code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''dpt''' def __init__( self , a__=7_6_8 , a__=1_2 , a__=1_2 , a__=3_0_7_2 , a__="gelu" , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=1e-12 , a__=3_8_4 , a__=1_6 , a__=3 , a__=False , a__=True , a__=[2, 5, 8, 1_1] , a__="project" , a__=[4, 2, 1, 0.5] , a__=[9_6, 1_9_2, 3_8_4, 7_6_8] , a__=2_5_6 , a__=-1 , a__=False , a__=True , a__=0.4 , a__=2_5_5 , a__=0.1 , a__=[1, 1_0_2_4, 2_4, 2_4] , a__=[0, 1] , a__=None , **a__ , ): super().__init__(**a__) A__ = hidden_size A__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''') A__ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } A__ = BitConfig(**a__) elif isinstance(a__ , a__): logger.info('''Initializing the config with a `BiT` backbone.''') A__ = BitConfig(**a__) elif isinstance(a__ , a__): A__ = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.") A__ = backbone_featmap_shape A__ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''') else: A__ = None A__ = None A__ = [] A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = image_size A__ = patch_size A__ = num_channels A__ = qkv_bias A__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''') A__ = readout_type A__ = reassemble_factors A__ = neck_hidden_sizes A__ = fusion_hidden_size A__ = head_in_index A__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) A__ = use_auxiliary_head A__ = auxiliary_loss_weight A__ = semantic_loss_ignore_index A__ = semantic_classifier_dropout def snake_case_ ( self): A__ = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: A__ = self.backbone_config.to_dict() A__ = self.__class__.model_type return output
632
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''timm_backbone''' def __init__( self , a__=None , a__=3 , a__=True , a__=True , a__=None , **a__ , ): super().__init__(**a__) A__ = backbone A__ = num_channels A__ = features_only A__ = use_pretrained_backbone A__ = True A__ = out_indices if out_indices is not None else (-1,)
632
1
'''simple docstring''' class __SCREAMING_SNAKE_CASE : def __init__( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ) -> List[Any]: _a = data _a = previous _a = next_node def __str__( self ) -> str: return f"{self.data}" def a_ ( self ) -> int: return self.data def a_ ( self ) -> List[str]: return self.next def a_ ( self ) -> Any: return self.previous class __SCREAMING_SNAKE_CASE : def __init__( self , __UpperCamelCase ) -> Union[str, Any]: _a = head def __iter__( self ) -> Optional[Any]: return self def a_ ( self ) -> Optional[int]: if not self.current: raise StopIteration else: _a = self.current.get_data() _a = self.current.get_next() return value class __SCREAMING_SNAKE_CASE : def __init__( self ) -> List[Any]: _a = None # First node in list _a = None # Last node in list def __str__( self ) -> str: _a = self.head _a = [] while current is not None: nodes.append(current.get_data() ) _a = current.get_next() return " ".join(str(__UpperCamelCase ) for node in nodes ) def __contains__( self , __UpperCamelCase ) -> Tuple: _a = self.head while current: if current.get_data() == value: return True _a = current.get_next() return False def __iter__( self ) -> Optional[int]: return LinkedListIterator(self.head ) def a_ ( self ) -> Optional[Any]: if self.head: return self.head.get_data() return None def a_ ( self ) -> int: if self.tail: return self.tail.get_data() return None def a_ ( self , __UpperCamelCase ) -> None: if self.head is None: _a = node _a = node else: self.insert_before_node(self.head , __UpperCamelCase ) def a_ ( self , __UpperCamelCase ) -> None: if self.head is None: self.set_head(__UpperCamelCase ) else: self.insert_after_node(self.tail , __UpperCamelCase ) def a_ ( self , __UpperCamelCase ) -> None: _a = Node(__UpperCamelCase ) if self.head is None: self.set_head(__UpperCamelCase ) else: self.set_tail(__UpperCamelCase ) def a_ ( self , __UpperCamelCase , __UpperCamelCase ) -> None: _a = node _a = node.previous if node.get_previous() is None: _a = node_to_insert else: _a = node_to_insert _a = node_to_insert def a_ ( self , __UpperCamelCase , __UpperCamelCase ) -> None: _a = node _a = node.next if node.get_next() is None: _a = node_to_insert else: _a = node_to_insert _a = node_to_insert def a_ ( self , __UpperCamelCase , __UpperCamelCase ) -> None: _a = 1 _a = Node(__UpperCamelCase ) _a = self.head while node: if current_position == position: self.insert_before_node(__UpperCamelCase , __UpperCamelCase ) return current_position += 1 _a = node.next self.insert_after_node(self.tail , __UpperCamelCase ) def a_ ( self , __UpperCamelCase ) -> Node: _a = self.head while node: if node.get_data() == item: return node _a = node.get_next() raise Exception("Node not found" ) def a_ ( self , __UpperCamelCase ) -> Optional[int]: if (node := self.get_node(__UpperCamelCase )) is not None: if node == self.head: _a = self.head.get_next() if node == self.tail: _a = self.tail.get_previous() self.remove_node_pointers(__UpperCamelCase ) @staticmethod def a_ ( __UpperCamelCase ) -> None: if node.get_next(): _a = node.previous if node.get_previous(): _a = node.next _a = None _a = None def a_ ( self ) -> str: return self.head is None def __UpperCamelCase ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
276
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __UpperCamelCase ( __lowerCamelCase : BertModel , __lowerCamelCase : str , __lowerCamelCase : str ) -> List[str]: '''simple docstring''' _a = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _a = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) _a = model.state_dict() def to_tf_var_name(__lowerCamelCase : str ): for patt, repl in iter(__lowerCamelCase ): _a = name.replace(__lowerCamelCase , __lowerCamelCase ) return F"bert/{name}" def create_tf_var(__lowerCamelCase : np.ndarray , __lowerCamelCase : str , __lowerCamelCase : tf.Session ): _a = tf.dtypes.as_dtype(tensor.dtype ) _a = tf.get_variable(dtype=__lowerCamelCase , shape=tensor.shape , name=__lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _a = to_tf_var_name(__lowerCamelCase ) _a = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _a = torch_tensor.T _a = create_tf_var(tensor=__lowerCamelCase , name=__lowerCamelCase , session=__lowerCamelCase ) tf.keras.backend.set_value(__lowerCamelCase , __lowerCamelCase ) _a = session.run(__lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(__lowerCamelCase , __lowerCamelCase )}" ) _a = tf.train.Saver(tf.trainable_variables() ) saver.save(__lowerCamelCase , os.path.join(__lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def __UpperCamelCase ( __lowerCamelCase : str=None ) -> Optional[int]: '''simple docstring''' _a = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__lowerCamelCase , required=__lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=__lowerCamelCase , default=__lowerCamelCase , required=__lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=__lowerCamelCase , required=__lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=__lowerCamelCase , required=__lowerCamelCase , help="Directory in which to save tensorflow model" ) _a = parser.parse_args(__lowerCamelCase ) _a = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
276
1
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" # Load checkpoint _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _SCREAMING_SNAKE_CASE = {} for k, v in state_dict.items(): if "pred_layer" in k: _SCREAMING_SNAKE_CASE = v else: _SCREAMING_SNAKE_CASE = v _SCREAMING_SNAKE_CASE = chkpt["""params"""] _SCREAMING_SNAKE_CASE = {n: v for n, v in config.items() if not isinstance(SCREAMING_SNAKE_CASE_ , (torch.FloatTensor, numpy.ndarray) )} _SCREAMING_SNAKE_CASE = chkpt["""dico_word2id"""] _SCREAMING_SNAKE_CASE = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model _SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + CONFIG_NAME _SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 ) + """\n""" ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 ) + """\n""" ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
591
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCamelCase__ : Optional[Any] = logging.getLogger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = bnb_quantization_config.load_in_abit _SCREAMING_SNAKE_CASE = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) _SCREAMING_SNAKE_CASE = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(device_map.keys() ) > 1: _SCREAMING_SNAKE_CASE = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _SCREAMING_SNAKE_CASE = get_keys_to_not_convert(SCREAMING_SNAKE_CASE_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE_ ) # compatibility with peft _SCREAMING_SNAKE_CASE = load_in_abit _SCREAMING_SNAKE_CASE = load_in_abit _SCREAMING_SNAKE_CASE = get_parameter_device(SCREAMING_SNAKE_CASE_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) _SCREAMING_SNAKE_CASE = replace_with_bnb_layers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , modules_to_not_convert=SCREAMING_SNAKE_CASE_ ) # convert param to the right dtype _SCREAMING_SNAKE_CASE = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _SCREAMING_SNAKE_CASE = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) _SCREAMING_SNAKE_CASE = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): param.to(SCREAMING_SNAKE_CASE_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): _SCREAMING_SNAKE_CASE = replace_with_bnb_layers( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , modules_to_not_convert=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = get_quantized_model_device_map( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , max_memory=SCREAMING_SNAKE_CASE_ , no_split_module_classes=SCREAMING_SNAKE_CASE_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE_ , offload_state_dict=SCREAMING_SNAKE_CASE_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE_ , device_map=SCREAMING_SNAKE_CASE_ , offload_dir=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> List[str]: """simple docstring""" if device_map is None: if torch.cuda.is_available(): _SCREAMING_SNAKE_CASE = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) _SCREAMING_SNAKE_CASE = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = special_dtypes _SCREAMING_SNAKE_CASE = no_split_module_classes _SCREAMING_SNAKE_CASE = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _SCREAMING_SNAKE_CASE = get_balanced_memory( SCREAMING_SNAKE_CASE_ , low_zero=(device_map == """balanced_low_0""") , max_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) _SCREAMING_SNAKE_CASE = max_memory _SCREAMING_SNAKE_CASE = infer_auto_device_map(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # check if don't have any quantized module on the cpu _SCREAMING_SNAKE_CASE = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _SCREAMING_SNAKE_CASE = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: """simple docstring""" if modules_to_not_convert is None: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = False for name, module in model.named_children(): if current_key_name is None: _SCREAMING_SNAKE_CASE = [] current_key_name.append(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _SCREAMING_SNAKE_CASE = """.""".join(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _SCREAMING_SNAKE_CASE = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _SCREAMING_SNAKE_CASE = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _SCREAMING_SNAKE_CASE = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) _SCREAMING_SNAKE_CASE = module.weight.data if module.bias is not None: _SCREAMING_SNAKE_CASE = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = True if len(list(module.children() ) ) > 0: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" # Create a copy of the model with init_empty_weights(): _SCREAMING_SNAKE_CASE = deepcopy(SCREAMING_SNAKE_CASE_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _SCREAMING_SNAKE_CASE = find_tied_parameters(SCREAMING_SNAKE_CASE_ ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _SCREAMING_SNAKE_CASE = sum(SCREAMING_SNAKE_CASE_ , [] ) _SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) > 0 # Check if it is a base model _SCREAMING_SNAKE_CASE = False if hasattr(SCREAMING_SNAKE_CASE_ , """base_model_prefix""" ): _SCREAMING_SNAKE_CASE = not hasattr(SCREAMING_SNAKE_CASE_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _SCREAMING_SNAKE_CASE = list(model.named_children() ) _SCREAMING_SNAKE_CASE = [list_modules[-1][0]] # add last module together with tied weights _SCREAMING_SNAKE_CASE = set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = list(set(SCREAMING_SNAKE_CASE_ ) ) + list(SCREAMING_SNAKE_CASE_ ) # remove ".weight" from the keys _SCREAMING_SNAKE_CASE = [""".weight""", """.bias"""] _SCREAMING_SNAKE_CASE = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _SCREAMING_SNAKE_CASE = name.replace(SCREAMING_SNAKE_CASE_ , """""" ) filtered_module_names.append(SCREAMING_SNAKE_CASE_ ) return filtered_module_names def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , bnb.nn.Linearabit ): return True return False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" return next(parameter.parameters() ).device def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0 , dtype=SCREAMING_SNAKE_CASE_ , value=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = param_name _SCREAMING_SNAKE_CASE = model if "." in tensor_name: _SCREAMING_SNAKE_CASE = tensor_name.split(""".""" ) for split in splits[:-1]: _SCREAMING_SNAKE_CASE = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) _SCREAMING_SNAKE_CASE = new_module _SCREAMING_SNAKE_CASE = splits[-1] # offload weights _SCREAMING_SNAKE_CASE = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , ) else: offload_weight(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ ) offload_weight(SCREAMING_SNAKE_CASE_ , param_name.replace("""weight""" , """SCB""" ) , SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """meta""" , dtype=SCREAMING_SNAKE_CASE_ , value=torch.empty(*param.size() ) )
591
1
def a__ (__lowercase :Optional[Any] ) -> Dict: if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) _A : Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _A : Any = 1 if upper_limit > 0: _A : Union[str, Any] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: _UpperCamelCase : str =int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
701
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCamelCase : Union[str, Any] ='\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCamelCase : List[str] ='\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCamelCase : str ='\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def a__ (__lowercase :List[Any] , __lowercase :List[Any] ) -> Union[str, Any]: return float((preds == labels).mean() ) def a__ (__lowercase :Tuple , __lowercase :List[Any] , __lowercase :Union[str, Any]="binary" ) -> Optional[Any]: _A : Union[str, Any] = simple_accuracy(__lowercase , __lowercase ) _A : str = float(fa_score(y_true=__lowercase , y_pred=__lowercase , average=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a__ (__lowercase :List[str] , __lowercase :Optional[Any] ) -> List[str]: _A : str = {} for id_pred, label in zip(__lowercase , __lowercase ): _A : Optional[int] = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _A : Tuple = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _A : Union[str, Any] = [(pred, label)] _A , _A : List[Any] = [], [] for question, preds_labels in question_map.items(): _A , _A : List[str] = zip(*__lowercase ) _A : Union[str, Any] = fa_score(y_true=__lowercase , y_pred=__lowercase , average='''macro''' ) fas.append(__lowercase ) _A : Optional[Any] = int(sum(pred == label for pred, label in preds_labels ) == len(__lowercase ) ) ems.append(__lowercase ) _A : Optional[int] = float(sum(__lowercase ) / len(__lowercase ) ) _A : Dict = sum(__lowercase ) / len(__lowercase ) _A : List[Any] = float(fa_score(y_true=__lowercase , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def A__ ( self ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None ,) def A__ ( self ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def A__ ( self ,A__ ,A__ ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(A__ ,A__ )} elif self.config_name == "cb": return acc_and_fa(A__ ,A__ ,fa_avg='''macro''' ) elif self.config_name == "record": _A : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _A : int = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(A__ ,A__ )[0] elif self.config_name == "multirc": return evaluate_multirc(A__ ,A__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(A__ ,A__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
332
0
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase : Optional[int] = 16 lowercase : Tuple = 32 def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return int(x / 2**20 ) class A : def __enter__( self ) -> int: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero A : Dict = torch.cuda.memory_allocated() return self def __exit__( self , *SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" gc.collect() torch.cuda.empty_cache() A : List[str] = torch.cuda.memory_allocated() A : Tuple = torch.cuda.max_memory_allocated() A : int = bamb(self.end - self.begin ) A : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCAmelCase_ ( snake_case__ , snake_case__ = 16 , snake_case__ = "bert-base-cased" , snake_case__ = 320 , snake_case__ = 160 , ): '''simple docstring''' A : Optional[int] = AutoTokenizer.from_pretrained(snake_case__ ) A : Any = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': F'train[:{n_train}]', '''validation''': F'validation[:{n_val}]'} ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) A : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A : Optional[Any] = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A : List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. A : List[str] = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) A : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : Optional[Any] = config['lr'] A : Tuple = int(config['''num_epochs'''] ) A : Dict = int(config['''seed'''] ) A : int = int(config['''batch_size'''] ) A : List[Any] = args.model_name_or_path set_seed(snake_case__ ) A : Union[str, Any] = get_dataloaders(snake_case__ , snake_case__ , snake_case__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__ ) # Instantiate optimizer A : Any = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A : Tuple = optimizer_cls(params=model.parameters() , lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: A : List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: A : Any = 1 A : Union[str, Any] = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A : List[Any] = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: A : Optional[int] = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A : Tuple = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # We need to keep track of how many total steps we have iterated over A : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly A : List[Any] = 0 # Now we train the model A : Tuple = {} for epoch in range(snake_case__ , snake_case__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case__ ): A : int = model(**snake_case__ ) A : str = outputs.loss A : List[Any] = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) A : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( ): '''simple docstring''' A : int = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case__ , ) parser.add_argument( '''--output_dir''' , type=snake_case__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=snake_case__ , default=snake_case__ , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=snake_case__ , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=snake_case__ , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case__ , default=1 , help='''Number of train epochs.''' , ) A : Union[str, Any] = parser.parse_args() A : Tuple = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
634
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def lowerCamelCase ( ): """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
561
0
def a ( A__ , A__ , A__ , A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [False] * len(A__ ) SCREAMING_SNAKE_CASE__ : Dict = [] queue.append(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = True while queue: SCREAMING_SNAKE_CASE__ : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A__ ) SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Tuple = u return visited[t] def a ( A__ , A__ , A__ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = [-1] * (len(A__ )) SCREAMING_SNAKE_CASE__ : Dict = 0 while bfs(A__ , A__ , A__ , A__ ): SCREAMING_SNAKE_CASE__ : str = float('''Inf''' ) SCREAMING_SNAKE_CASE__ : int = sink while s != source: # Find the minimum value in select path SCREAMING_SNAKE_CASE__ : Any = min(A__ , graph[parent[s]][s] ) SCREAMING_SNAKE_CASE__ : Any = parent[s] max_flow += path_flow SCREAMING_SNAKE_CASE__ : Optional[int] = sink while v != source: SCREAMING_SNAKE_CASE__ : Dict = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow SCREAMING_SNAKE_CASE__ : int = parent[v] return max_flow a_ :Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] a_ , a_ :List[str] = 0, 5 print(ford_fulkerson(graph, source, sink))
250
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline a_ :str = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def a ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ) -> Optional[Any]: '''simple docstring''' output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def a ( A__ , A__ , A__ , A__ = False ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ : List[str] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionPipeline.from_pretrained(A__ , torch_dtype=A__ ).to(A__ ) SCREAMING_SNAKE_CASE__ : int = Path(A__ ) # TEXT ENCODER SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline.text_encoder.config.max_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = pipeline.text_encoder.config.hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=A__ , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=A__ , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=A__ , ) del pipeline.text_encoder # UNET SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline.unet.config.in_channels SCREAMING_SNAKE_CASE__ : Tuple = pipeline.unet.config.sample_size SCREAMING_SNAKE_CASE__ : Dict = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), torch.randn(2 ).to(device=A__ , dtype=A__ ), torch.randn(2 , A__ , A__ ).to(device=A__ , dtype=A__ ), False, ) , output_path=A__ , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=A__ , use_external_data_format=A__ , ) SCREAMING_SNAKE_CASE__ : List[str] = str(unet_path.absolute().as_posix() ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.dirname(A__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = onnx.load(A__ ) # clean up existing tensor files shutil.rmtree(A__ ) os.mkdir(A__ ) # collate external tensor files into one onnx.save_model( A__ , A__ , save_as_external_data=A__ , all_tensors_to_one_file=A__ , location='''weights.pb''' , convert_attribute=A__ , ) del pipeline.unet # VAE ENCODER SCREAMING_SNAKE_CASE__ : Optional[int] = pipeline.vae SCREAMING_SNAKE_CASE__ : str = vae_encoder.config.in_channels SCREAMING_SNAKE_CASE__ : str = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder SCREAMING_SNAKE_CASE__ : Dict = lambda A__ , A__ : vae_encoder.encode(A__ , A__ )[0].sample() onnx_export( A__ , model_args=( torch.randn(1 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=A__ , ) # VAE DECODER SCREAMING_SNAKE_CASE__ : Tuple = pipeline.vae SCREAMING_SNAKE_CASE__ : Union[str, Any] = vae_decoder.config.latent_channels SCREAMING_SNAKE_CASE__ : Dict = vae_decoder.config.out_channels # forward only through the decoder part SCREAMING_SNAKE_CASE__ : Union[str, Any] = vae_encoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=A__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: SCREAMING_SNAKE_CASE__ : int = pipeline.safety_checker SCREAMING_SNAKE_CASE__ : int = safety_checker.config.vision_config.num_channels SCREAMING_SNAKE_CASE__ : Dict = safety_checker.config.vision_config.image_size SCREAMING_SNAKE_CASE__ : Optional[Any] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , A__ , A__ , A__ , ).to(device=A__ , dtype=A__ ), torch.randn(1 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=A__ , ) del pipeline.safety_checker SCREAMING_SNAKE_CASE__ : Optional[int] = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) SCREAMING_SNAKE_CASE__ : str = pipeline.feature_extractor else: SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : List[Any] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=A__ , feature_extractor=A__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(A__ ) print('''ONNX pipeline saved to''' , A__ ) del pipeline del onnx_pipeline SCREAMING_SNAKE_CASE__ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(A__ , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": a_ :List[str] = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') a_ :Optional[Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
250
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ (__lowerCamelCase ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = ConsistencyModelPipeline __lowercase : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __lowercase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any]=False ): if class_cond: snake_case__ = self.dummy_cond_unet else: snake_case__ = self.dummy_uncond_unet # Default to CM multistep sampler snake_case__ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) snake_case__ = { '''unet''': unet, '''scheduler''': scheduler, } return components def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Union[str, Any] , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.get_dummy_components() snake_case__ = ConsistencyModelPipeline(**_a ) snake_case__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images assert image.shape == (1, 32, 32, 3) snake_case__ = image[0, -3:, -3:, -1] snake_case__ = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.get_dummy_components(class_cond=_a ) snake_case__ = ConsistencyModelPipeline(**_a ) snake_case__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 0 snake_case__ = pipe(**_a ).images assert image.shape == (1, 32, 32, 3) snake_case__ = image[0, -3:, -3:, -1] snake_case__ = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.get_dummy_components() snake_case__ = ConsistencyModelPipeline(**_a ) snake_case__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 1 snake_case__ = None snake_case__ = pipe(**_a ).images assert image.shape == (1, 32, 32, 3) snake_case__ = image[0, -3:, -3:, -1] snake_case__ = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ = self.get_dummy_components(class_cond=_a ) snake_case__ = ConsistencyModelPipeline(**_a ) snake_case__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 1 snake_case__ = None snake_case__ = 0 snake_case__ = pipe(**_a ).images assert image.shape == (1, 32, 32, 3) snake_case__ = image[0, -3:, -3:, -1] snake_case__ = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Any=0 , _a:Optional[int]=False , _a:Optional[Any]="cpu" , _a:Any=torch.floataa , _a:Any=(1, 3, 64, 64) ): snake_case__ = torch.manual_seed(_a ) snake_case__ = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: snake_case__ = self.get_fixed_latents(seed=_a , device=_a , dtype=_a , shape=_a ) snake_case__ = latents return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Tuple=0 , _a:Any="cpu" , _a:Dict=torch.floataa , _a:Union[str, Any]=(1, 3, 64, 64) ): if type(_a ) == str: snake_case__ = torch.device(_a ) snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) return latents def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) snake_case__ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) snake_case__ = ConsistencyModelPipeline(unet=_a , scheduler=_a ) pipe.to(torch_device=_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_inputs() snake_case__ = pipe(**_a ).images assert image.shape == (1, 64, 64, 3) snake_case__ = image[0, -3:, -3:, -1] snake_case__ = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) snake_case__ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) snake_case__ = ConsistencyModelPipeline(unet=_a , scheduler=_a ) pipe.to(torch_device=_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_inputs() snake_case__ = 1 snake_case__ = None snake_case__ = pipe(**_a ).images assert image.shape == (1, 64, 64, 3) snake_case__ = image[0, -3:, -3:, -1] snake_case__ = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) snake_case__ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) snake_case__ = ConsistencyModelPipeline(unet=_a , scheduler=_a ) pipe.to(torch_device=_a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_inputs(get_fixed_latents=_a , device=_a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_a , enable_math=_a , enable_mem_efficient=_a ): snake_case__ = pipe(**_a ).images assert image.shape == (1, 64, 64, 3) snake_case__ = image[0, -3:, -3:, -1] snake_case__ = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) snake_case__ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) snake_case__ = ConsistencyModelPipeline(unet=_a , scheduler=_a ) pipe.to(torch_device=_a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_inputs(get_fixed_latents=_a , device=_a ) snake_case__ = 1 snake_case__ = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_a , enable_math=_a , enable_mem_efficient=_a ): snake_case__ = pipe(**_a ).images assert image.shape == (1, 64, 64, 3) snake_case__ = image[0, -3:, -3:, -1] snake_case__ = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
33
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'blenderbot-small' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , lowerCamelCase=50265 , lowerCamelCase=512 , lowerCamelCase=8 , lowerCamelCase=2048 , lowerCamelCase=16 , lowerCamelCase=8 , lowerCamelCase=2048 , lowerCamelCase=16 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase="gelu" , lowerCamelCase=512 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1 , lowerCamelCase=False , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=2 , **lowerCamelCase , ) -> List[str]: """simple docstring""" snake_case__ : List[str] = vocab_size snake_case__ : List[str] = max_position_embeddings snake_case__ : Optional[Any] = d_model snake_case__ : Dict = encoder_ffn_dim snake_case__ : Union[str, Any] = encoder_layers snake_case__ : int = encoder_attention_heads snake_case__ : Any = decoder_ffn_dim snake_case__ : Optional[int] = decoder_layers snake_case__ : Dict = decoder_attention_heads snake_case__ : List[Any] = dropout snake_case__ : str = attention_dropout snake_case__ : Optional[Any] = activation_dropout snake_case__ : str = activation_function snake_case__ : int = init_std snake_case__ : List[Any] = encoder_layerdrop snake_case__ : int = decoder_layerdrop snake_case__ : List[str] = use_cache snake_case__ : Tuple = encoder_layers snake_case__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , is_encoder_decoder=lowerCamelCase , decoder_start_token_id=lowerCamelCase , forced_eos_token_id=lowerCamelCase , **lowerCamelCase , ) class snake_case ( __lowerCamelCase ): """simple docstring""" @property def lowercase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case__ : Dict = {0: '''batch'''} snake_case__ : Any = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case__ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} snake_case__ : Tuple = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case__ : List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case__ ,snake_case__ : List[str] = self.num_layers for i in range(lowerCamelCase ): snake_case__ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case__ : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: snake_case__ : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def lowercase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[int] = super().outputs else: snake_case__ : List[str] = super(lowerCamelCase , self ).outputs if self.use_past: snake_case__ ,snake_case__ : Dict = self.num_layers for i in range(lowerCamelCase ): snake_case__ : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case__ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowercase__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ) -> Mapping[str, Any]: """simple docstring""" snake_case__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Generate decoder inputs snake_case__ : List[Any] = seq_length if not self.use_past else 1 snake_case__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case__ : Dict = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} snake_case__ : Union[str, Any] = dict(**lowerCamelCase , **lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ ,snake_case__ : List[str] = common_inputs['''input_ids'''].shape snake_case__ : Any = common_inputs['''decoder_input_ids'''].shape[1] snake_case__ ,snake_case__ : Any = self.num_attention_heads snake_case__ : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : Optional[Any] = decoder_seq_length + 3 snake_case__ : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case__ : str = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase , lowerCamelCase )] , dim=1 ) snake_case__ : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case__ ,snake_case__ : Optional[int] = self.num_layers snake_case__ : Tuple = min(lowerCamelCase , lowerCamelCase ) snake_case__ : str = max(lowerCamelCase , lowerCamelCase ) - min_num_layers snake_case__ : str = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), ) ) # TODO: test this. snake_case__ : Union[str, Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCamelCase , lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) ) return common_inputs def lowercase__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ) -> Mapping[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ ,snake_case__ : Optional[int] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case__ : str = seqlen + 2 snake_case__ ,snake_case__ : Dict = self.num_layers snake_case__ ,snake_case__ : Optional[Any] = self.num_attention_heads snake_case__ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : List[str] = common_inputs['''attention_mask'''].dtype snake_case__ : int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCamelCase , lowerCamelCase , dtype=lowerCamelCase )] , dim=1 ) snake_case__ : Any = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(lowerCamelCase ) ] return common_inputs def lowercase__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ) -> Mapping[str, Any]: """simple docstring""" snake_case__ : Dict = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case__ : str = tokenizer.num_special_tokens_to_add(lowerCamelCase ) snake_case__ : Dict = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence snake_case__ : List[str] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case__ : List[str] = dict(tokenizer(lowerCamelCase , return_tensors=lowerCamelCase ) ) return common_inputs def lowercase__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) elif self.task == "causal-lm": snake_case__ : List[str] = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) else: snake_case__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) return common_inputs def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: snake_case__ : Union[str, Any] = super()._flatten_past_key_values_(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: snake_case__ : int = super(lowerCamelCase , self )._flatten_past_key_values_( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
261
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __SCREAMING_SNAKE_CASE =logging.getLogger() def a (): SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('''-f''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() return args.f def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , '''all_results.json''' ) if os.path.exists(_lowerCAmelCase ): with open(_lowerCAmelCase , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.load(_lowerCAmelCase ) else: raise ValueError(F"can't find {path}" ) return results def a (): SCREAMING_SNAKE_CASE_ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() __SCREAMING_SNAKE_CASE =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' @classmethod def _A ( cls: str ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) SCREAMING_SNAKE_CASE_ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def _A ( cls: str ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _A ( self: Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE_ = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE_ = get_results(_lowerCamelCase ) self.assertLess(result['''perplexity'''] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _A ( self: Dict ): SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE_ = get_results(_lowerCamelCase ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _A ( self: Optional[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu SCREAMING_SNAKE_CASE_ = 7 if get_gpu_count() > 1 else 2 SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE_ = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _A ( self: str ): SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE_ = get_results(_lowerCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _A ( self: str ): SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE_ = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _A ( self: Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE_ = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE_ = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''translation_no_trainer''' ) ) ) @slow def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = logging.StreamHandler(sys.stdout ) logger.addHandler(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE_ = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _A ( self: Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) SCREAMING_SNAKE_CASE_ = get_results(_lowerCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , '''image_classification_no_trainer''' ) ) )
89
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' def __init__( self: List[Any] , *_lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any]=None , _lowerCamelCase: Dict=None , **_lowerCamelCase: Dict ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = eval_examples SCREAMING_SNAKE_CASE_ = post_process_function def _A ( self: Tuple , _lowerCamelCase: Optional[Dataset] = None , _lowerCamelCase: List[str]=None , _lowerCamelCase: Optional[List[str]] = None , _lowerCamelCase: str = "eval" , **_lowerCamelCase: Union[str, Any] , ): SCREAMING_SNAKE_CASE_ = gen_kwargs.copy() SCREAMING_SNAKE_CASE_ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE_ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE_ = gen_kwargs SCREAMING_SNAKE_CASE_ = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE_ = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE_ = self.compute_metrics SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE_ = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE_ = compute_metrics SCREAMING_SNAKE_CASE_ = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE_ = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE_ = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def _A ( self: List[str] , _lowerCamelCase: int , _lowerCamelCase: List[str] , _lowerCamelCase: Optional[int]=None , _lowerCamelCase: str = "test" , **_lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ = gen_kwargs.copy() SCREAMING_SNAKE_CASE_ = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE_ = self.compute_metrics SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE_ = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE_ = compute_metrics SCREAMING_SNAKE_CASE_ = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE_ = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE_ = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE_ = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
89
1
def _UpperCAmelCase ( UpperCamelCase: dict ): """simple docstring""" __lowerCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowerCAmelCase = set() return any( node not in visited and depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for node in graph ) def _UpperCAmelCase ( UpperCamelCase: dict , UpperCamelCase: int , UpperCamelCase: set , UpperCamelCase: set ): """simple docstring""" visited.add(UpperCamelCase ) rec_stk.add(UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
611
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a : def __init__( self : str , snake_case__ : Dict , snake_case__ : Optional[int]=13 , snake_case__ : Any=30 , snake_case__ : int=2 , snake_case__ : List[Any]=3 , snake_case__ : List[str]=True , snake_case__ : Dict=True , snake_case__ : Dict=32 , snake_case__ : Union[str, Any]=5 , snake_case__ : Tuple=4 , snake_case__ : Tuple=37 , snake_case__ : Tuple="gelu" , snake_case__ : Any=0.1 , snake_case__ : str=0.1 , snake_case__ : Dict=10 , snake_case__ : List[str]=0.0_2 , snake_case__ : int=3 , snake_case__ : Tuple=None , snake_case__ : Any=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" __lowerCAmelCase = DeiTModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): """simple docstring""" __lowerCAmelCase = DeiTForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForMaskedImageModeling(snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : str , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ : str = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase_ : int = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase_ : List[str] = False lowercase_ : Dict = False lowercase_ : str = False def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = DeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case__ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Tuple=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(snake_case__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __lowerCAmelCase = model_class(snake_case__ ) model.to(snake_case__ ) model.train() __lowerCAmelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) __lowerCAmelCase = model(**snake_case__ ).loss loss.backward() def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase = False __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(snake_case__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __lowerCAmelCase = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() __lowerCAmelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) __lowerCAmelCase = model(**snake_case__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(snake_case__ ), *get_values(snake_case__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): __lowerCAmelCase = problem_type["title"] __lowerCAmelCase = problem_type["num_labels"] __lowerCAmelCase = model_class(snake_case__ ) model.to(snake_case__ ) model.train() __lowerCAmelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if problem_type["num_labels"] > 1: __lowerCAmelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) __lowerCAmelCase = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=snake_case__ ) as warning_list: __lowerCAmelCase = model(**snake_case__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( snake_case__ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**snake_case__ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) __lowerCAmelCase = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=snake_case__ , return_tensors="pt" ) __lowerCAmelCase = inputs.pixel_values.to(snake_case__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowerCAmelCase = model(snake_case__ )
611
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : str = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class A__ ( UpperCamelCase__ ): UpperCAmelCase = "fnet" def __init__( self : Tuple , _a : str=3_2000 , _a : Optional[int]=768 , _a : int=12 , _a : Tuple=3072 , _a : List[str]="gelu_new" , _a : Any=0.1 , _a : Optional[Any]=512 , _a : Any=4 , _a : Optional[int]=0.02 , _a : Any=1E-12 , _a : str=False , _a : str=512 , _a : List[Any]=3 , _a : List[str]=1 , _a : Dict=2 , **_a : int , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =use_tpu_fourier_optimizations _SCREAMING_SNAKE_CASE =tpu_short_seq_length
712
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowerCamelCase( a__ ,a__=() ,a__=None ,a__="no" ,a__="29500"): _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False if any(key.startswith('''KAGGLE''') for key in os.environ.keys()): _SCREAMING_SNAKE_CASE =True elif "IPython" in sys.modules: _SCREAMING_SNAKE_CASE ='''google.colab''' in str(sys.modules['''IPython'''].get_ipython()) try: _SCREAMING_SNAKE_CASE =PrecisionType(mixed_precision.lower()) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.") if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' ,a__) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''') if num_processes is None: _SCREAMING_SNAKE_CASE =8 _SCREAMING_SNAKE_CASE =PrepareForLaunch(a__ ,distributed_type='''TPU''') print(f"Launching a training on {num_processes} TPU cores.") xmp.spawn(a__ ,args=a__ ,nprocs=a__ ,start_method='''fork''') elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''') else: print('''Launching training on one CPU.''') function(*a__) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''') if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''') if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''') # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a__ ,master_addr='''127.0.01''' ,master_port=a__ ,mixed_precision=a__): _SCREAMING_SNAKE_CASE =PrepareForLaunch(a__ ,distributed_type='''MULTI_GPU''') print(f"Launching training on {num_processes} GPUs.") try: start_processes(a__ ,args=a__ ,nprocs=a__ ,start_method='''fork''') except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''') from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _SCREAMING_SNAKE_CASE ='''1''' print('''Launching training on MPS.''') elif torch.cuda.is_available(): print('''Launching training on one GPU.''') else: print('''Launching training on CPU.''') function(*a__) def lowerCamelCase( a__ ,a__=() ,a__=2): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a__ ,master_addr='''127.0.01''' ,master_port='''29500''' ,accelerate_mixed_precision='''no''' ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu='''yes''' ,): _SCREAMING_SNAKE_CASE =PrepareForLaunch(a__ ,debug=a__) start_processes(a__ ,args=a__ ,nprocs=a__ ,start_method='''fork''')
191
0
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = 0 ) -> list: """simple docstring""" snake_case_ : Dict = length or len(_UpperCamelCase ) snake_case_ : Any = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case_ , snake_case_ : Tuple = list_data[i + 1], list_data[i] snake_case_ : Optional[Any] = True return list_data if not swapped else bubble_sort(_UpperCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
60
import os from collections.abc import Iterator def _lowerCamelCase( lowercase__ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(lowercase__ ): __lowercase= [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowercase__ )[1] in (".py", ".ipynb"): yield os.path.join(lowercase__ , lowercase__ ).lstrip('./' ) def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return F'{i * " "}*' if i else "\n##" def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' __lowercase= old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowercase__ ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(lowercase__ )} {new_part.replace("_" , " " ).title()}' ) return new_path def _lowerCamelCase( lowercase__ = "." ) -> None: '''simple docstring''' __lowercase= '' for filepath in sorted(good_file_paths(lowercase__ ) ): __lowercase, __lowercase= os.path.split(lowercase__ ) if filepath != old_path: __lowercase= print_path(lowercase__ , lowercase__ ) __lowercase= (filepath.count(os.sep ) + 1) if filepath else 0 __lowercase= F'{filepath}/{filename}'.replace(' ' , '%20' ) __lowercase= os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(lowercase__ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
230
0
from __future__ import annotations def __magic_name__( __UpperCAmelCase ) -> bool: '''simple docstring''' if len(__UpperCAmelCase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) _lowerCamelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
638
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' _lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase = '''''' else: _lowerCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase = in_proj_bias[: config.hidden_size] _lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase = in_proj_bias[-config.hidden_size :] def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = dct.pop(__UpperCAmelCase ) _lowerCamelCase = val def __magic_name__( ) -> List[str]: '''simple docstring''' _lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ) -> str: '''simple docstring''' _lowerCamelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCamelCase = 8 # set labels if required if not base_model: _lowerCamelCase = 1000 _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCamelCase = 384 _lowerCamelCase = 1536 _lowerCamelCase = 12 _lowerCamelCase = 6 # load original model from torch hub _lowerCamelCase = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) _lowerCamelCase = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: _lowerCamelCase = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: _lowerCamelCase = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCamelCase = ViTImageProcessor() _lowerCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) _lowerCamelCase = encoding['''pixel_values'''] _lowerCamelCase = model(__UpperCAmelCase ) if base_model: _lowerCamelCase = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCamelCase = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) snake_case__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
638
1
from __future__ import annotations from collections import deque class __lowerCamelCase : """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : list[str] ) -> Optional[int]: lowerCAmelCase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(SCREAMING_SNAKE_CASE__ ) self.set_fail_transitions() def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> None: lowerCAmelCase__ = 0 for character in keyword: lowerCAmelCase__ = self.find_next_state(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowerCAmelCase__ = len(self.adlist ) - 1 else: lowerCAmelCase__ = next_state self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> None: lowerCAmelCase__ = deque() for node in self.adlist[0]["next_states"]: q.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = 0 while q: lowerCAmelCase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(SCREAMING_SNAKE_CASE__ , self.adlist[child]["value"] ) is None and state != 0 ): lowerCAmelCase__ = self.adlist[state]["fail_state"] lowerCAmelCase__ = self.find_next_state( SCREAMING_SNAKE_CASE__ , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: lowerCAmelCase__ = 0 lowerCAmelCase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def a ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> dict[str, list[int]]: lowerCAmelCase__ = {} # returns a dict with keywords and list of its occurrences lowerCAmelCase__ = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): while ( self.find_next_state(SCREAMING_SNAKE_CASE__ , string[i] ) is None and current_state != 0 ): lowerCAmelCase__ = self.adlist[current_state]["fail_state"] lowerCAmelCase__ = self.find_next_state(SCREAMING_SNAKE_CASE__ , string[i] ) if next_state is None: lowerCAmelCase__ = 0 else: lowerCAmelCase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowerCAmelCase__ = [] result[key].append(i - len(SCREAMING_SNAKE_CASE__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
61
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class __lowercase ( __lowerCamelCase ): snake_case_ = """open-llama""" def __init__( self : Dict ,A : str=100_000 ,A : str=4_096 ,A : Optional[Any]=11_008 ,A : Tuple=32 ,A : str=32 ,A : Optional[int]="silu" ,A : List[Any]=2_048 ,A : str=0.0_2 ,A : Optional[int]=1e-6 ,A : int=True ,A : Tuple=0 ,A : str=1 ,A : Any=2 ,A : Optional[Any]=False ,A : int=True ,A : Any=0.1 ,A : Optional[Any]=0.1 ,A : Optional[Any]=True ,A : Union[str, Any]=True ,A : Tuple=None ,**A : Optional[int] ,): '''simple docstring''' UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Optional[int] = rms_norm_eps UpperCAmelCase__ : Any = use_cache UpperCAmelCase__ : Optional[Any] = kwargs.pop( """use_memorry_efficient_attention""" ,A ) UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : str = attention_dropout_prob UpperCAmelCase__ : Optional[int] = use_stable_embedding UpperCAmelCase__ : Tuple = shared_input_output_embedding UpperCAmelCase__ : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,tie_word_embeddings=A ,**A ,) def __lowercase ( self : Optional[Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,A ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) UpperCAmelCase__ : List[Any] = self.rope_scaling.get("""type""" ,A ) UpperCAmelCase__ : int = self.rope_scaling.get("""factor""" ,A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(A ,A ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
65
0
def _lowerCamelCase ( A_ : list[list] ) -> list[list]: '''simple docstring''' UpperCamelCase__ : Dict =current_set.copy() for row_index, row in enumerate(A_ ): UpperCamelCase__ : int =row[0] for column_index, column in enumerate(A_ ): if magnitude == 0: UpperCamelCase__ : Dict =column continue UpperCamelCase__ : Optional[Any] =column / magnitude # Subtract to cancel term UpperCamelCase__ : str =current_set[0] UpperCamelCase__ : List[str] =[first_row] UpperCamelCase__ : Optional[int] =current_set[1::] for row in current_set: UpperCamelCase__ : Optional[Any] =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(A_ ) continue for column_index in range(len(A_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(A_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCamelCase__ : Any =final_set[0] UpperCamelCase__ : Dict =[] UpperCamelCase__ : Optional[int] =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCamelCase__ : int =simplify(A_ ) for i in range(len(A_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , A_ ) UpperCamelCase__ : str =resultant return final_set def _lowerCamelCase ( A_ : list[list] ) -> list: '''simple docstring''' if len(A_ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) UpperCamelCase__ : Union[str, Any] =len(A_ ) + 1 if any(len(A_ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(A_ , (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(A_ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCamelCase__ : Union[str, Any] =equations.copy() if any(0 in row for row in data_set ): UpperCamelCase__ : List[str] =data_set.copy() UpperCamelCase__ : Union[str, Any] =[] for row_index, row in enumerate(A_ ): if 0 not in row: UpperCamelCase__ : Tuple =data_set.pop(A_ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 , A_ ) UpperCamelCase__ : List[Any] =data_set.copy() UpperCamelCase__ : Optional[Any] =simplify(A_ ) UpperCamelCase__ : Any =simplified[::-1] UpperCamelCase__ : list =[] for row in simplified: UpperCamelCase__ : int =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCamelCase__ : Dict =row.copy()[: len(A_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(A_ ) == 0: solutions.append(0 ) continue UpperCamelCase__ : str =temp_row[1::] UpperCamelCase__ : List[Any] =temp_row[::-1] for column_index, column in enumerate(A_ ): current_solution -= column * solutions[column_index] solutions.append(A_ ) UpperCamelCase__ : int =[] for item in solutions: final.append(float(round(A_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
582
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") __UpperCAmelCase = parser.parse_args() if args.model_type == "roberta": __UpperCAmelCase = RobertaForMaskedLM.from_pretrained(args.model_name) __UpperCAmelCase = """roberta""" elif args.model_type == "gpt2": __UpperCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name) __UpperCAmelCase = """transformer""" __UpperCAmelCase = model.state_dict() __UpperCAmelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __UpperCAmelCase = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __UpperCAmelCase = F"""{prefix}.embeddings.{w}.weight""" __UpperCAmelCase = state_dict[param_name] for w in ["weight", "bias"]: __UpperCAmelCase = F"""{prefix}.embeddings.LayerNorm.{w}""" __UpperCAmelCase = state_dict[param_name] # Transformer Blocks # __UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] __UpperCAmelCase = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __UpperCAmelCase = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[F"""lm_head.dense.{w}"""] __UpperCAmelCase = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __UpperCAmelCase = state_dict[F"""{prefix}.ln_f.{w}"""] __UpperCAmelCase = state_dict["""lm_head.weight"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
582
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCAmelCase = logging.get_logger(__name__) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= set() __lowercase= [] def parse_line(lowercase__ ): for line in fp: if isinstance(lowercase__ , lowercase__ ): __lowercase= line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(lowercase__ ) > 0: __lowercase= '\n'.join(lowercase__ ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowercase__ ) buffer.clear() continue else: __lowercase= line.strip() buffer.append(lowercase__ ) if from_gh: for filename in os.listdir(lowercase__ ): __lowercase= os.path.join(lowercase__ , lowercase__ ) if not os.path.isdir(lowercase__ ): # read the file if filename != "warnings.txt": continue with open(lowercase__ ) as fp: parse_line(lowercase__ ) else: try: with zipfile.ZipFile(lowercase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase__ ): # read the file if filename != "warnings.txt": continue with z.open(lowercase__ ) as fp: parse_line(lowercase__ ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[Any]: '''simple docstring''' __lowercase= set() __lowercase= [os.path.join(lowercase__ , lowercase__ ) for p in os.listdir(lowercase__ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowercase__ , lowercase__ ) ) return selected_warnings if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return values.split(',' ) lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCAmelCase = extract_warnings(args.output_dir, args.targets) lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
230
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __UpperCAmelCase ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = torch.nn.Linear(2 , 4 ) UpperCAmelCase__ = torch.optim.AdamW(model.parameters() , lr=1.0 ) UpperCAmelCase__ = torch.optim.lr_scheduler.OneCycleLR(__A , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) UpperCAmelCase__ = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) UpperCAmelCase__ = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __UpperCAmelCase ( __A ) -> Union[str, Any]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __UpperCAmelCase ( __A ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__A ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): @require_cuda def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_lowercase ): UpperCAmelCase__ = Accelerator(cpu=_lowercase ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = Accelerator() UpperCAmelCase__ = GradientState() assert state.num_steps == 1 UpperCAmelCase__ = 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCAmelCase__ = False assert state.sync_gradients is False GradientState._reset_state() def _UpperCAmelCase ( self : Any ): """simple docstring""" UpperCAmelCase__ = Accelerator() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = create_components() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" UpperCAmelCase__ = Accelerator() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = create_components() accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _UpperCAmelCase ( self : int ): """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_lowercase : Dict , **_lowercase : Any ): pass with patch("torch.cuda.set_device" , _lowercase ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): UpperCAmelCase__ = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def _UpperCAmelCase ( self : str ): """simple docstring""" UpperCAmelCase__ = Accelerator() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = create_components() accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase__ = get_signature(_lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowercase ) # make sure random weights don't match load_random_weights(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) < 1E-3 ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" UpperCAmelCase__ = Accelerator() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = create_components() accelerator.prepare(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase__ = get_signature(_lowercase ) # saving hook def save_config(_lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : int ): UpperCAmelCase__ = {"class_name": models[0].__class__.__name__} with open(os.path.join(_lowercase , "data.json" ) , "w" ) as f: json.dump(_lowercase , _lowercase ) # loading hook def load_config(_lowercase : List[str] , _lowercase : Optional[Any] ): with open(os.path.join(_lowercase , "data.json" ) , "r" ) as f: UpperCAmelCase__ = json.load(_lowercase ) UpperCAmelCase__ = config["class_name"] UpperCAmelCase__ = accelerator.register_save_state_pre_hook(_lowercase ) UpperCAmelCase__ = accelerator.register_load_state_pre_hook(_lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowercase ) # make sure random weights don't match with hooks load_random_weights(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase__ = "random" # make sure loaded weights match with hooks accelerator.load_state(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowercase ) # make sure random weights don't match with hooks removed load_random_weights(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase__ = "random" # make sure loaded weights match with hooks removed accelerator.load_state(_lowercase ) self.assertTrue(abs(model_signature - get_signature(_lowercase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = Accelerator() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = create_components() UpperCAmelCase__ = None # This should work UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) self.assertTrue(dummy_obj is None ) def _UpperCAmelCase ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = Accelerator() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = create_components() UpperCAmelCase__ = [1, 2, 3] # This should work UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) self.assertEqual( getattr(_lowercase , "_is_accelerate_prepared" , _lowercase ) , _lowercase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(_lowercase , "_is_accelerate_prepared" , _lowercase ) , _lowercase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowercase , "_is_accelerate_prepared" , _lowercase ) , _lowercase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowercase , "_is_accelerate_prepared" , _lowercase ) , _lowercase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowercase , "_is_accelerate_prepared" , _lowercase ) , _lowercase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowercase , "_is_accelerate_prepared" , _lowercase ) , _lowercase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" from transformers import AutoModelForCausalLM UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowercase , device_map={"": 0} , ) UpperCAmelCase__ = Accelerator() # This should work UpperCAmelCase__ = accelerator.prepare(_lowercase ) @slow @require_bnb def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" from transformers import AutoModelForCausalLM UpperCAmelCase__ = Accelerator() with init_empty_weights(): UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() UpperCAmelCase__ = infer_auto_device_map(_lowercase ) UpperCAmelCase__ = "cpu" UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=_lowercase , load_in_abit=_lowercase , llm_inta_enable_fpaa_cpu_offload=_lowercase ) # This should not work and get value error with self.assertRaises(_lowercase ): UpperCAmelCase__ = accelerator.prepare(_lowercase ) @slow @require_bnb @require_multi_gpu def _UpperCAmelCase ( self : int ): """simple docstring""" from transformers import AutoModelForCausalLM UpperCAmelCase__ = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() UpperCAmelCase__ = infer_auto_device_map(_lowercase ) UpperCAmelCase__ = 1 UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowercase , device_map=_lowercase , ) UpperCAmelCase__ = Accelerator() # This should not work and get value error with self.assertRaises(_lowercase ): UpperCAmelCase__ = accelerator.prepare(_lowercase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _UpperCAmelCase ( self : Any ): """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) UpperCAmelCase__ = infer_auto_device_map(_lowercase ) UpperCAmelCase__ = 1 UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowercase , device_map=_lowercase , ) UpperCAmelCase__ = Accelerator() # This should work UpperCAmelCase__ = accelerator.prepare(_lowercase ) @require_cuda def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = torch.nn.Linear(10 , 10 ) UpperCAmelCase__ = torch.optim.SGD(model.parameters() , lr=0.0_1 ) UpperCAmelCase__ = Accelerator(cpu=_lowercase ) UpperCAmelCase__ = accelerator.prepare(_lowercase )
277
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A = logging.get_logger(__name__) class lowercase__ : def __init__( self : List[str] , _lowercase : str = None , _lowercase : uuid.UUID = None , _lowercase : Dict=None , _lowercase : Any=None ): """simple docstring""" if not conversation_id: UpperCAmelCase__ = uuid.uuida() if past_user_inputs is None: UpperCAmelCase__ = [] if generated_responses is None: UpperCAmelCase__ = [] UpperCAmelCase__ = conversation_id UpperCAmelCase__ = past_user_inputs UpperCAmelCase__ = generated_responses UpperCAmelCase__ = text def __eq__( self : Any , _lowercase : str ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _UpperCAmelCase ( self : Any , _lowercase : str , _lowercase : bool = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) UpperCAmelCase__ = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: UpperCAmelCase__ = text def _UpperCAmelCase ( self : int ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCAmelCase__ = None def _UpperCAmelCase ( self : List[str] , _lowercase : str ): """simple docstring""" self.generated_responses.append(_lowercase ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): UpperCAmelCase__ = "user" if is_user else "bot" output += F"""{name} >> {text} \n""" return output @add_end_docstrings( __SCREAMING_SNAKE_CASE , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : str , *_lowercase : Union[str, Any] , **_lowercase : Any ): """simple docstring""" super().__init__(*_lowercase , **_lowercase ) if self.tokenizer.pad_token_id is None: UpperCAmelCase__ = self.tokenizer.eos_token def _UpperCAmelCase ( self : List[str] , _lowercase : int=None , _lowercase : Any=None , _lowercase : List[str]=None , **_lowercase : Dict ): """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} if min_length_for_response is not None: UpperCAmelCase__ = min_length_for_response if minimum_tokens is not None: UpperCAmelCase__ = minimum_tokens if "max_length" in generate_kwargs: UpperCAmelCase__ = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCAmelCase__ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowercase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Dict , _lowercase : Union[Conversation, List[Conversation]] , _lowercase : List[str]=0 , **_lowercase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = super().__call__(_lowercase , num_workers=_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs def _UpperCAmelCase ( self : Optional[Any] , _lowercase : Conversation , _lowercase : List[Any]=32 ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): UpperCAmelCase__ = self.tokenizer._build_conversation_input_ids(_lowercase ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCAmelCase__ = self._legacy_parse_and_tokenize(_lowercase ) if self.framework == "pt": UpperCAmelCase__ = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCAmelCase__ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _UpperCAmelCase ( self : Optional[Any] , _lowercase : List[Any] , _lowercase : List[Any]=10 , **_lowercase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) UpperCAmelCase__ = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) UpperCAmelCase__ = max_length - minimum_tokens UpperCAmelCase__ = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: UpperCAmelCase__ = model_inputs["attention_mask"][:, -trim:] UpperCAmelCase__ = model_inputs.pop("conversation" ) UpperCAmelCase__ = max_length UpperCAmelCase__ = self.model.generate(**_lowercase , **_lowercase ) if self.model.config.is_encoder_decoder: UpperCAmelCase__ = 1 else: UpperCAmelCase__ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _UpperCAmelCase ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any]=True ): """simple docstring""" UpperCAmelCase__ = model_outputs["output_ids"] UpperCAmelCase__ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) UpperCAmelCase__ = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(_lowercase ) return conversation def _UpperCAmelCase ( self : List[str] , _lowercase : Conversation ): """simple docstring""" UpperCAmelCase__ = self.tokenizer.eos_token_id UpperCAmelCase__ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) if len(_lowercase ) > self.tokenizer.model_max_length: UpperCAmelCase__ = input_ids[-self.tokenizer.model_max_length :] return input_ids
277
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
417
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowercase ( snake_case_ ): lowercase = 'convbert' def __init__( self : Union[str, Any] , snake_case : Tuple=3_0_5_2_2 , snake_case : List[Any]=7_6_8 , snake_case : Any=1_2 , snake_case : Optional[int]=1_2 , snake_case : Optional[int]=3_0_7_2 , snake_case : Tuple="gelu" , snake_case : Any=0.1 , snake_case : Tuple=0.1 , snake_case : Optional[Any]=5_1_2 , snake_case : str=2 , snake_case : Tuple=0.02 , snake_case : Any=1e-12 , snake_case : List[str]=1 , snake_case : Any=0 , snake_case : Tuple=2 , snake_case : Any=7_6_8 , snake_case : Any=2 , snake_case : Tuple=9 , snake_case : int=1 , snake_case : str=None , **snake_case : Dict , ) -> Optional[int]: """simple docstring""" super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case , ) UpperCamelCase_ : List[Any] = vocab_size UpperCamelCase_ : Any = hidden_size UpperCamelCase_ : int = num_hidden_layers UpperCamelCase_ : Any = num_attention_heads UpperCamelCase_ : List[Any] = intermediate_size UpperCamelCase_ : str = hidden_act UpperCamelCase_ : Union[str, Any] = hidden_dropout_prob UpperCamelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase_ : Dict = max_position_embeddings UpperCamelCase_ : Dict = type_vocab_size UpperCamelCase_ : str = initializer_range UpperCamelCase_ : Any = layer_norm_eps UpperCamelCase_ : Union[str, Any] = embedding_size UpperCamelCase_ : int = head_ratio UpperCamelCase_ : Optional[Any] = conv_kernel_size UpperCamelCase_ : Any = num_groups UpperCamelCase_ : int = classifier_dropout class _lowercase ( snake_case_ ): @property def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase_ : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
417
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase__ = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class a__ : """simple docstring""" __lowerCamelCase = PegasusConfig __lowerCamelCase = {} __lowerCamelCase = "gelu" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> str: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) A__ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) A__ = np.concatenate([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_pegasus_inputs_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, inputs_dict def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' A__ = 20 A__ = model_class_name(lowerCamelCase_ ) A__ = model.encode(inputs_dict["input_ids"] ) A__ , A__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) A__ = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) A__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) A__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) A__ = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase_ , ) A__ = model.decode(lowerCamelCase_ , lowerCamelCase_ ) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' A__ = 20 A__ = model_class_name(lowerCamelCase_ ) A__ = model.encode(inputs_dict["input_ids"] ) A__ , A__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) A__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A__ = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) A__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) A__ = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) A__ = model.decode(lowerCamelCase_ , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ ) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: int=None , SCREAMING_SNAKE_CASE_: int=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: A__ = np.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: A__ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class a__ ( a__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __lowerCamelCase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = FlaxPegasusModelTester(self ) A__ = ConfigTester(self , config_class=lowerCamelCase_ ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) A__ = model_class(lowerCamelCase_ ) @jax.jit def encode_jitted(lowercase , lowercase=None , **lowercase ): return model.encode(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) with self.subTest("JIT Enabled" ): A__ = encode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A__ = encode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = model_class(lowerCamelCase_ ) A__ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) A__ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowercase , lowercase , lowercase ): return model.decode( decoder_input_ids=lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , encoder_outputs=lowerCamelCase_ , ) with self.subTest("JIT Enabled" ): A__ = decode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A__ = decode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=lowerCamelCase_ ) A__ = np.ones((1, 1) ) A__ = model(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) A__ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) A__ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning \'Oh I think you\'re nominated\'\", said Dappy.\"And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around.\"At the end of the day we\'re grateful to be where we are in our careers.\"If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] A__ = [ "California\'s largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.", ] A__ = tokenizer(lowerCamelCase_ , return_tensors="np" , truncation=lowerCamelCase_ , max_length=512 , padding=lowerCamelCase_ ) A__ = model.generate(**lowerCamelCase_ , num_beams=2 ).sequences A__ = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) assert tgt_text == decoded
710
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class a__ ( snake_case ): """simple docstring""" def __init__( self , *lowercase , **lowercase ) -> None: '''simple docstring''' warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , lowercase , ) super().__init__(*lowercase , **lowercase )
626
0
import re def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = re.compile(r'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(lowerCAmelCase__ , lowerCAmelCase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
30
'''simple docstring''' SCREAMING_SNAKE_CASE : int = 8.3_1_4_4_5_9_8 def _UpperCamelCase ( lowerCAmelCase__: float ,lowerCAmelCase__: float ) -> float: if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example SCREAMING_SNAKE_CASE : List[str] = 300 SCREAMING_SNAKE_CASE : List[Any] = 28 SCREAMING_SNAKE_CASE : Optional[Any] = rms_speed_of_molecule(temperature, molar_mass) print(f"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
294
0
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan UpperCAmelCase__ = 637_8137.0 UpperCAmelCase__ = 635_6752.31_4245 UpperCAmelCase__ = 6_3_7_8_1_3_7 def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = (AXIS_A - AXIS_B) / AXIS_A _UpperCAmelCase = atan((1 - flattening) * tan(radians(lowercase ) ) ) _UpperCAmelCase = atan((1 - flattening) * tan(radians(lowercase ) ) ) _UpperCAmelCase = radians(lowercase ) _UpperCAmelCase = radians(lowercase ) # Equation _UpperCAmelCase = sin((phi_a - phi_a) / 2 ) _UpperCAmelCase = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _UpperCAmelCase = sqrt(sin_sq_phi + (cos(lowercase ) * cos(lowercase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
275
"""simple docstring""" from __future__ import annotations from random import choice def __UpperCAmelCase ( lowercase ): """simple docstring""" return choice(lowercase ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = random_pivot(lowercase ) # partition based on pivot # linear time _UpperCAmelCase = [e for e in lst if e < pivot] _UpperCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowercase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowercase ) < k - 1: return kth_number(lowercase ,k - len(lowercase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowercase ,lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
275
1
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __A ( UpperCamelCase__ ): a__ : int = """MCTCTFeatureExtractor""" a__ : int = """AutoTokenizer""" def __init__(self : Dict , __a : Tuple , __a : Optional[Any] ): super().__init__(__a , __a ) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False def __call__(self : Dict , *__a : int , **__a : str ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ = kwargs.pop("raw_speech" ) else: UpperCAmelCase_ = kwargs.pop("audio" , __a ) UpperCAmelCase_ = kwargs.pop("sampling_rate" , __a ) UpperCAmelCase_ = kwargs.pop("text" , __a ) if len(__a ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if text is not None: UpperCAmelCase_ = self.tokenizer(__a , **__a ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ = encodings["input_ids"] return inputs def _lowercase (self : List[Any] , *__a : List[Any] , **__a : int ): return self.tokenizer.batch_decode(*__a , **__a ) def _lowercase (self : Optional[int] , *__a : str , **__a : List[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__a , **__a ) UpperCAmelCase_ = kwargs.pop("input_features" , __a ) UpperCAmelCase_ = kwargs.pop("labels" , __a ) if len(__a ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if input_features is not None: UpperCAmelCase_ = self.feature_extractor.pad(__a , *__a , **__a ) if labels is not None: UpperCAmelCase_ = self.tokenizer.pad(__a , **__a ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ = labels["input_ids"] return input_features def _lowercase (self : Optional[int] , *__a : List[Any] , **__a : Tuple ): return self.tokenizer.decode(*__a , **__a ) @contextmanager def _lowercase (self : Any ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer yield UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False
78
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case = logging.get_logger(__name__) snake_case = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class lowerCAmelCase ( UpperCamelCase_ ): A_ : Tuple = """van""" def __init__( self : List[Any] , a__ : Dict=224 , a__ : Dict=3 , a__ : Union[str, Any]=[7, 3, 3, 3] , a__ : Optional[Any]=[4, 2, 2, 2] , a__ : Optional[Any]=[64, 128, 320, 512] , a__ : List[str]=[3, 3, 12, 3] , a__ : Any=[8, 8, 4, 4] , a__ : Optional[int]="gelu" , a__ : List[Any]=0.02 , a__ : Tuple=1e-6 , a__ : List[str]=1e-2 , a__ : List[str]=0.0 , a__ : List[Any]=0.0 , **a__ : Tuple , ): '''simple docstring''' super().__init__(**a__ ) lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : Tuple = num_channels lowerCAmelCase__ : List[Any] = patch_sizes lowerCAmelCase__ : Dict = strides lowerCAmelCase__ : List[str] = hidden_sizes lowerCAmelCase__ : Union[str, Any] = depths lowerCAmelCase__ : Tuple = mlp_ratios lowerCAmelCase__ : Optional[Any] = hidden_act lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : int = layer_norm_eps lowerCAmelCase__ : Optional[Any] = layer_scale_init_value lowerCAmelCase__ : List[str] = drop_path_rate lowerCAmelCase__ : Any = dropout_rate
378
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") UpperCamelCase = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) UpperCamelCase = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) UpperCamelCase = BeautifulSoup(res.text, "html.parser") UpperCamelCase = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'''https://google.com{link.get('href')}''')
721
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Any , *lowerCamelCase__ :Union[str, Any] , **lowerCamelCase__ :int ): warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
383
0
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A_ = sys.version_info >= (3, 10) def _UpperCamelCase ( A=None , A=None ): return field(default_factory=lambda: default , metadata=A ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Tuple = 42 __lowerCamelCase : Optional[Any] = 42 __lowerCamelCase : Optional[int] = 42 __lowerCamelCase : Optional[int] = 42 @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : int = 42 __lowerCamelCase : List[str] = field(default="toto" , metadata={"help": "help message"} ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Any = False __lowerCamelCase : Tuple = True __lowerCamelCase : int = None class __lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "titi" __lowerCamelCase : Any = "toto" class __lowerCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "titi" __lowerCamelCase : str = "toto" __lowerCamelCase : Optional[int] = 42 @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : List[str] = "toto" def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =BasicEnum(self.foo ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Tuple = "toto" def UpperCamelCase__ ( self: List[str] ): UpperCamelCase_ =MixedTypeEnum(self.foo ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : int = None __lowerCamelCase : Optional[int] = field(default=UpperCAmelCase__ , metadata={"help": "help message"} ) __lowerCamelCase : Dict = None __lowerCamelCase : List[Any] = list_field(default=[] ) __lowerCamelCase : Dict = list_field(default=[] ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Optional[Any] = list_field(default=[] ) __lowerCamelCase : Union[str, Any] = list_field(default=[1, 2, 3] ) __lowerCamelCase : int = list_field(default=["Hallo", "Bonjour", "Hello"] ) __lowerCamelCase : List[Any] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Dict = field() __lowerCamelCase : Union[str, Any] = field() __lowerCamelCase : Union[str, Any] = field() def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =BasicEnum(self.required_enum ) @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Optional[int] = 42 __lowerCamelCase : List[str] = field() __lowerCamelCase : str = None __lowerCamelCase : int = field(default="toto" , metadata={"help": "help message"} ) __lowerCamelCase : Union[str, Any] = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : List[Any] = False __lowerCamelCase : List[Any] = True __lowerCamelCase : Optional[int] = None @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : Dict = None __lowerCamelCase : str = field(default=UpperCAmelCase__ , metadata={"help": "help message"} ) __lowerCamelCase : Dict = None __lowerCamelCase : Union[str, Any] = list_field(default=[] ) __lowerCamelCase : Tuple = list_field(default=[] ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self: Any , UpperCamelCase_: argparse.ArgumentParser , UpperCamelCase_: argparse.ArgumentParser ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCamelCase_ ={k: v for k, v in vars(_UpperCAmelCase ).items() if k != "container"} UpperCamelCase_ ={k: v for k, v in vars(_UpperCAmelCase ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , _UpperCAmelCase ) and yy.get("choices" , _UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](_UpperCAmelCase ) , yy["type"](_UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("--bar" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("--baz" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("--flag" , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs="?" ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((UpperCamelCase_ ) , ) =parser.parse_args_into_dataclasses(_UpperCAmelCase , look_for_args_file=_UpperCAmelCase ) self.assertFalse(example.flag ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=_UpperCAmelCase ) expected.add_argument("--baz" , default="toto" , type=_UpperCAmelCase , help="help message" ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo" , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs="?" ) expected.add_argument("--baz" , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=_UpperCAmelCase , dest="baz" ) expected.add_argument("--opt" , type=_UpperCAmelCase , default=_UpperCAmelCase ) UpperCamelCase_ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase ) for dataclass_type in dataclass_types: UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_args([] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) UpperCamelCase_ =parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) UpperCamelCase_ =parser.parse_args(["--foo", "--baz"] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) UpperCamelCase_ =parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) UpperCamelCase_ =parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase ) ) def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase_ =parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCamelCase_ =parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase_ =parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCamelCase_ =parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) UpperCamelCase_ =parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCamelCase__ ( self: List[str] ): @dataclass class __lowerCAmelCase : '''simple docstring''' __lowerCamelCase : List[Any] = "toto" UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase_ =parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase_ =parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=_UpperCAmelCase ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=_UpperCAmelCase ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=_UpperCAmelCase ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_args([] ) self.assertEqual( _UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCamelCase_ =parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(_UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo" , default=_UpperCAmelCase , type=_UpperCAmelCase ) expected.add_argument("--bar" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="help message" ) expected.add_argument("--baz" , default=_UpperCAmelCase , type=_UpperCAmelCase ) expected.add_argument("--ces" , nargs="+" , default=[] , type=_UpperCAmelCase ) expected.add_argument("--des" , nargs="+" , default=[] , type=_UpperCAmelCase ) UpperCamelCase_ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase ) for dataclass_type in dataclass_types: UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_args([] ) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , bar=_UpperCAmelCase , baz=_UpperCAmelCase , ces=[] , des=[] ) ) UpperCamelCase_ =parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(_UpperCAmelCase , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def UpperCamelCase__ ( self: str ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument("--required_str" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=_UpperCAmelCase , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ =argparse.ArgumentParser() expected.add_argument("--foo" , type=_UpperCAmelCase , required=_UpperCAmelCase ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=_UpperCAmelCase , ) expected.add_argument("--opt" , type=_UpperCAmelCase , default=_UpperCAmelCase ) expected.add_argument("--baz" , default="toto" , type=_UpperCAmelCase , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=_UpperCAmelCase ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } UpperCamelCase_ =parser.parse_dict(_UpperCAmelCase )[0] UpperCamelCase_ =BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(_UpperCAmelCase , parser.parse_dict , _UpperCAmelCase , allow_extra_keys=_UpperCAmelCase ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ =os.path.join(_UpperCAmelCase , "temp_json" ) os.mkdir(_UpperCAmelCase ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] UpperCamelCase_ =BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) UpperCamelCase_ ={ "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ =os.path.join(_UpperCAmelCase , "temp_yaml" ) os.mkdir(_UpperCAmelCase ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ =parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] UpperCamelCase_ =BasicExample(**_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =HfArgumentParser(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
391
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCamelCase__ (self : Tuple , **_UpperCAmelCase : int ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Dict ) -> Optional[int]: """simple docstring""" lowercase__ = """</s>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_UpperCAmelCase ) , 1103 ) def lowerCamelCase__ (self : str ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCamelCase__ (self : Any ) -> Optional[int]: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" lowercase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowercase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ = """To ensure a smooth flow of bank resolutions.""" lowercase__ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] lowercase__ = tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = PegasusTokenizer A__ = PegasusTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PegasusTokenizer(_UpperCAmelCase , offset=0 , mask_token_sent=_UpperCAmelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCamelCase__ (self : str , **_UpperCAmelCase : Union[str, Any] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowercase__ = rust_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowercase__ = py_tokenizer([raw_input_str] , return_tensors=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ).input_ids[0] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_torch def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowercase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowercase__ = self._large_tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) lowercase__ = self._large_tokenizer( text_target=_UpperCAmelCase , max_length=5 , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_UpperCAmelCase ) == 2 # input_ids, attention_mask. def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" lowercase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowercase__ = self._large_tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual( _UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
15
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name class a__ ( A__ ): def __init__( self :List[Any] , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :List[str] ): '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self :Tuple , _lowerCamelCase :int = 1 , _lowerCamelCase :int = 100 , _lowerCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase :Optional[float] = None , _lowerCamelCase :bool = True , ): '''simple docstring''' if audio_length_in_s is None: UpperCamelCase_ : Optional[Any] =self.unet.config.sample_size / self.unet.config.sample_rate UpperCamelCase_ : str =audio_length_in_s * self.unet.config.sample_rate UpperCamelCase_ : List[Any] =2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) UpperCamelCase_ : Dict =int(_lowerCamelCase ) if sample_size % down_scale_factor != 0: UpperCamelCase_ : int =( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) UpperCamelCase_ : Tuple =int(_lowerCamelCase ) UpperCamelCase_ : Union[str, Any] =next(iter(self.unet.parameters() ) ).dtype UpperCamelCase_ : str =(batch_size, self.unet.config.in_channels, sample_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ : Optional[int] =randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=_lowerCamelCase ) # set step values self.scheduler.set_timesteps(_lowerCamelCase , device=audio.device ) UpperCamelCase_ : Optional[Any] =self.scheduler.timesteps.to(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase_ : Tuple =self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. compute previous image: x_t -> t_t-1 UpperCamelCase_ : Optional[int] =self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample UpperCamelCase_ : Union[str, Any] =audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCamelCase_ : List[str] =audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_lowerCamelCase )
717
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a__ ( A__ ): def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : List[str] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'depth_multiplier' ) ) class a__ : def __init__( self :Tuple , _lowerCamelCase :int , _lowerCamelCase :Optional[Any]=13 , _lowerCamelCase :List[Any]=3 , _lowerCamelCase :Optional[Any]=32 , _lowerCamelCase :str=0.25 , _lowerCamelCase :str=8 , _lowerCamelCase :str=8 , _lowerCamelCase :Tuple=6 , _lowerCamelCase :Optional[Any]=32 , _lowerCamelCase :Union[str, Any]=True , _lowerCamelCase :int=True , _lowerCamelCase :Optional[int]=True , _lowerCamelCase :Tuple="relu6" , _lowerCamelCase :List[Any]=1_280 , _lowerCamelCase :Optional[int]=0.1 , _lowerCamelCase :Optional[Any]=0.02 , _lowerCamelCase :Dict=True , _lowerCamelCase :List[str]=True , _lowerCamelCase :List[str]=10 , _lowerCamelCase :List[Any]=None , ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =parent UpperCamelCase_ : Optional[Any] =batch_size UpperCamelCase_ : List[str] =num_channels UpperCamelCase_ : Union[str, Any] =image_size UpperCamelCase_ : Union[str, Any] =depth_multiplier UpperCamelCase_ : Optional[Any] =depth_divisible_by UpperCamelCase_ : Optional[Any] =min_depth UpperCamelCase_ : List[Any] =expand_ratio UpperCamelCase_ : Any =tf_padding UpperCamelCase_ : List[str] =output_stride UpperCamelCase_ : Tuple =first_layer_is_expansion UpperCamelCase_ : Any =finegrained_output UpperCamelCase_ : Dict =hidden_act UpperCamelCase_ : int =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCamelCase_ : Optional[int] =classifier_dropout_prob UpperCamelCase_ : str =use_labels UpperCamelCase_ : List[Any] =is_training UpperCamelCase_ : Tuple =num_labels UpperCamelCase_ : Optional[int] =initializer_range UpperCamelCase_ : Union[str, Any] =scope def lowerCamelCase_ ( self :str ): '''simple docstring''' UpperCamelCase_ : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : Dict =None UpperCamelCase_ : Dict =None if self.use_labels: UpperCamelCase_ : List[str] =ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ : List[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_ : Any =self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self :Any ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :Optional[int] , _lowerCamelCase :str , _lowerCamelCase :Tuple , _lowerCamelCase :List[str] ): '''simple docstring''' UpperCamelCase_ : List[Any] =MobileNetVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : List[Any] =model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCamelCase_ ( self :Dict , _lowerCamelCase :int , _lowerCamelCase :Optional[Any] , _lowerCamelCase :str , _lowerCamelCase :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : Tuple =self.num_labels UpperCamelCase_ : List[str] =MobileNetVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : List[str] =model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self :Any , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :str , _lowerCamelCase :Dict ): '''simple docstring''' UpperCamelCase_ : Tuple =self.num_labels UpperCamelCase_ : int =MobileNetVaForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : Dict =model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase_ : int =model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : str =self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : int =config_and_inputs UpperCamelCase_ : Dict ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): UpperCAmelCase__ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def lowerCamelCase_ ( self :Union[str, Any] ): '''simple docstring''' UpperCamelCase_ : Dict =MobileNetVaModelTester(self ) UpperCamelCase_ : Any =MobileNetVaConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowerCamelCase_ ( self :int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def lowerCamelCase_ ( self :int ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def lowerCamelCase_ ( self :str ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def lowerCamelCase_ ( self :int ): '''simple docstring''' pass def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Tuple =model_class(_lowerCamelCase ) UpperCamelCase_ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Optional[int] =[*signature.parameters.keys()] UpperCamelCase_ : List[str] =['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' UpperCamelCase_ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCamelCase_ ( self :Dict ): '''simple docstring''' def check_hidden_states_output(_lowerCamelCase :List[Any] , _lowerCamelCase :List[Any] , _lowerCamelCase :List[Any] ): UpperCamelCase_ : List[str] =model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ : str =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_ : Optional[Any] =outputs.hidden_states UpperCamelCase_ : List[str] =16 self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Dict =True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ : Dict =True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @slow def lowerCamelCase_ ( self :str ): '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : List[str] =MobileNetVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def A_ ( ): UpperCamelCase_ : Dict =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : Optional[int] =MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_lowerCamelCase ) UpperCamelCase_ : List[Any] =self.default_image_processor UpperCamelCase_ : List[Any] =prepare_img() UpperCamelCase_ : List[str] =image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : List[Any] =model(**_lowerCamelCase ) # verify the logits UpperCamelCase_ : Optional[int] =torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_ : Optional[Any] =torch.tensor([0.2445, -1.1993, 0.1905] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : Dict =MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase_ : Optional[int] =model.to(_lowerCamelCase ) UpperCamelCase_ : Dict =MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase_ : Any =prepare_img() UpperCamelCase_ : List[Any] =image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : Any =model(**_lowerCamelCase ) UpperCamelCase_ : Any =outputs.logits # verify the logits UpperCamelCase_ : Optional[int] =torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCamelCase_ : List[Any] =torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
395
0
UpperCamelCase__ : List[Any] = '''Alexander Joslin''' import operator as op from .stack import Stack def __UpperCAmelCase ( lowerCamelCase_ : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} SCREAMING_SNAKE_CASE_ : Stack[int] = Stack() SCREAMING_SNAKE_CASE_ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase_ ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase_ ) elif i == ")": # RULE 4 SCREAMING_SNAKE_CASE_ : Optional[Any] = operator_stack.peek() operator_stack.pop() SCREAMING_SNAKE_CASE_ : Union[str, Any] = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE_ : Tuple = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE_ : Any = operators[opr](lowerCamelCase_ , lowerCamelCase_ ) operand_stack.push(lowerCamelCase_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": UpperCamelCase__ : Optional[int] = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
105
from collections.abc import Iterable from typing import Any class _UpperCAmelCase : """simple docstring""" def __init__( self , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = value lowerCAmelCase__ :Node | None = None # Added in order to delete a node easier lowerCAmelCase__ :Node | None = None lowerCAmelCase__ :Node | None = None def __repr__( self ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class _UpperCAmelCase : """simple docstring""" def __init__( self , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Dict = root def __str__( self ): '''simple docstring''' return str(self.root ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase__ :Tuple = node.parent if node.parent is not None: # reset its parent if self.is_right(_lowerCAmelCase ): # If it is the right children lowerCAmelCase__ :Union[str, Any] = new_children else: lowerCAmelCase__ :int = new_children else: lowerCAmelCase__ :Optional[Any] = new_children def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def snake_case_ ( self ): '''simple docstring''' return self.root is None def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = Node(_lowerCAmelCase ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ :List[str] = new_node # set its root else: # Tree is not empty lowerCAmelCase__ :Optional[int] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ :int = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ :List[Any] = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ :Dict = new_node break else: lowerCAmelCase__ :Dict = parent_node.right lowerCAmelCase__ :Tuple = parent_node def snake_case_ ( self , *_lowerCAmelCase ): '''simple docstring''' for value in values: self.__insert(_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase__ :Optional[int] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ :Optional[int] = node.left if value < node.value else node.right return node def snake_case_ ( self , _lowerCAmelCase = None ): '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase__ :str = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ :List[str] = node.right return node def snake_case_ ( self , _lowerCAmelCase = None ): '''simple docstring''' if node is None: lowerCAmelCase__ :str = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ :Dict = self.root while node.left is not None: lowerCAmelCase__ :Union[str, Any] = node.left return node def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.search(_lowerCAmelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_lowerCAmelCase , _lowerCAmelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(_lowerCAmelCase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_lowerCAmelCase , node.left ) else: lowerCAmelCase__ :str = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ :List[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def snake_case_ ( self , _lowerCAmelCase=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' if node: self.inorder(_lowerCAmelCase , node.left ) arr.append(node.value ) self.inorder(_lowerCAmelCase , node.right ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :list[int] = [] self.inorder(_lowerCAmelCase , _lowerCAmelCase ) # append all values to list using inorder traversal return arr[k - 1] def snake_case__ ( UpperCAmelCase : Node | None ): lowerCAmelCase__ :List[Any] = [] if curr_node is not None: lowerCAmelCase__ :str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def snake_case__ ( ): lowerCAmelCase__ :Union[str, Any] = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7) lowerCAmelCase__ :Any = BinarySearchTree() for i in testlist: t.insert(UpperCAmelCase ) # Prints all the elements of the list in order traversal print(UpperCAmelCase ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(UpperCAmelCase ) print(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
145
0
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "linear" _lowerCAmelCase = "cosine" _lowerCAmelCase = "cosine_with_restarts" _lowerCAmelCase = "polynomial" _lowerCAmelCase = "constant" _lowerCAmelCase = "constant_with_warmup" _lowerCAmelCase = "piecewise_constant" def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int = -1 ): return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase : 1 , last_epoch=_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int = -1 ): def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) ) return 1.0 return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : str , _lowerCamelCase : int = -1 ): __a : Optional[int] = {} __a : Any = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __a , __a : int = rule_str.split(""":""" ) __a : Optional[int] = int(_lowerCamelCase ) __a : str = float(_lowerCamelCase ) __a : int = value __a : Dict = float(rule_list[-1] ) def create_rules_function(_lowerCamelCase : str , _lowerCamelCase : Tuple ): def rule_func(_lowerCamelCase : int ) -> float: __a : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __a : Optional[int] = create_rules_function(_lowerCamelCase , _lowerCamelCase ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : str=-1 ): def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float = 0.5 , _lowerCamelCase : int = -1 ): def lr_lambda(_lowerCamelCase : Any ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __a : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 1 , _lowerCamelCase : int = -1 ): def lr_lambda(_lowerCamelCase : Optional[int] ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __a : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=1E-7 , _lowerCamelCase : Optional[int]=1.0 , _lowerCamelCase : Optional[int]=-1 ): __a : Union[str, Any] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __a : Tuple = lr_init - lr_end __a : int = num_training_steps - num_warmup_steps __a : Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps __a : List[str] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( _lowerCamelCase : Union[str, SchedulerType] , _lowerCamelCase : Optimizer , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : int = 1 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : int = -1 , ): __a : int = SchedulerType(_lowerCamelCase ) __a : Optional[int] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , ) return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
63
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=0 ): '''simple docstring''' __a : Any = 1.0 if scale is None else scale __a : str = 0.0 if loc is None else loc super().__init__(_lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowercase )] ) @property def lowerCAmelCase__(self ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def lowerCAmelCase__(self ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def lowerCAmelCase__(self ): '''simple docstring''' return self.variance.sqrt() class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self , _lowercase , _lowercase , _lowercase , **_lowercase ): '''simple docstring''' super().__init__(**_lowercase ) __a : str = args_dim __a : List[Any] = nn.ModuleList([nn.Linear(_lowercase , _lowercase ) for dim in args_dim.values()] ) __a : Dict = domain_map def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : List[Any] = [proj(_lowercase ) for proj in self.proj] return self.domain_map(*_lowercase ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self , _lowercase ): '''simple docstring''' super().__init__() __a : Optional[int] = function def lowerCAmelCase__(self , _lowercase , *_lowercase ): '''simple docstring''' return self.function(_lowercase , *_lowercase ) class SCREAMING_SNAKE_CASE__ : _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__(self , _lowercase = 1 ): '''simple docstring''' __a : Optional[int] = dim __a : str = {k: dim * self.args_dim[k] for k in self.args_dim} def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*_lowercase ) else: return Independent(self.distribution_class(*_lowercase ) , 1 ) def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = None , ): '''simple docstring''' __a : Tuple = self._base_distribution(_lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowercase , loc=_lowercase , scale=_lowercase , event_dim=self.event_dim ) @property def lowerCAmelCase__(self ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def lowerCAmelCase__(self ): '''simple docstring''' return len(self.event_shape ) @property def lowerCAmelCase__(self ): '''simple docstring''' return 0.0 def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return ParameterProjection( in_features=_lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowerCAmelCase__(self , *_lowercase ): '''simple docstring''' raise NotImplementedError() @staticmethod def lowerCAmelCase__(_lowercase ): '''simple docstring''' return (x + torch.sqrt(torch.square(_lowercase ) + 4.0 )) / 2.0 class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : int = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __a : Optional[Any] = 2.0 + cls.squareplus(_lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase ): '''simple docstring''' __a : str = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase ): '''simple docstring''' __a : Union[str, Any] = cls.squareplus(_lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a , __a : Optional[Any] = distr_args if self.dim == 1: return self.distribution_class(total_count=_lowercase , logits=_lowercase ) else: return Independent(self.distribution_class(total_count=_lowercase , logits=_lowercase ) , 1 ) def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = None ): '''simple docstring''' __a , __a : List[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
63
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "gptj" lowercase_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : str , _lowerCAmelCase : str=50_400 , _lowerCAmelCase : int=2_048 , _lowerCAmelCase : Union[str, Any]=4_096 , _lowerCAmelCase : Tuple=28 , _lowerCAmelCase : List[str]=16 , _lowerCAmelCase : Dict=64 , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : str="gelu_new" , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : str=1E-5 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=50_256 , _lowerCAmelCase : Optional[int]=50_256 , _lowerCAmelCase : Tuple=False , **_lowerCAmelCase : Tuple , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = n_positions SCREAMING_SNAKE_CASE_ = n_embd SCREAMING_SNAKE_CASE_ = n_layer SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = n_inner SCREAMING_SNAKE_CASE_ = rotary_dim SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = resid_pdrop SCREAMING_SNAKE_CASE_ = embd_pdrop SCREAMING_SNAKE_CASE_ = attn_pdrop SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id super().__init__( bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , **_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : PretrainedConfig , _lowerCAmelCase : str = "default" , _lowerCAmelCase : List[PatchingSpec] = None , _lowerCAmelCase : bool = False , ): super().__init__(_lowerCAmelCase , task=_lowerCAmelCase , patching_specs=_lowerCAmelCase , use_past=_lowerCAmelCase ) if not getattr(self._config , 'pad_token_id' , _lowerCAmelCase ): # TODO: how to do that better? SCREAMING_SNAKE_CASE_ = 0 @property def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs' ) SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'past_sequence + sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCAmelCase_ ( self : Dict ): return self._config.n_layer @property def lowerCAmelCase_ ( self : Optional[Any] ): return self._config.n_head def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super(_lowerCAmelCase , self ).generate_dummy_inputs( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE_ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs['input_ids'].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE_ = common_inputs['attention_mask'] if self.use_past: SCREAMING_SNAKE_CASE_ = ordered_inputs['attention_mask'].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase_ ( self : int ): return 13
31
from __future__ import annotations import math def _lowercase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : bool , __UpperCamelCase : list[int] , __UpperCamelCase : float ): if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , ) ) def _lowercase ( ): snake_case__ = [90, 23, 6, 33, 21, 65, 123, 3_4423] snake_case__ = math.log(len(__UpperCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
214
0
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase ( __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = RoCBertTokenizer _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = filter_non_english def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' super().setUp() _snake_case: int = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] _snake_case: Union[str, Any] = {} _snake_case: List[str] = {} for i, value in enumerate(__snake_case ): _snake_case: Union[str, Any] = i _snake_case: Any = i _snake_case: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) _snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(__snake_case , __snake_case , ensure_ascii=__snake_case ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(__snake_case , __snake_case , ensure_ascii=__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: List[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _snake_case: int = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(__snake_case , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__snake_case ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__snake_case ) , [5, 6, 2, 5, 7, 8] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: Union[str, Any] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case: Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: int = RoCBertBasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: int = RoCBertBasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Tuple = RoCBertBasicTokenizer(do_lower_case=__snake_case , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: Any = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case: List[Any] = {} for i, token in enumerate(__snake_case ): _snake_case: Dict = i _snake_case: Tuple = RoCBertWordpieceTokenizer(vocab=__snake_case , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: List[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__snake_case ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: _snake_case: List[str] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__snake_case ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case: Optional[int] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _snake_case: Union[str, Any] = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case: str = tokenizer_r.encode_plus( __snake_case , return_attention_mask=__snake_case , return_token_type_ids=__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case , ) _snake_case: Optional[Any] = tokenizer_r.do_lower_case if hasattr(__snake_case , 'do_lower_case' ) else False _snake_case: Optional[int] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: Union[str, Any] = ['的', '人', '有'] _snake_case: str = ''.join(__snake_case ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case: Optional[Any] = True _snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _snake_case: Any = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _snake_case: Tuple = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) _snake_case: Any = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) _snake_case: Optional[Any] = tokenizer_r.convert_ids_to_tokens(__snake_case ) _snake_case: Optional[int] = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case ) _snake_case: Dict = False _snake_case: List[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _snake_case: int = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _snake_case: str = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) _snake_case: int = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) _snake_case: Tuple = tokenizer_r.convert_ids_to_tokens(__snake_case ) _snake_case: Tuple = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case: str = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(__snake_case ) ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: Union[str, Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _snake_case: int = tokenizer.encode('你好' , add_special_tokens=__snake_case ) _snake_case: Tuple = tokenizer.encode('你是谁' , add_special_tokens=__snake_case ) _snake_case: Dict = tokenizer.build_inputs_with_special_tokens(__snake_case ) _snake_case: Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: List[str] = self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _snake_case: int = '你好,你是谁' _snake_case: Optional[int] = tokenizer.tokenize(__snake_case ) _snake_case: Dict = tokenizer.convert_tokens_to_ids(__snake_case ) _snake_case: Optional[int] = tokenizer.convert_tokens_to_shape_ids(__snake_case ) _snake_case: Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(__snake_case ) _snake_case: List[Any] = tokenizer.prepare_for_model( __snake_case , __snake_case , __snake_case , add_special_tokens=__snake_case ) _snake_case: Union[str, Any] = tokenizer.encode_plus(__snake_case , add_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case )
700
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A : Optional[Any] = tuple[int, int] class lowerCamelCase : def __init__( self : Tuple , __snake_case : set[int] , __snake_case : Mapping[EdgeT, int] ): '''simple docstring''' _snake_case: set[int] = vertices _snake_case: dict[EdgeT, int] = { (min(__snake_case ), max(__snake_case )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : EdgeT , __snake_case : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) _snake_case: Dict = weight def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Graph = Graph({min(self.vertices )} , {} ) _snake_case: EdgeT _snake_case: int _snake_case: EdgeT _snake_case: int while len(subgraph.vertices ) < len(self.vertices ): _snake_case: List[str] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _snake_case: Optional[Any] = edge _snake_case: Optional[int] = weight subgraph.add_edge(__snake_case , __snake_case ) return subgraph def lowercase_ ( lowercase__ = "p107_network.txt" ) ->int: _snake_case: str = os.path.abspath(os.path.dirname(lowercase__ ) ) _snake_case: str = os.path.join(lowercase__ , lowercase__ ) _snake_case: dict[EdgeT, int] = {} _snake_case: list[str] _snake_case: int _snake_case: int with open(lowercase__ ) as f: _snake_case: Tuple = f.read().strip().split('\n' ) _snake_case: Tuple = [line.split(',' ) for line in data] for edgea in range(1 , len(lowercase__ ) ): for edgea in range(lowercase__ ): if adjaceny_matrix[edgea][edgea] != "-": _snake_case: int = int(adjaceny_matrix[edgea][edgea] ) _snake_case: Graph = Graph(set(range(len(lowercase__ ) ) ) , lowercase__ ) _snake_case: Graph = graph.prims_algorithm() _snake_case: int = sum(graph.edges.values() ) _snake_case: int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
273
0
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "geglu" , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = "layer_norm" , lowerCAmelCase__ = False , ) -> Optional[int]: super().__init__() a : Union[str, Any] = only_cross_attention a : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" a : str = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: a : Tuple = AdaLayerNorm(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.use_ada_layer_norm_zero: a : Union[str, Any] = AdaLayerNormZero(lowerCAmelCase__ , lowerCAmelCase__ ) else: a : List[Any] = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) a : Optional[int] = Attention( query_dim=lowerCAmelCase__ , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , dropout=lowerCAmelCase__ , bias=lowerCAmelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=lowerCAmelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. a : int = ( AdaLayerNorm(lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) ) a : Dict = Attention( query_dim=lowerCAmelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , dropout=lowerCAmelCase__ , bias=lowerCAmelCase__ , upcast_attention=lowerCAmelCase__ , ) # is self-attn if encoder_hidden_states is none else: a : Any = None a : List[Any] = None # 3. Feed-forward a : Any = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) a : Any = FeedForward(lowerCAmelCase__ , dropout=lowerCAmelCase__ , activation_fn=lowerCAmelCase__ , final_dropout=lowerCAmelCase__ ) # let chunk size default to None a : Any = None a : Tuple = 0 def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: # Sets chunk feed-forward a : List[str] = chunk_size a : Optional[int] = dim def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Any: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: a : Union[str, Any] = self.norma(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.use_ada_layer_norm_zero: a, a, a, a, a : Dict = self.norma( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hidden_dtype=hidden_states.dtype ) else: a : Union[str, Any] = self.norma(lowerCAmelCase__ ) a : List[str] = cross_attention_kwargs if cross_attention_kwargs is not None else {} a : Optional[Any] = self.attna( lowerCAmelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) if self.use_ada_layer_norm_zero: a : Any = gate_msa.unsqueeze(1 ) * attn_output a : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: a : Tuple = ( self.norma(lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_ada_layer_norm else self.norma(lowerCAmelCase__ ) ) a : List[str] = self.attna( lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) a : int = attn_output + hidden_states # 3. Feed-forward a : Optional[Any] = self.norma(lowerCAmelCase__ ) if self.use_ada_layer_norm_zero: a : Any = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) a : str = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size a : Optional[int] = torch.cat( [self.ff(lowerCAmelCase__ ) for hid_slice in norm_hidden_states.chunk(lowerCAmelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: a : int = self.ff(lowerCAmelCase__ ) if self.use_ada_layer_norm_zero: a : str = gate_mlp.unsqueeze(1 ) * ff_output a : Dict = ff_output + hidden_states return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = "geglu" , lowerCAmelCase__ = False , ) -> List[str]: super().__init__() a : int = int(dim * mult ) a : Union[str, Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": a : List[str] = GELU(lowerCAmelCase__ , lowerCAmelCase__ ) if activation_fn == "gelu-approximate": a : Tuple = GELU(lowerCAmelCase__ , lowerCAmelCase__ , approximate="tanh" ) elif activation_fn == "geglu": a : Tuple = GEGLU(lowerCAmelCase__ , lowerCAmelCase__ ) elif activation_fn == "geglu-approximate": a : Tuple = ApproximateGELU(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[str] = nn.ModuleList([] ) # project in self.net.append(lowerCAmelCase__ ) # project dropout self.net.append(nn.Dropout(lowerCAmelCase__ ) ) # project out self.net.append(nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowerCAmelCase__ ) ) def __a ( self , lowerCAmelCase__ ) -> int: for module in self.net: a : str = module(lowerCAmelCase__ ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = "none" ) -> Optional[Any]: super().__init__() a : str = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = approximate def __a ( self , lowerCAmelCase__ ) -> Tuple: if gate.device.type != "mps": return F.gelu(lowerCAmelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __a ( self , lowerCAmelCase__ ) -> List[Any]: a : Optional[int] = self.proj(lowerCAmelCase__ ) a : Tuple = self.gelu(lowerCAmelCase__ ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: super().__init__() a : Optional[Any] = nn.Linear(lowerCAmelCase__ , dim_out * 2 ) def __a ( self , lowerCAmelCase__ ) -> Optional[Any]: if gate.device.type != "mps": return F.gelu(lowerCAmelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __a ( self , lowerCAmelCase__ ) -> List[str]: a, a : Tuple = self.proj(lowerCAmelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(lowerCAmelCase__ ) class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: super().__init__() a : Optional[int] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ ) -> List[Any]: a : str = self.proj(lowerCAmelCase__ ) return x * torch.sigmoid(1.702 * x ) class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: super().__init__() a : List[str] = nn.Embedding(lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[Any] = nn.SiLU() a : List[Any] = nn.Linear(lowerCAmelCase__ , embedding_dim * 2 ) a : Union[str, Any] = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: a : Any = self.linear(self.silu(self.emb(lowerCAmelCase__ ) ) ) a, a : Tuple = torch.chunk(lowerCAmelCase__ , 2 ) a : Any = self.norm(lowerCAmelCase__ ) * (1 + scale) + shift return x class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: super().__init__() a : int = CombinedTimestepLabelEmbeddings(lowerCAmelCase__ , lowerCAmelCase__ ) a : Any = nn.SiLU() a : List[str] = nn.Linear(lowerCAmelCase__ , 6 * embedding_dim , bias=lowerCAmelCase__ ) a : Dict = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ , eps=1E-6 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ) -> int: a : Optional[Any] = self.linear(self.silu(self.emb(lowerCAmelCase__ , lowerCAmelCase__ , hidden_dtype=lowerCAmelCase__ ) ) ) a, a, a, a, a, a : Dict = emb.chunk(6 , dim=1 ) a : Dict = self.norm(lowerCAmelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __UpperCamelCase ( nn.Module ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = 1E-5 ) -> List[str]: super().__init__() a : str = num_groups a : List[str] = eps if act_fn is None: a : List[Any] = None else: a : str = get_activation(lowerCAmelCase__ ) a : int = nn.Linear(lowerCAmelCase__ , out_dim * 2 ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: if self.act: a : Optional[int] = self.act(lowerCAmelCase__ ) a : Optional[int] = self.linear(lowerCAmelCase__ ) a : Optional[int] = emb[:, :, None, None] a, a : Tuple = emb.chunk(2 , dim=1 ) a : Any = F.group_norm(lowerCAmelCase__ , self.num_groups , eps=self.eps ) a : Optional[Any] = x * (1 + scale) + shift return x
633
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : int = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): lowerCamelCase : Optional[int] =["""pixel_values"""] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = PIL.Image.BICUBIC , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 / 255 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: super().__init__(**lowerCAmelCase__ ) a : Optional[int] = size if size is not None else {"height": 256, "width": 256} a : Tuple = get_size_dict(lowerCAmelCase__ ) a : Any = crop_size if crop_size is not None else {"height": 224, "width": 224} a : Dict = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) a : Tuple = do_resize a : int = size a : List[str] = resample a : List[Any] = do_center_crop a : List[Any] = crop_size a : Union[str, Any] = do_rescale a : List[Any] = rescale_factor a : Union[str, Any] = do_normalize a : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = PIL.Image.BICUBIC , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: a : Optional[int] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( lowerCAmelCase__ , size=(size["height"], size["width"]) , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: a : List[str] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Union[str, Any]: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ) -> PIL.Image.Image: a : List[Any] = do_resize if do_resize is not None else self.do_resize a : str = resample if resample is not None else self.resample a : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop a : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale a : str = rescale_factor if rescale_factor is not None else self.rescale_factor a : Dict = do_normalize if do_normalize is not None else self.do_normalize a : List[str] = image_mean if image_mean is not None else self.image_mean a : Union[str, Any] = image_std if image_std is not None else self.image_std a : str = size if size is not None else self.size a : Any = get_size_dict(lowerCAmelCase__ ) a : Dict = crop_size if crop_size is not None else self.crop_size a : List[str] = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) a : str = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. a : Optional[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: a : Optional[int] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: a : Dict = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: a : Any = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: a : Optional[Any] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] a : Optional[Any] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] a : Tuple = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
633
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase : list , _lowerCamelCase : list , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): if index == number_of_items: return 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = knapsack(a_ , a_ , a_ , a_ , index + 1 ) if weights[index] <= max_weight: lowerCamelCase_ = values[index] + knapsack( a_ , a_ , a_ , max_weight - weights[index] , index + 1 ) return max(a_ , a_ ) if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __lowercase :Optional[int] = KandinskyVaaImgaImgPipeline __lowercase :Dict = ["image_embeds", "negative_image_embeds", "image"] __lowercase :Union[str, Any] = [ "image_embeds", "negative_image_embeds", "image", ] __lowercase :str = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowercase :Union[str, Any] = False @property def _lowerCAmelCase ( self ) -> str: '''simple docstring''' return 32 @property def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' return 32 @property def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def _lowerCAmelCase ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' return 100 @property def _lowerCAmelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCamelCase_ = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.dummy_unet lowerCamelCase_ = self.dummy_movq lowerCamelCase_ = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowerCamelCase_ = DDIMScheduler(**UpperCamelCase__ ) lowerCamelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Any: '''simple docstring''' lowerCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) # create init_image lowerCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) if str(UpperCamelCase__ ).startswith('''mps''' ): lowerCamelCase_ = torch.manual_seed(UpperCamelCase__ ) else: lowerCamelCase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowerCamelCase_ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = '''cpu''' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**UpperCamelCase__ ) lowerCamelCase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) lowerCamelCase_ = output.images lowerCamelCase_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) lowerCamelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowerCamelCase_ = '''A red cartoon frog, 4k''' lowerCamelCase_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) lowerCamelCase_ = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowerCamelCase_ = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase_ , lowerCamelCase_ = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowerCamelCase_ = pipeline( image=UpperCamelCase__ , image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) lowerCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
66
0
"""simple docstring""" import os import sys import unittest A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") A = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class a__ ( unittest.TestCase ): def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Any = get_test_to_tester_mapping(UpperCamelCase_) __UpperCAmelCase : str = get_test_to_tester_mapping(UpperCamelCase_) __UpperCAmelCase : List[str] = {"BertModelTest": "BertModelTester"} __UpperCAmelCase : Optional[Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(UpperCamelCase_) , UpperCamelCase_) self.assertEqual(get_test_info.to_json(UpperCamelCase_) , UpperCamelCase_) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : List[str] = get_model_to_test_mapping(UpperCamelCase_) __UpperCAmelCase : str = get_model_to_test_mapping(UpperCamelCase_) __UpperCAmelCase : int = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } __UpperCAmelCase : Optional[int] = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(UpperCamelCase_) , UpperCamelCase_) self.assertEqual(get_test_info.to_json(UpperCamelCase_) , UpperCamelCase_) def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Optional[int] = get_model_to_tester_mapping(UpperCamelCase_) __UpperCAmelCase : Any = get_model_to_tester_mapping(UpperCamelCase_) __UpperCAmelCase : List[Any] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } __UpperCAmelCase : Optional[int] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(UpperCamelCase_) , UpperCamelCase_) self.assertEqual(get_test_info.to_json(UpperCamelCase_) , UpperCamelCase_)
77
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : List[Any]=13 , lowerCamelCase__ : Any=32 , lowerCamelCase__ : List[str]=3 , lowerCamelCase__ : str=4 , lowerCamelCase__ : Tuple=[10, 20, 30, 40] , lowerCamelCase__ : Any=[2, 2, 3, 2] , lowerCamelCase__ : Dict=True , lowerCamelCase__ : int=True , lowerCamelCase__ : int=37 , lowerCamelCase__ : Optional[int]="gelu" , lowerCamelCase__ : str=10 , lowerCamelCase__ : Dict=0.0_2 , lowerCamelCase__ : Optional[int]=["stage2", "stage3", "stage4"] , lowerCamelCase__ : Dict=[2, 3, 4] , lowerCamelCase__ : Any=None , ) -> int: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_labels __lowercase = initializer_range __lowercase = out_features __lowercase = out_indices __lowercase = scope def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Dict: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : Any ) -> Tuple: """simple docstring""" __lowercase = ConvNextModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = ConvNextForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = ConvNextBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase = None __lowercase = ConvNextBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCamelCase_ : int = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : Any = True UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : int = False UpperCamelCase_ : Union[str, Any] = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ConvNextModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : List[str] ) -> Any: """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase_ ( self : Optional[int] ) -> str: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" def check_hidden_states_output(lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ): __lowercase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ConvNextModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _A( ) -> Tuple: '''simple docstring''' __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" __lowercase = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(lowerCamelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase__ ) # verify the logits __lowercase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowercase = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) @require_torch class a ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Optional[Any] = (ConvNextBackbone,) if is_torch_available() else () UpperCamelCase_ : str = ConvNextConfig UpperCamelCase_ : Optional[int] = False def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = ConvNextModelTester(self )
332
0
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =BertGenerationTokenizer a : Union[str, Any] =False a : Tuple =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : Optional[int] = BertGenerationTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = "<s>" lowerCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(snake_case__ ) , 1_002 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = BertGenerationTokenizer(snake_case__ , keep_accents=snake_case__ ) lowerCAmelCase : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase__ ( self ): """simple docstring""" return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = "Hello World!" lowerCAmelCase : Optional[int] = [18_536, 2_260, 101] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowerCAmelCase : Dict = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCAmelCase : List[str] = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase : str = " ".join(snake_case__ ) lowerCAmelCase : Dict = self.big_tokenizer.encode_plus(snake_case__ , return_tensors="pt" , return_token_type_ids=snake_case__ ) lowerCAmelCase : Any = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = BertGenerationConfig() lowerCAmelCase : int = BertGenerationEncoder(snake_case__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case__ ) model(**snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = {"input_ids": [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
681
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
1
"""simple docstring""" def _lowerCAmelCase(a : List[str] , a : Any , a : List[Any] , a : Optional[Any] ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =len(UpperCAmelCase_ ), len(grid[0] ) if ( min(UpperCAmelCase_ , UpperCAmelCase_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _SCREAMING_SNAKE_CASE =0 count += depth_first_search(UpperCAmelCase_ , row + 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , row - 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col + 1 , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col - 1 , UpperCAmelCase_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
255
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[int]=30 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=0.9 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , )-> List[str]: """simple docstring""" UpperCamelCase = size if size is not None else {"shortest_edge": 30} UpperCamelCase = crop_size if crop_size is not None else {"height": 30, "width": 30} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize_and_center_crop UpperCamelCase = size UpperCamelCase = crop_pct UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> str: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : List[Any] = PoolFormerImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> str: """simple docstring""" UpperCamelCase = PoolFormerImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Dict )-> Optional[int]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) def _SCREAMING_SNAKE_CASE ( self : int )-> List[Any]: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Any: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Dict: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> List[str]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : str )-> str: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
554
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def __UpperCamelCase ( _A , _A=False ): lowerCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __UpperCamelCase ( _A , _A , _A=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ = '''''' else: lowerCAmelCase_ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) lowerCAmelCase_ = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ = in_proj_bias[: config.hidden_size] lowerCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( _A ): lowerCAmelCase_ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_A , _A ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = dct.pop(_A ) lowerCAmelCase_ = val def __UpperCamelCase ( ): lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = ViTConfig() lowerCAmelCase_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase_ = True lowerCAmelCase_ = int(vit_name[-12:-10] ) lowerCAmelCase_ = int(vit_name[-9:-6] ) else: lowerCAmelCase_ = 1000 lowerCAmelCase_ = '''huggingface/label-files''' lowerCAmelCase_ = '''imagenet-1k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = int(vit_name[-6:-4] ) lowerCAmelCase_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase_ = 192 lowerCAmelCase_ = 768 lowerCAmelCase_ = 12 lowerCAmelCase_ = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase_ = 384 lowerCAmelCase_ = 1536 lowerCAmelCase_ = 12 lowerCAmelCase_ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase_ = 768 lowerCAmelCase_ = 2304 lowerCAmelCase_ = 8 lowerCAmelCase_ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase_ = 1024 lowerCAmelCase_ = 4096 lowerCAmelCase_ = 24 lowerCAmelCase_ = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase_ = 1280 lowerCAmelCase_ = 5120 lowerCAmelCase_ = 32 lowerCAmelCase_ = 16 # load original model from timm lowerCAmelCase_ = timm.create_model(_A , pretrained=_A ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ = timm_model.state_dict() if base_model: remove_classification_head_(_A ) lowerCAmelCase_ = create_rename_keys(_A , _A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , _A ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase_ = ViTModel(_A ).eval() else: lowerCAmelCase_ = ViTForImageClassification(_A ).eval() model.load_state_dict(_A ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase_ = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase_ = ViTImageProcessor(size=config.image_size ) lowerCAmelCase_ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase_ = encoding['''pixel_values'''] lowerCAmelCase_ = model(_A ) if base_model: lowerCAmelCase_ = timm_model.forward_features(_A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_A , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase_ = timm_model(_A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_A , outputs.logits , atol=1E-3 ) Path(_A ).mkdir(exist_ok=_A ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_A ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _A = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
325
import torch from transformers import AutoModel class A ( torch.nn.Module ): def __init__( self, UpperCamelCase__="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(UpperCamelCase__, self ).__init__() lowerCAmelCase_ = AutoModel.from_pretrained(UpperCamelCase__, return_dict=UpperCamelCase__ ) lowerCAmelCase_ = torch.nn.CosineSimilarity(3, 1E-08 ) lowerCAmelCase_ = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return self.bert(**UpperCamelCase__ ).last_hidden_state def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return token_embeddings.sum(2, keepdim=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=1 ): """simple docstring""" return self.softmax(T * self.cos(UpperCamelCase__, UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = W_supports['''sizes'''].tolist() lowerCAmelCase_ = W_supports['''start_token_id'''].item() lowerCAmelCase_ = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase_ = self.BERT(**UpperCamelCase__ ) lowerCAmelCase_ = self.BERT(**UpperCamelCase__ ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = W_supports['''input_ids'''] == start_token_id lowerCAmelCase_ = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(UpperCamelCase__ ): if i == 0: lowerCAmelCase_ = 0 else: lowerCAmelCase_ = support_sizes[i - 1] lowerCAmelCase_ = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase_ = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase_ = torch.matmul(q[i], s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase_ = torch.matmul(q[i], s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase_ = torch.vstack((p_starts, p_start) ) lowerCAmelCase_ = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase_ = p_start lowerCAmelCase_ = p_end return p_starts, p_ends
325
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=2, lowerCamelCase=99, lowerCamelCase=0, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase="last", lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=0, ) -> str: """simple docstring""" _lowercase : Union[str, Any] = parent _lowercase : Optional[Any] = batch_size _lowercase : List[str] = seq_length _lowercase : int = is_training _lowercase : List[str] = use_input_lengths _lowercase : int = use_token_type_ids _lowercase : Any = use_labels _lowercase : Union[str, Any] = gelu_activation _lowercase : List[str] = sinusoidal_embeddings _lowercase : str = causal _lowercase : Optional[int] = asm _lowercase : Union[str, Any] = n_langs _lowercase : List[Any] = vocab_size _lowercase : Any = n_special _lowercase : Any = hidden_size _lowercase : str = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Union[str, Any] = max_position_embeddings _lowercase : List[str] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : int = num_labels _lowercase : Optional[int] = num_choices _lowercase : Optional[Any] = summary_type _lowercase : Optional[Any] = use_proj _lowercase : int = scope _lowercase : List[Any] = bos_token_id def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : int = None if self.use_input_lengths: _lowercase : Dict = ( ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.n_langs) _lowercase : Tuple = None _lowercase : int = None _lowercase : int = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : str = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], 2).float() _lowercase : Tuple = ids_tensor([self.batch_size], self.num_choices) _lowercase : Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, num_labels=self.num_labels, bos_token_id=self.bos_token_id, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> Tuple: """simple docstring""" _lowercase : List[Any] = XLMModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : str = model(lowerCamelCase, lengths=lowerCamelCase, langs=lowerCamelCase) _lowercase : int = model(lowerCamelCase, langs=lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[Any]: """simple docstring""" _lowercase : Dict = XLMWithLMHeadModel(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : int = model(lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> str: """simple docstring""" _lowercase : Tuple = XLMForQuestionAnsweringSimple(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase) _lowercase : List[str] = model(lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) _lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = XLMForQuestionAnswering(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase) _lowercase : List[Any] = model( lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, cls_index=lowerCamelCase, is_impossible=lowerCamelCase, p_mask=lowerCamelCase, ) _lowercase : List[str] = model( lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, cls_index=lowerCamelCase, is_impossible=lowerCamelCase, ) ((_lowercase) , ) : Optional[Any] = result_with_labels.to_tuple() _lowercase : List[str] = model(lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) ((_lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, ()) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> int: """simple docstring""" _lowercase : Optional[Any] = XLMForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) _lowercase : Optional[int] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : str = XLMForTokenClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : int = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> Dict: """simple docstring""" _lowercase : Optional[Any] = self.num_choices _lowercase : Optional[int] = XLMForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : List[str] = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[Any] = config_and_inputs _lowercase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase_ : Optional[int] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase_ : Union[str, Any] = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=False) -> Optional[int]: """simple docstring""" _lowercase : Any = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _lowercase : Any = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase) _lowercase : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase) return inputs_dict def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = XLMModelTester(self) _lowercase : List[str] = ConfigTester(self, config_class=lowerCamelCase, emb_dim=37) def UpperCamelCase ( self) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=1) -> int: """simple docstring""" self.assertIsInstance(lowerCamelCase, lowerCamelCase) self.assertListEqual( [isinstance(lowerCamelCase, lowerCamelCase) for iter_attentions in attentions], [True] * len(lowerCamelCase)) self.assertEqual(len(lowerCamelCase), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(lowerCamelCase): # adds PAD dummy token _lowercase : Dict = min_length + idx + 1 _lowercase : int = min_length + idx + 1 _lowercase : Dict = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(lowerCamelCase)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=1) -> List[Any]: """simple docstring""" self.assertIsInstance(lowerCamelCase, lowerCamelCase) self.assertListEqual( [isinstance(lowerCamelCase, lowerCamelCase) for iter_hidden_states in hidden_states], [True] * len(lowerCamelCase), ) self.assertEqual(len(lowerCamelCase), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(lowerCamelCase): # adds PAD dummy token _lowercase : int = min_length + idx + 1 _lowercase : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(lowerCamelCase), ) pass @slow def UpperCamelCase ( self) -> int: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Dict = XLMModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([[14, 4_47]], dtype=torch.long, device=lowerCamelCase) # the president _lowercase : Any = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _lowercase : str = model.generate(lowerCamelCase, do_sample=lowerCamelCase) self.assertListEqual(output_ids[0].cpu().numpy().tolist(), lowerCamelCase)
89
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = ["""image_processor""", """tokenizer"""] __UpperCamelCase : Union[str, Any] = """CLIPImageProcessor""" __UpperCamelCase : int = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[Any] , snake_case_ : Any=None , snake_case_ : List[str]=None , **snake_case_ : Union[str, Any] ): UpperCamelCase_: Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , snake_case_ , ) UpperCamelCase_: Optional[int] = kwargs.pop("""feature_extractor""" ) UpperCamelCase_: str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(snake_case_ , snake_case_ ) def __call__( self : Tuple , snake_case_ : Union[str, Any]=None , snake_case_ : List[str]=None , snake_case_ : Any=None , **snake_case_ : List[str] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCamelCase_: List[str] = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if images is not None: UpperCamelCase_: str = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None and images is not None: UpperCamelCase_: Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def lowerCAmelCase__ ( self : Tuple , *snake_case_ : Optional[Any] , **snake_case_ : Optional[Any] ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : List[Any] , *snake_case_ : int , **snake_case_ : str ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[str] = self.tokenizer.model_input_names UpperCamelCase_: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
670
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCamelCase_ : Optional[int] = logging.get_logger("""transformers.models.speecht5""") def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: hf_model.apply_weight_norm() UpperCamelCase_: Union[str, Any] = checkpoint["""input_conv.weight_g"""] UpperCamelCase_: Optional[int] = checkpoint["""input_conv.weight_v"""] UpperCamelCase_: List[Any] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCamelCase_: Dict = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCamelCase_: List[str] = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCamelCase_: Tuple = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCamelCase_: Union[str, Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCamelCase_: Any = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCamelCase_: int = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCamelCase_: int = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase_: Tuple = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase_: List[str] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase_: Union[str, Any] = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase ) else: UpperCamelCase_: str = SpeechTaHifiGanConfig() UpperCamelCase_: Union[str, Any] = SpeechTaHifiGan(lowerCamelCase ) UpperCamelCase_: str = torch.load(lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCamelCase , lowerCamelCase ) UpperCamelCase_: Union[str, Any] = np.load(lowerCamelCase ) UpperCamelCase_: int = stats[0].reshape(-1 ) UpperCamelCase_: Union[str, Any] = stats[1].reshape(-1 ) UpperCamelCase_: Dict = torch.from_numpy(lowerCamelCase ).float() UpperCamelCase_: Optional[Any] = torch.from_numpy(lowerCamelCase ).float() model.save_pretrained(lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCamelCase_ : Optional[int] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
670
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
from math import factorial def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> float: if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) or not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) lowercase__ : Dict = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowercase__ : Tuple = float(factorial(SCREAMING_SNAKE_CASE_ ) ) coefficient /= factorial(SCREAMING_SNAKE_CASE_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
397
0
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = PriorTransformer SCREAMING_SNAKE_CASE : List[Any] = "hidden_states" @property def lowerCamelCase ( self ): UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : Tuple = 8 UpperCAmelCase__ : Optional[int] = 7 UpperCAmelCase__ : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) UpperCAmelCase__ : str = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) UpperCAmelCase__ : Tuple = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase ( self , _UpperCAmelCase=0 ): torch.manual_seed(_UpperCAmelCase ) UpperCAmelCase__ : Any = 4 UpperCAmelCase__ : List[str] = 8 UpperCAmelCase__ : Dict = 7 UpperCAmelCase__ : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) UpperCAmelCase__ : Dict = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) UpperCAmelCase__ : Any = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowerCamelCase ( self ): return (4, 8) @property def lowerCamelCase ( self ): return (4, 8) def lowerCamelCase ( self ): UpperCAmelCase__ : List[str] = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : Tuple = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_UpperCAmelCase ) UpperCAmelCase__ : List[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def lowerCamelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase__ : List[str] = self.model_class(**_UpperCAmelCase ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , _UpperCAmelCase ) def lowerCamelCase ( self ): UpperCAmelCase__ : Dict = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) UpperCAmelCase__ : Any = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase , '''set_default_attn_processor''' ): model.set_default_attn_processor() UpperCAmelCase__ : Tuple = self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase__ : Any = model(**_UpperCAmelCase )[0] UpperCAmelCase__ : Tuple = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase__ : List[str] = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-2 ) ) @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self , _UpperCAmelCase=1 , _UpperCAmelCase=768 , _UpperCAmelCase=77 , _UpperCAmelCase=0 ): torch.manual_seed(_UpperCAmelCase ) UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : Optional[Any] = embedding_dim UpperCAmelCase__ : Dict = num_embeddings UpperCAmelCase__ : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) UpperCAmelCase__ : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) UpperCAmelCase__ : Dict = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Dict = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''' ) model.to(_UpperCAmelCase ) UpperCAmelCase__ : Optional[Any] = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] UpperCAmelCase__ : str = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) UpperCAmelCase__ : Tuple = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 )
599
'''simple docstring''' def lowerCAmelCase__ ( a_ : list , a_ : list ) -> float: _validate_point(a_ ) _validate_point(a_ ) if len(a_ ) != len(a_ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(a_ , a_ ) ) ) def lowerCAmelCase__ ( a_ : list[float] ) -> None: if point: if isinstance(a_ , a_ ): for item in point: if not isinstance(a_ , (int, float) ): UpperCAmelCase__ : Optional[Any] = ( '''Expected a list of numbers as input, found ''' f"""{type(a_ ).__name__}""" ) raise TypeError(a_ ) else: UpperCAmelCase__ : Tuple = f"""Expected a list of numbers as input, found {type(a_ ).__name__}""" raise TypeError(a_ ) else: raise ValueError('''Missing an input''' ) def lowerCAmelCase__ ( a_ : list , a_ : list ) -> float: _validate_point(a_ ) _validate_point(a_ ) if len(a_ ) != len(a_ ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(a_ , a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
599
1
from collections import deque class __a : def __init__( self : Dict , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : int ): lowerCAmelCase_ : Union[str, Any] = process_name # process name lowerCAmelCase_ : Tuple = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase_ : Dict = arrival_time lowerCAmelCase_ : Union[str, Any] = burst_time # remaining burst time lowerCAmelCase_ : str = 0 # total time of the process wait in ready queue lowerCAmelCase_ : Any = 0 # time from arrival time to completion time class __a : def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : list[int] , UpperCAmelCase : deque[Process] , UpperCAmelCase : int , ): # total number of mlfq's queues lowerCAmelCase_ : Optional[int] = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase_ : Any = time_slices # unfinished process is in this ready_queue lowerCAmelCase_ : Optional[int] = queue # current time lowerCAmelCase_ : int = current_time # finished process is in this sequence queue lowerCAmelCase_ : deque[Process] = deque() def A ( self : Optional[Any] ): lowerCAmelCase_ : Union[str, Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def A ( self : int , UpperCAmelCase : list[Process] ): lowerCAmelCase_ : Optional[int] = [] for i in range(len(UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def A ( self : int , UpperCAmelCase : list[Process] ): lowerCAmelCase_ : int = [] for i in range(len(UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def A ( self : Optional[Any] , UpperCAmelCase : list[Process] ): lowerCAmelCase_ : int = [] for i in range(len(UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def A ( self : Dict , UpperCAmelCase : deque[Process] ): return [q.burst_time for q in queue] def A ( self : Tuple , UpperCAmelCase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def A ( self : List[Any] , UpperCAmelCase : deque[Process] ): lowerCAmelCase_ : deque[Process] = deque() # sequence deque of finished process while len(UpperCAmelCase ) != 0: lowerCAmelCase_ : Optional[int] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase_ : List[str] = 0 # set the process's turnaround time because it is finished lowerCAmelCase_ : Any = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase_ : Tuple = self.current_time # add the process to queue that has finished queue finished.append(UpperCAmelCase ) self.finish_queue.extend(UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def A ( self : List[Any] , UpperCAmelCase : deque[Process] , UpperCAmelCase : int ): lowerCAmelCase_ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCAmelCase ) ): lowerCAmelCase_ : int = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase_ : Dict = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase_ : Any = 0 # set the finish time lowerCAmelCase_ : Union[str, Any] = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase_ : Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCAmelCase ) self.finish_queue.extend(UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def A ( self : Any ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __UpperCAmelCase = Process('P1', 0, 53) __UpperCAmelCase = Process('P2', 0, 17) __UpperCAmelCase = Process('P3', 0, 68) __UpperCAmelCase = Process('P4', 0, 24) __UpperCAmelCase = 3 __UpperCAmelCase = [17, 25] __UpperCAmelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) __UpperCAmelCase = Process('P1', 0, 53) __UpperCAmelCase = Process('P2', 0, 17) __UpperCAmelCase = Process('P3', 0, 68) __UpperCAmelCase = Process('P4', 0, 24) __UpperCAmelCase = 3 __UpperCAmelCase = [17, 25] __UpperCAmelCase = deque([Pa, Pa, Pa, Pa]) __UpperCAmelCase = MLFQ(number_of_queues, time_slices, queue, 0) __UpperCAmelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
600
import pprint import requests __UpperCAmelCase = 'https://zenquotes.io/api' def __UpperCamelCase ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __UpperCamelCase ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": __UpperCAmelCase = random_quotes() pprint.pprint(response)
600
1
def UpperCamelCase__ ( UpperCAmelCase ) -> bool: """simple docstring""" _a : Tuple = 0 for ch in input_str: _a : Union[str, Any] = ord(SCREAMING_SNAKE_CASE_ ) _a : Union[str, Any] = pow(2 , SCREAMING_SNAKE_CASE_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
700
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class UpperCamelCase_ ( UpperCamelCase ): lowercase = '''xlnet''' lowercase = ['''mems'''] lowercase = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase=32_000 , lowercase=1_024 , lowercase=24 , lowercase=16 , lowercase=4_096 , lowercase="gelu" , lowercase=True , lowercase="bi" , lowercase=0.02 , lowercase=1e-12 , lowercase=0.1 , lowercase=512 , lowercase=None , lowercase=True , lowercase=False , lowercase=False , lowercase=-1 , lowercase=False , lowercase="last" , lowercase=True , lowercase="tanh" , lowercase=0.1 , lowercase=5 , lowercase=5 , lowercase=5 , lowercase=1 , lowercase=2 , **lowercase , ) -> Optional[Any]: _a : str = vocab_size _a : int = d_model _a : str = n_layer _a : List[str] = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) _a : Dict = d_model // n_head _a : int = ff_activation _a : List[Any] = d_inner _a : str = untie_r _a : Any = attn_type _a : List[Any] = initializer_range _a : Optional[Any] = layer_norm_eps _a : Optional[Any] = dropout _a : List[str] = mem_len _a : str = reuse_len _a : int = bi_data _a : List[str] = clamp_len _a : List[str] = same_length _a : List[str] = summary_type _a : List[str] = summary_use_proj _a : List[Any] = summary_activation _a : int = summary_last_dropout _a : List[str] = start_n_top _a : Optional[Any] = end_n_top _a : Tuple = bos_token_id _a : Optional[int] = pad_token_id _a : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , lowercase , ) _a : Union[str, Any] = kwargs['''use_cache'''] _a : int = use_mems_eval _a : Optional[int] = use_mems_train super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) @property def snake_case__( self ) -> Optional[int]: logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def snake_case__( self , lowercase ) -> Any: # Message copied from Transformer-XL documentation raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
307
0
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' SCREAMING_SNAKE_CASE_ = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' SCREAMING_SNAKE_CASE_ = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): """simple docstring""" def __a ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def __a ( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : int=False ): '''simple docstring''' if rouge_types is None: __a = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] __a = rouge_scorer.RougeScorer(rouge_types=SCREAMING_SNAKE_CASE__ , use_stemmer=SCREAMING_SNAKE_CASE__ ) if use_aggregator: __a = scoring.BootstrapAggregator() else: __a = [] for ref, pred in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a = scorer.score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if use_aggregator: aggregator.add_scores(SCREAMING_SNAKE_CASE__ ) else: scores.append(SCREAMING_SNAKE_CASE__ ) if use_aggregator: __a = aggregator.aggregate() else: __a = {} for key in scores[0]: __a = [score[key] for score in scores] return result
582
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase_ ( snake_case__ , snake_case__ ): """simple docstring""" @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None ): '''simple docstring''' super().__init__() __a = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __a = torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: __a = None __a = torch.nn.Parameter(SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :VQModel a_ :CLIPTextModel a_ :CLIPTokenizer a_ :TransformeraDModel a_ :LearnedClassifierFreeSamplingEmbeddings a_ :VQDiffusionScheduler def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : VQModel , SCREAMING_SNAKE_CASE__ : CLIPTextModel , SCREAMING_SNAKE_CASE__ : CLIPTokenizer , SCREAMING_SNAKE_CASE__ : TransformeraDModel , SCREAMING_SNAKE_CASE__ : VQDiffusionScheduler , SCREAMING_SNAKE_CASE__ : LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=SCREAMING_SNAKE_CASE__ , transformer=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE__ , ) def __a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a = len(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else 1 # get prompt text embeddings __a = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __a = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __a = text_input_ids[:, : self.tokenizer.model_max_length] __a = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __a = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) # duplicate text embeddings for each generation per prompt __a = prompt_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __a = self.learned_classifier_free_sampling_embeddings.embeddings __a = negative_prompt_embeds.unsqueeze(0 ).repeat(SCREAMING_SNAKE_CASE__ , 1 , 1 ) else: __a = [""""""] * batch_size __a = text_input_ids.shape[-1] __a = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding="""max_length""" , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" , ) __a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __a = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a = negative_prompt_embeds.shape[1] __a = negative_prompt_embeds.repeat(1 , SCREAMING_SNAKE_CASE__ , 1 ) __a = negative_prompt_embeds.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE__ )}''' ) __a = batch_size * num_images_per_prompt __a = guidance_scale > 1.0 __a = self._encode_prompt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE__ )}.''' ) # get the initial completely masked latents unless the user supplied it __a = (batch_size, self.transformer.num_latent_pixels) if latents is None: __a = self.transformer.num_vector_embeds - 1 __a = torch.full(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) __a = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=self.device ) __a = self.scheduler.timesteps.to(self.device ) __a = latents for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the sample if we are doing classifier free guidance __a = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __a = self.transformer(SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ ).sample if do_classifier_free_guidance: __a , __a = model_output.chunk(2 ) __a = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(SCREAMING_SNAKE_CASE__ , dim=1 , keepdim=SCREAMING_SNAKE_CASE__ ) __a = self.truncate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # remove `log(0)`'s (`-inf`s) __a = model_output.clamp(-7_0 ) # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a = self.vqvae.config.vq_embed_dim __a = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __a = self.vqvae.quantize.get_codebook_entry(SCREAMING_SNAKE_CASE__ , shape=SCREAMING_SNAKE_CASE__ ) __a = self.vqvae.decode(SCREAMING_SNAKE_CASE__ , force_not_quantize=SCREAMING_SNAKE_CASE__ ).sample __a = (image / 2 + 0.5).clamp(0 , 1 ) __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ ) def __a ( self : List[str] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' __a , __a = torch.sort(SCREAMING_SNAKE_CASE__ , 1 , descending=SCREAMING_SNAKE_CASE__ ) __a = torch.exp(SCREAMING_SNAKE_CASE__ ) __a = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __a = torch.full_like(keep_mask[:, 0:1, :] , SCREAMING_SNAKE_CASE__ ) __a = torch.cat((all_true, keep_mask) , dim=1 ) __a = keep_mask[:, :-1, :] __a = keep_mask.gather(1 , indices.argsort(1 ) ) __a = log_p_x_0.clone() __a = -torch.inf # -inf = log(0) return rv
582
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , A_ : Dict , A_ : Optional[Any]=1_3 , A_ : List[Any]=7 , A_ : Optional[Any]=True , A_ : List[str]=True , A_ : str=True , A_ : Dict=True , A_ : Dict=9_9 , A_ : str=3_2 , A_ : List[str]=5 , A_ : Union[str, Any]=4 , A_ : Dict=3_7 , A_ : List[str]="gelu" , A_ : List[str]=0.1 , A_ : List[str]=0.1 , A_ : Optional[Any]=5_1_2 , A_ : int=1_6 , A_ : Tuple=2 , A_ : Tuple=0.02 , A_ : List[str]=4 , ): '''simple docstring''' _lowerCAmelCase : int = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = seq_length _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_attention_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Tuple = type_vocab_size _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Dict = num_choices def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Tuple = None if self.use_attention_mask: _lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : int = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self : str ): '''simple docstring''' _lowerCAmelCase : int = self.prepare_config_and_inputs() _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __magic_name__ ( self : List[Any] ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() _lowerCAmelCase : Optional[Any] = config_and_inputs _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A__ ( A , unittest.TestCase ): """simple docstring""" _lowercase : Optional[Any] =True _lowercase : Any =( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' _lowerCAmelCase : List[str] = FlaxBertModelTester(self ) @slow def __magic_name__ ( self : Any ): '''simple docstring''' _lowerCAmelCase : str = FlaxBertModel.from_pretrained("bert-base-cased" ) _lowerCAmelCase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
704
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __UpperCAmelCase = TypeVar('T') class A__ ( Generic[T] ): """simple docstring""" def __init__( self : Optional[int] , A_ : bool = True ): '''simple docstring''' _lowerCAmelCase : dict[T, list[T]] = {} # dictionary of lists _lowerCAmelCase : List[Any] = directed def __magic_name__ ( self : Any , A_ : T , A_ : T ): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) self.adj_list[destination_vertex].append(A_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) _lowerCAmelCase : List[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(A_ ) _lowerCAmelCase : List[str] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCAmelCase : List[str] = [destination_vertex] _lowerCAmelCase : Dict = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) _lowerCAmelCase : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCAmelCase : Dict = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCAmelCase : Any = [destination_vertex] _lowerCAmelCase : Union[str, Any] = [] return self def __repr__( self : List[str] ): '''simple docstring''' return pformat(self.adj_list )
503
0
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _a : List[str] = logging.get_logger(__name__) def a_ ( __magic_name__ , __magic_name__=False ) -> Optional[Any]: """simple docstring""" snake_case : Tuple = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def a_ ( __magic_name__ , __magic_name__ , __magic_name__=False ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: snake_case : List[str] = '''''' else: snake_case : str = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case : int = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) snake_case : str = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case : int = in_proj_weight[ : config.hidden_size, : ] snake_case : Union[str, Any] = in_proj_bias[: config.hidden_size] snake_case : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case : List[str] = in_proj_bias[-config.hidden_size :] def a_ ( __magic_name__ ) -> int: """simple docstring""" snake_case : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def a_ ( __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: """simple docstring""" snake_case : Optional[Any] = dct.pop(__magic_name__ ) snake_case : Any = val def a_ ( ) -> Tuple: """simple docstring""" snake_case : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case : Any = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def a_ ( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Tuple: """simple docstring""" snake_case : List[Any] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=__magic_name__ , ) snake_case : Union[str, Any] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=384 , num_labels=1_000 ) snake_case : str = False # load original model from timm snake_case : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case : List[Any] = timm_model.state_dict() if base_model: remove_classification_head_(__magic_name__ ) snake_case : List[str] = create_rename_keys(__magic_name__ , __magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case : Dict = '''huggingface/label-files''' snake_case : Dict = '''imagenet-1k-id2label.json''' snake_case : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case : Tuple = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case : Optional[int] = idalabel snake_case : int = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case : Any = ViTHybridModel(__magic_name__ ).eval() else: snake_case : str = ViTHybridForImageClassification(__magic_name__ ).eval() model.load_state_dict(__magic_name__ ) # create image processor snake_case : str = create_transform(**resolve_data_config({} , model=__magic_name__ ) ) snake_case : Optional[int] = transform.transforms snake_case : str = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } snake_case : Optional[Any] = ViTHybridImageProcessor( do_resize=__magic_name__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case : str = prepare_img() snake_case : Optional[Any] = transform(__magic_name__ ).unsqueeze(0 ) snake_case : Optional[int] = processor(__magic_name__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): snake_case : Dict = model(__magic_name__ ) snake_case : Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: snake_case : Union[str, Any] = timm_model.forward_features(__magic_name__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1e-3 ) else: snake_case : int = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) _a : int = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
598
0
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=1_3 , snake_case=[3_0, 3_0] , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_0 , snake_case=0.02 , snake_case=3 , snake_case=None , snake_case=8 , snake_case=1_0 , ): '''simple docstring''' UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Any = num_channels UpperCAmelCase : List[str] = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Any = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = type_sequence_label_size UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : Tuple = num_labels UpperCAmelCase : Tuple = scope UpperCAmelCase : Any = n_targets UpperCAmelCase : List[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCAmelCase : Any = (image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCAmelCase : Optional[int] = num_patches + 1 + self.num_detection_tokens def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) UpperCAmelCase : Dict = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCAmelCase : Optional[int] = [] for i in range(self.batch_size ): UpperCAmelCase : str = {} UpperCAmelCase : Dict = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=snake_case ) UpperCAmelCase : List[Any] = torch.rand(self.n_targets , 4 , device=snake_case ) labels.append(snake_case ) UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def A_ ( self ): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Dict = YolosModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : str = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : int = YolosForObjectDetection(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : str = model(pixel_values=snake_case ) UpperCAmelCase : List[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) UpperCAmelCase : List[Any] = model(pixel_values=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = config_and_inputs UpperCAmelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : str = (YolosModel, YolosForObjectDetection) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : List[str] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def A_ ( self , snake_case , snake_case , snake_case=False ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCAmelCase : str = [] for i in range(self.model_tester.batch_size ): UpperCAmelCase : int = {} UpperCAmelCase : str = torch.ones( size=(self.model_tester.n_targets,) , device=snake_case , dtype=torch.long ) UpperCAmelCase : Tuple = torch.ones( self.model_tester.n_targets , 4 , device=snake_case , dtype=torch.float ) labels.append(snake_case ) UpperCAmelCase : Optional[Any] = labels return inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = YolosModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 ) def A_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(snake_case ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Any = True # in YOLOS, the seq_len is different UpperCAmelCase : Union[str, Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True UpperCAmelCase : Dict = False UpperCAmelCase : Any = True UpperCAmelCase : List[str] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCAmelCase : List[Any] = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase : str = True UpperCAmelCase : Tuple = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : int = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCAmelCase : List[str] = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCAmelCase : List[Any] = len(snake_case ) # Check attention is always last and order is fine UpperCAmelCase : Any = True UpperCAmelCase : int = True UpperCAmelCase : List[Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCAmelCase : Dict = 1 self.assertEqual(out_len + added_hidden_states , len(snake_case ) ) UpperCAmelCase : List[Any] = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def A_ ( self ): '''simple docstring''' def check_hidden_states_output(snake_case , snake_case , snake_case ): UpperCAmelCase : Optional[int] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCAmelCase : List[str] = outputs.hidden_states UpperCAmelCase : Dict = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case ) , snake_case ) # YOLOS has a different seq_length UpperCAmelCase : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(snake_case , snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*snake_case ) @slow def A_ ( self ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = YolosModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(snake_case ) UpperCAmelCase : Optional[Any] = self.default_image_processor UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : int = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase : List[str] = model(inputs.pixel_values ) # verify outputs UpperCAmelCase : Any = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCAmelCase : str = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=snake_case , ) UpperCAmelCase : Optional[int] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case , atol=1e-4 ) ) # verify postprocessing UpperCAmelCase : Any = image_processor.post_process_object_detection( snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] UpperCAmelCase : List[str] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(snake_case ) UpperCAmelCase : Union[str, Any] = [7_5, 7_5, 1_7, 6_3, 1_7] UpperCAmelCase : Optional[int] = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(snake_case ) self.assertEqual(len(results["scores"] ) , 5 ) self.assertTrue(torch.allclose(results["scores"] , snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results["labels"].tolist() , snake_case ) self.assertTrue(torch.allclose(results["boxes"][0, :] , snake_case ) )
609
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=False , snake_case=False , snake_case=False , snake_case=2 , snake_case=9_9 , snake_case=0 , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=2 , snake_case=0.02 , snake_case=2 , snake_case=4 , snake_case="last" , snake_case=True , snake_case=None , snake_case=0 , ): '''simple docstring''' UpperCAmelCase : str = parent UpperCAmelCase : str = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Any = use_input_lengths UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : List[str] = use_labels UpperCAmelCase : Any = gelu_activation UpperCAmelCase : str = sinusoidal_embeddings UpperCAmelCase : List[Any] = causal UpperCAmelCase : Union[str, Any] = asm UpperCAmelCase : List[str] = n_langs UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : str = n_special UpperCAmelCase : str = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Optional[int] = type_sequence_label_size UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Union[str, Any] = num_labels UpperCAmelCase : Union[str, Any] = num_choices UpperCAmelCase : Dict = summary_type UpperCAmelCase : Dict = use_proj UpperCAmelCase : List[Any] = scope UpperCAmelCase : Optional[int] = bos_token_id def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_input_lengths: UpperCAmelCase : Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase : Any = None UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Dict = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A_ ( self ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Any = XLMModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Any = model(snake_case , lengths=snake_case , langs=snake_case ) UpperCAmelCase : Any = model(snake_case , langs=snake_case ) UpperCAmelCase : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : int = XLMWithLMHeadModel(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Tuple = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Optional[int] = XLMForQuestionAnsweringSimple(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : List[str] = model(snake_case ) UpperCAmelCase : List[str] = model(snake_case , start_positions=snake_case , end_positions=snake_case ) UpperCAmelCase : List[str] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = XLMForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Union[str, Any] = model(snake_case ) UpperCAmelCase : List[str] = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , p_mask=snake_case , ) UpperCAmelCase : Optional[Any] = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , ) ((UpperCAmelCase) , ) : str = result_with_labels.to_tuple() UpperCAmelCase : List[str] = model(snake_case , start_positions=snake_case , end_positions=snake_case ) ((UpperCAmelCase) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Any = XLMForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(snake_case ) UpperCAmelCase : int = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.num_labels UpperCAmelCase : Optional[int] = XLMForTokenClassification(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : List[Any] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.num_choices UpperCAmelCase : Tuple = XLMForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Tuple = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE__ : Tuple = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A_ ( self , snake_case , snake_case , snake_case=False ): '''simple docstring''' UpperCAmelCase : Any = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) UpperCAmelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = XLMModelTester(self ) UpperCAmelCase : str = ConfigTester(self , config_class=snake_case , emb_dim=3_7 ) def A_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): '''simple docstring''' self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_attentions in attentions] , [True] * len(snake_case ) ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case ): # adds PAD dummy token UpperCAmelCase : str = min_length + idx + 1 UpperCAmelCase : List[Any] = min_length + idx + 1 UpperCAmelCase : List[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case ) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): '''simple docstring''' self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_hidden_states in hidden_states] , [True] * len(snake_case ) , ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case ): # adds PAD dummy token UpperCAmelCase : List[Any] = min_length + idx + 1 UpperCAmelCase : Dict = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case ) , ) pass @slow def A_ ( self ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = XLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(snake_case ) UpperCAmelCase : Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=snake_case ) # the president UpperCAmelCase : Tuple = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase : Dict = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case )
609
1
"""simple docstring""" def __UpperCamelCase ( SCREAMING_SNAKE_CASE = 1_00_00_00 ) -> int: """simple docstring""" __snake_case = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
163
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __magic_name__ ( datasets.BeamBasedBuilder ): def lowerCAmelCase ( self : List[str] ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case_ , ) def lowerCAmelCase ( self : Optional[int] , snake_case_ : int , snake_case_ : Any ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def lowerCAmelCase ( self : Optional[Any] , snake_case_ : int , snake_case_ : Dict ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case_ ) class __magic_name__ ( datasets.BeamBasedBuilder ): def lowerCAmelCase ( self : Optional[int] ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case_ , ) def lowerCAmelCase ( self : List[str] , snake_case_ : List[Any] , snake_case_ : List[str] ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def lowerCAmelCase ( self : str , snake_case_ : List[Any] , snake_case_ : Tuple ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case_ ) def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def __UpperCamelCase ( ) -> Dict: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class __magic_name__ ( lowercase__ ): @require_beam def lowerCAmelCase ( self : Optional[Any] ): __snake_case = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __snake_case = DummyBeamDataset(cache_dir=snake_case_ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case_ , builder.name , "default" , "0.0.0" , F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) __snake_case = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case_ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def lowerCAmelCase ( self : int ): import apache_beam as beam __snake_case = beam.io.parquetio.WriteToParquet __snake_case = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __snake_case = DummyBeamDataset(cache_dir=snake_case_ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: __snake_case = partial(snake_case_ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case_ , builder.name , "default" , "0.0.0" , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case_ , builder.name , "default" , "0.0.0" , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) __snake_case = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case_ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def lowerCAmelCase ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmp_cache_dir: __snake_case = DummyBeamDataset(cache_dir=snake_case_ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowerCAmelCase ( self : List[str] ): __snake_case = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __snake_case = NestedBeamDataset(cache_dir=snake_case_ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case_ , builder.name , "default" , "0.0.0" , F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) __snake_case = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case_ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
163
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def __snake_case ( self : List[str] )->str: __SCREAMING_SNAKE_CASE : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained("google/mt5-small" ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer("Hello there" , return_tensors="tf" ).input_ids __SCREAMING_SNAKE_CASE : Dict = tokenizer("Hi I am" , return_tensors="tf" ).input_ids __SCREAMING_SNAKE_CASE : List[Any] = model(UpperCamelCase , labels=UpperCamelCase ).loss __SCREAMING_SNAKE_CASE : List[str] = -tf.math.reduce_mean(UpperCamelCase ).numpy() __SCREAMING_SNAKE_CASE : List[Any] = -2_1.2_2_8_1_6_8 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
720
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _lowerCAmelCase ( __lowerCamelCase : str ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = analyze_text(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = list(" " + ascii_lowercase ) # what is our total sum of probabilities. __SCREAMING_SNAKE_CASE : int = sum(single_char_strings.values() ) # one length string __SCREAMING_SNAKE_CASE : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __SCREAMING_SNAKE_CASE : List[Any] = single_char_strings[ch] __SCREAMING_SNAKE_CASE : str = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCamelCase ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string __SCREAMING_SNAKE_CASE : Optional[int] = sum(two_char_strings.values() ) __SCREAMING_SNAKE_CASE : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __SCREAMING_SNAKE_CASE : int = cha + cha if sequence in two_char_strings: __SCREAMING_SNAKE_CASE : Optional[Any] = two_char_strings[sequence] __SCREAMING_SNAKE_CASE : Union[str, Any] = int(__lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCamelCase ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def _lowerCAmelCase ( __lowerCamelCase : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = Counter() # type: ignore __SCREAMING_SNAKE_CASE : int = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _lowerCAmelCase ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
447
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Union[str, Any] = ['audio_values', 'audio_mask'] def __init__( self : Dict , a : Optional[Any]=2_048 , a : Union[str, Any]=1 , a : str=[16, 16] , a : Optional[int]=128 , a : str=44_100 , a : List[str]=86 , a : int=2_048 , a : Tuple=0.0 , **a : int , )-> Any: """simple docstring""" super().__init__( feature_size=a , sampling_rate=a , padding_value=a , **a , ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=a , norm='slaney' , mel_scale='slaney' , ).T def SCREAMING_SNAKE_CASE_ ( self : Dict , a : np.array )-> np.ndarray: """simple docstring""" lowercase__ = spectrogram( a , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : List[Any] , a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a : Optional[Union[str, TensorType]] = None , a : Optional[bool] = True , a : Optional[int] = None , a : bool = False , a : bool = False , **a : Union[str, Any] , )-> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase__ = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): lowercase__ = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , a ): lowercase__ = [np.asarray(a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(a ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(a ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowercase__ = {'audio_values': padded_audio_features} lowercase__ = BatchFeature(data=a , tensor_type=a ) return encoded_inputs
235
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase_ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): __UpperCamelCase = StableDiffusionXLImgaImgPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __UpperCamelCase = PipelineTesterMixin.required_optional_params - {"latents"} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self: List[str]): '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""), up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D"""), attention_head_dim=(2, 4), use_linear_projection=_lowercase, addition_embed_type="""text_time""", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, cross_attention_dim=64, ) __lowerCAmelCase = EulerDiscreteScheduler( beta_start=0.00_085, beta_end=0.012, steps_offset=1, beta_schedule="""scaled_linear""", timestep_spacing="""leading""", ) torch.manual_seed(0) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], latent_channels=4, sample_size=128, ) torch.manual_seed(0) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="""gelu""", projection_dim=32, ) __lowerCAmelCase = CLIPTextModel(_lowercase) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""", local_files_only=_lowercase) __lowerCAmelCase = CLIPTextModelWithProjection(_lowercase) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""", local_files_only=_lowercase) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self: Any, _lowercase: Any, _lowercase: Tuple=0): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, 3, 32, 32), rng=random.Random(_lowercase)).to(_lowercase) __lowerCAmelCase = image / 2 + 0.5 if str(_lowercase).startswith("""mps"""): __lowerCAmelCase = torch.manual_seed(_lowercase) else: __lowerCAmelCase = torch.Generator(device=_lowercase).manual_seed(_lowercase) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def _lowercase ( self: List[Any]): '''simple docstring''' __lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**_lowercase) __lowerCAmelCase = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) __lowerCAmelCase = self.get_dummy_inputs(_lowercase) __lowerCAmelCase = sd_pipe(**_lowercase).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _lowercase ( self: int): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def _lowercase ( self: str): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) def _lowercase ( self: Optional[Any]): '''simple docstring''' pass def _lowercase ( self: Tuple): '''simple docstring''' __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**_lowercase) __lowerCAmelCase = sd_pipe.to(_lowercase) __lowerCAmelCase = sd_pipe.to(_lowercase) sd_pipe.set_progress_bar_config(disable=_lowercase) # forward without prompt embeds __lowerCAmelCase = self.get_dummy_inputs(_lowercase) __lowerCAmelCase = 3 * ["""this is a negative prompt"""] __lowerCAmelCase = negative_prompt __lowerCAmelCase = 3 * [inputs["""prompt"""]] __lowerCAmelCase = sd_pipe(**_lowercase) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCAmelCase = self.get_dummy_inputs(_lowercase) __lowerCAmelCase = 3 * ["""this is a negative prompt"""] __lowerCAmelCase = 3 * [inputs.pop("""prompt""")] ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = sd_pipe.encode_prompt(_lowercase, negative_prompt=_lowercase) __lowerCAmelCase = sd_pipe( **_lowercase, prompt_embeds=_lowercase, negative_prompt_embeds=_lowercase, pooled_prompt_embeds=_lowercase, negative_pooled_prompt_embeds=_lowercase, ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1e-4 @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def _lowercase ( self: Optional[int]): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self: Any, _lowercase: Any, _lowercase: Optional[Any]="cpu", _lowercase: List[Any]=torch.floataa, _lowercase: Optional[Any]=0): '''simple docstring''' __lowerCAmelCase = torch.Generator(device=_lowercase).manual_seed(_lowercase) __lowerCAmelCase = np.random.RandomState(_lowercase).standard_normal((1, 4, 64, 64)) __lowerCAmelCase = torch.from_numpy(_lowercase).to(device=_lowercase, dtype=_lowercase) __lowerCAmelCase = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self: Optional[Any]): '''simple docstring''' __lowerCAmelCase = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""") pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) __lowerCAmelCase = self.get_inputs(_lowercase) __lowerCAmelCase = pipe(**_lowercase).images __lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __lowerCAmelCase = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506]) assert np.abs(image_slice - expected_slice).max() < 7e-3
334
def UpperCAmelCase ( UpperCamelCase__ = 10_00 ) -> int: '''simple docstring''' __lowerCAmelCase = -1 __lowerCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) __lowerCAmelCase = n - a - b if c * c == (a * a + b * b): __lowerCAmelCase = a * b * c if candidate >= product: __lowerCAmelCase = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
334
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: Any=False ): """simple docstring""" __lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): __lowerCAmelCase = "segformer.encoder." + key if key.startswith("backbone" ): __lowerCAmelCase = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __lowerCAmelCase = key[key.find("patch_embed" ) + len("patch_embed" )] __lowerCAmelCase = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(UpperCamelCase )-1}" ) if "norm" in key: __lowerCAmelCase = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __lowerCAmelCase = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] __lowerCAmelCase = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(UpperCamelCase )-1}" ) if "layer_norm1" in key: __lowerCAmelCase = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: __lowerCAmelCase = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 __lowerCAmelCase = key[key.find("block" ) + len("block" )] __lowerCAmelCase = key.replace(F"block{idx}" , F"block.{int(UpperCamelCase )-1}" ) if "attn.q" in key: __lowerCAmelCase = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: __lowerCAmelCase = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: __lowerCAmelCase = key.replace("attn" , "attention.self" ) if "fc1" in key: __lowerCAmelCase = key.replace("fc1" , "dense1" ) if "fc2" in key: __lowerCAmelCase = key.replace("fc2" , "dense2" ) if "linear_pred" in key: __lowerCAmelCase = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: __lowerCAmelCase = key.replace("linear_fuse.conv" , "linear_fuse" ) __lowerCAmelCase = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __lowerCAmelCase = key[key.find("linear_c" ) + len("linear_c" )] __lowerCAmelCase = key.replace(F"linear_c{idx}" , F"linear_c.{int(UpperCamelCase )-1}" ) if key.startswith("head" ): __lowerCAmelCase = key.replace("head" , "classifier" ) __lowerCAmelCase = value return new_state_dict def _UpperCAmelCase ( UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __lowerCAmelCase = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) __lowerCAmelCase = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict __lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] __lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] __lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] __lowerCAmelCase = kv_bias[ config.hidden_sizes[i] : ] def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: str , UpperCamelCase: Optional[int] ): """simple docstring""" __lowerCAmelCase = SegformerConfig() __lowerCAmelCase = False # set attributes based on model_name __lowerCAmelCase = "huggingface/label-files" if "segformer" in model_name: __lowerCAmelCase = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: __lowerCAmelCase = 1_5_0 __lowerCAmelCase = "ade20k-id2label.json" __lowerCAmelCase = (1, 1_5_0, 1_2_8, 1_2_8) elif "city" in model_name: __lowerCAmelCase = 1_9 __lowerCAmelCase = "cityscapes-id2label.json" __lowerCAmelCase = (1, 1_9, 1_2_8, 1_2_8) else: raise ValueError(F"Model {model_name} not supported" ) elif "mit" in model_name: __lowerCAmelCase = True __lowerCAmelCase = model_name[4:6] __lowerCAmelCase = 1_0_0_0 __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = (1, 1_0_0_0) else: raise ValueError(F"Model {model_name} not supported" ) # set config attributes __lowerCAmelCase = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": __lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase = 2_5_6 elif size == "b2": __lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase = 7_6_8 __lowerCAmelCase = [3, 4, 6, 3] elif size == "b3": __lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase = 7_6_8 __lowerCAmelCase = [3, 4, 1_8, 3] elif size == "b4": __lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase = 7_6_8 __lowerCAmelCase = [3, 8, 2_7, 3] elif size == "b5": __lowerCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase = 7_6_8 __lowerCAmelCase = [3, 6, 4_0, 3] else: raise ValueError(F"Size {size} not supported" ) # load image processor (only resize + normalize) __lowerCAmelCase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=UpperCamelCase , align=UpperCamelCase , do_random_crop=UpperCamelCase ) # prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=UpperCamelCase , return_tensors="pt" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict if encoder_only: __lowerCAmelCase = torch.load(UpperCamelCase , map_location=torch.device("cpu" ) ) else: __lowerCAmelCase = torch.load(UpperCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys __lowerCAmelCase = rename_keys(UpperCamelCase , encoder_only=UpperCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCamelCase , UpperCamelCase ) # create HuggingFace model and load state dict if encoder_only: __lowerCAmelCase = False __lowerCAmelCase = SegformerForImageClassification(UpperCamelCase ) else: __lowerCAmelCase = SegformerForSemanticSegmentation(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() # forward pass __lowerCAmelCase = model(UpperCamelCase ) __lowerCAmelCase = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": __lowerCAmelCase = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": __lowerCAmelCase = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": __lowerCAmelCase = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": __lowerCAmelCase = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: __lowerCAmelCase = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) image_processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) UpperCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
611
def _UpperCAmelCase ( UpperCamelCase: int , UpperCamelCase: int , UpperCamelCase: int ): """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: __lowerCAmelCase = _modexpt(UpperCamelCase , exponent // 2 , UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(UpperCamelCase , exponent - 1 , UpperCamelCase )) % modulo_value def _UpperCAmelCase ( UpperCamelCase: int = 1_7_7_7 , UpperCamelCase: int = 1_8_5_5 , UpperCamelCase: int = 8 ): """simple docstring""" __lowerCAmelCase = base for _ in range(1 , UpperCamelCase ): __lowerCAmelCase = _modexpt(UpperCamelCase , UpperCamelCase , 1_0**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
611
1
'''simple docstring''' from typing import List import numpy as np def lowerCAmelCase( a__ : dict ): '''simple docstring''' lowerCamelCase__ = {key: len(a__ ) for key, value in gen_kwargs.items() if isinstance(a__ , a__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) lowerCamelCase__ = max(lists_lengths.values() , default=0 ) return max(1 , a__ ) def lowerCAmelCase( a__ : int , a__ : int ): '''simple docstring''' lowerCamelCase__ = [] for group_idx in range(a__ ): lowerCamelCase__ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowerCamelCase__ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowerCamelCase__ = range(a__ , start + num_shards_to_add ) shards_indices_per_group.append(a__ ) return shards_indices_per_group def lowerCAmelCase( a__ : dict , a__ : int ): '''simple docstring''' lowerCamelCase__ = _number_of_shards_in_gen_kwargs(a__ ) if num_shards == 1: return [dict(a__ )] else: lowerCamelCase__ = _distribute_shards(num_shards=a__ , max_num_jobs=a__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(a__ , a__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(a__ ) ) ] def lowerCAmelCase( a__ : List[dict] ): '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , a__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowerCAmelCase( a__ : np.random.Generator , a__ : dict ): '''simple docstring''' lowerCamelCase__ = {len(a__ ) for value in gen_kwargs.values() if isinstance(a__ , a__ )} lowerCamelCase__ = {} for size in list_sizes: lowerCamelCase__ = list(range(a__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowerCamelCase__ = dict(a__ ) for key, value in shuffled_kwargs.items(): if isinstance(a__ , a__ ): lowerCamelCase__ = [value[i] for i in indices_per_size[len(a__ )]] return shuffled_kwargs
707
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : List[Any] =ComputeEnvironment.AMAZON_SAGEMAKER __lowerCAmelCase : Optional[Any] =True __lowerCAmelCase : Tuple ='''ml.p3.2xlarge''' __lowerCAmelCase : Optional[Any] ='''accelerate_sagemaker_execution_role''' __lowerCAmelCase : List[Any] ='''hf-sm''' __lowerCAmelCase : Dict ='''us-east-1''' __lowerCAmelCase : Optional[Any] =1 __lowerCAmelCase : Optional[int] ='''accelerate-sagemaker-1''' __lowerCAmelCase : List[str] ='''1.6''' __lowerCAmelCase : Any ='''4.4''' __lowerCAmelCase : Optional[int] ='''train.py''' __lowerCAmelCase : List[Any] =[ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] __lowerCAmelCase : str =[ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self): # If no defaults are changed, `to_kwargs` returns an empty dict. lowerCamelCase__ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args["model_name_or_path"] , UpperCamelCase) assert isinstance(converted_args["do_train"] , UpperCamelCase) assert isinstance(converted_args["epochs"] , UpperCamelCase) assert isinstance(converted_args["learning_rate"] , UpperCamelCase) assert isinstance(converted_args["max_steps"] , UpperCamelCase) with pytest.raises(UpperCamelCase): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
426
0
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowercase_ : """simple docstring""" def __init__( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=1_3 , __lowerCamelCase : str=7 , __lowerCamelCase : int=True , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : str=True , __lowerCamelCase : int=9_9 , __lowerCamelCase : str=6_4 , __lowerCamelCase : str=5 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Any=6_4 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Optional[Any]=5_1_2 , __lowerCamelCase : Optional[int]=1_6 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : str=3 , __lowerCamelCase : int=4 , __lowerCamelCase : Optional[Any]=None , ): """simple docstring""" _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Dict ): """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = MPNetModel(config=_A ) model.to(_A ) model.eval() _SCREAMING_SNAKE_CASE = model(_A , _A ) _SCREAMING_SNAKE_CASE = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = MPNetForQuestionAnswering(config=_A ) model.to(_A ) model.eval() _SCREAMING_SNAKE_CASE = model( _A , attention_mask=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = MPNetForSequenceClassification(_A ) model.to(_A ) model.eval() _SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = MPNetForMultipleChoice(config=_A ) model.to(_A ) model.eval() _SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = model( _A , attention_mask=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = MPNetForTokenClassification(config=_A ) model.to(_A ) model.eval() _SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() (_SCREAMING_SNAKE_CASE) = config_and_inputs _SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCamelCase_ = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = True def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = MPNetModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_A ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_A ) def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_A ) def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_A ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_A ) @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase_ ( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = MPNetModel.from_pretrained("microsoft/mpnet-base" ) _SCREAMING_SNAKE_CASE = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _SCREAMING_SNAKE_CASE = model(_A )[0] _SCREAMING_SNAKE_CASE = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _A ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
418
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( nn.Module ): def __init__( self ,_A=3 ,_A=3 ,_A=("DownEncoderBlock2D",) ,_A=(64,) ,_A=2 ,_A=32 ,_A="silu" ,_A=True ,): '''simple docstring''' super().__init__() _lowerCAmelCase : str = layers_per_block _lowerCAmelCase : Optional[Any] = torch.nn.Convad( _A ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) _lowerCAmelCase : Any = None _lowerCAmelCase : Tuple = nn.ModuleList([] ) # down _lowerCAmelCase : List[Any] = block_out_channels[0] for i, down_block_type in enumerate(_A ): _lowerCAmelCase : str = output_channel _lowerCAmelCase : Union[str, Any] = block_out_channels[i] _lowerCAmelCase : List[str] = i == len(_A ) - 1 _lowerCAmelCase : Dict = get_down_block( _A ,num_layers=self.layers_per_block ,in_channels=_A ,out_channels=_A ,add_downsample=not is_final_block ,resnet_eps=1E-6 ,downsample_padding=0 ,resnet_act_fn=_A ,resnet_groups=_A ,attention_head_dim=_A ,temb_channels=_A ,) self.down_blocks.append(_A ) # mid _lowerCAmelCase : Optional[int] = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1E-6 ,resnet_act_fn=_A ,output_scale_factor=1 ,resnet_time_scale_shift='default' ,attention_head_dim=block_out_channels[-1] ,resnet_groups=_A ,temb_channels=_A ,) # out _lowerCAmelCase : str = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=_A ,eps=1E-6 ) _lowerCAmelCase : Any = nn.SiLU() _lowerCAmelCase : List[str] = 2 * out_channels if double_z else out_channels _lowerCAmelCase : List[str] = nn.Convad(block_out_channels[-1] ,_A ,3 ,padding=1 ) _lowerCAmelCase : Optional[Any] = False def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = x _lowerCAmelCase : List[Any] = self.conv_in(_A ) if self.training and self.gradient_checkpointing: def create_custom_forward(_A ): def custom_forward(*_A ): return module(*_A ) return custom_forward # down if is_torch_version('>=' ,'1.11.0' ): for down_block in self.down_blocks: _lowerCAmelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(_A ) ,_A ,use_reentrant=_A ) # middle _lowerCAmelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,_A ,use_reentrant=_A ) else: for down_block in self.down_blocks: _lowerCAmelCase : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(_A ) ,_A ) # middle _lowerCAmelCase : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,_A ) else: # down for down_block in self.down_blocks: _lowerCAmelCase : Optional[int] = down_block(_A ) # middle _lowerCAmelCase : int = self.mid_block(_A ) # post-process _lowerCAmelCase : str = self.conv_norm_out(_A ) _lowerCAmelCase : str = self.conv_act(_A ) _lowerCAmelCase : List[Any] = self.conv_out(_A ) return sample class __UpperCamelCase ( nn.Module ): def __init__( self ,_A=3 ,_A=3 ,_A=("UpDecoderBlock2D",) ,_A=(64,) ,_A=2 ,_A=32 ,_A="silu" ,_A="group" ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = layers_per_block _lowerCAmelCase : Dict = nn.Convad( _A ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) _lowerCAmelCase : List[str] = None _lowerCAmelCase : Dict = nn.ModuleList([] ) _lowerCAmelCase : List[str] = in_channels if norm_type == 'spatial' else None # mid _lowerCAmelCase : str = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1E-6 ,resnet_act_fn=_A ,output_scale_factor=1 ,resnet_time_scale_shift='default' if norm_type == 'group' else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=_A ,temb_channels=_A ,) # up _lowerCAmelCase : Optional[Any] = list(reversed(_A ) ) _lowerCAmelCase : List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(_A ): _lowerCAmelCase : List[Any] = output_channel _lowerCAmelCase : Any = reversed_block_out_channels[i] _lowerCAmelCase : Optional[int] = i == len(_A ) - 1 _lowerCAmelCase : Union[str, Any] = get_up_block( _A ,num_layers=self.layers_per_block + 1 ,in_channels=_A ,out_channels=_A ,prev_output_channel=_A ,add_upsample=not is_final_block ,resnet_eps=1E-6 ,resnet_act_fn=_A ,resnet_groups=_A ,attention_head_dim=_A ,temb_channels=_A ,resnet_time_scale_shift=_A ,) self.up_blocks.append(_A ) _lowerCAmelCase : str = output_channel # out if norm_type == "spatial": _lowerCAmelCase : Tuple = SpatialNorm(block_out_channels[0] ,_A ) else: _lowerCAmelCase : Optional[Any] = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=_A ,eps=1E-6 ) _lowerCAmelCase : Any = nn.SiLU() _lowerCAmelCase : Any = nn.Convad(block_out_channels[0] ,_A ,3 ,padding=1 ) _lowerCAmelCase : Union[str, Any] = False def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = z _lowerCAmelCase : str = self.conv_in(_A ) _lowerCAmelCase : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_A ): def custom_forward(*_A ): return module(*_A ) return custom_forward if is_torch_version('>=' ,'1.11.0' ): # middle _lowerCAmelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,_A ,_A ,use_reentrant=_A ) _lowerCAmelCase : str = sample.to(_A ) # up for up_block in self.up_blocks: _lowerCAmelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(_A ) ,_A ,_A ,use_reentrant=_A ) else: # middle _lowerCAmelCase : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,_A ,_A ) _lowerCAmelCase : str = sample.to(_A ) # up for up_block in self.up_blocks: _lowerCAmelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(_A ) ,_A ,_A ) else: # middle _lowerCAmelCase : Optional[int] = self.mid_block(_A ,_A ) _lowerCAmelCase : Union[str, Any] = sample.to(_A ) # up for up_block in self.up_blocks: _lowerCAmelCase : Union[str, Any] = up_block(_A ,_A ) # post-process if latent_embeds is None: _lowerCAmelCase : List[Any] = self.conv_norm_out(_A ) else: _lowerCAmelCase : Any = self.conv_norm_out(_A ,_A ) _lowerCAmelCase : int = self.conv_act(_A ) _lowerCAmelCase : List[Any] = self.conv_out(_A ) return sample class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A=None ,_A="random" ,_A=False ,_A=True ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = n_e _lowerCAmelCase : int = vq_embed_dim _lowerCAmelCase : List[Any] = beta _lowerCAmelCase : List[Any] = legacy _lowerCAmelCase : Union[str, Any] = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) _lowerCAmelCase : int = remap if self.remap is not None: self.register_buffer('used' ,torch.tensor(np.load(self.remap ) ) ) _lowerCAmelCase : Any = self.used.shape[0] _lowerCAmelCase : List[str] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _lowerCAmelCase : Any = self.re_embed _lowerCAmelCase : Tuple = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: _lowerCAmelCase : str = n_e _lowerCAmelCase : List[str] = sane_index_shape def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = inds.shape assert len(_A ) > 1 _lowerCAmelCase : List[Any] = inds.reshape(ishape[0] ,-1 ) _lowerCAmelCase : Tuple = self.used.to(_A ) _lowerCAmelCase : Any = (inds[:, :, None] == used[None, None, ...]).long() _lowerCAmelCase : Tuple = match.argmax(-1 ) _lowerCAmelCase : Dict = match.sum(2 ) < 1 if self.unknown_index == "random": _lowerCAmelCase : int = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: _lowerCAmelCase : Dict = self.unknown_index return new.reshape(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = inds.shape assert len(_A ) > 1 _lowerCAmelCase : int = inds.reshape(ishape[0] ,-1 ) _lowerCAmelCase : Dict = self.used.to(_A ) if self.re_embed > self.used.shape[0]: # extra token _lowerCAmelCase : List[str] = 0 # simply set to zero _lowerCAmelCase : List[str] = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,_A ) return back.reshape(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = z.permute(0 ,2 ,3 ,1 ).contiguous() _lowerCAmelCase : int = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _lowerCAmelCase : List[str] = torch.argmin(torch.cdist(_A ,self.embedding.weight ) ,dim=1 ) _lowerCAmelCase : Optional[int] = self.embedding(_A ).view(z.shape ) _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Tuple = None # compute loss for embedding if not self.legacy: _lowerCAmelCase : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _lowerCAmelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _lowerCAmelCase : Optional[int] = z + (z_q - z).detach() # reshape back to match original input shape _lowerCAmelCase : Optional[int] = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: _lowerCAmelCase : Any = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis _lowerCAmelCase : Optional[int] = self.remap_to_used(_A ) _lowerCAmelCase : List[Any] = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: _lowerCAmelCase : List[str] = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if self.remap is not None: _lowerCAmelCase : List[str] = indices.reshape(shape[0] ,-1 ) # add batch axis _lowerCAmelCase : List[str] = self.unmap_to_all(_A ) _lowerCAmelCase : List[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors _lowerCAmelCase : Tuple = self.embedding(_A ) if shape is not None: _lowerCAmelCase : List[Any] = z_q.view(_A ) # reshape back to match original input shape _lowerCAmelCase : List[Any] = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A=False ): '''simple docstring''' _lowerCAmelCase : int = parameters _lowerCAmelCase, _lowerCAmelCase : List[str] = torch.chunk(_A ,2 ,dim=1 ) _lowerCAmelCase : Optional[Any] = torch.clamp(self.logvar ,-3_0.0 ,2_0.0 ) _lowerCAmelCase : Optional[int] = deterministic _lowerCAmelCase : int = torch.exp(0.5 * self.logvar ) _lowerCAmelCase : Optional[Any] = torch.exp(self.logvar ) if self.deterministic: _lowerCAmelCase : Optional[int] = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def __lowerCamelCase ( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : int = randn_tensor( self.mean.shape ,generator=_A ,device=self.parameters.device ,dtype=self.parameters.dtype ) _lowerCAmelCase : Any = self.mean + self.std * sample return x def __lowerCamelCase ( self ,_A=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def __lowerCamelCase ( self ,_A ,_A=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) _lowerCAmelCase : Optional[int] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return self.mean
259
0
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __A : """simple docstring""" def __init__( self )-> Optional[Any]: lowercase__ = '''''' lowercase__ = '''''' lowercase__ = [] lowercase__ = 0 lowercase__ = 2_5_6 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 def snake_case_( self , _lowerCamelCase )-> List[Any]: lowercase__ = cva.imread(_lowerCamelCase , 0 ) lowercase__ = copy.deepcopy(self.img ) lowercase__ , lowercase__ , lowercase__ = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label='''x''' ) lowercase__ = np.sum(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): lowercase__ = x[i] / self.k self.sk += prk lowercase__ = (self.L - 1) * self.sk if self.rem != 0: lowercase__ = int(last % last ) lowercase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_lowerCamelCase ) lowercase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowercase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowercase__ = self.img[j][i] if num != self.last_list[num]: lowercase__ = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def snake_case_( self )-> Any: plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def snake_case_( self )-> Optional[int]: cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": _lowerCAmelCase = os.path.join(os.path.basename(__file__), "image_data/input.jpg") _lowerCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
318
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowercase : int ) ->bool: """simple docstring""" lowercase__ = str(lowercase ) return len(lowercase ) == 9 and set(lowercase ) == set('''123456789''' ) def _lowerCAmelCase ( ) ->int | None: """simple docstring""" for base_num in range(9_9_9_9 , 4_9_9_9 , -1 ): lowercase__ = 1_0_0_0_0_2 * base_num if is_9_pandigital(lowercase ): return candidate for base_num in range(3_3_3 , 9_9 , -1 ): lowercase__ = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(lowercase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
318
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
75
import math import os import sys def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Dict = '' try: with open(lowerCamelCase , 'rb' ) as binary_file: UpperCamelCase_ : Union[str, Any] = binary_file.read() for dat in data: UpperCamelCase_ : Optional[int] = F"{dat:08b}" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def __lowercase ( lowerCamelCase : dict[str, str] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : str ): lexicon.pop(lowerCamelCase ) UpperCamelCase_ : Optional[int] = last_match_id if math.loga(lowerCamelCase ).is_integer(): for curr_key in lexicon: UpperCamelCase_ : Optional[int] = '0' + lexicon[curr_key] UpperCamelCase_ : List[str] = bin(lowerCamelCase )[2:] def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : List[str] = {'0': '0', '1': '1'} UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = '', '' UpperCamelCase_ : List[str] = len(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase_ : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) index += 1 UpperCamelCase_ : Optional[int] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCamelCase_ : Any = lexicon[curr_string] result += last_match_id return result def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Union[str, Any] = os.path.getsize(lowerCamelCase ) UpperCamelCase_ : List[str] = bin(lowerCamelCase )[2:] UpperCamelCase_ : int = len(lowerCamelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Optional[int] = 8 try: with open(lowerCamelCase , 'wb' ) as opened_file: UpperCamelCase_ : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCamelCase ) , lowerCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(lowerCamelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): UpperCamelCase_ : Dict = read_file_binary(lowerCamelCase ) UpperCamelCase_ : Optional[int] = compress_data(lowerCamelCase ) UpperCamelCase_ : Dict = add_file_length(lowerCamelCase , lowerCamelCase ) write_file_binary(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
417
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
721
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase_ : Any = object() # For specifying empty leaf dict `{}` lowerCAmelCase_ : Optional[int] = object() def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : int = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(lowerCAmelCase_ ) - len(lowerCAmelCase_ ) + 1 ): _UpperCAmelCase : List[str] = [x.match(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , ks[i:] )] if matches and all(lowerCAmelCase_ ): return True return False def __A ( lowerCAmelCase_ ): def replace(lowerCAmelCase_ , lowerCAmelCase_ ): for rule, replacement in rules: if _match(lowerCAmelCase_ , lowerCAmelCase_ ): return replacement return val return replace def __A ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , lowerCAmelCase_ )), (("transformer", "wte", "embedding"), P("""mp""" , lowerCAmelCase_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCAmelCase_ , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , lowerCAmelCase_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCAmelCase_ , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , lowerCAmelCase_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Tuple = _get_partition_rules() _UpperCAmelCase : Optional[Any] = _replacement_rules(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(lowerCAmelCase_ )} _UpperCAmelCase : List[Any] = {k: replace(lowerCAmelCase_ , lowerCAmelCase_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCAmelCase_ ) )
414
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ : Dict = False class __lowerCAmelCase ( unittest.TestCase ): def snake_case_ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ (self ): return 1_2 @property def snake_case_ (self ): return 1_2 @property def snake_case_ (self ): return 3_2 @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def snake_case_ (self ): _UpperCAmelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowerCAmelCase__ ) @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : int = 1_2 _UpperCAmelCase : Tuple = 1_2 _UpperCAmelCase : Any = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } _UpperCAmelCase : Tuple = TransformeraDModel(**lowerCAmelCase__ ) return model def snake_case_ (self ): _UpperCAmelCase : List[str] = """cpu""" _UpperCAmelCase : Any = self.dummy_vqvae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Tuple = self.dummy_tokenizer _UpperCAmelCase : List[str] = self.dummy_transformer _UpperCAmelCase : Tuple = VQDiffusionScheduler(self.num_embed ) _UpperCAmelCase : int = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = VQDiffusionPipeline( vqvae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , transformer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) _UpperCAmelCase : List[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : int = """teddy bear playing in the pool""" _UpperCAmelCase : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" ) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = pipe( [prompt] , generator=lowerCAmelCase__ , output_type="""np""" , return_dict=lowerCAmelCase__ , num_inference_steps=2 )[0] _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) _UpperCAmelCase : str = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = """cpu""" _UpperCAmelCase : Tuple = self.dummy_vqvae _UpperCAmelCase : Dict = self.dummy_text_encoder _UpperCAmelCase : int = self.dummy_tokenizer _UpperCAmelCase : Any = self.dummy_transformer _UpperCAmelCase : List[str] = VQDiffusionScheduler(self.num_embed ) _UpperCAmelCase : str = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCAmelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _UpperCAmelCase : Tuple = VQDiffusionPipeline( vqvae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , transformer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = """teddy bear playing in the pool""" _UpperCAmelCase : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Dict = pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe( [prompt] , generator=lowerCAmelCase__ , output_type="""np""" , return_dict=lowerCAmelCase__ , num_inference_steps=2 )[0] _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) _UpperCAmelCase : List[str] = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def snake_case_ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) _UpperCAmelCase : List[Any] = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) _UpperCAmelCase : Union[str, Any] = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _UpperCAmelCase : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=lowerCAmelCase__ , output_type="""np""" , ) _UpperCAmelCase : Dict = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
414
1
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Any = BigBirdConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: snake_case_ : Optional[int] = BigBirdForQuestionAnswering(__SCREAMING_SNAKE_CASE ) else: snake_case_ : Optional[int] = BigBirdForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, is_trivia_qa=__SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) a_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
717
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ), minimax(depth + 1, node_index * 2 + 1, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ), ) return min( minimax(depth + 1, node_index * 2, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ), minimax(depth + 1, node_index * 2 + 1, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ), ) def UpperCamelCase_ ( ): """simple docstring""" snake_case_ : int = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] snake_case_ : Union[str, Any] = math.log(len(__SCREAMING_SNAKE_CASE ), 2 ) print("Optimal value : ", end="" ) print(minimax(0, 0, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
92
0
'''simple docstring''' import math def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> list: UpperCAmelCase : Optional[int] = [True] * n UpperCAmelCase : str = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Tuple = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCAmelCase : int = i * 2 while index < n: UpperCAmelCase : int = False UpperCAmelCase : List[str] = index + i UpperCAmelCase : Tuple = [2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def snake_case_ ( _lowerCAmelCase : str = 999966663333 ) -> int: UpperCAmelCase : List[str] = math.floor(math.sqrt(_lowerCAmelCase ) ) + 100 UpperCAmelCase : Union[str, Any] = prime_sieve(_lowerCAmelCase ) UpperCAmelCase : List[str] = 0 UpperCAmelCase : Any = 0 UpperCAmelCase : int = primes[prime_index] while (last_prime**2) <= limit: UpperCAmelCase : Dict = primes[prime_index + 1] UpperCAmelCase : Union[str, Any] = last_prime**2 UpperCAmelCase : Union[str, Any] = next_prime**2 # Get numbers divisible by lps(current) UpperCAmelCase : int = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCAmelCase : Tuple = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCAmelCase : str = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCAmelCase : Optional[Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
127
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Dict = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "bert-base-uncased": 5_12, "bert-large-uncased": 5_12, "bert-base-cased": 5_12, "bert-large-cased": 5_12, "bert-base-multilingual-uncased": 5_12, "bert-base-multilingual-cased": 5_12, "bert-base-chinese": 5_12, "bert-base-german-cased": 5_12, "bert-large-uncased-whole-word-masking": 5_12, "bert-large-cased-whole-word-masking": 5_12, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_12, "bert-large-cased-whole-word-masking-finetuned-squad": 5_12, "bert-base-cased-finetuned-mrpc": 5_12, "bert-base-german-dbmdz-cased": 5_12, "bert-base-german-dbmdz-uncased": 5_12, "TurkuNLP/bert-base-finnish-cased-v1": 5_12, "TurkuNLP/bert-base-finnish-uncased-v1": 5_12, "wietsedv/bert-base-dutch-cased": 5_12, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class a_ ( SCREAMING_SNAKE_CASE__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = BertTokenizer def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="[UNK]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="[PAD]" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , tokenize_chinese_chars=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ = getattr(SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = strip_accents SCREAMING_SNAKE_CASE_ = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ = normalizer_class(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = do_lower_case def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE )
205
0
import os import numpy import onnx def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = a.name A__ = b.name A__ = '' A__ = '' A__ = a == b A__ = name_a A__ = name_b return res def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: A__ = list(model.graph.initializer ) A__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A__ = inits[i].name A__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def A ( __UpperCamelCase ) -> List[str]: A__ = os.path.dirname(a__ ) A__ = os.path.basename(a__ ) A__ = onnx.load(os.path.join(a__ , a__ ) ) A__ = list(model.graph.initializer ) A__ = set() A__ = {} A__ = [] A__ = 0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) A__ = inits[j].data_type A__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , a__ ) total_reduced_size += mem_size A__ = inits[i].name A__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: A__ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_024 / 1_024 / 1_024 , 'GB' ) A__ = sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) A__ = 'optimized_' + model_file_name A__ = os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
713
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: A__ = args.log_outputs A__ = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric A__ = load_metric('wer' ) A__ = load_metric('cer' ) # compute metrics A__ = wer.compute(references=result['target'] , predictions=result['prediction'] ) A__ = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results A__ = f'''WER: {wer_result}\nCER: {cer_result}''' print(__UpperCamelCase ) with open(f'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(__UpperCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f'''log_{dataset_id}_predictions.txt''' A__ = f'''log_{dataset_id}_targets.txt''' with open(__UpperCamelCase , 'w' ) as p, open(__UpperCamelCase , 'w' ) as t: # mapping function to write output def write_to_file(__UpperCamelCase , __UpperCamelCase ): p.write(f'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(__UpperCamelCase , with_indices=__UpperCamelCase ) def A ( __UpperCamelCase ) -> str: A__ = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(__UpperCamelCase , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: A__ = ' '.join(text.split(__UpperCamelCase ) ) return text def A ( __UpperCamelCase ) -> Union[str, Any]: # load dataset A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__UpperCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('audio' , Audio(sampling_rate=__UpperCamelCase ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__UpperCamelCase ): A__ = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['text'] A__ = normalize_text(batch['sentence'] ) return batch # run inference on all examples A__ = dataset.map(__UpperCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
52
0
def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 a , a :List[str] = 1, 1 for _ in range(number_of_steps - 1 ): a , a :Optional[Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
445
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase_ , int(b / 2 ) ) * actual_power(UpperCAmelCase_ , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase_ , int(b / 2 ) ) * actual_power(UpperCAmelCase_ , int(b / 2 ) ) def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase_ , UpperCAmelCase_ ) return actual_power(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": print(power(-2, -3))
445
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def UpperCamelCase ( a , a ) -> Optional[int]: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __magic_name__ = flax_key_tuple[:-1] + ('''weight''',) __magic_name__ = torch.permute(a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a ): # linear layer __magic_name__ = flax_key_tuple[:-1] + ('''weight''',) __magic_name__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __magic_name__ = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def UpperCamelCase ( a , a , a ) -> Dict: '''simple docstring''' if "metadata" in layer: __magic_name__ = layer.split('''metadata''' ) __magic_name__ = ''''''.join(split_layer[0] )[:-1] __magic_name__ = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: __magic_name__ = layer.split('''kvstore''' ) __magic_name__ = ''''''.join(split_layer[0] )[:-1] __magic_name__ = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: __magic_name__ = layer.split('''/''' ) __magic_name__ = '''/'''.join(split_layer[:-1] ) __magic_name__ = (split_layer[-1],) if "kvstore/path" in layer: __magic_name__ = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: __magic_name__ = '''file''' else: __magic_name__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def UpperCamelCase ( a , a ) -> str: '''simple docstring''' __magic_name__ = rename_keys(a ) __magic_name__ = {} for k, v in current_block.items(): __magic_name__ = v __magic_name__ = new_current_block torch.save(a , a ) def UpperCamelCase ( a , a , a , a , a = WEIGHTS_NAME ) -> Dict: '''simple docstring''' __magic_name__ = convert_file_size_to_int(a ) __magic_name__ = [] __magic_name__ = {} __magic_name__ = 0 __magic_name__ = 0 os.makedirs(a , exist_ok=a ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: __magic_name__ = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] __magic_name__ = flatten_dict(a , sep='''/''' ) __magic_name__ = {} for layer in checkpoint_info.keys(): __magic_name__ , __magic_name__ , __magic_name__ = get_key_and_tensorstore_dict( a , a , a ) if curr_real_layer_name in all_layers: __magic_name__ = content else: __magic_name__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __magic_name__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __magic_name__ = torch.tensor(a ) __magic_name__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __magic_name__ , __magic_name__ = rename_base_flax_keys(tuple(key.split('''/''' ) ) , a ) __magic_name__ = '''/'''.join(a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __magic_name__ = os.path.join( a , weights_name.replace('''.bin''' , F'''-{len(a )+1:05d}-of-???.bin''' ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) del current_block __magic_name__ = {} __magic_name__ = 0 __magic_name__ = raw_weights.to(getattr(a , a ) ) current_block_size += weight_size total_size += weight_size # Add the last block __magic_name__ = os.path.join(a , weights_name.replace('''.bin''' , F'''-{len(a )+1:05d}-of-???.bin''' ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __magic_name__ = {} __magic_name__ = {} for idx, shard in enumerate(a ): __magic_name__ = weights_name.replace( '''.bin''' , F'''-{idx+1:05d}-of-{len(a ):05d}.bin''' ) # len(sharded_state_dicts):05d} __magic_name__ = os.path.join(a , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(a , os.path.join(a , a ) ) __magic_name__ = shard for key in shard: __magic_name__ = shard_file # Add the metadata __magic_name__ = {'''total_size''': total_size} __magic_name__ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(a , a ) , '''w''' , encoding='''utf-8''' ) as f: __magic_name__ = json.dumps(a , indent=2 , sort_keys=a ) + '''\n''' f.write(a ) return metadata, index if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) _lowerCAmelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def UpperCamelCase ( ) -> List[str]: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __magic_name__ = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) __magic_name__ = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) __magic_name__ = TaTokenizer.from_pretrained('''t5-small''' ) __magic_name__ = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' __magic_name__ = tokenizer(a , return_tensors='''pt''' ).input_ids __magic_name__ = model.generate(a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
245
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class _SCREAMING_SNAKE_CASE ( nn.Module ): __SCREAMING_SNAKE_CASE :int __SCREAMING_SNAKE_CASE :jnp.dtype = jnp.floataa def snake_case__ ( self : List[str] ): __magic_name__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , a__ : List[str] ): __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = hidden_states.shape __magic_name__ = jax.image.resize( a__ , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) __magic_name__ = self.conv(a__ ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): __SCREAMING_SNAKE_CASE :int __SCREAMING_SNAKE_CASE :jnp.dtype = jnp.floataa def snake_case__ ( self : Any ): __magic_name__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Tuple , a__ : Optional[int] ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __magic_name__ = self.conv(a__ ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): __SCREAMING_SNAKE_CASE :int __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :float = 0.0 __SCREAMING_SNAKE_CASE :bool = None __SCREAMING_SNAKE_CASE :jnp.dtype = jnp.floataa def snake_case__ ( self : str ): __magic_name__ = self.in_channels if self.out_channels is None else self.out_channels __magic_name__ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __magic_name__ = nn.Conv( a__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __magic_name__ = nn.Dense(a__ , dtype=self.dtype ) __magic_name__ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __magic_name__ = nn.Dropout(self.dropout_prob ) __magic_name__ = nn.Conv( a__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __magic_name__ = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __magic_name__ = None if use_nin_shortcut: __magic_name__ = nn.Conv( a__ , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self : Optional[Any] , a__ : List[str] , a__ : Dict , a__ : Optional[int]=True ): __magic_name__ = hidden_states __magic_name__ = self.norma(a__ ) __magic_name__ = nn.swish(a__ ) __magic_name__ = self.conva(a__ ) __magic_name__ = self.time_emb_proj(nn.swish(a__ ) ) __magic_name__ = jnp.expand_dims(jnp.expand_dims(a__ , 1 ) , 1 ) __magic_name__ = hidden_states + temb __magic_name__ = self.norma(a__ ) __magic_name__ = nn.swish(a__ ) __magic_name__ = self.dropout(a__ , a__ ) __magic_name__ = self.conva(a__ ) if self.conv_shortcut is not None: __magic_name__ = self.conv_shortcut(a__ ) return hidden_states + residual
245
1
from __future__ import annotations import math def __A ( _A ): """simple docstring""" if num <= 0: __a = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(_A ) __a = [True] * (num + 1) __a = [] __a = 2 __a = int(math.sqrt(_A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_A ) # Set multiples of start be False for i in range(start * start , num + 1 , _A ): if sieve[i] is True: __a = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_A ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
197
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE : List[Any] = logging.getLogger() SCREAMING_SNAKE_CASE : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A_ ( a_ ): def _UpperCAmelCase ( self : str , __SCREAMING_SNAKE_CASE : int ): os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) __a = {"source": "What is love ?", "target": "life"} __a = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __a = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__SCREAMING_SNAKE_CASE , f"""{split}.{field}""" ) , "w" ) as f: f.write(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str = "pytorch" ): __a = self.get_auto_remove_tmp_dir() __a = os.path.join(__SCREAMING_SNAKE_CASE , "output" ) __a = os.path.join(__SCREAMING_SNAKE_CASE , "data" ) self._create_dummy_data(data_dir=__SCREAMING_SNAKE_CASE ) __a = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) __a = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=self.get_env() ) __a = os.path.join(__SCREAMING_SNAKE_CASE , "metrics.json" ) with open(__SCREAMING_SNAKE_CASE ) as f: __a = json.load(__SCREAMING_SNAKE_CASE ) return result @require_torch_gpu def _UpperCAmelCase ( self : Dict ): __a = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _UpperCAmelCase ( self : Optional[int] ): __a = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _UpperCAmelCase ( self : Optional[Any] ): __a = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _UpperCAmelCase ( self : Any ): __a = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
197
1
def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def A__ ( __lowerCAmelCase : Optional[Any] ): lowerCamelCase__ = 0 while number > 0: lowerCamelCase__ = number % 10 sum_of_digits += last_digit lowerCamelCase__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def A__ ( __lowerCAmelCase : str = 100 ): lowerCamelCase__ = factorial(_lowerCamelCase ) lowerCamelCase__ = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
715
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCamelCase : int = [2, 4, 1, 5] UpperCamelCase : int = len(train_data) UpperCamelCase : Dict = 0.009 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ): return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ): lowerCamelCase__ = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.00_0002 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCamelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def A__ ( ): for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
9
0
import math def A__ ( snake_case_ : List[str] , snake_case_ : Optional[Any] ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(snake_case_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase_ : Dict = 'Enter the base and the power separated by a comma: ' lowercase_ , lowercase_ : Tuple = map(int, input(prompt).split(',')) lowercase_ , lowercase_ : Any = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. lowercase_ : Tuple = res(xa, ya) lowercase_ : Union[str, Any] = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
64
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "bert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Dict = hidden_size __snake_case : Any = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Any = hidden_act __snake_case : Any = intermediate_size __snake_case : List[str] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : str = type_vocab_size __snake_case : Any = initializer_range __snake_case : Any = layer_norm_eps __snake_case : List[Any] = position_embedding_type __snake_case : Dict = use_cache __snake_case : str = classifier_dropout class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" @property def lowercase_ ( self ): if self.task == "multiple-choice": __snake_case : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
576
0
import math from numpy import inf from scipy.integrate import quad def snake_case_ (__A : float ) -> float: if num <= 0: raise ValueError("""math domain error""" ) return quad(__A , 0 , __A , args=(__A) )[0] def snake_case_ (__A : float , __A : float ) -> float: return math.pow(__A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
218
def snake_case_ (__A : int = 1_0**9 ) -> int: __lowerCAmelCase : Any = 1 __lowerCAmelCase : Optional[int] = 2 __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Dict = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __lowerCAmelCase : int = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
218
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
65
"""simple docstring""" def lowercase_ ( _lowercase : int ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError("only integers accepted as input" ) else: UpperCAmelCase : Optional[int] = str(abs(_lowercase ) ) UpperCAmelCase : Union[str, Any] = [list(_lowercase ) for char in range(len(_lowercase ) )] for index in range(len(_lowercase ) ): num_transpositions[index].pop(_lowercase ) return max( int("".join(list(_lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
595
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __magic_name__ ( __a ): """simple docstring""" lowerCAmelCase : Tuple = '''convbert''' def __init__( self : str , _lowercase : Dict=30_522 , _lowercase : List[Any]=768 , _lowercase : Any=12 , _lowercase : Optional[int]=12 , _lowercase : Any=3_072 , _lowercase : Union[str, Any]="gelu" , _lowercase : List[str]=0.1 , _lowercase : List[str]=0.1 , _lowercase : List[str]=512 , _lowercase : str=2 , _lowercase : List[str]=0.02 , _lowercase : Optional[int]=1E-12 , _lowercase : Any=1 , _lowercase : Optional[Any]=0 , _lowercase : Tuple=2 , _lowercase : int=768 , _lowercase : List[str]=2 , _lowercase : Optional[int]=9 , _lowercase : Optional[int]=1 , _lowercase : List[Any]=None , **_lowercase : Tuple , ): """simple docstring""" super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) _UpperCamelCase: List[Any] = vocab_size _UpperCamelCase: Union[str, Any] = hidden_size _UpperCamelCase: List[str] = num_hidden_layers _UpperCamelCase: Tuple = num_attention_heads _UpperCamelCase: Optional[int] = intermediate_size _UpperCamelCase: Dict = hidden_act _UpperCamelCase: List[Any] = hidden_dropout_prob _UpperCamelCase: Optional[Any] = attention_probs_dropout_prob _UpperCamelCase: Tuple = max_position_embeddings _UpperCamelCase: int = type_vocab_size _UpperCamelCase: Dict = initializer_range _UpperCamelCase: Tuple = layer_norm_eps _UpperCamelCase: Optional[int] = embedding_size _UpperCamelCase: Dict = head_ratio _UpperCamelCase: List[str] = conv_kernel_size _UpperCamelCase: str = num_groups _UpperCamelCase: Dict = classifier_dropout class __magic_name__ ( __a ): """simple docstring""" @property def lowerCAmelCase ( self : int ): """simple docstring""" if self.task == "multiple-choice": _UpperCamelCase: List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase: str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
264
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCAmelCase_ = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def lowerCAmelCase_ ( lowercase: str , lowercase: Optional[Any]=None , lowercase: List[str]=None , lowercase: List[str]=None ) -> Tuple: '''simple docstring''' _UpperCamelCase: int = True while ask_again: _UpperCamelCase: Any = input(lowercase ) try: if default is not None and len(lowercase ) == 0: return default return convert_value(lowercase ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase ) def lowerCAmelCase_ ( lowercase: List[Any] , lowercase: Union[str, Any]=[] , lowercase: Union[str, Any]=None , lowercase: Union[str, Any]=0 ) -> List[Any]: '''simple docstring''' _UpperCamelCase: List[str] = BulletMenu(lowercase , lowercase ) _UpperCamelCase: List[Any] = menu.run(default_choice=lowercase ) return convert_value(lowercase ) if convert_value is not None else result def lowerCAmelCase_ ( lowercase: Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase: int = int(lowercase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowerCAmelCase_ ( lowercase: Tuple ) -> Any: '''simple docstring''' _UpperCamelCase: str = int(lowercase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowerCAmelCase_ ( lowercase: Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase: Tuple = int(lowercase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCAmelCase_ ( lowercase: int ) -> Any: '''simple docstring''' _UpperCamelCase: int = int(lowercase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowerCAmelCase_ ( lowercase: List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase: Dict = int(lowercase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowerCAmelCase_ ( lowercase: Any ) -> List[str]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __magic_name__ ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def lowerCAmelCase ( self : str , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Dict , _lowercase : Any ): """simple docstring""" _UpperCamelCase: Optional[Any] = super()._format_usage(_lowercase , _lowercase , _lowercase , _lowercase ) _UpperCamelCase: int = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
264
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
221
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
0
"""simple docstring""" def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : Dict = 0 lowerCamelCase__ : Union[str, Any] = len(_lowercase ) for i in range(n - 1 ): for j in range(i + 1 , _lowercase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __a ( _lowercase ): """simple docstring""" if len(_lowercase ) <= 1: return arr, 0 lowerCamelCase__ : Tuple = len(_lowercase ) // 2 lowerCamelCase__ : Union[str, Any] = arr[0:mid] lowerCamelCase__ : Dict = arr[mid:] lowerCamelCase__ : List[str] = count_inversions_recursive(_lowercase ) lowerCamelCase__ : Any = count_inversions_recursive(_lowercase ) lowerCamelCase__ : Union[str, Any] = _count_cross_inversions(_lowercase , _lowercase ) lowerCamelCase__ : Optional[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def __a ( _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : Any = [] lowerCamelCase__ : Dict = 0 while i < len(_lowercase ) and j < len(_lowercase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowercase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowercase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __a ( ): """simple docstring""" lowerCamelCase__ : Tuple = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowerCamelCase__ : Optional[Any] = count_inversions_bf(_lowercase ) lowerCamelCase__ : Any = count_inversions_recursive(_lowercase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , _lowercase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowerCamelCase__ : List[Any] = count_inversions_bf(_lowercase ) lowerCamelCase__ : Tuple = count_inversions_recursive(_lowercase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , _lowercase ) # an empty list should also have zero inversions lowerCamelCase__ : int = [] lowerCamelCase__ : Any = count_inversions_bf(_lowercase ) lowerCamelCase__ : List[Any] = count_inversions_recursive(_lowercase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , _lowercase ) if __name__ == "__main__": main()
712
"""simple docstring""" import fire from utils import calculate_rouge, save_json def __a ( _lowercase , _lowercase , _lowercase=None , **_lowercase ): """simple docstring""" lowerCamelCase__ : str = [x.strip() for x in open(_lowercase ).readlines()] lowerCamelCase__ : str = [x.strip() for x in open(_lowercase ).readlines()][: len(_lowercase )] lowerCamelCase__ : Optional[int] = calculate_rouge(_lowercase , _lowercase , **_lowercase ) if save_path is not None: save_json(_lowercase , _lowercase , indent=_lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
121
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[int] = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
587
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : List[str] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """camembert""" def __init__( self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1e-1_2 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> Any: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) snake_case : int = vocab_size snake_case : Dict = hidden_size snake_case : Any = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Any = hidden_act snake_case : List[str] = intermediate_size snake_case : List[str] = hidden_dropout_prob snake_case : List[Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : str = type_vocab_size snake_case : List[Any] = initializer_range snake_case : int = layer_norm_eps snake_case : Optional[int] = position_embedding_type snake_case : Tuple = use_cache snake_case : Tuple = classifier_dropout class __lowercase (UpperCamelCase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
587
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Dict = "blip_text_model" def __init__( self , A_=3_0524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1e-12 , A_=0.0 , A_=0.0 , A_=0.0_2 , A_=3_0522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> str: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = encoder_hidden_size lowerCAmelCase = intermediate_size lowerCAmelCase = projection_dim lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = max_position_embeddings lowerCAmelCase = layer_norm_eps lowerCAmelCase = hidden_act lowerCAmelCase = initializer_range lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = is_decoder lowerCAmelCase = use_cache @classmethod def __snake_case ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) lowerCAmelCase, lowerCAmelCase = cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": lowerCAmelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1e-5 , A_=0.0 , A_=1e-10 , **A_ , ) -> Dict: super().__init__(**A_ ) lowerCAmelCase = hidden_size lowerCAmelCase = intermediate_size lowerCAmelCase = projection_dim lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = patch_size lowerCAmelCase = image_size lowerCAmelCase = initializer_range lowerCAmelCase = attention_dropout lowerCAmelCase = layer_norm_eps lowerCAmelCase = hidden_act @classmethod def __snake_case ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) lowerCAmelCase, lowerCAmelCase = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("""model_type""" ) == "blip": lowerCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Tuple = "blip" UpperCAmelCase : str = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6_5_9_2 , A_=256 , **A_ , ) -> int: super().__init__(**A_ ) if text_config is None: lowerCAmelCase = {} logger.info("""`text_config` is `None`. Initializing the `BlipTextConfig` with default values.""" ) if vision_config is None: lowerCAmelCase = {} logger.info("""`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.""" ) lowerCAmelCase = BlipTextConfig(**A_ ) lowerCAmelCase = BlipVisionConfig(**A_ ) lowerCAmelCase = self.vision_config.hidden_size lowerCAmelCase = projection_dim lowerCAmelCase = logit_scale_init_value lowerCAmelCase = 1.0 lowerCAmelCase = 0.0_2 lowerCAmelCase = image_text_hidden_size @classmethod def __snake_case ( cls , A_ , A_ , **A_ ) -> Tuple: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.text_config.to_dict() lowerCAmelCase = self.vision_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
719
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] ) -> str: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCAmelCase = mf_knapsack(i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = max( mf_knapsack(i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , mf_knapsack(i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j - wt[i - 1] ) + val[i - 1] , ) lowerCAmelCase = val return f[i][j] def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" lowerCAmelCase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowerCAmelCase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowerCAmelCase = dp[i - 1][w_] return dp[n][w_], dp def _snake_case ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list ) -> List[str]: """simple docstring""" if not (isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) if num_items != len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = ( """The number of weights must be the same as the number of values.\n""" f'But got {num_items} weights and {len(_SCREAMING_SNAKE_CASE )} values' ) raise ValueError(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): if not isinstance(wt[i] , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = ( """All weights must be integers but got weight of """ f'type {type(wt[i] )} at index {i}' ) raise TypeError(_SCREAMING_SNAKE_CASE ) lowerCAmelCase, lowerCAmelCase = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = set() _construct_solution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return optimal_val, example_optional_set def _snake_case ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : set ) -> str: """simple docstring""" # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: optimal_set.add(_SCREAMING_SNAKE_CASE ) _construct_solution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i - 1 , j - wt[i - 1] , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = [3, 2, 4, 4] UpperCAmelCase = [4, 3, 2, 3] UpperCAmelCase = 4 UpperCAmelCase = 6 UpperCAmelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCAmelCase , UpperCAmelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCAmelCase , UpperCAmelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
344
0
'''simple docstring''' import math def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = 0 ) -> list: __lowerCamelCase = end or len(UpperCamelCase__ ) for i in range(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = i __lowerCamelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __lowerCamelCase = array[temp_index - 1] temp_index -= 1 __lowerCamelCase = temp_index_value return array def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: # Max Heap __lowerCamelCase = index __lowerCamelCase = 2 * index + 1 # Left Node __lowerCamelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __lowerCamelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: __lowerCamelCase = right_index if largest != index: __lowerCamelCase , __lowerCamelCase = array[largest], array[index] heapify(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ ) -> list: __lowerCamelCase = len(UpperCamelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for i in range(n - 1 , 0 , -1 ): __lowerCamelCase , __lowerCamelCase = array[0], array[i] heapify(UpperCamelCase__ , 0 , UpperCamelCase__ ) return array def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: __lowerCamelCase = low __lowerCamelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __lowerCamelCase , __lowerCamelCase = array[j], array[i] i += 1 def __lowerCAmelCase ( UpperCamelCase__ ) -> list: if len(UpperCamelCase__ ) == 0: return array __lowerCamelCase = 2 * math.ceil(math.loga(len(UpperCamelCase__ ) ) ) __lowerCamelCase = 16 return intro_sort(UpperCamelCase__ , 0 , len(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(UpperCamelCase__ ) max_depth -= 1 __lowerCamelCase = median_of_a(UpperCamelCase__ , UpperCamelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) __lowerCamelCase = partition(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) intro_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = p return insertion_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase =input("Enter numbers separated by a comma : ").strip() __UpperCAmelCase =[float(item) for item in user_input.split(",")] print(sort(unsorted))
546
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: def count_of_possible_combinations(UpperCamelCase__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: def count_of_possible_combinations_with_dp_array( UpperCamelCase__ , UpperCamelCase__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __lowerCamelCase = sum( count_of_possible_combinations_with_dp_array(target - item , UpperCamelCase__ ) for item in array ) __lowerCamelCase = answer return answer __lowerCamelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(UpperCamelCase__ , UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: __lowerCamelCase = [0] * (target + 1) __lowerCamelCase = 1 for i in range(1 , target + 1 ): for j in range(UpperCamelCase__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase =3 __UpperCAmelCase =5 __UpperCAmelCase =[1, 2, 5] print(combination_sum_iv(n, array, target))
546
1
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Any , a: Optional[int] , a: Optional[int] ): super().__init__() self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self: Optional[Any] , a: int = 1 , a: Optional[torch.Generator] = None , a: int = 50 , a: Optional[str] = "pil" , a: bool = True , **a: List[Any] , ): __lowerCamelCase : Optional[int] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=a , ) __lowerCamelCase : List[str] = image.to(self.device ) # set step values self.scheduler.set_timesteps(a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCamelCase : int = self.unet(a , a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowerCamelCase : str = self.scheduler.step(a , a , a ).prev_sample __lowerCamelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : Optional[Any] = self.numpy_to_pil(a ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=a ), "This is a local test"
230
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
230
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[int]=30 , lowerCAmelCase : Dict=400 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : int=None , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=1 / 255 , lowerCAmelCase : Union[str, Any]=True , )-> Optional[Any]: """simple docstring""" UpperCAmelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = min_resolution UpperCAmelCase = max_resolution UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_normalize UpperCAmelCase = image_mean UpperCAmelCase = image_std UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_pad def a__( self : List[str] )-> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def a__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : int=False )-> List[Any]: """simple docstring""" if not batched: UpperCAmelCase = image_inputs[0] if isinstance(a_ , Image.Image ): UpperCAmelCase , UpperCAmelCase = image.size else: UpperCAmelCase , UpperCAmelCase = image.shape[1], image.shape[2] if w < h: UpperCAmelCase = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase = self.size['''shortest_edge'''] UpperCAmelCase = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase = self.size['''shortest_edge'''] UpperCAmelCase = self.size['''shortest_edge'''] else: UpperCAmelCase = [] for image in image_inputs: UpperCAmelCase , UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase = max(a_ , key=lambda lowerCAmelCase : item[0] )[0] UpperCAmelCase = max(a_ , key=lambda lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Tuple = DetaImageProcessor if is_vision_available() else None def a__( self : Optional[Any] )-> Any: """simple docstring""" UpperCAmelCase = DetaImageProcessingTester(self ) @property def a__( self : Tuple )-> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__( self : str )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''image_mean''' ) ) self.assertTrue(hasattr(a_ , '''image_std''' ) ) self.assertTrue(hasattr(a_ , '''do_normalize''' ) ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''do_rescale''' ) ) self.assertTrue(hasattr(a_ , '''do_pad''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) def a__( self : str )-> str: """simple docstring""" UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , a_ ) def a__( self : Tuple )-> str: """simple docstring""" pass def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(a_ , batched=a_ ) UpperCAmelCase = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__( self : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase = image_processing(a_ , return_tensors='''pt''' ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(a_ , batched=a_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__( self : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase = image_processing(a_ , return_tensors='''pt''' ).pixel_values UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(a_ , batched=a_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase = json.loads(f.read() ) UpperCAmelCase = {'''image_id''': 39769, '''annotations''': target} # encode them UpperCAmelCase = DetaImageProcessor() UpperCAmelCase = image_processing(images=a_ , annotations=a_ , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , a_ ) UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , a_ , atol=1E-4 ) ) # verify area UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , a_ ) ) # verify boxes UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , a_ ) UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , a_ , atol=1E-3 ) ) # verify image_id UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , a_ ) ) # verify is_crowd UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , a_ ) ) # verify class_labels UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , a_ ) ) # verify orig_size UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , a_ ) ) # verify size UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , a_ ) ) @slow def a__( self : str )-> List[Any]: """simple docstring""" UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase = json.loads(f.read() ) UpperCAmelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} UpperCAmelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase = image_processing(images=a_ , annotations=a_ , masks_path=a_ , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , a_ ) UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , a_ , atol=1E-4 ) ) # verify area UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , a_ ) ) # verify boxes UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , a_ ) UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , a_ , atol=1E-3 ) ) # verify image_id UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , a_ ) ) # verify is_crowd UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , a_ ) ) # verify class_labels UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , a_ ) ) # verify masks UpperCAmelCase = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , a_ ) # verify orig_size UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , a_ ) ) # verify size UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , a_ ) )
210
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _a : List[Any] = logging.get_logger(__name__) class lowercase_ ( a ): '''simple docstring''' def __init__( self , *a_ , **a_ ) -> None: """simple docstring""" warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , a_ , ) super().__init__(*a_ , **a_ )
447
0
import enum import shutil import sys lowerCamelCase , lowerCamelCase :Any = shutil.get_terminal_size() lowerCamelCase :List[str] = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class UpperCAmelCase ( enum.Enum ): a: Optional[Any] = 0 a: int = 1 def __snake_case ( _UpperCamelCase , _UpperCamelCase="" ) -> Optional[int]: sys.stdout.write(str(_UpperCamelCase ) + end ) sys.stdout.flush() def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="" ) -> List[Any]: forceWrite(f"\u001b[{color}m{content}\u001b[0m" , _UpperCamelCase ) def __snake_case ( ) -> Optional[Any]: forceWrite('''\r''' ) def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> List[Any]: forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}" ) def __snake_case ( ) -> Any: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __snake_case ( ) -> Any: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
346
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase :List[Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :str = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCamelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
346
1
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A = logging.get_logger('''transformers.models.encodec''') A = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } A = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } A = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } A = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } A = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A = [] A = [] def __A ( a_ :Optional[Any] , a_ :Tuple , a_ :str , a_ :List[str] , a_ :int) -> int: for attribute in key.split('''.'''): __a : List[Any] = getattr(a_ , a_) if weight_type is not None: __a : List[str] = getattr(a_ , a_).shape else: __a : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""") if weight_type == "weight": __a : int = value elif weight_type == "weight_g": __a : int = value elif weight_type == "weight_v": __a : Any = value elif weight_type == "bias": __a : Optional[int] = value elif weight_type == "running_mean": __a : List[str] = value elif weight_type == "running_var": __a : Optional[int] = value elif weight_type == "num_batches_tracked": __a : Dict = value elif weight_type == "weight_ih_l0": __a : Any = value elif weight_type == "weight_hh_l0": __a : Union[str, Any] = value elif weight_type == "bias_ih_l0": __a : Optional[int] = value elif weight_type == "bias_hh_l0": __a : Any = value elif weight_type == "weight_ih_l1": __a : Union[str, Any] = value elif weight_type == "weight_hh_l1": __a : Dict = value elif weight_type == "bias_ih_l1": __a : List[str] = value elif weight_type == "bias_hh_l1": __a : Optional[int] = value else: __a : Dict = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""") def __A ( a_ :Dict , a_ :Union[str, Any]) -> Dict: for key in ignore_keys: if key.endswith('''.*'''): if name.startswith(key[:-1]): return True elif ".*." in key: __a , __a : Optional[Any] = key.split('''.*.''') if prefix in name and suffix in name: return True elif key in name: return True return False def __A ( a_ :Any , a_ :str , a_ :Optional[Any]) -> Union[str, Any]: __a : Optional[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": __a : str = MAPPING_24K elif model_name == "encodec_48khz": __a : List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""") for name, value in orig_dict.items(): if should_ignore(a_ , a_): logger.info(F"""{name} was ignored""") continue __a : Optional[Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: __a , __a : Dict = key.split('''.*.''') if prefix in name and suffix in name: __a : Dict = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''') and name.endswith('''embed_avg'''): continue __a : Optional[int] = True if "*" in mapped_key: __a : List[Any] = name.split(a_)[0].split('''.''')[-2] __a : Union[str, Any] = mapped_key.replace('''*''' , a_) if "weight_g" in name: __a : Tuple = '''weight_g''' elif "weight_v" in name: __a : Optional[Any] = '''weight_v''' elif "weight_ih_l0" in name: __a : Union[str, Any] = '''weight_ih_l0''' elif "weight_hh_l0" in name: __a : Tuple = '''weight_hh_l0''' elif "bias_ih_l0" in name: __a : List[str] = '''bias_ih_l0''' elif "bias_hh_l0" in name: __a : str = '''bias_hh_l0''' elif "weight_ih_l1" in name: __a : int = '''weight_ih_l1''' elif "weight_hh_l1" in name: __a : Optional[int] = '''weight_hh_l1''' elif "bias_ih_l1" in name: __a : Tuple = '''bias_ih_l1''' elif "bias_hh_l1" in name: __a : List[str] = '''bias_hh_l1''' elif "bias" in name: __a : Optional[int] = '''bias''' elif "weight" in name: __a : str = '''weight''' elif "running_mean" in name: __a : int = '''running_mean''' elif "running_var" in name: __a : Optional[Any] = '''running_var''' elif "num_batches_tracked" in name: __a : List[Any] = '''num_batches_tracked''' else: __a : Tuple = None set_recursively(a_ , a_ , a_ , a_ , a_) continue if not is_used: unused_weights.append(a_) logger.warning(F"""Unused weights: {unused_weights}""") @torch.no_grad() def __A ( a_ :int , a_ :List[Any] , a_ :Optional[Any] , a_ :Any=None , a_ :int=None , ) -> List[Any]: if config_path is not None: __a : Any = EncodecConfig.from_pretrained(a_) else: __a : Dict = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __a : int = [8, 5, 4, 4] __a : List[Any] = [2.2] __a : List[Any] = 64 __a : Tuple = 3_20_00 __a : str = 20_48 __a : Optional[int] = False __a : List[Any] = False __a : str = False elif model_name == "encodec_48khz": __a : List[str] = [8, 5, 4, 2] __a : Dict = [3.0, 6.0, 1_2.0, 2_4.0] __a : Optional[int] = 4_80_00 __a : List[Any] = 2 __a : Optional[int] = False __a : Dict = '''time_group_norm''' __a : Optional[int] = True __a : Any = 1.0 __a : Optional[int] = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""") __a : Optional[Any] = EncodecModel(a_) __a : Dict = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(a_) __a : int = torch.load(a_) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __a : List[str] = original_checkpoint['''best_state'''] recursively_load_weights(a_ , a_ , a_) model.save_pretrained(a_) if repo_id: print('''Pushing to the hub...''') feature_extractor.push_to_hub(a_) model.push_to_hub(a_) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
52
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _a ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _a ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" snake_case__ : Union[str, Any] = tmp_path / '''cache''' snake_case__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ : Union[str, Any] = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" snake_case__ : Any = tmp_path / '''cache''' snake_case__ : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case__ : Dict = features.copy() if features else default_expected_features snake_case__ : Any = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ : Any = ParquetDatasetReader(__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): """simple docstring""" snake_case__ : List[Any] = tmp_path / '''cache''' snake_case__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case__ : Optional[int] = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , split=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict ): """simple docstring""" if issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = parquet_path elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : List[Any] = [parquet_path] snake_case__ : List[Any] = tmp_path / '''cache''' snake_case__ : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case__ : Optional[int] = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) def _a ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any]=("train",) ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for split in splits: snake_case__ : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict ): """simple docstring""" snake_case__ : Any = tmp_path / '''cache''' snake_case__ : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ : Dict = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ): """simple docstring""" snake_case__ : Any = tmp_path / '''cache''' snake_case__ : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case__ : Optional[Any] = features.copy() if features else default_expected_features snake_case__ : str = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ : Optional[int] = ParquetDatasetReader({'''train''': parquet_path} , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _a ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : int ): """simple docstring""" if split: snake_case__ : List[str] = {split: parquet_path} else: snake_case__ : Any = '''train''' snake_case__ : Union[str, Any] = {'''train''': parquet_path, '''test''': parquet_path} snake_case__ : Any = tmp_path / '''cache''' snake_case__ : str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case__ : Union[str, Any] = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _a ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" snake_case__ : Optional[int] = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 snake_case__ : str = pq.ParquetFile(tmp_path / '''foo.parquet''' ) snake_case__ : Union[str, Any] = pf.read() assert dataset.data.table == output_table def _a ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" snake_case__ : Tuple = str(shared_datadir / '''test_image_rgb.jpg''' ) snake_case__ : List[Any] = {'''image''': [image_path]} snake_case__ : Union[str, Any] = Features({'''image''': Image()} ) snake_case__ : Optional[Any] = Dataset.from_dict(__lowerCAmelCase , features=__lowerCAmelCase ) snake_case__ : int = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 snake_case__ : str = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features snake_case__ : Optional[Any] = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=__lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def _a ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" assert get_writer_batch_size(__lowerCAmelCase ) == expected
347
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[Any] = logging.get_logger(__name__) def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase_ : List[str] = 192 UpperCAmelCase_ : Tuple = 768 UpperCAmelCase_ : Optional[Any] = 12 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Union[str, Any] = [800, 1333] UpperCAmelCase_ : Optional[int] = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase_ : str = 330 UpperCAmelCase_ : List[str] = 14 UpperCAmelCase_ : Optional[Any] = 6 UpperCAmelCase_ : int = 1320 elif "yolos_s" in yolos_name: UpperCAmelCase_ : Union[str, Any] = 384 UpperCAmelCase_ : Dict = 1536 UpperCAmelCase_ : Dict = 12 UpperCAmelCase_ : Optional[Any] = 6 elif "yolos_b" in yolos_name: UpperCAmelCase_ : List[str] = [800, 1344] UpperCAmelCase_ : List[str] = 91 UpperCAmelCase_ : Union[str, Any] = 'huggingface/label-files' UpperCAmelCase_ : Dict = 'coco-detection-id2label.json' UpperCAmelCase_ : int = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase_ : Dict = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( lowerCamelCase_ : dict , lowerCamelCase_ : YolosConfig , lowerCamelCase_ : bool = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase_ : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Optional[Any] = in_proj_weight[: config.hidden_size, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase_ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" if "backbone" in name: UpperCAmelCase_ : Optional[int] = name.replace('backbone' , 'vit' ) if "cls_token" in name: UpperCAmelCase_ : Dict = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: UpperCAmelCase_ : Optional[int] = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: UpperCAmelCase_ : Any = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: UpperCAmelCase_ : Any = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: UpperCAmelCase_ : List[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: UpperCAmelCase_ : Optional[Any] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: UpperCAmelCase_ : str = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCAmelCase_ : Any = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCAmelCase_ : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCAmelCase_ : Any = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCAmelCase_ : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCAmelCase_ : List[str] = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: UpperCAmelCase_ : Tuple = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: UpperCAmelCase_ : List[Any] = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: UpperCAmelCase_ : List[str] = name.replace('vit.norm' , 'vit.layernorm' ) return name def _lowerCamelCase ( lowerCamelCase_ : dict , lowerCamelCase_ : YolosForObjectDetection ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Tuple = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: UpperCAmelCase_ : List[Any] = key.split('.' ) UpperCAmelCase_ : List[str] = int(key_split[2] ) UpperCAmelCase_ : Any = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase_ : Optional[Any] = val[:dim, :] UpperCAmelCase_ : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase_ : List[Any] = val[-dim:, :] else: UpperCAmelCase_ : int = val[:dim] UpperCAmelCase_ : Tuple = val[dim : dim * 2] UpperCAmelCase_ : Any = val[-dim:] else: UpperCAmelCase_ : int = val return orig_state_dict def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase_ : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : bool = False ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_yolos_config(lowerCamelCase_ ) # load original state_dict UpperCAmelCase_ : Union[str, Any] = torch.load(lowerCamelCase_ , map_location='cpu' )['model'] # load 🤗 model UpperCAmelCase_ : int = YolosForObjectDetection(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase_ : int = 800 if yolos_name != 'yolos_ti' else 512 UpperCAmelCase_ : List[str] = YolosImageProcessor(format='coco_detection' , size=lowerCamelCase_ ) UpperCAmelCase_ : int = image_processor(images=prepare_img() , return_tensors='pt' ) UpperCAmelCase_ : List[Any] = model(**lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = outputs.logits, outputs.pred_boxes UpperCAmelCase_ , UpperCAmelCase_ : Any = None, None if yolos_name == "yolos_ti": UpperCAmelCase_ : int = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCAmelCase_ : Dict = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase_ : Optional[Any] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCAmelCase_ : str = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase_ : Tuple = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCAmelCase_ : Tuple = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase_ : List[Any] = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCAmelCase_ : int = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCAmelCase_ : Optional[Any] = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCAmelCase_ : int = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: UpperCAmelCase_ : Tuple = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) UpperCAmelCase_ : Dict = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase_ , organization='hustvl' ) model.push_to_hub(lowerCamelCase_ , organization='hustvl' ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : List[str] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
389
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Tuple = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ :Any = '''FlavaImageProcessor''' lowerCamelCase_ :List[str] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case_ , ) UpperCAmelCase_ : Optional[int] = kwargs.pop('feature_extractor' ) UpperCAmelCase_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case_ , snake_case_ ) UpperCAmelCase_ : Optional[int] = self.image_processor def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = False , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: UpperCAmelCase_ : int = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) if images is not None: UpperCAmelCase_ : Optional[Any] = self.image_processor( snake_case_ , return_image_mask=snake_case_ , return_codebook_pixels=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) if text is not None and images is not None: encoding.update(snake_case_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Dict = self.tokenizer.model_input_names UpperCAmelCase_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case_ , ) return self.image_processor_class @property def _UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case_ , ) return self.image_processor
389
1
'''simple docstring''' from __future__ import annotations class snake_case__ : def __init__( self : str , __a : str=None ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = data __snake_case : List[Any] = None def __repr__( self : Dict ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = [] __snake_case : Optional[Any] = self while temp: string_rep.append(f'''{temp.data}''' ) __snake_case : Any = temp.next return "->".join(__a ) def a_ ( _UpperCAmelCase : list ) -> Optional[int]: if not elements_list: raise Exception('The Elements List is empty' ) __snake_case : Dict = Node(elements_list[0] ) for i in range(1 ,len(_UpperCAmelCase ) ): __snake_case : Union[str, Any] = Node(elements_list[i] ) __snake_case : List[Any] = current.next return head def a_ ( _UpperCAmelCase : Node ) -> None: if head_node is not None and isinstance(_UpperCAmelCase ,_UpperCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def a_ ( ) -> List[Any]: from doctest import testmod testmod() __snake_case : Optional[int] = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(_UpperCAmelCase ) print('Elements in Reverse:' ) print_reverse(_UpperCAmelCase ) if __name__ == "__main__": main()
286
'''simple docstring''' import qiskit def a_ ( _UpperCAmelCase : int = 2 ) -> qiskit.result.counts.Counts: __snake_case : Union[str, Any] = qubits # Using Aer's simulator __snake_case : List[Any] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register __snake_case : Dict = qiskit.QuantumCircuit(_UpperCAmelCase ,_UpperCAmelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 ,_UpperCAmelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 ,_UpperCAmelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_UpperCAmelCase ) ) ,list(range(_UpperCAmelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __snake_case : Optional[Any] = qiskit.execute(_UpperCAmelCase ,_UpperCAmelCase ,shots=10_00 ) return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
286
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ (__a : int , __a : Any=False ): """simple docstring""" _a : str = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _a : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def UpperCAmelCase_ (__a : Dict , __a : Union[str, Any] , __a : Any=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _a : Any = '' else: _a : Optional[int] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a : str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _a : Any = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : List[Any] = in_proj_weight[ : config.hidden_size, : ] _a : Dict = in_proj_bias[: config.hidden_size] _a : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a : int = in_proj_weight[ -config.hidden_size :, : ] _a : List[str] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ (__a : Any ): """simple docstring""" _a : Optional[Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def UpperCAmelCase_ (__a : List[Any] , __a : Union[str, Any] , __a : Union[str, Any] ): """simple docstring""" _a : Tuple = dct.pop(__snake_case ) _a : Any = val def UpperCAmelCase_ (): """simple docstring""" _a : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a : str = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase_ (__a : Union[str, Any] , __a : Any , __a : int=False ): """simple docstring""" _a : Optional[Any] = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=__snake_case , ) _a : Optional[int] = ViTHybridConfig(backbone_config=__snake_case , image_size=3_8_4 , num_labels=1_0_0_0 ) _a : Optional[int] = False # load original model from timm _a : List[Any] = timm.create_model(__snake_case , pretrained=__snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys _a : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(__snake_case ) _a : int = create_rename_keys(__snake_case , __snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_q_k_v(__snake_case , __snake_case , __snake_case ) _a : int = 'huggingface/label-files' _a : Dict = 'imagenet-1k-id2label.json' _a : List[str] = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) _a : Tuple = {int(__snake_case ): v for k, v in idalabel.items()} _a : Any = idalabel _a : Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _a : List[str] = ViTHybridModel(__snake_case ).eval() else: _a : List[str] = ViTHybridForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # create image processor _a : List[str] = create_transform(**resolve_data_config({} , model=__snake_case ) ) _a : Optional[int] = transform.transforms _a : Optional[Any] = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } _a : Dict = ViTHybridImageProcessor( do_resize=__snake_case , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__snake_case , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=__snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _a : Union[str, Any] = prepare_img() _a : Optional[int] = transform(__snake_case ).unsqueeze(0 ) _a : Optional[int] = processor(__snake_case , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(__snake_case , __snake_case ) # verify logits with torch.no_grad(): _a : List[Any] = model(__snake_case ) _a : str = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: _a : List[str] = timm_model.forward_features(__snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__snake_case , outputs.pooler_output , atol=1e-3 ) else: _a : Union[str, Any] = timm_model(__snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__snake_case , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__snake_case ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) __lowerCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
from ... import PretrainedConfig __lowerCAmelCase = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class lowerCamelCase_ ( lowercase ): __lowercase : List[Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __lowercase : int = "nezha" def __init__( self , lowerCamelCase_=2_11_28 , lowerCamelCase_=7_68 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_=30_72 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_12 , lowerCamelCase_=64 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1E-12 , lowerCamelCase_=0.1 , lowerCamelCase_=0 , lowerCamelCase_=2 , lowerCamelCase_=3 , lowerCamelCase_=True , **lowerCamelCase_ , ) -> str: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = max_relative_position _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = classifier_dropout _UpperCamelCase = use_cache
147
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self , lowerCamelCase_ , lowerCamelCase_=3 , lowerCamelCase_=32 , lowerCamelCase_=3 , lowerCamelCase_=10 , lowerCamelCase_=[10, 20, 30, 40] , lowerCamelCase_=[1, 1, 2, 1] , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_="relu" , lowerCamelCase_=3 , lowerCamelCase_=None , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = embeddings_size _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_act _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = len(lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def lowercase ( self ) -> List[str]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: """simple docstring""" _UpperCamelCase = TFResNetModel(config=lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowercase , lowercase , unittest.TestCase ): __lowercase : str = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowercase : Union[str, Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) __lowercase : Tuple = False __lowercase : Dict = False __lowercase : Any = False __lowercase : int = False __lowercase : Optional[Any] = False def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = TFResNetModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self ) -> List[str]: """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" pass def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowercase ( self ) -> Dict: """simple docstring""" def check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase = layer_type _UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowercase ( self ) -> List[str]: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def _lowercase ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase ( self ) -> Optional[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="tf" ) # forward pass _UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits _UpperCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) _UpperCamelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
147
1
__lowerCAmelCase ={ "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = set() # keep track of all the paths to be checked UpperCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCAmelCase = queue.pop(0 ) # get the last node from the path UpperCAmelCase = path[-1] if node not in explored: UpperCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCAmelCase = list(_lowerCAmelCase ) new_path.append(_lowerCAmelCase ) queue.append(_lowerCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_lowerCAmelCase ) # in case there's no path between the 2 nodes return [] def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCAmelCase = [start] UpperCAmelCase = set(_lowerCAmelCase ) # Keep tab on distances from `start` node. UpperCAmelCase = {start: 0, target: -1} while queue: UpperCAmelCase = queue.pop(0 ) if node == target: UpperCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_lowerCAmelCase ) queue.append(_lowerCAmelCase ) UpperCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
700
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __UpperCamelCase ( *_lowerCAmelCase ): """simple docstring""" with open(_lowerCAmelCase , "r" ) as fh: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_EX ) try: print(*_lowerCAmelCase ) finally: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_UN ) __lowerCAmelCase =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __lowerCAmelCase =torch.device("cuda", local_rank) __lowerCAmelCase =socket.gethostname() __lowerCAmelCase =f"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __lowerCAmelCase =dist.get_rank() __lowerCAmelCase =dist.get_world_size() printflock(f"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(f"{gpu} is broken") raise
405
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def __lowerCAmelCase ( __snake_case , __snake_case=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = "" else: __lowerCAmelCase = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): __lowerCAmelCase = dct.pop(UpperCamelCase__ ) __lowerCAmelCase = val def __lowerCAmelCase ( ): __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( __snake_case , __snake_case ): __lowerCAmelCase = DeiTConfig() # all deit models have fine-tuned heads __lowerCAmelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __lowerCAmelCase = 1000 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = int(deit_name[-6:-4] ) __lowerCAmelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): __lowerCAmelCase = 192 __lowerCAmelCase = 768 __lowerCAmelCase = 12 __lowerCAmelCase = 3 elif deit_name[9:].startswith("small" ): __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 # load original model from timm __lowerCAmelCase = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = timm_model.state_dict() __lowerCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model __lowerCAmelCase = DeiTForImageClassificationWithTeacher(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor __lowerCAmelCase = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __lowerCAmelCase = DeiTImageProcessor(size=UpperCamelCase__ , crop_size=config.image_size ) __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = encoding["pixel_values"] __lowerCAmelCase = model(UpperCamelCase__ ) __lowerCAmelCase = timm_model(UpperCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase__ , outputs.logits , atol=1E-3 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase : Dict = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
367
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ): try: SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE__ = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
0
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = [] for part_id in partition_order: _lowerCAmelCase = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(__UpperCamelCase ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def A__ ( ): """simple docstring""" _lowerCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase = spark.range(1_0_0 ).repartition(1 ) _lowerCAmelCase = Spark(__UpperCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def A__ ( ): """simple docstring""" _lowerCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase = spark.range(1_0 ).repartition(2 ) _lowerCAmelCase = [1, 0] _lowerCAmelCase = _generate_iterable_examples(__UpperCamelCase, __UpperCamelCase ) # Reverse the partitions. _lowerCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase, __UpperCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _lowerCAmelCase , _lowerCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A__ ( ): """simple docstring""" _lowerCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase = spark.range(1_0 ).repartition(1 ) _lowerCAmelCase = SparkExamplesIterable(__UpperCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def A__ ( ): """simple docstring""" _lowerCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: _lowerCAmelCase = lambda __lowerCamelCase : x.reverse() _lowerCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase, [2, 1, 0] ) _lowerCAmelCase = SparkExamplesIterable(__UpperCamelCase ).shuffle_data_sources(__UpperCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): _lowerCAmelCase , _lowerCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A__ ( ): """simple docstring""" _lowerCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 _lowerCAmelCase = SparkExamplesIterable(__UpperCamelCase ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase, [0, 2] ) for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): _lowerCAmelCase , _lowerCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _lowerCAmelCase = SparkExamplesIterable(__UpperCamelCase ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 _lowerCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase, [1, 3] ) for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): _lowerCAmelCase , _lowerCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A__ ( ): """simple docstring""" _lowerCAmelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() _lowerCAmelCase = spark.range(1_0_0 ).repartition(1 ) _lowerCAmelCase = Spark(__UpperCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
713
"""simple docstring""" import operator as op a__ : Optional[int] = """scaler.pt""" a__ : Dict = """pytorch_model""" a__ : List[Any] = """random_states""" a__ : Union[str, Any] = """optimizer""" a__ : Tuple = """scheduler""" a__ : Any = """pytorch_model.bin""" a__ : int = """pytorch_model.bin.index.json""" a__ : Union[str, Any] = """model.safetensors""" a__ : Optional[int] = """model.safetensors.index.json""" a__ : str = """1.10.2""" a__ : int = """py38""" a__ : Any = """4.17.0""" a__ : List[str] = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] a__ : str = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] a__ : Optional[int] = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] a__ : int = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] a__ : int = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] a__ : int = """2.0.1""" a__ : Optional[Any] = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] a__ : int = ["""default""", """reduce-overhead""", """max-autotune"""] a__ : Optional[Any] = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 a__ : Any = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] a__ : List[str] = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] a__ : Dict = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
309
0
"""simple docstring""" def _snake_case ( __snake_case : int , __snake_case : Dict , __snake_case : int , __snake_case : int ): """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _lowerCamelCase : Dict = mf_knapsack(i - 1 , __snake_case , __snake_case , __snake_case ) else: _lowerCamelCase : Union[str, Any] = max( mf_knapsack(i - 1 , __snake_case , __snake_case , __snake_case ) , mf_knapsack(i - 1 , __snake_case , __snake_case , j - wt[i - 1] ) + val[i - 1] , ) _lowerCamelCase : List[Any] = val return f[i][j] def _snake_case ( __snake_case : Dict , __snake_case : Tuple , __snake_case : str , __snake_case : List[Any] ): """simple docstring""" _lowerCamelCase : Tuple = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _lowerCamelCase : List[str] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _lowerCamelCase : Union[str, Any] = dp[i - 1][w_] return dp[n][w_], dp def _snake_case ( __snake_case : int , __snake_case : list , __snake_case : list ): """simple docstring""" if not (isinstance(__snake_case , (list, tuple) ) and isinstance(__snake_case , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) _lowerCamelCase : int = len(__snake_case ) if num_items != len(__snake_case ): _lowerCamelCase : List[Any] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(__snake_case )} values' ) raise ValueError(__snake_case ) for i in range(__snake_case ): if not isinstance(wt[i] , __snake_case ): _lowerCamelCase : List[Any] = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(__snake_case ) _lowerCamelCase , _lowerCamelCase : int = knapsack(__snake_case , __snake_case , __snake_case , __snake_case ) _lowerCamelCase : set = set() _construct_solution(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) return optimal_val, example_optional_set def _snake_case ( __snake_case : list , __snake_case : list , __snake_case : int , __snake_case : int , __snake_case : set ): """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__snake_case , __snake_case , i - 1 , __snake_case , __snake_case ) else: optimal_set.add(__snake_case ) _construct_solution(__snake_case , __snake_case , i - 1 , j - wt[i - 1] , __snake_case ) if __name__ == "__main__": UpperCAmelCase = [3, 2, 4, 4] UpperCAmelCase = [4, 3, 2, 3] UpperCAmelCase = 4 UpperCAmelCase = 6 UpperCAmelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCAmelCase , UpperCAmelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCAmelCase , UpperCAmelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
88
from ...processing_utils import ProcessorMixin class a_ ( _a ): a : Optional[int] = '''SpeechT5FeatureExtractor''' a : List[Any] = '''SpeechT5Tokenizer''' def __init__( self , __UpperCamelCase , __UpperCamelCase ): super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self , *__UpperCamelCase , **__UpperCamelCase ): _lowercase = kwargs.pop("""audio""" , __UpperCamelCase ) _lowercase = kwargs.pop("""text""" , __UpperCamelCase ) _lowercase = kwargs.pop("""text_target""" , __UpperCamelCase ) _lowercase = kwargs.pop("""audio_target""" , __UpperCamelCase ) _lowercase = kwargs.pop("""sampling_rate""" , __UpperCamelCase ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: _lowercase = self.feature_extractor(__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase ) elif text is not None: _lowercase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) else: _lowercase = None if audio_target is not None: _lowercase = self.feature_extractor(audio_target=__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase ) _lowercase = targets["""input_values"""] elif text_target is not None: _lowercase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) _lowercase = targets["""input_ids"""] else: _lowercase = None if inputs is None: return targets if targets is not None: _lowercase = labels _lowercase = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: _lowercase = decoder_attention_mask return inputs def UpperCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): _lowercase = kwargs.pop("""input_values""" , __UpperCamelCase ) _lowercase = kwargs.pop("""input_ids""" , __UpperCamelCase ) _lowercase = kwargs.pop("""labels""" , __UpperCamelCase ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: _lowercase = self.feature_extractor.pad(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif input_ids is not None: _lowercase = self.tokenizer.pad(__UpperCamelCase , **__UpperCamelCase ) else: _lowercase = None if labels is not None: if "input_ids" in labels or (isinstance(__UpperCamelCase , __UpperCamelCase ) and "input_ids" in labels[0]): _lowercase = self.tokenizer.pad(__UpperCamelCase , **__UpperCamelCase ) _lowercase = targets["""input_ids"""] else: _lowercase = self.feature_extractor.feature_size _lowercase = self.feature_extractor.num_mel_bins _lowercase = self.feature_extractor.pad(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) _lowercase = feature_size_hack _lowercase = targets["""input_values"""] else: _lowercase = None if inputs is None: return targets if targets is not None: _lowercase = labels _lowercase = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: _lowercase = decoder_attention_mask return inputs def UpperCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def UpperCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
287
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _A: Dict = False class UpperCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): __UpperCAmelCase = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe.dual_guided( prompt='first prompt' , image=lowerCamelCase__ , text_to_image_strength=0.7_5 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) __UpperCAmelCase = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCAmelCase = generator.manual_seed(0 ) __UpperCAmelCase = pipe.dual_guided( prompt='first prompt' , image=lowerCamelCase__ , text_to_image_strength=0.7_5 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __lowerCamelCase ( self ): __UpperCAmelCase = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCAmelCase = '''cyberpunk 2077''' __UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.7_5 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __UpperCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __UpperCAmelCase = '''A painting of a squirrel eating a burger ''' __UpperCAmelCase = torch.manual_seed(0 ) __UpperCAmelCase = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images __UpperCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __UpperCAmelCase = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type='numpy' ).images __UpperCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
718
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class UpperCAmelCase : def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=64 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.0_2 , __A=3 , __A=4 , __A=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = embedding_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope def __lowerCamelCase ( self ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = MegatronBertModel(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A ) __UpperCAmelCase = model(__A , token_type_ids=__A ) __UpperCAmelCase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = MegatronBertForMaskedLM(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = MegatronBertForCausalLM(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = MegatronBertForNextSentencePrediction(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = MegatronBertForPreTraining(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , next_sentence_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = MegatronBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = MegatronBertForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = MegatronBertForTokenClassification(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = self.num_choices __UpperCAmelCase = MegatronBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): _A : str = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _A : Dict = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _A : List[str] = True # test_resize_embeddings = False _A : Tuple = False def __lowerCamelCase ( self , __A , __A , __A=False ): __UpperCAmelCase = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): __UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def __lowerCamelCase ( self ): __UpperCAmelCase = MegatronBertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__A , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__A ) def _lowerCAmelCase ( _lowerCAmelCase )-> Dict: return torch.tensor( _lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase , ) _A: Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip('Model is not available.' ) def __lowerCamelCase ( self ): __UpperCAmelCase = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: __UpperCAmelCase = os.path.join(os.environ['MYDIR'] , __A ) __UpperCAmelCase = MegatronBertModel.from_pretrained(__A ) model.to(__A ) model.half() __UpperCAmelCase = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): __UpperCAmelCase = model(__A )[0] __UpperCAmelCase = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape , __A ) __UpperCAmelCase = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): __UpperCAmelCase = output[0, ii, jj] __UpperCAmelCase = expected[3 * ii + jj] __UpperCAmelCase = 'ii={} jj={} a={} b={}'.format(__A , __A , __A , __A ) self.assertTrue(math.isclose(__A , __A , rel_tol=__A , abs_tol=__A ) , msg=__A )
617
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ : Optional[Any] = 16 A_ : List[Any] = 32 def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = 1_6 , UpperCAmelCase__ = "bert-base-cased" ) -> Union[str, Any]: UpperCamelCase_: str = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_: Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase_: Tuple = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_: Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase__ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. UpperCamelCase_: Dict = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) UpperCamelCase_: Tuple = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: # Initialize accelerator UpperCamelCase_: List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_: List[str] = config['lr'] UpperCamelCase_: Any = int(config['num_epochs'] ) UpperCamelCase_: str = int(config['seed'] ) UpperCamelCase_: Union[str, Any] = int(config['batch_size'] ) UpperCamelCase_: List[Any] = args.model_name_or_path set_seed(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_: int = get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_: Tuple = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) # Instantiate optimizer UpperCamelCase_: Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase_: Optional[int] = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase_: Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: UpperCamelCase_: Dict = 1 UpperCamelCase_: int = (len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase_: Dict = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase__ , ) else: UpperCamelCase_: int = DummyScheduler(UpperCAmelCase__ , total_num_steps=UpperCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Tuple = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase_: List[str] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase_: List[str] = 0 # Now we train the model UpperCamelCase_: Dict = evaluate.load('glue' , 'mrpc' ) UpperCamelCase_: Optional[int] = 0 UpperCamelCase_: Optional[Any] = {} for epoch in range(UpperCAmelCase__ , UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): UpperCamelCase_: List[Any] = model(**UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = outputs.loss UpperCamelCase_: Any = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCamelCase_: Optional[int] = 0 for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_: Optional[Any] = model(**UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase__ ) - 1: UpperCamelCase_: str = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase_: List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) UpperCamelCase_: Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: UpperCamelCase_: List[Any] = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case () -> int: UpperCamelCase_: str = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase__ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase__ , default=3 , help='Number of train epochs.' , ) UpperCamelCase_: int = parser.parse_args() UpperCamelCase_: List[Any] = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
57
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
0
from heapq import heappop, heappush import numpy as np def UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> tuple[float | int, list[tuple[int, int]]]: __lowercase , __lowercase = grid.shape __lowercase = [-1, 1, 0, 0] __lowercase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __lowercase , __lowercase = [(0, source)], set() __lowercase = np.full((rows, cols) , np.inf ) __lowercase = 0 __lowercase = np.empty((rows, cols) , dtype=lowercase__ ) __lowercase = None while queue: ((__lowercase) , (__lowercase)) = heappop(lowercase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __lowercase = [] while (x, y) != source: path.append((x, y) ) __lowercase , __lowercase = predecessors[x, y] path.append(lowercase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowercase__ ) ): __lowercase , __lowercase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __lowercase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowercase__ , (dist + 1, (nx, ny)) ) __lowercase = dist + 1 __lowercase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
634
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowercase : str , lowercase : Union[str, Any]=13 , lowercase : Tuple=32 , lowercase : Optional[Any]=2 , lowercase : Tuple=3 , lowercase : Tuple=16 , lowercase : Tuple=[1, 2, 1] , lowercase : Optional[Any]=[2, 2, 4] , lowercase : Dict=2 , lowercase : Optional[int]=2.0 , lowercase : List[Any]=True , lowercase : str=0.0 , lowercase : Any=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : Tuple=False , lowercase : Optional[Any]=True , lowercase : int=0.02 , lowercase : Union[str, Any]=1E-5 , lowercase : Dict=True , lowercase : Any=None , lowercase : str=True , lowercase : str=10 , lowercase : Dict=8 , lowercase : int=["stage1", "stage2", "stage3"] , lowercase : Optional[int]=[1, 2, 3] , ) -> Any: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = patch_norm __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = is_training __lowercase = scope __lowercase = use_labels __lowercase = type_sequence_label_size __lowercase = encoder_stride __lowercase = out_features __lowercase = out_indices def snake_case__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def snake_case__ ( self : List[str] ) -> int: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def snake_case__ ( self : Any , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = MaskFormerSwinModel(config=lowercase ) model.to(lowercase ) model.eval() __lowercase = model(lowercase ) __lowercase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowercase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case__ ( self : Any , lowercase : Tuple , lowercase : Any , lowercase : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = MaskFormerSwinBackbone(config=lowercase ) model.to(lowercase ) model.eval() __lowercase = model(lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(lowercase ): __lowercase = ["""stem"""] __lowercase = MaskFormerSwinBackbone(config=lowercase ) def snake_case__ ( self : int ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase__ : List[str] = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} lowercase__ : List[str] = False lowercase__ : int = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def snake_case__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = MaskFormerSwinModelTester(self ) __lowercase = ConfigTester(self , config_class=lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def snake_case__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def snake_case__ ( self : Tuple ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return def snake_case__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def snake_case__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def snake_case__ ( self : int ) -> Any: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def snake_case__ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def snake_case__ ( self : Dict ) -> Any: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def snake_case__ ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def snake_case__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def snake_case__ ( self : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase , lowercase ) ) __lowercase = outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowercase ) , lowercase ) # Swin has a different seq_length __lowercase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case__ ( self : int ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowercase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , lowercase ) def snake_case__ ( self : int ) -> str: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowercase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowercase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowercase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def snake_case__ ( self : Any ) -> Any: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def snake_case__ ( self : List[str] ) -> str: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def snake_case__ ( self : str ) -> Union[str, Any]: """simple docstring""" pass def snake_case__ ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowercase : Optional[int] ): __lowercase = 0 return t def check_equivalence(lowercase : Optional[int] , lowercase : str , lowercase : str , lowercase : Tuple={} ): with torch.no_grad(): __lowercase = model(**lowercase , return_dict=lowercase , **lowercase ) __lowercase = model(**lowercase , return_dict=lowercase , **lowercase ).to_tuple() def recursive_check(lowercase : int , lowercase : Optional[Any] ): if isinstance(lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowercase , lowercase ): recursive_check(lowercase , lowercase ) elif isinstance(lowercase , lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowercase , lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowercase ) , set_nan_tensor_to_zero(lowercase ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(lowercase ).any()} and `inf`: {torch.isinf(lowercase )}. Dict has" F" `nan`: {torch.isnan(lowercase ).any()} and `inf`: {torch.isinf(lowercase )}." ) , ) recursive_check(lowercase , lowercase ) for model_class in self.all_model_classes: __lowercase = model_class(lowercase ) model.to(lowercase ) model.eval() __lowercase = self._prepare_for_class(lowercase , lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase ) check_equivalence(lowercase , lowercase , lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) check_equivalence(lowercase , lowercase , lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase ) check_equivalence(lowercase , lowercase , lowercase , {"""output_hidden_states""": True} ) __lowercase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) check_equivalence(lowercase , lowercase , lowercase , {"""output_hidden_states""": True} ) @require_torch class _lowerCAmelCase ( unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowercase__ : List[str] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase__ : Any = MaskFormerSwinConfig def snake_case__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = MaskFormerSwinModelTester(self ) def snake_case__ ( self : Any ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: __lowercase = backbone_class(lowercase ) backbone.to(lowercase ) backbone.eval() __lowercase = backbone(**lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowercase = backbone(**lowercase , output_hidden_states=lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowercase , __lowercase , __lowercase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowercase = backbone(**lowercase , output_attentions=lowercase ) self.assertIsNotNone(outputs.attentions )
634
1
import torch from transformers import AutoModel class __lowercase (torch.nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase__="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(A__ , self ).__init__() SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModel.from_pretrained(A__ , return_dict=A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.nn.CosineSimilarity(3 , 1E-08 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.nn.Softmax(dim=1 ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return self.bert(**A__ ).last_hidden_state def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" return token_embeddings.sum(2 , keepdim=A__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ): """simple docstring""" return self.softmax(T * self.cos(A__ , A__ ) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = W_supports["sizes"].tolist() SCREAMING_SNAKE_CASE_ : Dict = W_supports["start_token_id"].item() SCREAMING_SNAKE_CASE_ : List[Any] = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] SCREAMING_SNAKE_CASE_ : List[Any] = self.BERT(**A__ ) SCREAMING_SNAKE_CASE_ : List[str] = self.BERT(**A__ ) SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = W_supports["input_ids"] == start_token_id SCREAMING_SNAKE_CASE_ : Any = W_supports["input_ids"] == end_token_id for i, size in enumerate(A__ ): if i == 0: SCREAMING_SNAKE_CASE_ : List[Any] = 0 else: SCREAMING_SNAKE_CASE_ : int = support_sizes[i - 1] SCREAMING_SNAKE_CASE_ : Dict = S[s : s + size][start_token_masks[s : s + size]] SCREAMING_SNAKE_CASE_ : str = S[s : s + size][end_token_masks[s : s + size]] SCREAMING_SNAKE_CASE_ : Optional[int] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.vstack((p_starts, p_start) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = p_start SCREAMING_SNAKE_CASE_ : int = p_end return p_starts, p_ends
101
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Tuple ): class snake_case__ : def __init__( self : Any , A__ : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = metric_id class snake_case__ : _SCREAMING_SNAKE_CASE : List[str] = [MetricMock(_UpperCamelCase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Tuple , lowerCAmelCase_: int , lowerCAmelCase_: List[Any] , lowerCAmelCase_: Any , lowerCAmelCase_: List[str] ): if "tmp_path" in args: snake_case_ : List[Any] = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(lowerCAmelCase_ , match="https://huggingface.co/docs/evaluate" ): func(*lowerCAmelCase_ )
666
0
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class UpperCamelCase__( lowerCamelCase__ ): """simple docstring""" def __init__( self : str , snake_case__ : Union[str, Any] , snake_case__ : Optional[int]=None , snake_case__ : Any=None , snake_case__ : Dict=0 ): """simple docstring""" A =1.0 if scale is None else scale A =0.0 if loc is None else loc super().__init__(__lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__lowerCamelCase )] ) @property def _a ( self : Tuple ): """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def _a ( self : List[str] ): """simple docstring""" return self.base_dist.variance * self.scale**2 @property def _a ( self : Optional[int] ): """simple docstring""" return self.variance.sqrt() class UpperCamelCase__( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Any , **snake_case__ : List[Any] ): """simple docstring""" super().__init__(**__lowerCamelCase ) A =args_dim A =nn.ModuleList([nn.Linear(__lowerCamelCase , __lowerCamelCase ) for dim in args_dim.values()] ) A =domain_map def _a ( self : Dict , snake_case__ : Optional[int] ): """simple docstring""" A =[proj(__lowerCamelCase ) for proj in self.proj] return self.domain_map(*__lowerCamelCase ) class UpperCamelCase__( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case__ : Any ): """simple docstring""" super().__init__() A =function def _a ( self : Any , snake_case__ : Any , *snake_case__ : Dict ): """simple docstring""" return self.function(__lowerCamelCase , *__lowerCamelCase ) class UpperCamelCase__: """simple docstring""" _A = 4_2 _A = 4_2 _A = 4_2 def __init__( self : Optional[Any] , snake_case__ : Any = 1 ): """simple docstring""" A =dim A ={k: dim * self.args_dim[k] for k in self.args_dim} def _a ( self : Union[str, Any] , snake_case__ : Optional[Any] ): """simple docstring""" if self.dim == 1: return self.distribution_class(*__lowerCamelCase ) else: return Independent(self.distribution_class(*__lowerCamelCase ) , 1 ) def _a ( self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : str = None , snake_case__ : Optional[int] = None , ): """simple docstring""" A =self._base_distribution(__lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(__lowerCamelCase , loc=__lowerCamelCase , scale=__lowerCamelCase , event_dim=self.event_dim ) @property def _a ( self : int ): """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def _a ( self : List[Any] ): """simple docstring""" return len(self.event_shape ) @property def _a ( self : List[Any] ): """simple docstring""" return 0.0 def _a ( self : Dict , snake_case__ : Dict ): """simple docstring""" return ParameterProjection( in_features=__lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _a ( self : List[Any] , *snake_case__ : Union[str, Any] ): """simple docstring""" raise NotImplementedError() @staticmethod def _a ( snake_case__ : List[Any] ): """simple docstring""" return (x + torch.sqrt(torch.square(__lowerCamelCase ) + 4.0 )) / 2.0 class UpperCamelCase__( lowerCamelCase__ ): """simple docstring""" _A = {"df": 1, "loc": 1, "scale": 1} _A = StudentT @classmethod def _a ( cls : Any , snake_case__ : Any , snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" A =cls.squareplus(__lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) A =2.0 + cls.squareplus(__lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCamelCase__( lowerCamelCase__ ): """simple docstring""" _A = {"loc": 1, "scale": 1} _A = Normal @classmethod def _a ( cls : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[Any] ): """simple docstring""" A =cls.squareplus(__lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCamelCase__( lowerCamelCase__ ): """simple docstring""" _A = {"total_count": 1, "logits": 1} _A = NegativeBinomial @classmethod def _a ( cls : Optional[Any] , snake_case__ : int , snake_case__ : Any ): """simple docstring""" A =cls.squareplus(__lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _a ( self : Tuple , snake_case__ : int ): """simple docstring""" A =distr_args if self.dim == 1: return self.distribution_class(total_count=__lowerCamelCase , logits=__lowerCamelCase ) else: return Independent(self.distribution_class(total_count=__lowerCamelCase , logits=__lowerCamelCase ) , 1 ) def _a ( self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[str] = None , snake_case__ : List[str] = None ): """simple docstring""" A =distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
702
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase_ ( a_ ) ->Tuple: A =FileLock(str(tmpdir / "foo.lock" ) ) A =FileLock(str(tmpdir / "foo.lock" ) ) A =0.01 with locka.acquire(): with pytest.raises(a_ ): A =time.time() locka.acquire(a_ ) assert time.time() - _start > timeout def UpperCamelCase_ ( a_ ) ->List[Any]: A ="a" * 1000 + ".lock" A =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(a_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(a_ ): locka.acquire(0 )
689
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE__ = '''docs/source/en/_toctree.yml''' def A ( __UpperCamelCase ) -> Optional[Any]: A__ = defaultdict(__UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) def A ( __UpperCamelCase=False ) -> str: with open(__UpperCamelCase , encoding='utf-8' ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]['sections'] # Then to the model doc A__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A__ = api_doc[model_idx]['sections'] A__ = [(idx, section) for idx, section in enumerate(__UpperCamelCase ) if 'sections' in section] A__ = False for idx, modality_doc in modalities_docs: A__ = modality_doc['sections'] A__ = clean_model_doc_toc(__UpperCamelCase ) if old_modality_doc != new_modality_doc: A__ = True if overwrite: A__ = new_modality_doc if diff: if overwrite: A__ = model_doc A__ = api_doc with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
9
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Tuple = BertTokenizer UpperCAmelCase__: Tuple = BertTokenizerFast UpperCAmelCase__: Dict = True UpperCAmelCase__: List[Any] = True UpperCAmelCase__: List[Any] = filter_non_english def __A ( self ): super().setUp() A__ : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __A ( self , A__ ): A__ : Dict = """UNwant\u00E9d,running""" A__ : Union[str, Any] = """unwanted, running""" return input_text, output_text def __A ( self ): A__ : int = self.tokenizer_class(self.vocab_file ) A__ : List[str] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def __A ( self ): if not self.test_rust_tokenizer: return A__ : Tuple = self.get_tokenizer() A__ : List[str] = self.get_rust_tokenizer() A__ : List[str] = """UNwant\u00E9d,running""" A__ : List[str] = tokenizer.tokenize(A__ ) A__ : List[str] = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) A__ : Tuple = tokenizer.encode(A__ , add_special_tokens=A__ ) A__ : Dict = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) A__ : int = self.get_rust_tokenizer() A__ : Union[str, Any] = tokenizer.encode(A__ ) A__ : int = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing A__ : Dict = self.get_tokenizer(do_lower_case=A__ ) A__ : Dict = self.get_rust_tokenizer(do_lower_case=A__ ) A__ : Union[str, Any] = """UNwant\u00E9d,running""" A__ : List[Any] = tokenizer.tokenize(A__ ) A__ : Union[str, Any] = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) A__ : Optional[Any] = tokenizer.encode(A__ , add_special_tokens=A__ ) A__ : Optional[Any] = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) A__ : int = self.get_rust_tokenizer() A__ : Union[str, Any] = tokenizer.encode(A__ ) A__ : List[Any] = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def __A ( self ): A__ : Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __A ( self ): A__ : Dict = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ): A__ : Any = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __A ( self ): A__ : str = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ): A__ : str = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __A ( self ): A__ : int = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ): A__ : Any = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ): A__ : List[str] = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __A ( self ): A__ : Any = BasicTokenizer(do_lower_case=A__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __A ( self ): A__ : str = BasicTokenizer() A__ : Dict = """a\n\'ll !!to?\'d of, can\'t.""" A__ : Any = ["""a""", """\'""", """ll""", """!""", """!""", """to""", """?""", """\'""", """d""", """of""", """,""", """can""", """\'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(A__ ) , A__ ) def __A ( self ): A__ : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] A__ : Optional[Any] = {} for i, token in enumerate(A__ ): A__ : Any = i A__ : int = WordpieceTokenizer(vocab=A__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __A ( self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __A ( self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __A ( self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __A ( self ): A__ : List[Any] = self.get_tokenizer() A__ : List[str] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def __A ( self ): A__ : Optional[Any] = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) A__ : Union[str, Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=A__ ) A__ : Any = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A__ ) A__ : int = tokenizer.build_inputs_with_special_tokens(A__ ) A__ : List[Any] = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __A ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A__ : Any = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) A__ : int = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" A__ : Tuple = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) A__ : Any = tokenizer_r.do_lower_case if hasattr(A__ , """do_lower_case""" ) else False A__ : Optional[int] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __A ( self ): A__ : List[Any] = ["""的""", """人""", """有"""] A__ : Optional[Any] = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A__ : Dict = True A__ : str = self.tokenizer_class.from_pretrained(A__ , **A__ ) A__ : List[str] = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) A__ : List[str] = tokenizer_p.encode(A__ , add_special_tokens=A__ ) A__ : Optional[Any] = tokenizer_r.encode(A__ , add_special_tokens=A__ ) A__ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(A__ ) A__ : Tuple = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) A__ : Union[str, Any] = False A__ : Any = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) A__ : Union[str, Any] = self.tokenizer_class.from_pretrained(A__ , **A__ ) A__ : List[Any] = tokenizer_r.encode(A__ , add_special_tokens=A__ ) A__ : Optional[int] = tokenizer_p.encode(A__ , add_special_tokens=A__ ) A__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(A__ ) A__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". A__ : str = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
701
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCamelCase (*lowercase_: Optional[int] , lowercase_: Optional[Union[Dict, Any]] = None , lowercase_: Dict=True , lowercase_: Tuple=2 ) -> Dict: from .. import __version__ A__ : Dict = take_from A__ : str = () if not isinstance(args[0] , lowercase_ ): A__ : int = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase_ ).base_version ) >= version.parse(lowercase_ ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) A__ : Any = None if isinstance(lowercase_ , lowercase_ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase_ ),) A__ : List[str] = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(lowercase_ , lowercase_ ): values += (getattr(lowercase_ , lowercase_ ),) A__ : Optional[Any] = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: A__ : int = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: A__ : int = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , lowercase_ , stacklevel=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) > 0: A__ : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] A__ : Optional[Any] = call_frame.filename A__ : Optional[int] = call_frame.lineno A__ : Any = call_frame.function A__ , A__ : List[str] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(lowercase_ ) == 0: return elif len(lowercase_ ) == 1: return values[0] return values
64
0
from __future__ import annotations _lowercase : Dict =[-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowercase : Dict =[-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowerCAmelCase_ ( _lowercase : list[float]) -> list[float]: """simple docstring""" a__ : Optional[Any] = [] a__ : Dict = len(_lowercase) for i in range(_lowercase): a__ : float = -1 for j in range(i + 1 , _lowercase): if arr[i] < arr[j]: a__ : Any = arr[j] break result.append(_lowercase) return result def lowerCAmelCase_ ( _lowercase : list[float]) -> list[float]: """simple docstring""" a__ : List[Any] = [] for i, outer in enumerate(_lowercase): a__ : float = -1 for inner in arr[i + 1 :]: if outer < inner: a__ : Optional[Any] = inner break result.append(_lowercase) return result def lowerCAmelCase_ ( _lowercase : list[float]) -> list[float]: """simple docstring""" a__ : int = len(_lowercase) a__ : list[float] = [] a__ : list[float] = [-1] * arr_size for index in reversed(range(_lowercase)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: a__ : List[str] = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowercase : int =( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
136
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : Any ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _lowercase : int =[ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( _lowercase : int , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : List[str]) -> List[Any]: """simple docstring""" for attribute in key.split("""."""): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models a__ : Optional[Any] = """lm_head""" a__ : str = getattr(_lowercase , _lowercase) if weight_type is not None: a__ : Any = getattr(_lowercase , _lowercase).shape else: a__ : str = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a__ : Any = value elif weight_type == "weight_g": a__ : List[Any] = value elif weight_type == "weight_v": a__ : int = value elif weight_type == "bias": a__ : Tuple = value else: a__ : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def lowerCAmelCase_ ( _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Any) -> Optional[Any]: """simple docstring""" a__ : Optional[int] = [] a__ : Union[str, Any] = fairseq_model.state_dict() a__ : Dict = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): a__ : List[str] = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , ) a__ : Any = True else: for key, mapped_key in MAPPING.items(): a__ : Optional[Any] = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""")[-1] == name.split(""".""")[0]: a__ : Dict = True if "*" in mapped_key: a__ : Optional[Any] = name.split(_lowercase)[0].split(""".""")[-2] a__ : Union[str, Any] = mapped_key.replace("""*""" , _lowercase) if "weight_g" in name: a__ : Dict = """weight_g""" elif "weight_v" in name: a__ : List[Any] = """weight_v""" elif "bias" in name: a__ : int = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ : int = """weight""" else: a__ : Any = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) continue if not is_used: unused_weights.append(_lowercase) logger.warning(F'''Unused weights: {unused_weights}''') def lowerCAmelCase_ ( _lowercase : str , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : int) -> Tuple: """simple docstring""" a__ : Any = full_name.split("""conv_layers.""")[-1] a__ : Tuple = name.split(""".""") a__ : Optional[Any] = int(items[0]) a__ : Optional[int] = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a__ : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a__ : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a__ : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a__ : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(_lowercase) @torch.no_grad() def lowerCAmelCase_ ( _lowercase : List[Any] , _lowercase : str , _lowercase : Dict=None , _lowercase : Dict=None , _lowercase : Optional[Any]=True) -> List[Any]: """simple docstring""" if config_path is not None: a__ : int = UniSpeechConfig.from_pretrained(_lowercase) else: a__ : Optional[Any] = UniSpeechConfig() if is_finetuned: if dict_path: a__ : List[Any] = Dictionary.load_from_json(_lowercase) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ : Dict = target_dict.pad_index a__ : Optional[int] = target_dict.bos_index a__ : Optional[int] = target_dict.eos_index a__ : int = len(target_dict.symbols) a__ : int = os.path.join(_lowercase , """vocab.json""") if not os.path.isdir(_lowercase): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowercase)) return os.makedirs(_lowercase , exist_ok=_lowercase) a__ : str = target_dict.indices # fairseq has the <pad> and <s> switched a__ : Dict = 42 a__ : Optional[Any] = 43 with open(_lowercase , """w""" , encoding="""utf-8""") as vocab_handle: json.dump(_lowercase , _lowercase) a__ : Dict = WavaVecaPhonemeCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowercase , ) a__ : Dict = True if config.feat_extract_norm == """layer""" else False a__ : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) a__ : Optional[Any] = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase) processor.save_pretrained(_lowercase) a__ : List[Any] = UniSpeechForCTC(_lowercase) else: a__ : Optional[Any] = UniSpeechForPreTraining(_lowercase) if is_finetuned: a__ , a__ , a__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""")[:-1]), """w2v_path""": checkpoint_path}) else: a__ , a__ , a__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) a__ : Tuple = model[0].eval() recursively_load_weights(_lowercase , _lowercase , _lowercase) hf_unispeech.save_pretrained(_lowercase) if __name__ == "__main__": _lowercase : Optional[int] =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowercase : Union[str, Any] =parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
136
1
from collections.abc import Generator def _a ( ) -> Generator[int, None, None]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 0, 1 while True: SCREAMING_SNAKE_CASE__ : Optional[Any] = b, a + b yield b def _a ( SCREAMING_SNAKE_CASE__ : int = 10_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = fibonacci_generator() while len(str(next(SCREAMING_SNAKE_CASE__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
713
import math from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "data2vec-audio" def __init__( self : List[str], _UpperCAmelCase : Optional[Any]=3_2, _UpperCAmelCase : str=7_6_8, _UpperCAmelCase : Dict=1_2, _UpperCAmelCase : List[Any]=1_2, _UpperCAmelCase : Dict=3_0_7_2, _UpperCAmelCase : str="gelu", _UpperCAmelCase : Union[str, Any]=0.1, _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : Any=0.1, _UpperCAmelCase : Tuple=0.0, _UpperCAmelCase : Dict=0.1, _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : Any=0.02, _UpperCAmelCase : Tuple=1E-5, _UpperCAmelCase : Union[str, Any]="gelu", _UpperCAmelCase : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2), _UpperCAmelCase : str=(5, 2, 2, 2, 2, 2, 2), _UpperCAmelCase : int=(1_0, 3, 3, 3, 3, 2, 2), _UpperCAmelCase : Union[str, Any]=False, _UpperCAmelCase : List[str]=1_6, _UpperCAmelCase : Any=1_9, _UpperCAmelCase : List[Any]=5, _UpperCAmelCase : Dict=0.05, _UpperCAmelCase : Union[str, Any]=1_0, _UpperCAmelCase : Optional[int]=2, _UpperCAmelCase : Optional[Any]=0.0, _UpperCAmelCase : List[Any]=1_0, _UpperCAmelCase : Optional[Any]=0, _UpperCAmelCase : Optional[Any]="sum", _UpperCAmelCase : str=False, _UpperCAmelCase : Any=False, _UpperCAmelCase : Optional[int]=2_5_6, _UpperCAmelCase : Optional[int]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0), _UpperCAmelCase : int=(5, 3, 3, 1, 1), _UpperCAmelCase : Optional[int]=(1, 2, 3, 1, 1), _UpperCAmelCase : Optional[Any]=5_1_2, _UpperCAmelCase : int=0, _UpperCAmelCase : Tuple=1, _UpperCAmelCase : Optional[int]=2, _UpperCAmelCase : List[str]=False, _UpperCAmelCase : Dict=3, _UpperCAmelCase : Any=2, _UpperCAmelCase : Dict=3, _UpperCAmelCase : Dict=None, **_UpperCAmelCase : Any, ) -> Any: """simple docstring""" super().__init__(**_UpperCAmelCase, pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract_activation SCREAMING_SNAKE_CASE__ : Optional[int] = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = conv_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE__ : Tuple = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE__ : Tuple = conv_pos_kernel_size SCREAMING_SNAKE_CASE__ : List[str] = len(self.conv_dim ) SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout SCREAMING_SNAKE_CASE__ : int = attention_dropout SCREAMING_SNAKE_CASE__ : Dict = activation_dropout SCREAMING_SNAKE_CASE__ : Optional[int] = feat_proj_dropout SCREAMING_SNAKE_CASE__ : List[str] = final_dropout SCREAMING_SNAKE_CASE__ : Tuple = layerdrop SCREAMING_SNAKE_CASE__ : str = layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ : int = mask_time_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = mask_time_length SCREAMING_SNAKE_CASE__ : List[str] = mask_time_min_masks SCREAMING_SNAKE_CASE__ : Tuple = mask_feature_prob SCREAMING_SNAKE_CASE__ : Dict = mask_feature_length SCREAMING_SNAKE_CASE__ : Optional[Any] = mask_feature_min_masks # ctc loss SCREAMING_SNAKE_CASE__ : Optional[int] = ctc_loss_reduction SCREAMING_SNAKE_CASE__ : List[Any] = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE__ : int = add_adapter SCREAMING_SNAKE_CASE__ : Dict = adapter_kernel_size SCREAMING_SNAKE_CASE__ : Optional[int] = adapter_stride SCREAMING_SNAKE_CASE__ : Dict = num_adapter_layers SCREAMING_SNAKE_CASE__ : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE__ : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE__ : Any = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = xvector_output_dim @property def A_ ( self : List[str] ) -> str: """simple docstring""" return math.prod(self.conv_stride )
157
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : Tuple = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
595
import sys from collections import defaultdict class _A : def __init__(self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = [] def _a (self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' return self.node_position[vertex] def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' UpperCamelCase__ = pos def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def __UpperCamelCase ( A ): UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(A ) UpperCamelCase__ = [-1] * len(A ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(A ) ): distance_tv.append(sys.maxsize ) positions.append(A ) heap.node_position.append(A ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(A , A ) for _ in range(1 , len(A ) ): UpperCamelCase__ = heap.delete_minimum(A , A ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(A )] ): UpperCamelCase__ = distance heap.bottom_to_top( A , heap.get_position(A ) , A , A ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __magic_name__ =int(input('''Enter number of edges: ''').strip()) __magic_name__ =defaultdict(list) for _ in range(edges_number): __magic_name__ =[int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
415
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = self.dummy_uncond_unet _lowerCAmelCase : str = ScoreSdeVeScheduler() _lowerCAmelCase : Optional[Any] = ScoreSdeVePipeline(unet=_snake_case , scheduler=_snake_case ) sde_ve.to(_snake_case ) sde_ve.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : Dict = torch.manual_seed(0 ) _lowerCAmelCase : str = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=_snake_case ).images _lowerCAmelCase : int = torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=_snake_case , return_dict=_snake_case )[ 0 ] _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase : Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __A ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = "google/ncsnpp-church-256" _lowerCAmelCase : Optional[int] = UNetaDModel.from_pretrained(_snake_case ) _lowerCAmelCase : List[str] = ScoreSdeVeScheduler.from_pretrained(_snake_case ) _lowerCAmelCase : List[Any] = ScoreSdeVePipeline(unet=_snake_case , scheduler=_snake_case ) sde_ve.to(_snake_case ) sde_ve.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=_snake_case ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : int = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
706
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : int = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[int] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _lowerCAmelCase : str = s_dict.pop(lowerCAmelCase__ ) elif "subsample" in key: _lowerCAmelCase : Optional[Any] = s_dict.pop(lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase : Tuple = emb.weight.shape _lowerCAmelCase : List[Any] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = emb.weight.data return lin_layer def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Tuple = torch.load(lowerCAmelCase__ , map_location="cpu" ) _lowerCAmelCase : Dict = mam_aaa["args"] _lowerCAmelCase : Optional[Any] = mam_aaa["model"] _lowerCAmelCase : Optional[Any] = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(lowerCAmelCase__ ) rename_keys(lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = state_dict["decoder.embed_tokens.weight"].shape[0] _lowerCAmelCase : Dict = args.share_decoder_input_output_embed _lowerCAmelCase : str = [int(lowerCAmelCase__ ) for i in args.conv_kernel_sizes.split("," )] _lowerCAmelCase : Any = SpeechaTextConfig( vocab_size=lowerCAmelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(lowerCAmelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowerCAmelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowerCAmelCase__ , num_beams=5 , max_length=2_00 , use_cache=lowerCAmelCase__ , decoder_start_token_id=2 , early_stopping=lowerCAmelCase__ , ) _lowerCAmelCase : Union[str, Any] = SpeechaTextForConditionalGeneration(lowerCAmelCase__ ) _lowerCAmelCase , _lowerCAmelCase : List[str] = model.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0 and not set(lowerCAmelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f""" but all the following weights are missing {missing}""" ) if tie_embeds: _lowerCAmelCase : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCAmelCase : Dict = lm_head_weights model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") snake_case = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
587
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __a = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __UpperCAmelCase ( a_: str ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __UpperCAmelCase ( a_: str ): from transformers.testing_utils import pytest_terminal_summary_main _UpperCAmelCase : Any = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(a_, id=a_ )
494
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata __a = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class A__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : str = " " ) -> str: """simple docstring""" _UpperCAmelCase : Dict = sentence_delimiter def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> Dict: """simple docstring""" return list(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Dict: """simple docstring""" _UpperCAmelCase : str = [] for sent_idx, sentence in enumerate(lowerCAmelCase__ ): chars.extend(self.process_string(lowerCAmelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCAmelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars __a = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __a = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __a = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __a = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' __a = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , )["wer"] _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Optional[Any] = 0 for prediction, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
494
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Optional[Any] = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = 'unispeech-sat' def __init__( self :List[Any] , lowerCamelCase_ :Any=3_2 , lowerCamelCase_ :int=7_6_8 , lowerCamelCase_ :Any=1_2 , lowerCamelCase_ :str=1_2 , lowerCamelCase_ :Optional[Any]=3_0_7_2 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :List[Any]=0.0 , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.02 , lowerCamelCase_ :Union[str, Any]=1e-5 , lowerCamelCase_ :Dict="group" , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCamelCase_ :List[str]=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase_ :str=(1_0, 3, 3, 3, 3, 2, 2) , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :Union[str, Any]=1_2_8 , lowerCamelCase_ :Any=1_6 , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :Any=True , lowerCamelCase_ :Optional[Any]=0.05 , lowerCamelCase_ :List[Any]=1_0 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :str=0.0 , lowerCamelCase_ :int=1_0 , lowerCamelCase_ :List[Any]=0 , lowerCamelCase_ :Optional[int]=3_2_0 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :str=1_0_0 , lowerCamelCase_ :Dict=2_5_6 , lowerCamelCase_ :List[Any]=2_5_6 , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :List[str]="mean" , lowerCamelCase_ :Dict=False , lowerCamelCase_ :List[Any]=False , lowerCamelCase_ :Optional[int]=2_5_6 , lowerCamelCase_ :Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCamelCase_ :List[Any]=(5, 3, 3, 1, 1) , lowerCamelCase_ :Dict=(1, 2, 3, 1, 1) , lowerCamelCase_ :Any=5_1_2 , lowerCamelCase_ :Tuple=0 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :List[str]=5_0_4 , **lowerCamelCase_ :Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = feat_extract_norm UpperCamelCase__ = feat_extract_activation UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = conv_bias UpperCamelCase__ = num_conv_pos_embeddings UpperCamelCase__ = num_conv_pos_embedding_groups UpperCamelCase__ = len(self.conv_dim ) UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = feat_proj_dropout UpperCamelCase__ = final_dropout UpperCamelCase__ = layerdrop UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range UpperCamelCase__ = vocab_size UpperCamelCase__ = num_clusters UpperCamelCase__ = do_stable_layer_norm UpperCamelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ = apply_spec_augment UpperCamelCase__ = mask_time_prob UpperCamelCase__ = mask_time_length UpperCamelCase__ = mask_time_min_masks UpperCamelCase__ = mask_feature_prob UpperCamelCase__ = mask_feature_length UpperCamelCase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase__ = num_codevectors_per_group UpperCamelCase__ = num_codevector_groups UpperCamelCase__ = contrastive_logits_temperature UpperCamelCase__ = feat_quantizer_dropout UpperCamelCase__ = num_negatives UpperCamelCase__ = codevector_dim UpperCamelCase__ = proj_codevector_dim UpperCamelCase__ = diversity_loss_weight # ctc loss UpperCamelCase__ = ctc_loss_reduction UpperCamelCase__ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = xvector_output_dim @property def lowerCamelCase__ ( self :List[str] ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
704
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ ( self :Dict ) -> int: """simple docstring""" UpperCamelCase__ = "ZinengTang/tvlt-base" UpperCamelCase__ = tempfile.mkdtemp() def lowerCamelCase__ ( self :Tuple , **lowerCamelCase_ :List[str] ) -> List[str]: """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCamelCase_ ) def lowerCamelCase__ ( self :str , **lowerCamelCase_ :Union[str, Any] ) -> Any: """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCamelCase_ ) def lowerCamelCase__ ( self :int ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self :List[str] ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCamelCase_ ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def lowerCamelCase__ ( self :List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) UpperCamelCase__ = np.ones([1_2_0_0_0] ) UpperCamelCase__ = feature_extractor(lowerCamelCase_ , return_tensors="np" ) UpperCamelCase__ = processor(audio=lowerCamelCase_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase__ ( self :Dict ) -> str: """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) UpperCamelCase__ = np.ones([3, 2_2_4, 2_2_4] ) UpperCamelCase__ = image_processor(lowerCamelCase_ , return_tensors="np" ) UpperCamelCase__ = processor(images=lowerCamelCase_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase__ ( self :List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) UpperCamelCase__ = np.ones([1_2_0_0_0] ) UpperCamelCase__ = np.ones([3, 2_2_4, 2_2_4] ) UpperCamelCase__ = processor(audio=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def lowerCamelCase__ ( self :Any ) -> List[Any]: """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
304
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType snake_case_ = logging.get_logger(__name__) snake_case_ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class SCREAMING_SNAKE_CASE__ ( A__ ): A_ : Union[str, Any] = 'imagegpt' A_ : List[Any] = ['past_key_values'] A_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self : Tuple , a__ : List[Any]=512 + 1 , a__ : int=32 * 32 , a__ : Optional[int]=512 , a__ : List[Any]=24 , a__ : Union[str, Any]=8 , a__ : str=None , a__ : int="quick_gelu" , a__ : Dict=0.1 , a__ : Dict=0.1 , a__ : List[str]=0.1 , a__ : Optional[int]=1E-5 , a__ : Dict=0.0_2 , a__ : List[Any]=True , a__ : List[Any]=True , a__ : Optional[Any]=False , a__ : Any=False , a__ : Any=False , **a__ : Optional[Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = n_positions __snake_case = n_embd __snake_case = n_layer __snake_case = n_head __snake_case = n_inner __snake_case = activation_function __snake_case = resid_pdrop __snake_case = embd_pdrop __snake_case = attn_pdrop __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = scale_attn_weights __snake_case = use_cache __snake_case = scale_attn_by_inverse_layer_idx __snake_case = reorder_and_upcast_attn __snake_case = tie_word_embeddings super().__init__(tie_word_embeddings=__snake_case , **__snake_case ) class SCREAMING_SNAKE_CASE__ ( A__ ): @property def a (self : Tuple ): """simple docstring""" return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def a (self : Dict , a__ : "FeatureExtractionMixin" , a__ : int = 1 , a__ : int = -1 , a__ : bool = False , a__ : Optional["TensorType"] = None , a__ : int = 3 , a__ : int = 32 , a__ : int = 32 , ): """simple docstring""" __snake_case = self._generate_dummy_images(__snake_case , __snake_case , __snake_case , __snake_case ) __snake_case = dict(preprocessor(images=__snake_case , return_tensors=__snake_case ) ) return inputs
592
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int ) -> list: UpperCAmelCase : Union[str, Any] = int(_lowerCAmelCase ) if n_element < 1: UpperCAmelCase : int = ValueError('''a should be a positive number''' ) raise my_error UpperCAmelCase : str = [1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = (0, 0, 0) UpperCAmelCase : Any = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCamelCase__: List[str] = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") UpperCamelCase__: str = hamming(int(n)) print("-----------------------------------------------------") print(F"The list with nth numbers is: {hamming_numbers}") print("-----------------------------------------------------")
127
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowercase ( lowercase__ ) -> str: __lowerCAmelCase : str = filter(lambda lowercase__ : p.requires_grad , model.parameters() ) __lowerCAmelCase : Dict = sum([np.prod(p.size() ) for p in model_parameters] ) return params _UpperCamelCase = logging.getLogger(__name__) def _lowercase ( lowercase__ , lowercase__ ) -> str: if metric == "rouge2": __lowerCAmelCase : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __lowerCAmelCase : str = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __lowerCAmelCase : str = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) __lowerCAmelCase : Optional[Any] = ModelCheckpoint( dirpath=__snake_case , filename=__snake_case , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowercase ( lowercase__ , lowercase__ ) -> Tuple: return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=__snake_case , verbose=__snake_case , ) class __lowercase (pl.Callback ): def UpperCamelCase__ ( self , A_ , A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[Any] = {f"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def UpperCamelCase__ ( self , A_ , A_ , A_ , A_=True ) ->List[Any]: '''simple docstring''' logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __lowerCAmelCase : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __lowerCAmelCase : int = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowerCAmelCase : Optional[int] = od / '''test_results.txt''' __lowerCAmelCase : Dict = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowerCAmelCase : int = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" __lowerCAmelCase : Any = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , '''a+''' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __lowerCAmelCase : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __lowerCAmelCase : Dict = val.item() __lowerCAmelCase : Tuple = f"""{key}: {val:.6f}\n""" writer.write(_A ) if not save_generations: return if "preds" in metrics: __lowerCAmelCase : List[str] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_A ) @rank_zero_only def UpperCamelCase__ ( self , A_ , A_ ) ->Tuple: '''simple docstring''' try: __lowerCAmelCase : Tuple = pl_module.model.model.num_parameters() except AttributeError: __lowerCAmelCase : Optional[Any] = pl_module.model.num_parameters() __lowerCAmelCase : List[str] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self , A_ , A_ ) ->List[str]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , '''test''' ) @rank_zero_only def UpperCamelCase__ ( self , A_ , A_ ) ->str: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
705
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """realm""" def __init__( self , A_=3_0522 , A_=768 , A_=128 , A_=12 , A_=12 , A_=8 , A_=3072 , A_="gelu_new" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=256 , A_=10 , A_=1e-3 , A_=5 , A_=320 , A_=1335_3718 , A_=5000 , A_=1 , A_=0 , A_=2 , **A_ , ) ->int: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) # Common config __lowerCAmelCase : List[Any] = vocab_size __lowerCAmelCase : int = max_position_embeddings __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : Any = retriever_proj_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : str = num_attention_heads __lowerCAmelCase : str = num_candidates __lowerCAmelCase : List[str] = intermediate_size __lowerCAmelCase : Any = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : Tuple = initializer_range __lowerCAmelCase : Any = type_vocab_size __lowerCAmelCase : Dict = layer_norm_eps # Reader config __lowerCAmelCase : List[Any] = span_hidden_size __lowerCAmelCase : int = max_span_width __lowerCAmelCase : Tuple = reader_layer_norm_eps __lowerCAmelCase : Optional[Any] = reader_beam_size __lowerCAmelCase : Union[str, Any] = reader_seq_len # Retrieval config __lowerCAmelCase : List[str] = num_block_records __lowerCAmelCase : List[Any] = searcher_beam_size
583
0
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = SMALL_MODEL_IDENTIFIER __SCREAMING_SNAKE_CASE : int = "pt" __SCREAMING_SNAKE_CASE : Dict = "tf" def a_ ( self , a__ ): __SCREAMING_SNAKE_CASE : str = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_UpperCamelCase ) def a_ ( self , a__ ): __SCREAMING_SNAKE_CASE : Dict = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCamelCase ) model_tf.save_pretrained(_UpperCamelCase ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[int] = "mock_framework" # Framework provided - return whatever the user provides __SCREAMING_SNAKE_CASE : Any = FeaturesManager.determine_framework(self.test_model , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = FeaturesManager.determine_framework(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = FeaturesManager.determine_framework(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def a_ ( self ): with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = FeaturesManager.determine_framework(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCamelCase ) __SCREAMING_SNAKE_CASE : Dict = FeaturesManager.determine_framework(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = FeaturesManager.determine_framework(_UpperCamelCase ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = MagicMock(return_value=_UpperCamelCase ) with patch("transformers.onnx.features.is_tf_available" , _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCamelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __SCREAMING_SNAKE_CASE : Optional[int] = MagicMock(return_value=_UpperCamelCase ) with patch("transformers.onnx.features.is_torch_available" , _UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCamelCase , self.framework_tf ) # Both in environment -> use PyTorch __SCREAMING_SNAKE_CASE : Dict = MagicMock(return_value=_UpperCamelCase ) __SCREAMING_SNAKE_CASE : Any = MagicMock(return_value=_UpperCamelCase ) with patch("transformers.onnx.features.is_tf_available" , _UpperCamelCase ), patch( "transformers.onnx.features.is_torch_available" , _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCamelCase , self.framework_pt ) # Both not in environment -> raise error __SCREAMING_SNAKE_CASE : Any = MagicMock(return_value=_UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = MagicMock(return_value=_UpperCamelCase ) with patch("transformers.onnx.features.is_tf_available" , _UpperCamelCase ), patch( "transformers.onnx.features.is_torch_available" , _UpperCamelCase ): with self.assertRaises(_UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = FeaturesManager.determine_framework(self.test_model )
211
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCamelCase : Union[str, Any] = ''' Human: <<task>> Assistant: ''' _lowerCamelCase : Optional[Any] = '''huggingface-tools/default-prompts''' _lowerCamelCase : int = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple="run" ): if prompt_or_repo_id is None: SCREAMING_SNAKE_CASE = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , UpperCAmelCase__ ) is not None: return prompt_or_repo_id SCREAMING_SNAKE_CASE = cached_file( UpperCAmelCase__ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(UpperCAmelCase__ , "r" , encoding="utf-8" ) as f: return f.read()
403
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A_ : Optional[int] =logging.get_logger(__name__) logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : str )-> Dict: if "xprophetnet" in prophetnet_checkpoint_path: _lowerCamelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case ) _lowerCamelCase , _lowerCamelCase = XLMProphetNetForConditionalGeneration.from_pretrained( snake_case , output_loading_info=snake_case ) else: _lowerCamelCase = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case ) _lowerCamelCase , _lowerCamelCase = ProphetNetForConditionalGeneration.from_pretrained( snake_case , output_loading_info=snake_case ) _lowerCamelCase = ['key_proj', 'value_proj', 'query_proj'] _lowerCamelCase = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _lowerCamelCase = key.split('.' ) if attributes[0] == "lm_head": _lowerCamelCase = prophet _lowerCamelCase = prophet_old else: _lowerCamelCase = prophet.prophetnet _lowerCamelCase = prophet_old.model _lowerCamelCase = False for attribute in attributes: if attribute in mapping: _lowerCamelCase = mapping[attribute] if not hasattr(snake_case , snake_case ) and len(snake_case ) > 0: _lowerCamelCase = attribute elif hasattr(snake_case , snake_case ): _lowerCamelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _lowerCamelCase = old_model.weight logger.info(f'{attribute} is initialized.' ) _lowerCamelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _lowerCamelCase = old_model.bias logger.info(f'{attribute} is initialized' ) _lowerCamelCase = True break elif attribute in special_keys and hasattr(snake_case , 'in_proj_weight' ): _lowerCamelCase = old_model.in_proj_weight.shape[0] // 3 _lowerCamelCase = getattr(snake_case , snake_case ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _lowerCamelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _lowerCamelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _lowerCamelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _lowerCamelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _lowerCamelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _lowerCamelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _lowerCamelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _lowerCamelCase = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _lowerCamelCase = True break if attribute.isdigit(): _lowerCamelCase = model[int(snake_case )] _lowerCamelCase = old_model[int(snake_case )] else: _lowerCamelCase = getattr(snake_case , snake_case ) if old_attribute == "": _lowerCamelCase = old_model else: if not hasattr(snake_case , snake_case ): raise ValueError(f'{old_model} does not have {old_attribute}' ) _lowerCamelCase = getattr(snake_case , snake_case ) if not is_key_init: raise ValueError(f'{key} was not correctly initialized!' ) print(f'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(snake_case ) if __name__ == "__main__": A_ : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A_ : str =parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
701
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = IFInpaintingPipeline SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : List[str] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ): return self._get_dummy_components() def snake_case_ ( self , a__ , a__=0 ): if str(a__ ).startswith('mps' ): _lowerCamelCase = torch.manual_seed(a__ ) else: _lowerCamelCase = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case_ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case_ ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def snake_case_ ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ): self._test_save_load_local() def snake_case_ ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
222
0