''input_ids'''] snake_case__ : Optional[int] = input_ids.ne(1 ).to(__lowercase ) snake_case__ : Any = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) snake_case__ : Dict = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Dict = model(__lowercase ,attention_mask=__lowercase ,labels=__lowercase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Any = 3 snake_case__ : Optional[int] = '''multi_label_classification''' snake_case__ : str = input_dict['''input_ids'''] snake_case__ : Tuple = input_ids.ne(1 ).to(__lowercase ) snake_case__ : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ : Optional[int] = LlamaForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : List[Any] = model(__lowercase ,attention_mask=__lowercase ,labels=__lowercase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def __lowerCamelCase ( self :Dict ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :Tuple ): snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Any = ids_tensor([1, 1_0] ,config.vocab_size ) snake_case__ : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Any = LlamaModel(__lowercase ) original_model.to(__lowercase ) original_model.eval() snake_case__ : Any = original_model(__lowercase ).last_hidden_state snake_case__ : Any = original_model(__lowercase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : List[str] = {'''type''': scaling_type, '''factor''': 10.0} snake_case__ : str = LlamaModel(__lowercase ) scaled_model.to(__lowercase ) scaled_model.eval() snake_case__ : List[str] = scaled_model(__lowercase ).last_hidden_state snake_case__ : Dict = scaled_model(__lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowercase ,__lowercase ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__lowercase ,__lowercase ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowercase ,__lowercase ,atol=1e-5 ) ) @require_torch class a ( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[int] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case__ : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' ,device_map='''auto''' ) snake_case__ : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ : Optional[Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,__lowercase ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] ,__lowercase ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCamelCase ( self :List[str] ): snake_case__ : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case__ : Any = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' ,device_map='''auto''' ) snake_case__ : str = model(torch.tensor(__lowercase ) ) # Expected mean on dim = -1 snake_case__ : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,__lowercase ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] ,__lowercase ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCamelCase ( self :List[Any] ): snake_case__ : str = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case__ : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ,device_map='''auto''' ) snake_case__ : str = model(torch.tensor(__lowercase ) ) # Expected mean on dim = -1 snake_case__ : Optional[Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,__lowercase ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ : Optional[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,__lowercase ,atol=1e-2 ,rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Tuple = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] snake_case__ : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' ,device_map='''auto''' ) snake_case__ : Any = model(torch.tensor(__lowercase ) ) snake_case__ : Optional[int] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,__lowercase ,atol=1e-2 ,rtol=1e-2 ) # fmt: off snake_case__ : Tuple = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] ,__lowercase ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def __lowerCamelCase ( self :Dict ): snake_case__ : Tuple = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' snake_case__ : Optional[Any] = '''Simply put, the theory of relativity states that ''' snake_case__ : str = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) snake_case__ : List[Any] = tokenizer.encode(__lowercase ,return_tensors='''pt''' ) snake_case__ : List[str] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' ,device_map='''sequential''' ,use_safetensors=__lowercase ) # greedy generation outputs snake_case__ : int = model.generate(__lowercase ,max_new_tokens=6_4 ,top_p=__lowercase ,temperature=1 ,do_sample=__lowercase ) snake_case__ : Union[str, Any] = tokenizer.decode(generated_ids[0] ,skip_special_tokens=__lowercase ) self.assertEqual(__lowercase ,__lowercase )
219
import unittest from transformers import DonutProcessor A__ = '''naver-clova-ix/donut-base''' class a ( unittest.TestCase ): def __lowerCamelCase ( self :Optional[int] ): snake_case__ : str = DonutProcessor.from_pretrained(__lowercase ) def __lowerCamelCase ( self :int ): snake_case__ : List[Any] = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case__ : List[Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case__ : Any = self.processor.tokenajson(__lowercase ) self.assertDictEqual(__lowercase ,__lowercase )
219
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : Optional[int] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def A__ ( __A : Tuple , __A : Optional[Any] , __A : List[str] ) ->Optional[int]: __A =state_dict.pop(_lowercase ) __A =val def A__ ( __A : Any ) ->Union[str, Any]: __A =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __A =key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __A =value else: __A =value return new_state_dict def A__ ( __A : str , __A : Dict=False ) ->str: __A ='' if is_panoptic: __A ='conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __A =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __A =state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __A =in_proj_weight[:2_56, :] __A =in_proj_bias[:2_56] __A =in_proj_weight[2_56:5_12, :] __A =in_proj_bias[2_56:5_12] __A =in_proj_weight[-2_56:, :] __A =in_proj_bias[-2_56:] def A__ ( ) ->List[str]: __A ='http://images.cocodataset.org/val2017/000000039769.jpg' __A =Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def A__ ( __A : Optional[int] , __A : Union[str, Any] ) ->int: __A =ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __A ='resnet101' if "dc5" in model_name: __A =True __A ='panoptic' in model_name if is_panoptic: __A =2_50 else: __A =91 __A ='huggingface/label-files' __A ='coco-detection-id2label.json' __A =json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) __A ={int(_lowercase ): v for k, v in idalabel.items()} __A =idalabel __A ={v: k for k, v in idalabel.items()} # load image processor __A ='coco_panoptic' if is_panoptic else 'coco_detection' __A =ConditionalDetrImageProcessor(format=_lowercase ) # prepare image __A =prepare_img() __A =image_processor(images=_lowercase , return_tensors='''pt''' ) __A =encoding['pixel_values'] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub __A =torch.hub.load('''DeppMeng/ConditionalDETR''' , _lowercase , pretrained=_lowercase ).eval() __A =conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __A ='conditional_detr.' + src rename_key(_lowercase , _lowercase , _lowercase ) __A =rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __A ='conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __A =state_dict.pop(_lowercase ) __A =val elif "class_labels_classifier" in key or "bbox_predictor" in key: __A =state_dict.pop(_lowercase ) __A =val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __A =state_dict.pop(_lowercase ) __A =val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __A =state_dict.pop(_lowercase ) __A =val # finally, create HuggingFace model and load state dict __A =ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __A =conditional_detr(_lowercase ) __A =model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCamelCase : Union[str, Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
184
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase: List[Any] = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase: Dict = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase: Dict = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __UpperCamelCase: List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
266
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase="pt" ): __magic_name__ : Optional[Any] ={"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase ) and not line.startswith(""" """ ) else {} __magic_name__ : int =padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , ): __magic_name__ : Tuple =input_ids.ne(lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __A ( UpperCamelCase__ ): def __init__( self :Tuple , __snake_case :str , __snake_case :Dict , __snake_case :List[Any] , __snake_case :str , __snake_case :Union[str, Any]="train" , __snake_case :Any=None , __snake_case :Tuple=None , __snake_case :Optional[int]=None , __snake_case :Optional[Any]="" , ): '''simple docstring''' super().__init__() __magic_name__ : Optional[Any] =Path(__snake_case ).joinpath(type_path + """.source""" ) __magic_name__ : List[str] =Path(__snake_case ).joinpath(type_path + """.target""" ) __magic_name__ : Optional[int] =self.get_char_lens(self.src_file ) __magic_name__ : Optional[Any] =max_source_length __magic_name__ : int =max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" __magic_name__ : Optional[int] =tokenizer __magic_name__ : Union[str, Any] =prefix if n_obs is not None: __magic_name__ : int =self.src_lens[:n_obs] __magic_name__ : Dict =src_lang __magic_name__ : Dict =tgt_lang def __len__( self :Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self :Tuple , __snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =index + 1 # linecache starts at 1 __magic_name__ : Tuple =self.prefix + linecache.getline(str(self.src_file ) , __snake_case ).rstrip("""\n""" ) __magic_name__ : List[Any] =linecache.getline(str(self.tgt_file ) , __snake_case ).rstrip("""\n""" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __snake_case ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __magic_name__ : List[Any] =( self.tokenizer.question_encoder if isinstance(self.tokenizer , __snake_case ) else self.tokenizer ) __magic_name__ : Optional[Any] =self.tokenizer.generator if isinstance(self.tokenizer , __snake_case ) else self.tokenizer __magic_name__ : Optional[int] =encode_line(__snake_case , __snake_case , self.max_source_length , """right""" ) __magic_name__ : Optional[Any] =encode_line(__snake_case , __snake_case , self.max_target_length , """right""" ) __magic_name__ : Optional[Any] =source_inputs["""input_ids"""].squeeze() __magic_name__ : Optional[int] =target_inputs["""input_ids"""].squeeze() __magic_name__ : Any =source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A__ ( __snake_case :Optional[int] ): '''simple docstring''' return [len(__snake_case ) for x in Path(__snake_case ).open().readlines()] def A__ ( self :Optional[Any] , __snake_case :Dict ): '''simple docstring''' __magic_name__ : str =torch.stack([x["""input_ids"""] for x in batch] ) __magic_name__ : List[str] =torch.stack([x["""attention_mask"""] for x in batch] ) __magic_name__ : Union[str, Any] =torch.stack([x["""decoder_input_ids"""] for x in batch] ) __magic_name__ : Union[str, Any] =( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __snake_case ) else self.tokenizer.pad_token_id ) __magic_name__ : List[str] =( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __snake_case ) else self.tokenizer.pad_token_id ) __magic_name__ : Dict =trim_batch(__snake_case , __snake_case ) __magic_name__ , __magic_name__ : int =trim_batch(__snake_case , __snake_case , attention_mask=__snake_case ) __magic_name__ : Optional[int] ={ """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch UpperCAmelCase_ : List[Any] = getLogger(__name__) def lowerCAmelCase_ ( lowerCamelCase ): return list(itertools.chain.from_iterable(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Dict =get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""" ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=4 , **lowerCamelCase ): with open(lowerCamelCase , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): with open(lowerCamelCase ) as f: return json.load(lowerCamelCase ) def lowerCAmelCase_ ( ): __magic_name__ : Union[str, Any] =git.Repo(search_parent_directories=lowerCamelCase ) __magic_name__ : List[str] ={ """repo_id""": str(lowerCamelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return list(map(lowerCamelCase , lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with open(lowerCamelCase , """wb""" ) as f: return pickle.dump(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): def remove_articles(lowerCamelCase ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , lowerCamelCase ) def white_space_fix(lowerCamelCase ): return " ".join(text.split() ) def remove_punc(lowerCamelCase ): __magic_name__ : Optional[int] =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase ) ) ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : int =normalize_answer(lowerCamelCase ).split() __magic_name__ : List[Any] =normalize_answer(lowerCamelCase ).split() __magic_name__ : Dict =Counter(lowerCamelCase ) & Counter(lowerCamelCase ) __magic_name__ : Tuple =sum(common.values() ) if num_same == 0: return 0 __magic_name__ : int =1.0 * num_same / len(lowerCamelCase ) __magic_name__ : Union[str, Any] =1.0 * num_same / len(lowerCamelCase ) __magic_name__ : Optional[Any] =(2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return normalize_answer(lowerCamelCase ) == normalize_answer(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): assert len(lowerCamelCase ) == len(lowerCamelCase ) __magic_name__ : Optional[Any] =0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase ): em += exact_match_score(lowerCamelCase , lowerCamelCase ) if len(lowerCamelCase ) > 0: em /= len(lowerCamelCase ) return {"em": em} def lowerCAmelCase_ ( lowerCamelCase ): return model_prefix.startswith("""rag""" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] ={p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __magic_name__ : Optional[Any] ="""dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ): if not hasattr(lowerCamelCase , lowerCamelCase ) and not hasattr(lowerCamelCase , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase ) ) delattr(lowerCamelCase , lowerCamelCase ) continue __magic_name__ : Any =p if hasattr(lowerCamelCase , lowerCamelCase ) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) delattr(lowerCamelCase , lowerCamelCase ) return hparams, config
367
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = """t5""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self :Optional[Any] , __snake_case :Optional[Any]=3_21_28 , __snake_case :Optional[int]=5_12 , __snake_case :str=64 , __snake_case :int=20_48 , __snake_case :Union[str, Any]=6 , __snake_case :Union[str, Any]=None , __snake_case :Union[str, Any]=8 , __snake_case :List[str]=32 , __snake_case :Dict=1_28 , __snake_case :List[Any]=0.1 , __snake_case :int=1E-6 , __snake_case :List[str]=1.0 , __snake_case :Optional[int]="relu" , __snake_case :List[str]=True , __snake_case :Union[str, Any]=True , __snake_case :Union[str, Any]=0 , __snake_case :str=1 , **__snake_case :int , ): '''simple docstring''' __magic_name__ : str =vocab_size __magic_name__ : str =d_model __magic_name__ : Optional[Any] =d_kv __magic_name__ : int =d_ff __magic_name__ : Union[str, Any] =num_layers __magic_name__ : Tuple =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __magic_name__ : List[str] =num_heads __magic_name__ : Optional[Any] =relative_attention_num_buckets __magic_name__ : Union[str, Any] =relative_attention_max_distance __magic_name__ : Dict =dropout_rate __magic_name__ : Dict =layer_norm_epsilon __magic_name__ : List[str] =initializer_factor __magic_name__ : Any =feed_forward_proj __magic_name__ : Optional[int] =use_cache __magic_name__ : Tuple =self.feed_forward_proj.split("""-""" ) __magic_name__ : int =act_info[-1] __magic_name__ : int =act_info[0] == """gated""" if len(__snake_case ) > 1 and act_info[0] != "gated" or len(__snake_case ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __magic_name__ : str ="""gelu_new""" super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , **__snake_case , ) class __A ( UpperCamelCase__ ): @property def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int ={ """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __magic_name__ : List[str] ="""past_encoder_sequence + sequence""" __magic_name__ : List[Any] ={0: """batch"""} __magic_name__ : Union[str, Any] ={0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __magic_name__ : int ={0: """batch""", 1: """decoder_sequence"""} __magic_name__ : Tuple ={0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) return common_inputs @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 13
367
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'tokenizer_file': 'tokenizer.json'} UpperCAmelCase = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class __snake_case( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : str = VOCAB_FILES_NAMES UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = ["input_ids", "attention_mask"] UpperCAmelCase : Optional[Any] = None def __init__( self , A_=None , A_=None , A_=None , A_="<unk>" , A_="<s>" , A_="</s>" , A_="<pad>" , A_=False , A_=False , **A_ , ) -> Dict: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase , **_lowerCamelCase , ) lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCamelCase ) != add_prefix_space: lowerCAmelCase = getattr(_lowerCamelCase , pre_tok_state.pop("""type""" ) ) lowerCAmelCase = add_prefix_space lowerCAmelCase = pre_tok_class(**_lowerCamelCase ) lowerCAmelCase = add_prefix_space def __snake_case ( self , *A_ , **A_ ) -> BatchEncoding: lowerCAmelCase = kwargs.get("""is_split_into_words""" , _lowerCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __snake_case ( self , *A_ , **A_ ) -> BatchEncoding: lowerCAmelCase = kwargs.get("""is_split_into_words""" , _lowerCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __snake_case ( self , A_ , A_ = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __snake_case ( self , A_ ) -> List[int]: lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: lowerCAmelCase = input_ids[-self.model_max_length :] return input_ids
433
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] ): __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : Any ): __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) __lowercase = emb.weight.data return lin_layer def _lowerCAmelCase ( lowerCamelCase_ : Tuple ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = Namespace(**checkpoint['''cfg''']['''model'''] ) __lowercase = checkpoint['''model'''] remove_ignore_keys_(lowerCamelCase_ ) __lowercase = state_dict['''decoder.embed_tokens.weight'''].shape[0] __lowercase = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} __lowercase = XGLMConfig( vocab_size=lowerCamelCase_ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __lowercase = XGLMForCausalLM(lowerCamelCase_ ) __lowercase = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) print(lowerCamelCase_ ) __lowercase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
502
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''speech_to_text''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase_=1_0_0_0_0 , lowercase_=1_2 , lowercase_=2_0_4_8 , lowercase_=4 , lowercase_=6 , lowercase_=2_0_4_8 , lowercase_=4 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_=True , lowercase_="relu" , lowercase_=2_5_6 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=2 , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=6_0_0_0 , lowercase_=1_0_2_4 , lowercase_=2 , lowercase_=(5, 5) , lowercase_=1_0_2_4 , lowercase_=8_0 , lowercase_=1 , **lowercase_ , ) -> Tuple: __snake_case = vocab_size __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case = max_source_positions __snake_case = max_target_positions __snake_case = num_conv_layers __snake_case = list(_SCREAMING_SNAKE_CASE) __snake_case = conv_channels __snake_case = input_feat_per_channel __snake_case = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, " F"`config.num_conv_layers = {self.num_conv_layers}`.") super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
713
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["CLIPFeatureExtractor"] UpperCAmelCase__ : Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
676
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _lowerCamelCase : Optional[Any] = 0b101100111110110010010000011110111011000110011110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _lowerCamelCase : Dict = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __snake_case : def __init__( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : List[str] = WATERMARK_BITS _lowerCAmelCase : Any = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : torch.FloatTensor ) -> int: '''simple docstring''' if images.shape[-1] < 256: return images _lowerCAmelCase : List[str] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase : List[Any] = [self.encoder.encode(_UpperCAmelCase , """dwtDct""" ) for image in images] _lowerCAmelCase : Dict = torch.from_numpy(np.array(_UpperCAmelCase ) ).permute(0 , 3 , 1 , 2 ) _lowerCAmelCase : Union[str, Any] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
429
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _lowerCamelCase : Optional[Any] = "true" def _UpperCAmelCase (UpperCamelCase_ : Any , UpperCamelCase_ : List[Any]=82 , UpperCamelCase_ : List[str]=16 ): '''simple docstring''' set_seed(42 ) _lowerCAmelCase : Optional[Any] = RegressionModel() _lowerCAmelCase : List[Any] = deepcopy(UpperCamelCase_ ) _lowerCAmelCase : Tuple = RegressionDataset(length=UpperCamelCase_ ) _lowerCAmelCase : int = DataLoader(UpperCamelCase_ , batch_size=UpperCamelCase_ ) model.to(accelerator.device ) _lowerCAmelCase , _lowerCAmelCase : Dict = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ ) return model, ddp_model, dataloader def _UpperCAmelCase (UpperCamelCase_ : Accelerator , UpperCamelCase_ : int=False ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) _lowerCAmelCase : str = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(UpperCamelCase_ : Optional[int] ): _lowerCAmelCase : str = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs with accelerator.main_process_first(): _lowerCAmelCase : str = dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) _lowerCAmelCase : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase_ : Optional[int] ): if use_longest: return tokenizer.pad(UpperCamelCase_ , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(UpperCamelCase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(UpperCamelCase_ , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=16 ) def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : Optional[int] = Accelerator(dispatch_batches=UpperCamelCase_ , split_batches=UpperCamelCase_ ) _lowerCAmelCase : Any = get_dataloader(UpperCamelCase_ , not dispatch_batches ) _lowerCAmelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : List[str] = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCAmelCase (UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase : str = [] for batch in dataloader: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = batch.values() with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : int = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(UpperCamelCase_ ) targs.append(UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : Dict = torch.cat(UpperCamelCase_ ), torch.cat(UpperCamelCase_ ) return logits, targs def _UpperCAmelCase (UpperCamelCase_ : Accelerator , UpperCamelCase_ : Any=82 , UpperCamelCase_ : str=False , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Dict=16 ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = get_basic_setup(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : List[str] = generate_predictions(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) assert ( len(UpperCamelCase_ ) == num_samples ), F"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(UpperCamelCase_ )}" def _UpperCAmelCase (UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = evaluate.load("""glue""" , """mrpc""" ) _lowerCAmelCase , _lowerCAmelCase : Tuple = get_mrpc_setup(UpperCamelCase_ , UpperCamelCase_ ) # First do baseline _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = setup["""no"""] model.to(UpperCamelCase_ ) model.eval() for batch in dataloader: batch.to(UpperCamelCase_ ) with torch.inference_mode(): _lowerCAmelCase : Tuple = model(**UpperCamelCase_ ) _lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=UpperCamelCase_ , references=batch["""labels"""] ) _lowerCAmelCase : int = metric.compute() # Then do distributed _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): _lowerCAmelCase : Dict = model(**UpperCamelCase_ ) _lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase : Optional[int] = batch["""labels"""] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=UpperCamelCase_ , references=UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Dict = Accelerator(split_batches=UpperCamelCase_ , dispatch_batches=UpperCamelCase_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(UpperCamelCase_ , UpperCamelCase_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _lowerCAmelCase : List[str] = Accelerator(split_batches=UpperCamelCase_ , dispatch_batches=UpperCamelCase_ ) if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(UpperCamelCase_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) _lowerCAmelCase : Optional[int] = Accelerator() test_torch_metrics(UpperCamelCase_ , 512 ) accelerator.state._reset_state() def _UpperCAmelCase (UpperCamelCase_ : List[Any] ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
429
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers __lowerCAmelCase = float("nan") class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = sys.stdout _UpperCAmelCase = open(__UpperCamelCase , "a" ) def __getattr__( self : List[str] , __UpperCamelCase : str ): return getattr(self.stdout , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : List[Any] ): self.stdout.write(__UpperCamelCase ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __UpperCamelCase , 0 , re.M ) ) def __lowerCamelCase ( _lowerCAmelCase=80 , _lowerCAmelCase=False ) -> List[Any]: _UpperCAmelCase = [] # deal with critical env vars _UpperCAmelCase = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: _UpperCAmelCase = os.environ.get(_lowerCAmelCase , _lowerCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) _UpperCAmelCase = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_lowerCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _UpperCAmelCase = [] _UpperCAmelCase = "" while len(_lowerCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_lowerCAmelCase ) _UpperCAmelCase = "" return "\\\n".join(_lowerCAmelCase ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: # unwrap multi-line input _UpperCAmelCase = re.sub(r"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own _UpperCAmelCase = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir _UpperCAmelCase = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) _UpperCAmelCase = subprocess.run(_lowerCAmelCase , capture_output=_lowerCAmelCase , text=_lowerCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams _UpperCAmelCase = variation.replace(" " , "-" ) with open(Path(_lowerCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_lowerCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: _UpperCAmelCase = json.load(_lowerCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Optional[Any]: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = F'''{id}: {variation:<{longest_variation_len}}''' _UpperCAmelCase = F'''{preamble}: ''' _UpperCAmelCase = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_lowerCAmelCase ) , desc=_lowerCAmelCase , leave=_lowerCAmelCase ): _UpperCAmelCase = process_run_single( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase = single_run_metrics[target_metric_key] if not math.isnan(_lowerCAmelCase ): metrics.append(_lowerCAmelCase ) results.append(_lowerCAmelCase ) outcome += "✓" else: outcome += "✘" _UpperCAmelCase = F'''\33[2K\r{outcome}''' if len(_lowerCAmelCase ) > 0: _UpperCAmelCase = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _UpperCAmelCase = round(mean_metrics[target_metric_key] , 2 ) _UpperCAmelCase = F'''{outcome} {mean_target}''' if len(_lowerCAmelCase ) > 1: results_str += F''' {tuple(round(_lowerCAmelCase , 2 ) for x in results )}''' print(_lowerCAmelCase ) _UpperCAmelCase = variation return mean_metrics else: print(_lowerCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __lowerCamelCase ( ) -> Union[str, Any]: _UpperCAmelCase = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = pd.DataFrame(_lowerCAmelCase ) _UpperCAmelCase = "variation" _UpperCAmelCase = "diff_%" _UpperCAmelCase = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _UpperCAmelCase = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_lowerCAmelCase ): # as a fallback, use the minimal value as the sentinel _UpperCAmelCase = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_lowerCAmelCase ): _UpperCAmelCase = df.apply( lambda _lowerCAmelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns _UpperCAmelCase = [variation_key, target_metric_key, diff_key, *report_metric_keys] _UpperCAmelCase = df.reindex(_lowerCAmelCase , axis="columns" ) # reorder cols # capitalize _UpperCAmelCase = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible _UpperCAmelCase = df.rename(lambda _lowerCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) _UpperCAmelCase = df.rename(lambda _lowerCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) _UpperCAmelCase = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_lowerCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_lowerCAmelCase , floatfmt=".2f" )] print("\n\n".join(_lowerCAmelCase ) ) def __lowerCamelCase ( ) -> List[str]: _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_lowerCAmelCase , type=_lowerCAmelCase , nargs="+" , required=_lowerCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_lowerCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_lowerCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_lowerCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_lowerCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = args.output_dir Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) _UpperCAmelCase = get_base_command(_lowerCAmelCase , _lowerCAmelCase ) # split each dimension into its --foo variations _UpperCAmelCase = [list(map(str.strip , re.split(r"\|" , _lowerCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _UpperCAmelCase = list(map(str.strip , map(" ".join , itertools.product(*_lowerCAmelCase ) ) ) ) _UpperCAmelCase = max(len(_lowerCAmelCase ) for x in variations ) # split wanted keys _UpperCAmelCase = args.report_metric_keys.split() # capture prints into a log file for convenience _UpperCAmelCase = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) _UpperCAmelCase = Tee(_lowerCAmelCase ) print(F'''\n*** Running {len(_lowerCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_lowerCAmelCase )}''' ) _UpperCAmelCase = "variation" _UpperCAmelCase = [] for id, variation in enumerate(tqdm(_lowerCAmelCase , desc="Total completion: " , leave=_lowerCAmelCase ) ): _UpperCAmelCase = base_cmd + variation.split() results.append( process_run( id + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.target_metric_key , _lowerCAmelCase , args.repeat_times , _lowerCAmelCase , args.verbose , ) ) process_results(_lowerCAmelCase , args.target_metric_key , _lowerCAmelCase , args.base_variation , _lowerCAmelCase ) if __name__ == "__main__": main()
129
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCamelCase ( _lowerCAmelCase ) -> Any: _UpperCAmelCase = filter(lambda _lowerCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowerCAmelCase = logging.getLogger(__name__) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: if metric == "rouge2": _UpperCAmelCase = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _UpperCAmelCase = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _UpperCAmelCase = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _UpperCAmelCase = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) _UpperCAmelCase = ModelCheckpoint( dirpath=_lowerCAmelCase , filename=_lowerCAmelCase , monitor=F'''val_{metric}''' , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=_lowerCAmelCase , verbose=_lowerCAmelCase , ) class __SCREAMING_SNAKE_CASE ( pl.Callback): def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ): _UpperCAmelCase = {F'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__UpperCamelCase ) @rank_zero_only def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule , __UpperCamelCase : str , __UpperCamelCase : Optional[int]=True ): logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _UpperCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase = od / "test_results.txt" _UpperCAmelCase = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _UpperCAmelCase = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__UpperCamelCase ) generations_file.parent.mkdir(exist_ok=__UpperCamelCase ) with open(__UpperCamelCase , "a+" ) as writer: for key in sorted(__UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase = metrics[key] if isinstance(__UpperCamelCase , torch.Tensor ): _UpperCAmelCase = val.item() _UpperCAmelCase = F'''{key}: {val:.6f}\n''' writer.write(__UpperCamelCase ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__UpperCamelCase ) @rank_zero_only def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : str ): try: _UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase = pl_module.model.num_parameters() _UpperCAmelCase = count_trainable_parameters(__UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : pl.Trainer , __UpperCamelCase : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__UpperCamelCase , __UpperCamelCase , "test" ) @rank_zero_only def UpperCAmelCase__ ( self : str , __UpperCamelCase : pl.Trainer , __UpperCamelCase : List[str] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
129
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = DDIMPipeline lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase__ = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ = False def A ( self : List[str] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) UpperCAmelCase : str = DDIMScheduler() UpperCAmelCase : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def A ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any]=0 ) -> List[str]: if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase : str = torch.manual_seed(__snake_case ) else: UpperCAmelCase : Dict = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase : List[Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A ( self : str ) -> Any: UpperCAmelCase : Dict = '''cpu''' UpperCAmelCase : Union[str, Any] = self.get_dummy_components() UpperCAmelCase : Union[str, Any] = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : int = pipe(**__snake_case ).images UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) UpperCAmelCase : Optional[Any] = np.array( [1.0_00E00, 5.7_17E-01, 4.7_17E-01, 1.0_00E00, 0.0_00E00, 1.0_00E00, 3.0_00E-04, 0.0_00E00, 9.0_00E-04] ) UpperCAmelCase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1E-3 ) def A ( self : Optional[Any] ) -> Union[str, Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def A ( self : List[str] ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3E-3 ) def A ( self : Tuple ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def A ( self : Optional[int] ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Dict ) -> List[str]: UpperCAmelCase : Optional[int] = '''google/ddpm-cifar10-32''' UpperCAmelCase : Dict = UNetaDModel.from_pretrained(__snake_case ) UpperCAmelCase : str = DDIMScheduler() UpperCAmelCase : Optional[Any] = DDIMPipeline(unet=__snake_case , scheduler=__snake_case ) ddim.to(__snake_case ) ddim.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ddim(generator=__snake_case , eta=0.0 , output_type='''numpy''' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Union[str, Any] = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Dict ) -> List[str]: UpperCAmelCase : Any = '''google/ddpm-ema-bedroom-256''' UpperCAmelCase : Optional[int] = UNetaDModel.from_pretrained(__snake_case ) UpperCAmelCase : Any = DDIMScheduler.from_pretrained(__snake_case ) UpperCAmelCase : str = DDIMPipeline(unet=__snake_case , scheduler=__snake_case ) ddpm.to(__snake_case ) ddpm.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : List[str] = torch.manual_seed(0 ) UpperCAmelCase : Tuple = ddpm(generator=__snake_case , output_type='''numpy''' ).images UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : str = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
127
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: str = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__: Dict = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } UpperCamelCase__: Dict = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def snake_case_ ( ) -> str: UpperCAmelCase : Tuple = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase : Any = bs[:] UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCAmelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase : List[Any] = [chr(_lowerCAmelCase ) for n in cs] return dict(zip(_lowerCAmelCase , _lowerCAmelCase ) ) def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[Any]: UpperCAmelCase : Optional[int] = set() UpperCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : List[str] = char return pairs class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , __snake_case : int , __snake_case : Dict , __snake_case : int="replace" , __snake_case : str="<s>" , __snake_case : List[Any]="</s>" , __snake_case : Optional[int]="</s>" , __snake_case : List[Any]="<s>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : Optional[Any]="<pad>" , __snake_case : List[Any]="<mask>" , __snake_case : int=False , **__snake_case : Any , ) -> str: UpperCAmelCase : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token UpperCAmelCase : Optional[int] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token UpperCAmelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token UpperCAmelCase : Optional[int] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token UpperCAmelCase : Union[str, Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token UpperCAmelCase : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : Union[str, Any] = json.load(__snake_case ) UpperCAmelCase : str = {v: k for k, v in self.encoder.items()} UpperCAmelCase : Any = errors # how to handle errors in decoding UpperCAmelCase : List[Any] = bytes_to_unicode() UpperCAmelCase : int = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase : Optional[Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase : Union[str, Any] = {} UpperCAmelCase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase : Union[str, Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def A ( self : Tuple ) -> Dict: return len(self.encoder ) def A ( self : Any ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def A ( self : Any , __snake_case : List[str] ) -> Optional[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase : Optional[int] = tuple(__snake_case ) UpperCAmelCase : List[str] = get_pairs(__snake_case ) if not pairs: return token while True: UpperCAmelCase : int = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : int = bigram UpperCAmelCase : Any = [] UpperCAmelCase : List[str] = 0 while i < len(__snake_case ): try: UpperCAmelCase : int = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : Optional[int] = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Optional[int] = tuple(__snake_case ) UpperCAmelCase : Optional[Any] = new_word if len(__snake_case ) == 1: break else: UpperCAmelCase : List[str] = get_pairs(__snake_case ) UpperCAmelCase : str = ''' '''.join(__snake_case ) UpperCAmelCase : Union[str, Any] = word return word def A ( self : List[Any] , __snake_case : Optional[Any] ) -> Optional[int]: UpperCAmelCase : int = [] for token in re.findall(self.pat , __snake_case ): UpperCAmelCase : Dict = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(''' ''' ) ) return bpe_tokens def A ( self : Any , __snake_case : List[Any] ) -> List[str]: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def A ( self : Tuple , __snake_case : Any ) -> Any: return self.decoder.get(__snake_case ) def A ( self : List[str] , __snake_case : List[str] ) -> Dict: UpperCAmelCase : Tuple = ''''''.join(__snake_case ) UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Any = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : Dict = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) UpperCAmelCase : List[str] = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase : Dict = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : List[str] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Union[str, Any] = [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Tuple=False , **__snake_case : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): UpperCAmelCase : List[Any] = ''' ''' + text return (text, kwargs)
127
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowercase :Optional[int] = logging.get_logger(__name__) __lowercase :str = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class _a ( lowercase__ ): """simple docstring""" snake_case_ = "conditional_detr" snake_case_ = ["past_key_values"] snake_case_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] , a : List[str]=True , a : Optional[Any]=None , a : Optional[int]=3 , a : Tuple=3_00 , a : int=6 , a : str=20_48 , a : str=8 , a : Optional[Any]=6 , a : str=20_48 , a : Dict=8 , a : Optional[int]=0.0 , a : Union[str, Any]=0.0 , a : Any=True , a : List[Any]="relu" , a : int=2_56 , a : Optional[int]=0.1 , a : Union[str, Any]=0.0 , a : List[str]=0.0 , a : Optional[int]=0.02 , a : str=1.0 , a : Optional[int]=False , a : str="sine" , a : List[str]="resnet50" , a : Tuple=True , a : List[Any]=False , a : Any=2 , a : Union[str, Any]=5 , a : int=2 , a : Dict=1 , a : Optional[Any]=1 , a : List[Any]=2 , a : Optional[int]=5 , a : List[str]=2 , a : List[Any]=0.25 , **a : Any , ) ->List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) SCREAMING_SNAKE_CASE__ : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(a , a ): SCREAMING_SNAKE_CASE__ : Optional[int] = backbone_config.get("model_type" ) SCREAMING_SNAKE_CASE__ : Tuple = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ : Optional[Any] = config_class.from_dict(a ) SCREAMING_SNAKE_CASE__ : Any = use_timm_backbone SCREAMING_SNAKE_CASE__ : List[str] = backbone_config SCREAMING_SNAKE_CASE__ : Dict = num_channels SCREAMING_SNAKE_CASE__ : Optional[Any] = num_queries SCREAMING_SNAKE_CASE__ : Optional[Any] = d_model SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : Dict = encoder_layers SCREAMING_SNAKE_CASE__ : Any = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : int = decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = dropout SCREAMING_SNAKE_CASE__ : Any = attention_dropout SCREAMING_SNAKE_CASE__ : Any = activation_dropout SCREAMING_SNAKE_CASE__ : Optional[Any] = activation_function SCREAMING_SNAKE_CASE__ : Union[str, Any] = init_std SCREAMING_SNAKE_CASE__ : Optional[Any] = init_xavier_std SCREAMING_SNAKE_CASE__ : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE__ : List[str] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE__ : int = auxiliary_loss SCREAMING_SNAKE_CASE__ : List[str] = position_embedding_type SCREAMING_SNAKE_CASE__ : int = backbone SCREAMING_SNAKE_CASE__ : Tuple = use_pretrained_backbone SCREAMING_SNAKE_CASE__ : Optional[Any] = dilation # Hungarian matcher SCREAMING_SNAKE_CASE__ : Union[str, Any] = class_cost SCREAMING_SNAKE_CASE__ : int = bbox_cost SCREAMING_SNAKE_CASE__ : int = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE__ : int = dice_loss_coefficient SCREAMING_SNAKE_CASE__ : Any = cls_loss_coefficient SCREAMING_SNAKE_CASE__ : int = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[int] = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : Dict = focal_alpha super().__init__(is_encoder_decoder=a , **a ) @property def A_ ( self : List[Any] ) ->int: return self.encoder_attention_heads @property def A_ ( self : int ) ->int: return self.d_model def A_ ( self : Dict ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : int = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE__ : List[str] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.__class__.model_type return output class _a ( lowercase__ ): """simple docstring""" snake_case_ = version.parse("1.11" ) @property def A_ ( self : List[str] ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def A_ ( self : Optional[int] ) ->float: return 1E-5 @property def A_ ( self : Any ) ->int: return 12
26
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase :Tuple = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __lowercase :str = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __lowercase :List[Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def A_ ( self : List[Any] ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def A_ ( self : str , a : List[List[List[str]]] , a : List[List[str]] , a : int = 1 , a : int = 4 , ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a , hypotheses=a , min_len=a , max_len=a ) }
26
1