code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
import itertools
import string
from collections.abc import Generator, Iterable
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: List[Any] = iter(_lowerCamelCase )
while True:
SCREAMING_SNAKE_CASE_: Any = tuple(itertools.islice(_lowerCamelCase , _lowerCamelCase ) )
if not chunk:
return
yield chunk
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: int = "".join([c.upper() for c in dirty if c in string.ascii_letters] )
SCREAMING_SNAKE_CASE_: Optional[int] = ""
if len(_lowerCamelCase ) < 2:
return dirty
for i in range(len(_lowerCamelCase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(_lowerCamelCase ) & 1:
clean += "X"
return clean
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Optional[int] = "ABCDEFGHIKLMNOPQRSTUVWXYZ"
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
SCREAMING_SNAKE_CASE_: List[Any] = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(_lowerCamelCase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(_lowerCamelCase )
return table
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: List[str] = generate_table(_lowerCamelCase )
SCREAMING_SNAKE_CASE_: Optional[Any] = prepare_input(_lowerCamelCase )
SCREAMING_SNAKE_CASE_: Optional[int] = ""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(_lowerCamelCase , 2 ):
SCREAMING_SNAKE_CASE_: int = divmod(table.index(_lowerCamelCase ) , 5 )
SCREAMING_SNAKE_CASE_: str = divmod(table.index(_lowerCamelCase ) , 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: int = generate_table(_lowerCamelCase )
SCREAMING_SNAKE_CASE_: List[str] = ""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(_lowerCamelCase , 2 ):
SCREAMING_SNAKE_CASE_: Optional[int] = divmod(table.index(_lowerCamelCase ) , 5 )
SCREAMING_SNAKE_CASE_: List[str] = divmod(table.index(_lowerCamelCase ) , 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 671
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase : Optional[int] = {
'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[str] = ['MobileViTFeatureExtractor']
lowercase : Tuple = ['MobileViTImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[Any] = [
'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MobileViTForImageClassification',
'MobileViTForSemanticSegmentation',
'MobileViTModel',
'MobileViTPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[Any] = [
'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFMobileViTForImageClassification',
'TFMobileViTForSemanticSegmentation',
'TFMobileViTModel',
'TFMobileViTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 557
| 0
|
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
snake_case : List[str] = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case : Optional[Any] = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 182
|
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class lowerCAmelCase__ ( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
__A : Optional[Any] = [('size', ctypes.c_int), ('visible', ctypes.c_byte)]
def snake_case__ ( ) -> List[Any]:
"""simple docstring"""
if os.name == "nt":
A__ : Optional[Any] = CursorInfo()
A__ : Tuple = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) )
A__ : Any = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) )
elif os.name == "posix":
sys.stdout.write("\033[?25l" )
sys.stdout.flush()
def snake_case__ ( ) -> Dict:
"""simple docstring"""
if os.name == "nt":
A__ : List[str] = CursorInfo()
A__ : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) )
A__ : int = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) )
elif os.name == "posix":
sys.stdout.write("\033[?25h" )
sys.stdout.flush()
@contextmanager
def snake_case__ ( ) -> Optional[int]:
"""simple docstring"""
try:
hide_cursor()
yield
finally:
show_cursor()
| 182
| 1
|
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case_ : List[Any] = {
'''configuration_informer''': [
'''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Union[str, Any] = [
'''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InformerForPrediction''',
'''InformerModel''',
'''InformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
snake_case_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 691
|
from typing import TYPE_CHECKING
from ....utils import _LazyModule
snake_case_ : Dict = {'''tokenization_tapex''': ['''TapexTokenizer''']}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 691
| 1
|
"""simple docstring"""
def snake_case_ ( A_ : Dict, A_ : Optional[Any], A_ : Dict, A_ : Dict ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = [False] * len(A_ )
_lowerCamelCase : str = []
queue.append(A_ )
_lowerCamelCase : Optional[Any] = True
while queue:
_lowerCamelCase : Tuple = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(A_ )
_lowerCamelCase : Any = True
_lowerCamelCase : Any = u
return visited[t]
def snake_case_ ( A_ : List[str], A_ : str, A_ : Tuple ):
'''simple docstring'''
_lowerCamelCase : List[str] = [-1] * (len(A_ ))
_lowerCamelCase : Dict = 0
while bfs(A_, A_, A_, A_ ):
_lowerCamelCase : Dict = float('''Inf''' )
_lowerCamelCase : str = sink
while s != source:
# Find the minimum value in select path
_lowerCamelCase : str = min(A_, graph[parent[s]][s] )
_lowerCamelCase : int = parent[s]
max_flow += path_flow
_lowerCamelCase : int = sink
while v != source:
_lowerCamelCase : List[Any] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
_lowerCamelCase : Optional[int] = parent[v]
return max_flow
lowerCAmelCase__ = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
lowerCAmelCase__ , lowerCAmelCase__ = 0, 5
print(ford_fulkerson(graph, source, sink))
| 598
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def snake_case_ ( A_ : Dict, A_ : Dict=False ):
'''simple docstring'''
_lowerCamelCase : List[str] = []
# fmt: off
# stem:
rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') )
rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') )
rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') )
# backbone
rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') )
rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') )
rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') )
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') )
rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') )
# transformer encoder
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_lowerCamelCase : int = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
# fmt: on
return rename_keys
def snake_case_ ( A_ : Union[str, Any], A_ : Optional[Any], A_ : int=False ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_lowerCamelCase : Optional[int] = ''''''
else:
_lowerCamelCase : str = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_lowerCamelCase : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
_lowerCamelCase : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_lowerCamelCase : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
_lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size]
_lowerCamelCase : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_lowerCamelCase : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_lowerCamelCase : Any = in_proj_weight[
-config.hidden_size :, :
]
_lowerCamelCase : Tuple = in_proj_bias[-config.hidden_size :]
def snake_case_ ( A_ : Tuple ):
'''simple docstring'''
_lowerCamelCase : str = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(A_, A_ )
def snake_case_ ( A_ : int, A_ : Any, A_ : Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : str = dct.pop(A_ )
_lowerCamelCase : List[Any] = val
def snake_case_ ( ):
'''simple docstring'''
_lowerCamelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_lowerCamelCase : Any = Image.open(requests.get(A_, stream=A_ ).raw )
return im
@torch.no_grad()
def snake_case_ ( A_ : Dict, A_ : Optional[Any], A_ : str=False ):
'''simple docstring'''
_lowerCamelCase : List[str] = BitConfig(
global_padding='''same''', layer_type='''bottleneck''', depths=(3, 4, 9), out_features=['''stage3'''], embedding_dynamic_padding=A_, )
_lowerCamelCase : Any = ViTHybridConfig(backbone_config=A_, image_size=3_84, num_labels=10_00 )
_lowerCamelCase : Optional[Any] = False
# load original model from timm
_lowerCamelCase : Any = timm.create_model(A_, pretrained=A_ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
_lowerCamelCase : Optional[Any] = timm_model.state_dict()
if base_model:
remove_classification_head_(A_ )
_lowerCamelCase : int = create_rename_keys(A_, A_ )
for src, dest in rename_keys:
rename_key(A_, A_, A_ )
read_in_q_k_v(A_, A_, A_ )
_lowerCamelCase : Optional[Any] = '''huggingface/label-files'''
_lowerCamelCase : Tuple = '''imagenet-1k-id2label.json'''
_lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(A_, A_, repo_type='''dataset''' ), '''r''' ) )
_lowerCamelCase : List[Any] = {int(A_ ): v for k, v in idalabel.items()}
_lowerCamelCase : Union[str, Any] = idalabel
_lowerCamelCase : Tuple = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
_lowerCamelCase : List[Any] = ViTHybridModel(A_ ).eval()
else:
_lowerCamelCase : Dict = ViTHybridForImageClassification(A_ ).eval()
model.load_state_dict(A_ )
# create image processor
_lowerCamelCase : Any = create_transform(**resolve_data_config({}, model=A_ ) )
_lowerCamelCase : str = transform.transforms
_lowerCamelCase : Union[str, Any] = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
_lowerCamelCase : Any = ViTHybridImageProcessor(
do_resize=A_, size={'''shortest_edge''': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=A_, crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]}, do_normalize=A_, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), )
_lowerCamelCase : List[Any] = prepare_img()
_lowerCamelCase : int = transform(A_ ).unsqueeze(0 )
_lowerCamelCase : Any = processor(A_, return_tensors='''pt''' ).pixel_values
# verify pixel values
assert torch.allclose(A_, A_ )
# verify logits
with torch.no_grad():
_lowerCamelCase : Tuple = model(A_ )
_lowerCamelCase : List[Any] = outputs.logits
print('''Predicted class:''', logits.argmax(-1 ).item() )
if base_model:
_lowerCamelCase : List[Any] = timm_model.forward_features(A_ )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(A_, outputs.pooler_output, atol=1E-3 )
else:
_lowerCamelCase : str = timm_model(A_ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(A_, outputs.logits, atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(A_ ).mkdir(exist_ok=A_ )
print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(A_ )
print(F'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(A_ )
if push_to_hub:
print(F'''Pushing model and processor to the hub {vit_name}''' )
model.push_to_hub(F'''ybelkada/{vit_name}''' )
processor.push_to_hub(F'''ybelkada/{vit_name}''' )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--vit_name''',
default='''vit_base_r50_s16_384''',
type=str,
help='''Name of the hybrid ViT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.'''
)
lowerCAmelCase__ = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 598
| 1
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
UpperCAmelCase = False
@skip_mps
class lowercase__ ( A_ ,A_ ,A_ ,unittest.TestCase ):
__UpperCAmelCase = StableDiffusionAttendAndExcitePipeline
__UpperCAmelCase = False
__UpperCAmelCase = TEXT_TO_IMAGE_PARAMS
__UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} )
__UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def UpperCamelCase_ ( cls) -> List[Any]:
super().setUpClass()
torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE)
@classmethod
def UpperCamelCase_ ( cls) -> Optional[Any]:
super().tearDownClass()
torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> Dict:
torch.manual_seed(0)
_lowerCamelCase : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE , )
_lowerCamelCase : int = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , )
torch.manual_seed(0)
_lowerCamelCase : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0)
_lowerCamelCase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , )
_lowerCamelCase : Dict = CLIPTextModel(SCREAMING_SNAKE_CASE)
_lowerCamelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""")
_lowerCamelCase : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0) -> Any:
if str(SCREAMING_SNAKE_CASE).startswith("""mps"""):
_lowerCamelCase : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE)
else:
_lowerCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE)
_lowerCamelCase : Union[str, Any] = {
"""prompt""": """a cat and a frog""",
"""token_indices""": [2, 5],
"""generator""": generator,
"""num_inference_steps""": 1,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
"""max_iter_to_alter""": 2,
"""thresholds""": {0: 0.7},
}
return inputs
def UpperCamelCase_ ( self) -> List[Any]:
_lowerCamelCase : Dict = """cpu"""
_lowerCamelCase : Tuple = self.get_dummy_components()
_lowerCamelCase : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE)
pipe.to(SCREAMING_SNAKE_CASE)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE)
_lowerCamelCase : List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE)
_lowerCamelCase : List[Any] = pipe(**SCREAMING_SNAKE_CASE).images
_lowerCamelCase : List[str] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 64, 64, 3))
_lowerCamelCase : int = np.array(
[0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96])
_lowerCamelCase : Any = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE , 1e-3)
def UpperCamelCase_ ( self) -> List[str]:
super().test_cpu_offload_forward_pass(expected_max_diff=5e-4)
def UpperCamelCase_ ( self) -> Optional[Any]:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2])
def UpperCamelCase_ ( self) -> Optional[Any]:
self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4)
def UpperCamelCase_ ( self) -> Tuple:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)
def UpperCamelCase_ ( self) -> str:
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4)
def UpperCamelCase_ ( self) -> str:
super().test_save_load_local(expected_max_difference=5e-4)
def UpperCamelCase_ ( self) -> int:
super().test_save_load_optional_components(expected_max_difference=4e-4)
@require_torch_gpu
@slow
class lowercase__ ( unittest.TestCase ):
@classmethod
def UpperCamelCase_ ( cls) -> Any:
super().setUpClass()
torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE)
@classmethod
def UpperCamelCase_ ( cls) -> str:
super().tearDownClass()
torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> Union[str, Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self) -> Dict:
_lowerCamelCase : Dict = torch.manual_seed(51)
_lowerCamelCase : str = StableDiffusionAttendAndExcitePipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , safety_checker=SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa)
pipe.to("""cuda""")
_lowerCamelCase : List[str] = """a painting of an elephant with glasses"""
_lowerCamelCase : Optional[Any] = [5, 7]
_lowerCamelCase : List[Any] = pipe(
prompt=SCREAMING_SNAKE_CASE , token_indices=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0]
_lowerCamelCase : Tuple = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""")
assert np.abs((expected_image - image).max()) < 5e-1
| 88
|
'''simple docstring'''
import unittest
from knapsack import knapsack as k
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def a_ ( self ):
__SCREAMING_SNAKE_CASE : Tuple = 0
__SCREAMING_SNAKE_CASE : Dict = [0]
__SCREAMING_SNAKE_CASE : Union[str, Any] = [0]
__SCREAMING_SNAKE_CASE : str = len(a__ )
self.assertEqual(k.knapsack(a__ , a__ , a__ , a__ ) , 0 )
__SCREAMING_SNAKE_CASE : Dict = [60]
__SCREAMING_SNAKE_CASE : int = [10]
__SCREAMING_SNAKE_CASE : Optional[int] = len(a__ )
self.assertEqual(k.knapsack(a__ , a__ , a__ , a__ ) , 0 )
def a_ ( self ):
__SCREAMING_SNAKE_CASE : Optional[int] = 3
__SCREAMING_SNAKE_CASE : int = [1, 2, 3]
__SCREAMING_SNAKE_CASE : List[Any] = [3, 2, 1]
__SCREAMING_SNAKE_CASE : Optional[int] = len(a__ )
self.assertEqual(k.knapsack(a__ , a__ , a__ , a__ ) , 5 )
def a_ ( self ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = 50
__SCREAMING_SNAKE_CASE : Optional[int] = [60, 100, 120]
__SCREAMING_SNAKE_CASE : Union[str, Any] = [10, 20, 30]
__SCREAMING_SNAKE_CASE : Any = len(a__ )
self.assertEqual(k.knapsack(a__ , a__ , a__ , a__ ) , 220 )
if __name__ == "__main__":
unittest.main()
| 211
| 0
|
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> int:
"""simple docstring"""
if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ : List[str] = len(set_a.intersection(__lowerCAmelCase ) )
if alternative_union:
snake_case__ : List[str] = len(__lowerCAmelCase ) + len(__lowerCAmelCase )
else:
snake_case__ : Dict = len(set_a.union(__lowerCAmelCase ) )
return intersection / union
if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(__lowerCAmelCase , (list, tuple) ):
snake_case__ : int = [element for element in set_a if element in set_b]
if alternative_union:
snake_case__ : List[Any] = len(__lowerCAmelCase ) + len(__lowerCAmelCase )
return len(__lowerCAmelCase ) / union
else:
snake_case__ : List[str] = set_a + [element for element in set_b if element not in set_a]
return len(__lowerCAmelCase ) / len(__lowerCAmelCase )
return len(__lowerCAmelCase ) / len(__lowerCAmelCase )
return None
if __name__ == "__main__":
A__ = {'''a''', '''b''', '''c''', '''d''', '''e'''}
A__ = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''}
print(jaccard_similarity(set_a, set_b))
| 219
|
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
"""simple docstring"""
snake_case__ : List[str] = BertConfig.from_json_file(__lowerCAmelCase )
print(f"""Building PyTorch model from configuration: {config}""" )
snake_case__ : Optional[Any] = BertForPreTraining(__lowerCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , __lowerCAmelCase )
if __name__ == "__main__":
A__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained BERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
A__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 219
| 1
|
'''simple docstring'''
import os
from pathlib import Path
def __A ( ):
from torch.utils.cpp_extension import load
lowerCAmelCase : int = Path(a_ ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCAmelCase : Dict = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" ,"ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" ,"ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" ,a_ ,with_cuda=a_ ,extra_include_paths=[str(a_ )] ,extra_cflags=["-DWITH_CUDA=1"] ,extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] ,)
import MultiScaleDeformableAttention as MSDA
return MSDA
| 525
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowerCAmelCase = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 525
| 1
|
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def lowerCAmelCase_ ( ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase: Optional[int] = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'''
_UpperCamelCase: Tuple = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('''RGB''' )
return image
def lowerCAmelCase_ ( lowercase: Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase: str = []
# fmt: off
# vision encoder
rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') )
rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') )
rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') )
rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) )
rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") )
rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") )
# QFormer
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') )
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') )
# fmt: on
return rename_keys
def lowerCAmelCase_ ( lowercase: Any , lowercase: str , lowercase: str ) -> Dict:
'''simple docstring'''
_UpperCamelCase: Any = dct.pop(lowercase )
_UpperCamelCase: Optional[Any] = val
def lowerCAmelCase_ ( lowercase: Union[str, Any] , lowercase: Tuple ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
_UpperCamelCase: Tuple = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" )
_UpperCamelCase: Optional[int] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" )
# next, set bias in the state dict
_UpperCamelCase: Optional[Any] = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) )
_UpperCamelCase: Tuple = qkv_bias
def lowerCAmelCase_ ( lowercase: str , lowercase: Any ) -> Any:
'''simple docstring'''
_UpperCamelCase: Dict = 364 if '''coco''' in model_name else 224
_UpperCamelCase: Optional[Any] = BlipaVisionConfig(image_size=lowercase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
_UpperCamelCase: str = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=lowercase ).to_dict()
elif "opt-6.7b" in model_name:
_UpperCamelCase: Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=lowercase ).to_dict()
elif "t5-xl" in model_name:
_UpperCamelCase: str = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
_UpperCamelCase: Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict()
_UpperCamelCase: Union[str, Any] = BlipaConfig(vision_config=lowercase , text_config=lowercase )
return config, image_size
@torch.no_grad()
def lowerCAmelCase_ ( lowercase: str , lowercase: Tuple=None , lowercase: str=False ) -> Dict:
'''simple docstring'''
_UpperCamelCase: List[Any] = (
AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' )
if '''opt''' in model_name
else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' )
)
_UpperCamelCase: Tuple = tokenizer('''\n''' , add_special_tokens=lowercase ).input_ids[0]
_UpperCamelCase , _UpperCamelCase: Tuple = get_blipa_config(lowercase , eos_token_id=lowercase )
_UpperCamelCase: List[Any] = BlipaForConditionalGeneration(lowercase ).eval()
_UpperCamelCase: List[str] = {
'''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''),
'''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''),
'''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''),
'''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''),
'''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''),
'''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''),
'''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''),
}
_UpperCamelCase , _UpperCamelCase: List[str] = model_name_to_original[model_name]
# load original model
print('''Loading original model...''' )
_UpperCamelCase: Dict = '''cuda''' if torch.cuda.is_available() else '''cpu'''
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase: Optional[Any] = load_model_and_preprocess(
name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase )
original_model.eval()
print('''Done!''' )
# update state dict keys
_UpperCamelCase: Optional[int] = original_model.state_dict()
_UpperCamelCase: Tuple = create_rename_keys(lowercase )
for src, dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
_UpperCamelCase: Optional[Any] = state_dict.pop(lowercase )
if key.startswith('''Qformer.bert''' ):
_UpperCamelCase: str = key.replace('''Qformer.bert''' , '''qformer''' )
if "attention.self" in key:
_UpperCamelCase: int = key.replace('''self''' , '''attention''' )
if "opt_proj" in key:
_UpperCamelCase: Union[str, Any] = key.replace('''opt_proj''' , '''language_projection''' )
if "t5_proj" in key:
_UpperCamelCase: str = key.replace('''t5_proj''' , '''language_projection''' )
if key.startswith('''opt''' ):
_UpperCamelCase: List[str] = key.replace('''opt''' , '''language''' )
if key.startswith('''t5''' ):
_UpperCamelCase: Union[str, Any] = key.replace('''t5''' , '''language''' )
_UpperCamelCase: List[Any] = val
# read in qv biases
read_in_q_v_bias(lowercase , lowercase )
_UpperCamelCase , _UpperCamelCase: Union[str, Any] = hf_model.load_state_dict(lowercase , strict=lowercase )
assert len(lowercase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
_UpperCamelCase: Union[str, Any] = load_demo_image()
_UpperCamelCase: str = vis_processors['''eval'''](lowercase ).unsqueeze(0 ).to(lowercase )
_UpperCamelCase: Dict = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(lowercase )
# create processor
_UpperCamelCase: Any = BlipImageProcessor(
size={'''height''': image_size, '''width''': image_size} , image_mean=lowercase , image_std=lowercase )
_UpperCamelCase: Union[str, Any] = BlipaProcessor(image_processor=lowercase , tokenizer=lowercase )
_UpperCamelCase: Any = processor(images=lowercase , return_tensors='''pt''' ).pixel_values.to(lowercase )
# make sure processor creates exact same pixel values
assert torch.allclose(lowercase , lowercase )
original_model.to(lowercase )
hf_model.to(lowercase )
with torch.no_grad():
if "opt" in model_name:
_UpperCamelCase: Any = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits
_UpperCamelCase: Optional[Any] = hf_model(lowercase , lowercase ).logits
else:
_UpperCamelCase: int = original_model(
{'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits
_UpperCamelCase: Optional[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 )
_UpperCamelCase: List[Any] = hf_model(lowercase , lowercase , labels=lowercase ).logits
assert original_logits.shape == logits.shape
print('''First values of original logits:''' , original_logits[0, :3, :3] )
print('''First values of HF logits:''' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
_UpperCamelCase: Union[str, Any] = torch.tensor(
[[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase )
assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1E-4 )
elif model_name == "blip2-flan-t5-xl-coco":
_UpperCamelCase: Optional[Any] = torch.tensor(
[[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase )
else:
# cast to same type
_UpperCamelCase: Optional[Any] = logits.dtype
assert torch.allclose(original_logits.to(lowercase ) , lowercase , atol=1E-2 )
print('''Looks ok!''' )
print('''Generating a caption...''' )
_UpperCamelCase: Optional[Any] = ''''''
_UpperCamelCase: List[Any] = tokenizer(lowercase , return_tensors='''pt''' ).input_ids.to(lowercase )
_UpperCamelCase: List[Any] = original_model.generate({'''image''': original_pixel_values} )
_UpperCamelCase: Any = hf_model.generate(
lowercase , lowercase , do_sample=lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('''Original generation:''' , lowercase )
_UpperCamelCase: List[str] = input_ids.shape[1]
_UpperCamelCase: int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase )
_UpperCamelCase: Tuple = [text.strip() for text in output_text]
print('''HF generation:''' , lowercase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(lowercase )
hf_model.save_pretrained(lowercase )
if push_to_hub:
processor.push_to_hub(F"""nielsr/{model_name}""" )
hf_model.push_to_hub(F"""nielsr/{model_name}""" )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
UpperCAmelCase_ = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
UpperCAmelCase_ = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 264
|
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def lowerCAmelCase_ ( lowercase: Optional[Any] , lowercase: Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase: Union[str, Any] = []
for part_id in partition_order:
_UpperCamelCase: int = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect()
for row_idx, row in enumerate(lowercase ):
expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def lowerCAmelCase_ ( ) -> List[str]:
'''simple docstring'''
_UpperCamelCase: Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
_UpperCamelCase: int = spark.range(100 ).repartition(1 )
_UpperCamelCase: int = Spark(lowercase )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def lowerCAmelCase_ ( ) -> List[str]:
'''simple docstring'''
_UpperCamelCase: List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
_UpperCamelCase: Optional[Any] = spark.range(10 ).repartition(2 )
_UpperCamelCase: int = [1, 0]
_UpperCamelCase: Any = _generate_iterable_examples(lowercase , lowercase ) # Reverse the partitions.
_UpperCamelCase: List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , lowercase )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
_UpperCamelCase , _UpperCamelCase: List[Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def lowerCAmelCase_ ( ) -> Any:
'''simple docstring'''
_UpperCamelCase: Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
_UpperCamelCase: Any = spark.range(10 ).repartition(1 )
_UpperCamelCase: int = SparkExamplesIterable(lowercase )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(lowercase ):
assert row_id == F"""0_{i}"""
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def lowerCAmelCase_ ( ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase: Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
_UpperCamelCase: str = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch('''numpy.random.Generator''' ) as generator_mock:
_UpperCamelCase: Union[str, Any] = lambda lowercase : x.reverse()
_UpperCamelCase: List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [2, 1, 0] )
_UpperCamelCase: Union[str, Any] = SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(lowercase ):
_UpperCamelCase , _UpperCamelCase: List[Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def lowerCAmelCase_ ( ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase: str = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
_UpperCamelCase: Tuple = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
_UpperCamelCase: List[Any] = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
_UpperCamelCase: Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [0, 2] )
for i, (row_id, row_dict) in enumerate(lowercase ):
_UpperCamelCase , _UpperCamelCase: Optional[int] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
_UpperCamelCase: str = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
_UpperCamelCase: str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [1, 3] )
for i, (row_id, row_dict) in enumerate(lowercase ):
_UpperCamelCase , _UpperCamelCase: str = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def lowerCAmelCase_ ( ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase: Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
_UpperCamelCase: Union[str, Any] = spark.range(100 ).repartition(1 )
_UpperCamelCase: Optional[Any] = Spark(lowercase )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 264
| 1
|
'''simple docstring'''
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class lowerCamelCase :
def __init__( self , a_ , a_=99 , a_=13 , a_=7 , a_=9 , a_=True , a_=True , a_=False , a_=32 , a_=5 , a_=4 , a_=37 , a_=8 , a_=0.1 , a_=0.002 , a_=1 , a_=0 , a_=0 , a_=None , a_=None , ):
lowerCAmelCase : Optional[Any] = parent
lowerCAmelCase : Tuple = batch_size
lowerCAmelCase : Optional[Any] = encoder_seq_length
lowerCAmelCase : List[Any] = decoder_seq_length
# For common tests
lowerCAmelCase : Union[str, Any] = self.decoder_seq_length
lowerCAmelCase : int = is_training
lowerCAmelCase : Dict = use_attention_mask
lowerCAmelCase : Optional[Any] = use_labels
lowerCAmelCase : List[Any] = vocab_size
lowerCAmelCase : Optional[Any] = hidden_size
lowerCAmelCase : Union[str, Any] = num_hidden_layers
lowerCAmelCase : Union[str, Any] = num_attention_heads
lowerCAmelCase : List[str] = d_ff
lowerCAmelCase : Union[str, Any] = relative_attention_num_buckets
lowerCAmelCase : List[str] = dropout_rate
lowerCAmelCase : str = initializer_factor
lowerCAmelCase : Optional[int] = eos_token_id
lowerCAmelCase : Optional[int] = pad_token_id
lowerCAmelCase : int = decoder_start_token_id
lowerCAmelCase : Optional[Any] = None
lowerCAmelCase : List[Any] = decoder_layers
def _lowerCamelCase ( self ):
return TaConfig.from_pretrained("google/umt5-base" )
def _lowerCamelCase ( self , a_ , a_ , a_ , a_=None , a_=None , a_=None , a_=None , a_=None , ):
if attention_mask is None:
lowerCAmelCase : Optional[Any] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
lowerCAmelCase : Dict = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
lowerCAmelCase : Union[str, Any] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=a_ )
if decoder_head_mask is None:
lowerCAmelCase : int = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=a_ )
if cross_attn_head_mask is None:
lowerCAmelCase : Optional[int] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=a_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _lowerCamelCase ( self ):
lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
lowerCAmelCase : List[str] = input_ids.clamp(self.pad_token_id + 1 )
lowerCAmelCase : Any = decoder_input_ids.clamp(self.pad_token_id + 1 )
lowerCAmelCase : Union[str, Any] = self.get_config()
lowerCAmelCase : Optional[Any] = config.num_attention_heads
lowerCAmelCase : List[str] = self.prepare_inputs_dict(a_ , a_ , a_ )
return config, input_dict
def _lowerCamelCase ( self ):
lowerCAmelCase , lowerCAmelCase : int = self.prepare_config_and_inputs()
return config, inputs_dict
def _lowerCamelCase ( self ):
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _lowerCamelCase ( self ):
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , ):
lowerCAmelCase : List[str] = UMTaModel(config=a_ )
model.to(a_ )
model.eval()
lowerCAmelCase : List[Any] = model(
input_ids=a_ , decoder_input_ids=a_ , attention_mask=a_ , decoder_attention_mask=a_ , )
lowerCAmelCase : Optional[int] = model(input_ids=a_ , decoder_input_ids=a_ )
lowerCAmelCase : str = result.last_hidden_state
lowerCAmelCase : str = result.past_key_values
lowerCAmelCase : Optional[int] = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(a_ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , ):
lowerCAmelCase : str = UMTaModel(config=a_ ).get_decoder().to(a_ ).eval()
# first forward pass
lowerCAmelCase : Union[str, Any] = model(a_ , use_cache=a_ )
lowerCAmelCase : Any = model(a_ )
lowerCAmelCase : int = model(a_ , use_cache=a_ )
self.parent.assertTrue(len(a_ ) == len(a_ ) )
self.parent.assertTrue(len(a_ ) == len(a_ ) + 1 )
lowerCAmelCase , lowerCAmelCase : Optional[int] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
lowerCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase : Union[str, Any] = model(a_ )["last_hidden_state"]
lowerCAmelCase : str = model(a_ , past_key_values=a_ )["last_hidden_state"]
# select random slice
lowerCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
lowerCAmelCase : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(a_ , a_ , atol=1e-3 ) )
def _lowerCamelCase ( self , a_ , a_ , ):
lowerCAmelCase : Any = UMTaModel(config=a_ ).to(a_ ).half().eval()
lowerCAmelCase : Union[str, Any] = model(**a_ )["last_hidden_state"]
self.parent.assertFalse(torch.isnan(a_ ).any().item() )
@require_torch
class lowerCamelCase ( _A , _A , _A , unittest.TestCase ):
snake_case_ = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
snake_case_ = (UMTaForConditionalGeneration,) if is_torch_available() else ()
snake_case_ = (
{
"conversational": UMTaForConditionalGeneration,
"feature-extraction": UMTaModel,
"summarization": UMTaForConditionalGeneration,
"text2text-generation": UMTaForConditionalGeneration,
"translation": UMTaForConditionalGeneration,
"question-answering": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
snake_case_ = True
snake_case_ = False
snake_case_ = False
snake_case_ = True
snake_case_ = True
# The small UMT5 model needs higher percentages for CPU/MP tests
snake_case_ = [0.8, 0.9]
def _lowerCamelCase ( self ):
lowerCAmelCase : int = UMTaModelTester(self )
@unittest.skip("Test has a segmentation fault on torch 1.8.0" )
def _lowerCamelCase ( self ):
lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
lowerCAmelCase : List[str] = UMTaModel(config_and_inputs[0] ).to(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
a_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=a_ , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , )
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision" )
def _lowerCamelCase ( self ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*a_ )
def _lowerCamelCase ( self ):
lowerCAmelCase : Optional[Any] = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
lowerCAmelCase : Dict = config_and_inputs[0]
lowerCAmelCase : str = UMTaForConditionalGeneration(a_ ).eval()
model.to(a_ )
lowerCAmelCase : Any = {
"head_mask": torch.zeros(config.num_layers , config.num_heads , device=a_ ),
"decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=a_ ),
"cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=a_ ),
}
for attn_name, (name, mask) in zip(a_ , head_masking.items() ):
lowerCAmelCase : Optional[Any] = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
lowerCAmelCase : List[Any] = torch.ones(
config.num_decoder_layers , config.num_heads , device=a_ )
lowerCAmelCase : List[str] = model.generate(
config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=a_ , return_dict_in_generate=a_ , **a_ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
lowerCAmelCase : Any = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases." )
def _lowerCamelCase ( self ):
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( unittest.TestCase ):
@slow
@unittest.skip(
"Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" )
def _lowerCamelCase ( self ):
lowerCAmelCase : Dict = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=a_ ).to(a_ )
lowerCAmelCase : Any = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=a_ , legacy=a_ )
lowerCAmelCase : Dict = [
"Bonjour monsieur <extra_id_0> bien <extra_id_1>.",
"No se como puedo <extra_id_0>.",
"This is the reason why we <extra_id_0> them.",
"The <extra_id_0> walks in <extra_id_1>, seats",
"A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.",
]
lowerCAmelCase : Dict = tokenizer(a_ , return_tensors="pt" , padding=a_ ).input_ids
# fmt: off
lowerCAmelCase : Optional[int] = torch.tensor(
[
[ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(a_ , a_ )
lowerCAmelCase : Optional[Any] = model.generate(input_ids.to(a_ ) )
lowerCAmelCase : List[str] = [
"<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>",
"<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
]
lowerCAmelCase : Tuple = tokenizer.batch_decode(a_ )
self.assertEqual(a_ , a_ )
| 525
|
'''simple docstring'''
from __future__ import annotations
lowerCAmelCase = []
def __A ( a_ : list[list[int]] ,a_ : int ,a_ : int ):
for i in range(len(a_ ) ):
if board[row][i] == 1:
return False
for i in range(len(a_ ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,-1 ,-1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,len(a_ ) ) ):
if board[i][j] == 1:
return False
return True
def __A ( a_ : list[list[int]] ,a_ : int ):
if row >= len(a_ ):
solution.append(a_ )
printboard(a_ )
print()
return True
for i in range(len(a_ ) ):
if is_safe(a_ ,a_ ,a_ ):
lowerCAmelCase : Dict = 1
solve(a_ ,row + 1 )
lowerCAmelCase : Optional[int] = 0
return False
def __A ( a_ : list[list[int]] ):
for i in range(len(a_ ) ):
for j in range(len(a_ ) ):
if board[i][j] == 1:
print("Q" ,end=" " )
else:
print("." ,end=" " )
print()
# n=int(input("The no. of queens"))
lowerCAmelCase = 8
lowerCAmelCase = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("""The total no. of solutions are :""", len(solution))
| 525
| 1
|
import unittest
from transformers import GPTNeoXJapaneseConfig, is_torch_available
from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel
class __SCREAMING_SNAKE_CASE :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=True , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ):
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = seq_length
UpperCamelCase__ = is_training
UpperCamelCase__ = use_input_mask
UpperCamelCase__ = use_token_type_ids
UpperCamelCase__ = use_labels
UpperCamelCase__ = vocab_size
UpperCamelCase__ = hidden_size
UpperCamelCase__ = num_hidden_layers
UpperCamelCase__ = num_attention_heads
UpperCamelCase__ = intermediate_multiple_size
UpperCamelCase__ = hidden_act
UpperCamelCase__ = hidden_dropout
UpperCamelCase__ = attention_dropout
UpperCamelCase__ = weight_tying
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = type_vocab_size
UpperCamelCase__ = type_sequence_label_size
UpperCamelCase__ = initializer_range
UpperCamelCase__ = num_labels
UpperCamelCase__ = num_choices
UpperCamelCase__ = scope
def _lowerCamelCase ( self ):
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_input_mask:
UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ = self.get_config()
return config, input_ids, input_mask, token_labels
def _lowerCamelCase ( self ):
return GPTNeoXJapaneseConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , )
def _lowerCamelCase ( self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs()
UpperCamelCase__ = True
return config, input_ids, input_mask, token_labels
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
UpperCamelCase__ = GPTNeoXJapaneseModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )
UpperCamelCase__ = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
UpperCamelCase__ = True
UpperCamelCase__ = GPTNeoXJapaneseModel(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
UpperCamelCase__ = GPTNeoXJapaneseForCausalLM(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
UpperCamelCase__ = True
UpperCamelCase__ = GPTNeoXJapaneseForCausalLM(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
# first forward pass
UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase )
UpperCamelCase__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase__ = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase )
UpperCamelCase__ = output_from_no_past["""hidden_states"""][0]
UpperCamelCase__ = model(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )["""hidden_states"""][0]
# select random slice
UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) )
def _lowerCamelCase ( self ):
UpperCamelCase__ = self.prepare_config_and_inputs()
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs
UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ):
snake_case : int = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else ()
snake_case : Optional[Any] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else ()
snake_case : Dict = (
{"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM}
if is_torch_available()
else {}
)
snake_case : int = False
snake_case : Optional[Any] = False
snake_case : List[str] = False
snake_case : List[Any] = False
def _lowerCamelCase ( self ):
UpperCamelCase__ = GPTNeoXJapaneseModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 )
def _lowerCamelCase ( self ):
self.config_tester.run_common_tests()
def _lowerCamelCase ( self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def _lowerCamelCase ( self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def _lowerCamelCase ( self ):
# This regression test was failing with PyTorch < 1.3
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder()
UpperCamelCase__ = None
self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def _lowerCamelCase ( self ):
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def _lowerCamelCase ( self ):
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*__lowerCAmelCase )
@slow
def _lowerCamelCase ( self ):
UpperCamelCase__ = """abeja/gpt-neox-japanese-2.7b"""
UpperCamelCase__ = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""]
UpperCamelCase__ = [
"""データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""",
"""100年後に必要とされる会社は、「人」が中心の会社です。""",
"""フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""",
"""国境の長いトンネルを抜けると、そこは雪国だった。""",
"""美味しい日本食といえば、やっぱりお寿司ですよね。""",
]
UpperCamelCase__ = GPTNeoXJapaneseTokenizer.from_pretrained(__lowerCAmelCase )
UpperCamelCase__ = GPTNeoXJapaneseForCausalLM.from_pretrained(__lowerCAmelCase )
UpperCamelCase__ = []
for prompt in prompts:
UpperCamelCase__ = tokenizer(__lowerCAmelCase , return_tensors="""pt""" ).input_ids
UpperCamelCase__ = model.generate(__lowerCAmelCase , max_length=50 )
UpperCamelCase__ = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase )
predicted_outputs += generated_string
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
| 548
|
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self ):
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(__lowerCAmelCase ):
UpperCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
@slow
def _lowerCamelCase ( self ):
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(__lowerCAmelCase ):
UpperCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
@slow
def _lowerCamelCase ( self ):
for model_name in ["bert-base-cased", "bert-large-uncased"]:
UpperCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase )
UpperCamelCase__ = FlaxBertModel.from_pretrained(__lowerCAmelCase )
UpperCamelCase__ = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX )
@jax.jit
def eval(**__lowerCAmelCase ):
return model(**__lowerCAmelCase )
eval(**__lowerCAmelCase ).block_until_ready()
@slow
def _lowerCamelCase ( self ):
for model_name in ["roberta-base", "roberta-large"]:
UpperCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase )
UpperCamelCase__ = FlaxRobertaModel.from_pretrained(__lowerCAmelCase )
UpperCamelCase__ = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX )
@jax.jit
def eval(**__lowerCAmelCase ):
return model(**__lowerCAmelCase )
eval(**__lowerCAmelCase ).block_until_ready()
def _lowerCamelCase ( self ):
with self.assertRaisesRegex(
__lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ):
UpperCamelCase__ = FlaxAutoModel.from_pretrained("""bert-base""" )
def _lowerCamelCase ( self ):
with self.assertRaisesRegex(
__lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase , revision="""aaaaaa""" )
def _lowerCamelCase ( self ):
with self.assertRaisesRegex(
__lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ):
UpperCamelCase__ = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" )
def _lowerCamelCase ( self ):
with self.assertRaisesRegex(__lowerCAmelCase , """Use `from_pt=True` to load this model""" ):
UpperCamelCase__ = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
| 548
| 1
|
'''simple docstring'''
import json
import os
import unittest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase__ ( __a, unittest.TestCase ):
'''simple docstring'''
_snake_case = CLIPTokenizer
_snake_case = CLIPTokenizerFast
_snake_case = True
_snake_case = {}
_snake_case = False
def UpperCAmelCase ( self ):
'''simple docstring'''
super().setUp()
# fmt: off
UpperCamelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
UpperCamelCase = dict(zip(a_ , range(len(a_ ) ) ) )
UpperCamelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""]
UpperCamelCase = {"""unk_token""": """<unk>"""}
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(a_ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(a_ ) )
def UpperCAmelCase ( self , **lowerCamelCase__ ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CLIPTokenizer.from_pretrained(self.tmpdirname , **a_ )
def UpperCAmelCase ( self , **lowerCamelCase__ ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a_ )
def UpperCAmelCase ( self , lowerCamelCase__ ):
'''simple docstring'''
UpperCamelCase = """lower newer"""
UpperCamelCase = """lower newer"""
return input_text, output_text
def UpperCAmelCase ( self ):
'''simple docstring'''
UpperCamelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCamelCase = """lower newer"""
UpperCamelCase = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""]
UpperCamelCase = tokenizer.tokenize(a_ )
self.assertListEqual(a_ , a_ )
UpperCamelCase = tokens + [tokenizer.unk_token]
UpperCamelCase = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ )
@require_ftfy
def UpperCAmelCase ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
UpperCamelCase = self.tokenizer_class.from_pretrained(a_ , **a_ )
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(a_ , **a_ )
UpperCamelCase = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d."""
UpperCamelCase = tokenizer_s.tokenize(a_ )
UpperCamelCase = tokenizer_r.tokenize(a_ )
self.assertListEqual(a_ , a_ )
# Test that the tokenization is identical on an example containing a character (Latin Small Letter A
# with Tilde) encoded in 2 different ways
UpperCamelCase = """xa\u0303y""" + """ """ + """x\xe3y"""
UpperCamelCase = tokenizer_s.tokenize(a_ )
UpperCamelCase = tokenizer_r.tokenize(a_ )
self.assertListEqual(a_ , a_ )
# Test that the tokenization is identical on unicode of space type
UpperCamelCase = [
"""\u0009""", # (horizontal tab, '\t')
"""\u000B""", # (vertical tab)
"""\u000C""", # (form feed)
"""\u0020""", # (space, ' ')
"""\u200E""", # (left-to-right mark):w
"""\u200F""", # (right-to-left mark)
]
for unicode_seq in spaces_unicodes:
UpperCamelCase = tokenizer_s.tokenize(a_ )
UpperCamelCase = tokenizer_r.tokenize(a_ )
self.assertListEqual(a_ , a_ )
# Test that the tokenization is identical on unicode of line break type
UpperCamelCase = [
"""\u000A""", # (line feed, '\n')
"""\r\n""", # (carriage return and line feed, '\r\n')
"""\u000D""", # (carriage return, '\r')
"""\r""", # (carriage return, '\r')
"""\u000D""", # (carriage return, '\r')
"""\u2028""", # (line separator)
"""\u2029""", # (paragraph separator)
# "\u0085", # (next line)
]
# The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms
# it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a
# space (and thus into an empty list).
for unicode_seq in line_break_unicodes:
UpperCamelCase = tokenizer_s.tokenize(a_ )
UpperCamelCase = tokenizer_r.tokenize(a_ )
self.assertListEqual(a_ , a_ )
def UpperCAmelCase ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
UpperCamelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
UpperCamelCase = f'{text_of_1_token} {text_of_1_token}'
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
a_ , use_fast=a_ , )
UpperCamelCase = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , )
UpperCamelCase = f' {text}'
UpperCamelCase = self.rust_tokenizer_class.from_pretrained(
a_ , use_fast=a_ , )
UpperCamelCase = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )) , )
def UpperCAmelCase ( self ):
'''simple docstring'''
with self.assertRaises(a_ ) as context:
self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' )
self.assertTrue(
context.exception.args[0].startswith(
'''The `backend_tokenizer` provided does not match the expected format.''' ) )
@require_ftfy
def UpperCAmelCase ( self ):
'''simple docstring'''
super().test_tokenization_python_rust_equals()
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
| 212
|
"""simple docstring"""
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.integrations import is_fairscale_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_tpu_available
if is_fairscale_available():
from fairscale.optim import OSS
A_ = logging.get_logger(__name__)
A_ = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
'''constant''': get_constant_schedule,
'''constant_w_warmup''': get_constant_schedule_with_warmup,
}
class lowercase( __a ):
'''simple docstring'''
def __init__( self: List[str], a_: Dict=None, a_: int=None, *a_: List[Any], **a_: Union[str, Any] ):
'''simple docstring'''
super().__init__(*a_, **a_ )
if config is None:
assert isinstance(self.model, a_ ), (
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
f" {self.model.__class__}"
)
_snake_case : Any = self.model.config
else:
_snake_case : int = config
_snake_case : Union[str, Any] = data_args
_snake_case : Union[str, Any] = self.config.tgt_vocab_size if isinstance(self.config, a_ ) else self.config.vocab_size
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
assert self.config.pad_token_id is not None, (
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss"
" calculation or doing label smoothing."
)
if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warning(
f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for"
""" padding..""" )
if self.args.label_smoothing == 0:
_snake_case : Tuple = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id )
else:
# dynamically import label_smoothed_nll_loss
from utils import label_smoothed_nll_loss
_snake_case : Dict = label_smoothed_nll_loss
def UpperCamelCase_ ( self: int, a_: int ):
'''simple docstring'''
if self.optimizer is None:
_snake_case : Optional[Any] = ["""bias""", """LayerNorm.weight"""]
_snake_case : Optional[Any] = [
{
"""params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )],
"""weight_decay""": self.args.weight_decay,
},
{
"""params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )],
"""weight_decay""": 0.0,
},
]
_snake_case : int = Adafactor if self.args.adafactor else AdamW
if self.args.adafactor:
_snake_case : str = Adafactor
_snake_case : List[Any] = {"""scale_parameter""": False, """relative_step""": False}
else:
_snake_case : Any = AdamW
_snake_case : Tuple = {
"""betas""": (self.args.adam_betaa, self.args.adam_betaa),
"""eps""": self.args.adam_epsilon,
}
_snake_case : List[Any] = self.args.learning_rate
if self.sharded_ddp:
_snake_case : Dict = OSS(
params=a_, optim=a_, **a_, )
else:
_snake_case : Union[str, Any] = optimizer_cls(a_, **a_ )
if self.lr_scheduler is None:
_snake_case : Optional[int] = self._get_lr_scheduler(a_ )
else: # ignoring --lr_scheduler
logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" )
def UpperCamelCase_ ( self: Dict, a_: List[str] ):
'''simple docstring'''
_snake_case : Union[str, Any] = arg_to_scheduler[self.args.lr_scheduler]
if self.args.lr_scheduler == "constant":
_snake_case : Union[str, Any] = schedule_func(self.optimizer )
elif self.args.lr_scheduler == "constant_w_warmup":
_snake_case : List[Any] = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps )
else:
_snake_case : Tuple = schedule_func(
self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=a_ )
return scheduler
def UpperCamelCase_ ( self: List[str] ):
'''simple docstring'''
if isinstance(self.train_dataset, torch.utils.data.IterableDataset ):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset )
else:
if self.args.sortish_sampler:
self.train_dataset.make_sortish_sampler(
self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), )
return (
RandomSampler(self.train_dataset )
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset )
)
def UpperCamelCase_ ( self: List[str], a_: int, a_: Optional[int], a_: str ):
'''simple docstring'''
if self.args.label_smoothing == 0:
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
# force training to ignore pad token
_snake_case : int = model(**a_, use_cache=a_ )[0]
_snake_case : Union[str, Any] = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) )
else:
# compute usual loss via models
_snake_case , _snake_case : Optional[Any] = model(**a_, labels=a_, use_cache=a_ )[:2]
else:
# compute label smoothed loss
_snake_case : Union[str, Any] = model(**a_, use_cache=a_ )[0]
_snake_case : Optional[Any] = torch.nn.functional.log_softmax(a_, dim=-1 )
_snake_case , _snake_case : List[Any] = self.loss_fn(a_, a_, self.args.label_smoothing, ignore_index=self.config.pad_token_id )
return loss, logits
def UpperCamelCase_ ( self: List[str], a_: List[Any], a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Any = inputs.pop("""labels""" )
_snake_case , _snake_case : str = self._compute_loss(a_, a_, a_ )
return loss
def UpperCamelCase_ ( self: Optional[int], a_: nn.Module, a_: Dict[str, Union[torch.Tensor, Any]], a_: bool, a_: Optional[List[str]] = None, ):
'''simple docstring'''
_snake_case : str = self._prepare_inputs(a_ )
_snake_case : List[str] = {
"""max_length""": self.data_args.val_max_target_length
if self.data_args is not None
else self.config.max_length,
"""num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
}
if self.args.predict_with_generate and not self.args.prediction_loss_only:
_snake_case : List[str] = self.model.generate(
inputs["""input_ids"""], attention_mask=inputs["""attention_mask"""], **a_, )
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
_snake_case : Union[str, Any] = self._pad_tensors_to_max_len(a_, gen_kwargs["""max_length"""] )
_snake_case : Tuple = inputs.pop("""labels""" )
with torch.no_grad():
# compute loss on predict data
_snake_case , _snake_case : Dict = self._compute_loss(a_, a_, a_ )
_snake_case : int = loss.mean().detach()
if self.args.prediction_loss_only:
return (loss, None, None)
_snake_case : Optional[Any] = generated_tokens if self.args.predict_with_generate else logits
if labels.shape[-1] < gen_kwargs["max_length"]:
_snake_case : Tuple = self._pad_tensors_to_max_len(a_, gen_kwargs["""max_length"""] )
return (loss, logits, labels)
def UpperCamelCase_ ( self: Tuple, a_: List[str], a_: Union[str, Any] ):
'''simple docstring'''
_snake_case : Dict = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id
if pad_token_id is None:
raise ValueError(
"""Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be"""
f" padded to `max_length`={max_length}" )
_snake_case : List[str] = pad_token_id * torch.ones(
(tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device )
_snake_case : Tuple = tensor
return padded_tensor
| 609
| 0
|
"""simple docstring"""
def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str:
_lowerCamelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE_ )
_lowerCamelCase : Any = sum(SCREAMING_SNAKE_CASE_ )
_lowerCamelCase : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = True
for i in range(1 , s + 1 ):
_lowerCamelCase : Optional[Any] = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
_lowerCamelCase : int = dp[i][j - 1]
if arr[i - 1] <= j:
_lowerCamelCase : str = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
_lowerCamelCase : Dict = s - 2 * j
break
return diff
| 700
|
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Dict ={
'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class _UpperCAmelCase ( a_ ):
"""simple docstring"""
__snake_case = """dpt"""
def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=384 , _lowercase=16 , _lowercase=3 , _lowercase=False , _lowercase=True , _lowercase=[2, 5, 8, 11] , _lowercase="project" , _lowercase=[4, 2, 1, 0.5] , _lowercase=[96, 192, 384, 768] , _lowercase=256 , _lowercase=-1 , _lowercase=False , _lowercase=True , _lowercase=0.4 , _lowercase=255 , _lowercase=0.1 , _lowercase=[1, 1024, 24, 24] , _lowercase=[0, 1] , _lowercase=None , **_lowercase , ) -> Optional[int]:
super().__init__(**_lowercase )
_lowerCamelCase : Tuple = hidden_size
_lowerCamelCase : Optional[Any] = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
_lowerCamelCase : List[Any] = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
}
_lowerCamelCase : Any = BitConfig(**_lowercase )
elif isinstance(_lowercase , _lowercase ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
_lowerCamelCase : int = BitConfig(**_lowercase )
elif isinstance(_lowercase , _lowercase ):
_lowerCamelCase : int = backbone_config
else:
raise ValueError(
F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
_lowerCamelCase : List[Any] = backbone_featmap_shape
_lowerCamelCase : Optional[int] = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : int = None
_lowerCamelCase : Dict = []
_lowerCamelCase : List[Any] = num_hidden_layers
_lowerCamelCase : Union[str, Any] = num_attention_heads
_lowerCamelCase : Optional[int] = intermediate_size
_lowerCamelCase : int = hidden_act
_lowerCamelCase : Optional[Any] = hidden_dropout_prob
_lowerCamelCase : str = attention_probs_dropout_prob
_lowerCamelCase : str = initializer_range
_lowerCamelCase : Dict = layer_norm_eps
_lowerCamelCase : str = image_size
_lowerCamelCase : Tuple = patch_size
_lowerCamelCase : List[str] = num_channels
_lowerCamelCase : Tuple = qkv_bias
_lowerCamelCase : Tuple = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
_lowerCamelCase : Union[str, Any] = readout_type
_lowerCamelCase : List[str] = reassemble_factors
_lowerCamelCase : Union[str, Any] = neck_hidden_sizes
_lowerCamelCase : List[Any] = fusion_hidden_size
_lowerCamelCase : List[Any] = head_in_index
_lowerCamelCase : List[str] = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
_lowerCamelCase : List[str] = use_auxiliary_head
_lowerCamelCase : List[str] = auxiliary_loss_weight
_lowerCamelCase : str = semantic_loss_ignore_index
_lowerCamelCase : Optional[Any] = semantic_classifier_dropout
def a__ ( self ) -> Any:
_lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_lowerCamelCase : int = self.backbone_config.to_dict()
_lowerCamelCase : List[Any] = self.__class__.model_type
return output
| 558
| 0
|
def lowerCamelCase__ ( _a):
SCREAMING_SNAKE_CASE : Optional[int] = int(_SCREAMING_SNAKE_CASE)
if decimal in (0, 1): # Exit cases for the recursion
return str(_SCREAMING_SNAKE_CASE)
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = divmod(_SCREAMING_SNAKE_CASE , 2)
return binary_recursive(_SCREAMING_SNAKE_CASE) + str(_SCREAMING_SNAKE_CASE)
def lowerCamelCase__ ( _a):
SCREAMING_SNAKE_CASE : Tuple = str(_SCREAMING_SNAKE_CASE).strip()
if not number:
raise ValueError("No input value was provided")
SCREAMING_SNAKE_CASE : Optional[Any] = "-" if number.startswith("-") else ""
SCREAMING_SNAKE_CASE : Union[str, Any] = number.lstrip("-")
if not number.isnumeric():
raise ValueError("Input value is not an integer")
return f"{negative}0b{binary_recursive(int(_SCREAMING_SNAKE_CASE))}"
if __name__ == "__main__":
from doctest import testmod
testmod()
| 25
|
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f"{price_plus_tax(100, 0.2_5) = }")
print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
| 27
| 0
|
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 202
|
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase__ :
def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=1_28 , a=32 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_labels
_UpperCamelCase = num_choices
_UpperCamelCase = scope
def A_ ( self ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_input_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCamelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A_ ( self ) -> Optional[Any]:
'''simple docstring'''
return NezhaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , )
def A_ ( self ) -> int:
'''simple docstring'''
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = self.prepare_config_and_inputs()
_UpperCamelCase = True
_UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def A_ ( self , a , a , a , a , a , a , a ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = NezhaModel(config=a )
model.to(a )
model.eval()
_UpperCamelCase = model(a , attention_mask=a , token_type_ids=a )
_UpperCamelCase = model(a , token_type_ids=a )
_UpperCamelCase = model(a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def A_ ( self , a , a , a , a , a , a , a , a , a , ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = True
_UpperCamelCase = NezhaModel(a )
model.to(a )
model.eval()
_UpperCamelCase = model(
a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , encoder_attention_mask=a , )
_UpperCamelCase = model(
a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , )
_UpperCamelCase = model(a , attention_mask=a , token_type_ids=a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def A_ ( self , a , a , a , a , a , a , a ) -> Dict:
'''simple docstring'''
_UpperCamelCase = NezhaForMaskedLM(config=a )
model.to(a )
model.eval()
_UpperCamelCase = model(a , attention_mask=a , token_type_ids=a , labels=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A_ ( self , a , a , a , a , a , a , a ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = NezhaForNextSentencePrediction(config=a )
model.to(a )
model.eval()
_UpperCamelCase = model(
a , attention_mask=a , token_type_ids=a , labels=a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def A_ ( self , a , a , a , a , a , a , a ) -> Dict:
'''simple docstring'''
_UpperCamelCase = NezhaForPreTraining(config=a )
model.to(a )
model.eval()
_UpperCamelCase = model(
a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def A_ ( self , a , a , a , a , a , a , a ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = NezhaForQuestionAnswering(config=a )
model.to(a )
model.eval()
_UpperCamelCase = model(
a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A_ ( self , a , a , a , a , a , a , a ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.num_labels
_UpperCamelCase = NezhaForSequenceClassification(a )
model.to(a )
model.eval()
_UpperCamelCase = model(a , attention_mask=a , token_type_ids=a , labels=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A_ ( self , a , a , a , a , a , a , a ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.num_labels
_UpperCamelCase = NezhaForTokenClassification(config=a )
model.to(a )
model.eval()
_UpperCamelCase = model(a , attention_mask=a , token_type_ids=a , labels=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A_ ( self , a , a , a , a , a , a , a ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.num_choices
_UpperCamelCase = NezhaForMultipleChoice(config=a )
model.to(a )
model.eval()
_UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCamelCase = model(
a , attention_mask=a , token_type_ids=a , labels=a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A_ ( self ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ):
UpperCamelCase_ : int = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
UpperCamelCase_ : Dict = (
{
"feature-extraction": NezhaModel,
"fill-mask": NezhaForMaskedLM,
"question-answering": NezhaForQuestionAnswering,
"text-classification": NezhaForSequenceClassification,
"token-classification": NezhaForTokenClassification,
"zero-shot": NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase_ : Dict = True
def A_ ( self , a , a , a=False ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = super()._prepare_for_class(a , a , return_labels=a )
if return_labels:
if model_class in get_values(a ):
_UpperCamelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a )
_UpperCamelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a )
return inputs_dict
def A_ ( self ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = NezhaModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=a , hidden_size=37 )
def A_ ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def A_ ( self ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a )
def A_ ( self ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*a )
def A_ ( self ) -> Dict:
'''simple docstring'''
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
_UpperCamelCase = None
self.model_tester.create_and_check_model_as_decoder(
a , a , a , a , a , a , a , a , a , )
def A_ ( self ) -> str:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*a )
def A_ ( self ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*a )
def A_ ( self ) -> str:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*a )
def A_ ( self ) -> int:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*a )
def A_ ( self ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a )
def A_ ( self ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*a )
def A_ ( self ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a )
@slow
def A_ ( self ) -> List[Any]:
'''simple docstring'''
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = NezhaModel.from_pretrained(a )
self.assertIsNotNone(a )
@slow
@require_torch_gpu
def A_ ( self ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
_UpperCamelCase = True
_UpperCamelCase = model_class(config=a )
_UpperCamelCase = self._prepare_for_class(a , a )
_UpperCamelCase = torch.jit.trace(
a , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(a , os.path.join(a , """bert.pt""" ) )
_UpperCamelCase = torch.jit.load(os.path.join(a , """bert.pt""" ) , map_location=a )
loaded(inputs_dict["""input_ids"""].to(a ) , inputs_dict["""attention_mask"""].to(a ) )
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
@slow
def A_ ( self ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" )
_UpperCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
_UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
_UpperCamelCase = model(a , attention_mask=a )[0]
_UpperCamelCase = torch.Size((1, 6, 7_68) )
self.assertEqual(output.shape , a )
_UpperCamelCase = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
@slow
def A_ ( self ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" )
_UpperCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
_UpperCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
_UpperCamelCase = model(a , attention_mask=a )[0]
_UpperCamelCase = torch.Size((1, 6, 2_11_28) )
self.assertEqual(output.shape , a )
_UpperCamelCase = torch.tensor(
[[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
| 202
| 1
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class A_ ( _a ):
lowerCAmelCase__ = ['image_processor', 'tokenizer']
lowerCAmelCase__ = 'AutoImageProcessor'
lowerCAmelCase__ = 'AutoTokenizer'
def __init__( self: Optional[int] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
super().__init__(__lowerCAmelCase ,__lowerCAmelCase )
_lowerCamelCase : str = self.image_processor
def __call__( self: int ,__lowerCAmelCase: int=None ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
_lowerCamelCase : Dict = self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if images is not None:
_lowerCamelCase : Any = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase )
if text is not None and images is not None:
_lowerCamelCase : int = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCAmelCase ) ,tensor_type=__lowerCAmelCase )
def _lowercase ( self: Dict ,*__lowerCAmelCase: Optional[Any] ,**__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__lowerCAmelCase ,**__lowerCAmelCase )
def _lowercase ( self: List[str] ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
return self.tokenizer.decode(*__lowerCAmelCase ,**__lowerCAmelCase )
@property
def _lowercase ( self: Dict ):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 46
|
import re
def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str:
'''simple docstring'''
if len(re.findall('[ATCG]' , lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 106
| 0
|
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=10 , _lowercase=18 , _lowercase=30 , _lowercase=400 , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=[0.5, 0.5, 0.5] , _lowercase=[0.5, 0.5, 0.5] , _lowercase=None , ):
"""simple docstring"""
_lowerCAmelCase = size if size is not None else {"""shortest_edge""": 18}
_lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = num_frames
_lowerCAmelCase = image_size
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = crop_size
def _lowercase ( self ):
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
_lowercase : Tuple = VivitImageProcessor if is_vision_available() else None
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = VivitImageProcessingTester(self )
@property
def _lowercase ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowercase , """image_mean""" ) )
self.assertTrue(hasattr(_lowercase , """image_std""" ) )
self.assertTrue(hasattr(_lowercase , """do_normalize""" ) )
self.assertTrue(hasattr(_lowercase , """do_resize""" ) )
self.assertTrue(hasattr(_lowercase , """do_center_crop""" ) )
self.assertTrue(hasattr(_lowercase , """size""" ) )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase )
for video in video_inputs:
self.assertIsInstance(_lowercase , _lowercase )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase )
for video in video_inputs:
self.assertIsInstance(_lowercase , _lowercase )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase )
for video in video_inputs:
self.assertIsInstance(_lowercase , _lowercase )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_lowerCAmelCase = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 162
|
'''simple docstring'''
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ):
"""simple docstring"""
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = seq_length
_lowerCAmelCase = is_training
_lowerCAmelCase = use_attention_mask
_lowerCAmelCase = use_token_type_ids
_lowerCAmelCase = use_labels
_lowerCAmelCase = vocab_size
_lowerCAmelCase = hidden_size
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = max_position_embeddings
_lowerCAmelCase = type_vocab_size
_lowerCAmelCase = type_sequence_label_size
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_choices
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase = None
if self.use_attention_mask:
_lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase = None
if self.use_token_type_ids:
_lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowerCAmelCase = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs
_lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
_lowercase : List[str] = True
_lowercase : str = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = FlaxRoFormerModelTester(self )
@slow
def _lowercase ( self ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
_lowerCAmelCase = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase )
_lowerCAmelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowercase )
@require_flax
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
_lowerCAmelCase = jnp.array([[0, 1, 2, 3, 4, 5]] )
_lowerCAmelCase = model(_lowercase )[0]
_lowerCAmelCase = 50_000
_lowerCAmelCase = (1, 6, vocab_size)
self.assertEqual(output.shape , _lowercase )
_lowerCAmelCase = jnp.array(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) )
| 162
| 1
|
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class lowerCAmelCase ( lowercase_ ):
__lowerCamelCase = 'git_vision_model'
def __init__( self :Dict , _lowercase :Dict=7_68 , _lowercase :Dict=30_72 , _lowercase :Tuple=12 , _lowercase :List[str]=12 , _lowercase :Tuple=3 , _lowercase :Dict=2_24 , _lowercase :Tuple=16 , _lowercase :Optional[int]="quick_gelu" , _lowercase :Union[str, Any]=1e-5 , _lowercase :Tuple=0.0 , _lowercase :Tuple=0.02 , **_lowercase :Optional[Any] , ):
'''simple docstring'''
super().__init__(**_lowercase )
lowercase__ = hidden_size
lowercase__ = intermediate_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = image_size
lowercase__ = initializer_range
lowercase__ = attention_dropout
lowercase__ = layer_norm_eps
lowercase__ = hidden_act
@classmethod
def UpperCAmelCase ( cls :List[str] , _lowercase :Union[str, os.PathLike] , **_lowercase :Optional[int] ):
'''simple docstring'''
cls._set_token_in_kwargs(_lowercase )
lowercase__ , lowercase__ = cls.get_config_dict(_lowercase , **_lowercase )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("model_type" ) == "git":
lowercase__ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_lowercase , **_lowercase )
class lowerCAmelCase ( lowercase_ ):
__lowerCamelCase = 'git'
def __init__( self :Union[str, Any] , _lowercase :Dict=None , _lowercase :List[str]=3_05_22 , _lowercase :Tuple=7_68 , _lowercase :Any=6 , _lowercase :Dict=12 , _lowercase :Any=30_72 , _lowercase :List[Any]="gelu" , _lowercase :Tuple=0.1 , _lowercase :Optional[int]=0.1 , _lowercase :Optional[Any]=10_24 , _lowercase :Any=0.02 , _lowercase :int=1e-12 , _lowercase :List[Any]=0 , _lowercase :int="absolute" , _lowercase :List[str]=True , _lowercase :Any=False , _lowercase :int=1_01 , _lowercase :str=1_02 , _lowercase :Dict=None , **_lowercase :List[str] , ):
'''simple docstring'''
super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , pad_token_id=_lowercase , **_lowercase )
if vision_config is None:
lowercase__ = {}
logger.info("vision_config is None. initializing the GitVisionConfig with default values." )
lowercase__ = GitVisionConfig(**_lowercase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
lowercase__ = tie_word_embeddings
lowercase__ = num_image_with_embedding
lowercase__ = bos_token_id
lowercase__ = eos_token_id
def UpperCAmelCase ( self :Tuple ):
'''simple docstring'''
lowercase__ = copy.deepcopy(self.__dict__ )
lowercase__ = self.vision_config.to_dict()
lowercase__ = self.__class__.model_type
return output
| 655
|
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
_snake_case = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""")
)
rename_keys.append(
(F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""")
)
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias"""))
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""")
)
rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight"""))
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias"""))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""")
)
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""",
F"""decoder.layers.{i}.encoder_attn.out_proj.weight""",
)
)
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""",
F"""decoder.layers.{i}.encoder_attn.out_proj.bias""",
)
)
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias"""))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""")
)
rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias"""))
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""")
)
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""")
)
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight"""))
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias"""))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""),
("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
]
)
def _A ( __magic_name__ , __magic_name__ , __magic_name__ ):
lowercase__ = state_dict.pop(__magic_name__ )
lowercase__ = val
def _A ( __magic_name__ ):
lowercase__ = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
lowercase__ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" )
lowercase__ = value
else:
lowercase__ = value
return new_state_dict
def _A ( __magic_name__ ):
lowercase__ = ""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase__ = in_proj_weight[:256, :]
lowercase__ = in_proj_bias[:256]
lowercase__ = in_proj_weight[256:512, :]
lowercase__ = in_proj_bias[256:512]
lowercase__ = in_proj_weight[-256:, :]
lowercase__ = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' )
lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase__ = in_proj_weight[:256, :]
lowercase__ = in_proj_bias[:256]
lowercase__ = in_proj_weight[256:512, :]
lowercase__ = in_proj_bias[256:512]
lowercase__ = in_proj_weight[-256:, :]
lowercase__ = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
lowercase__ = state_dict.pop(
f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' )
lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) of cross-attention to the state dict
lowercase__ = in_proj_weight_cross_attn[:256, :]
lowercase__ = in_proj_bias_cross_attn[:256]
lowercase__ = in_proj_weight_cross_attn[256:512, :]
lowercase__ = in_proj_bias_cross_attn[256:512]
lowercase__ = in_proj_weight_cross_attn[-256:, :]
lowercase__ = in_proj_bias_cross_attn[-256:]
def _A ( __magic_name__ , __magic_name__ ):
lowercase__ , lowercase__ = image.size
lowercase__ = max(__magic_name__ , __magic_name__ )
lowercase__ = 800 if "detection" in checkpoint_url else 1000
lowercase__ = target_max_size / current_max_size
lowercase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def _A ( __magic_name__ ):
lowercase__ = F.to_tensor(__magic_name__ )
lowercase__ = F.normalize(__magic_name__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def _A ( __magic_name__ , __magic_name__ , __magic_name__ ):
logger.info("Converting model..." )
# load original state dict
lowercase__ = torch.hub.load_state_dict_from_url(__magic_name__ , map_location="cpu" )
# rename keys
for src, dest in rename_keys:
rename_key(__magic_name__ , __magic_name__ , __magic_name__ )
lowercase__ = rename_backbone_keys(__magic_name__ )
# query, key and value matrices need special treatment
read_in_q_k_v(__magic_name__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
lowercase__ = "model."
for key in state_dict.copy().keys():
if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ):
lowercase__ = state_dict.pop(__magic_name__ )
lowercase__ = val
# create HuggingFace model and load state dict
lowercase__ = TableTransformerConfig(
backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , )
if "detection" in checkpoint_url:
lowercase__ = 15
lowercase__ = 2
lowercase__ = {0: "table", 1: "table rotated"}
lowercase__ = idalabel
lowercase__ = {v: k for k, v in idalabel.items()}
else:
lowercase__ = 125
lowercase__ = 6
lowercase__ = {
0: "table",
1: "table column",
2: "table row",
3: "table column header",
4: "table projected row header",
5: "table spanning cell",
}
lowercase__ = idalabel
lowercase__ = {v: k for k, v in idalabel.items()}
lowercase__ = DetrImageProcessor(
format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1000 )
lowercase__ = TableTransformerForObjectDetection(__magic_name__ )
model.load_state_dict(__magic_name__ )
model.eval()
# verify our conversion
lowercase__ = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png"
lowercase__ = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=__magic_name__ )
lowercase__ = Image.open(__magic_name__ ).convert("RGB" )
lowercase__ = normalize(resize(__magic_name__ , __magic_name__ ) ).unsqueeze(0 )
lowercase__ = model(__magic_name__ )
if "detection" in checkpoint_url:
lowercase__ = (1, 15, 3)
lowercase__ = torch.tensor(
[[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] )
lowercase__ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] )
else:
lowercase__ = (1, 125, 7)
lowercase__ = torch.tensor(
[[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] )
lowercase__ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
model.save_pretrained(__magic_name__ )
image_processor.save_pretrained(__magic_name__ )
if push_to_hub:
# Push model to HF hub
logger.info("Pushing model to the hub..." )
lowercase__ = (
"microsoft/table-transformer-detection"
if "detection" in checkpoint_url
else "microsoft/table-transformer-structure-recognition"
)
model.push_to_hub(__magic_name__ )
image_processor.push_to_hub(__magic_name__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_url""",
default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""",
type=str,
choices=[
"""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""",
"""https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""",
],
help="""URL of the Table Transformer checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_snake_case = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 655
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__magic_name__ = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = ['''PLBartTokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PLBartForCausalLM''',
'''PLBartForConditionalGeneration''',
'''PLBartForSequenceClassification''',
'''PLBartModel''',
'''PLBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 704
|
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--original_config_file''',
type=str,
required=True,
help='''The YAML config file corresponding to the original architecture.''',
)
parser.add_argument(
'''--num_in_channels''',
default=None,
type=int,
help='''The number of input channels. If `None` number of input channels will be automatically inferred.''',
)
parser.add_argument(
'''--image_size''',
default=512,
type=int,
help=(
'''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'''
''' Base. Use 768 for Stable Diffusion v2.'''
),
)
parser.add_argument(
'''--extract_ema''',
action='''store_true''',
help=(
'''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'''
''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'''
''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'''
),
)
parser.add_argument(
'''--upcast_attention''',
action='''store_true''',
help=(
'''Whether the attention computation should always be upcasted. This is necessary when running stable'''
''' diffusion 2.1.'''
),
)
parser.add_argument(
'''--from_safetensors''',
action='''store_true''',
help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''',
)
parser.add_argument(
'''--to_safetensors''',
action='''store_true''',
help='''Whether to store pipeline in safetensors format or not.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''')
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ):
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F"""could not parse string as bool {string}""" )
parser.add_argument(
'''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool
)
parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int)
__magic_name__ = parser.parse_args()
__magic_name__ = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 530
| 0
|
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A : List[str] = logging.get_logger(__name__)
def __lowerCAmelCase ( a__ ) -> Optional[int]:
__a = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
__a = 1024
__a = 4096
__a = 24
__a = 16
__a = [5, 11, 17, 23]
__a = [256, 512, 1024, 1024]
__a = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
__a = 768
__a = [1, 1, 1, 0.5]
__a = [256, 512, 768, 768]
__a = 150
__a = 16
__a = (1, 384, 384)
__a = False
__a = '''project'''
if "ade" in checkpoint_url:
__a = True
__a = 768
__a = [1, 1, 1, 0.5]
__a = 150
__a = 16
__a = '''huggingface/label-files'''
__a = '''ade20k-id2label.json'''
__a = json.load(open(cached_download(hf_hub_url(a__ , a__ , repo_type='''dataset''' ) ) , '''r''' ) )
__a = {int(a__ ): v for k, v in idalabel.items()}
__a = idalabel
__a = {v: k for k, v in idalabel.items()}
__a = [1, 150, 480, 480]
return config, expected_shape
def __lowerCAmelCase ( a__ ) -> Optional[Any]:
__a = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(a__ , a__ )
def __lowerCAmelCase ( a__ ) -> str:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
__a = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
__a = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
__a = name.replace('''patch_embed''' , '''''' )
if "pos_embed" in name:
__a = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
__a = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
__a = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
__a = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
__a = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
__a = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name and "backbone" not in name:
__a = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
__a = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
__a = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
__a = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
__a = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
__a = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
__a = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
__a = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
__a = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
__a = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
__a = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
__a = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
__a = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
__a = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
__a = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
__a = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
__a = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
__a = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
__a = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
__a = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
__a = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
__a = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
__a = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
__a = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
__a = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
__a = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
__a = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
__a = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
__a = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
__a = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
__a = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
if "backbone" in name:
__a = name.replace('''backbone''' , '''backbone.bit.encoder''' )
if ".." in name:
__a = name.replace('''..''' , '''.''' )
if "stem.conv" in name:
__a = name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
__a = name.replace('''blocks''' , '''layers''' )
if "convolution" in name and "backbone" in name:
__a = name.replace('''convolution''' , '''conv''' )
if "layer" in name and "backbone" in name:
__a = name.replace('''layer''' , '''layers''' )
if "backbone.bit.encoder.bit" in name:
__a = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' )
if "embedder.conv" in name:
__a = name.replace('''embedder.conv''' , '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
__a = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' )
return name
def __lowerCAmelCase ( a__ , a__ ) -> Optional[Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__a = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
__a = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__a = in_proj_weight[: config.hidden_size, :]
__a = in_proj_bias[: config.hidden_size]
__a = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__a = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__a = in_proj_weight[
-config.hidden_size :, :
]
__a = in_proj_bias[-config.hidden_size :]
def __lowerCAmelCase ( ) -> Tuple:
__a = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__a = Image.open(requests.get(a__ , stream=a__ ).raw )
return im
@torch.no_grad()
def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Optional[int]:
__a , __a = get_dpt_config(a__ )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
__a = torch.load(a__ , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(a__ )
# rename keys
for key in state_dict.copy().keys():
__a = state_dict.pop(a__ )
__a = val
# read in qkv matrices
read_in_q_k_v(a__ , a__ )
# load HuggingFace model
__a = DPTForSemanticSegmentation(a__ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(a__ )
model.load_state_dict(a__ )
model.eval()
# Check outputs on an image
__a = 480 if '''ade''' in checkpoint_url else 384
__a = DPTImageProcessor(size=a__ )
__a = prepare_img()
__a = image_processor(a__ , return_tensors='''pt''' )
# forward pass
__a = model(**a__ ).logits if '''ade''' in checkpoint_url else model(**a__ ).predicted_depth
if show_prediction:
__a = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=a__ , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(a__ ).mkdir(exist_ok=a__ )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(a__ )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(a__ )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
A : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
A : Tuple = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 219
|
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
A : str = logging.get_logger()
@dataclass
class __A:
snake_case_ = 42
snake_case_ = field(default_factory=a )
snake_case_ = field(default_factory=a )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]:
'''simple docstring'''
__a = len(list(m.modules() ) ) == 1 or isinstance(_snake_case , nn.Convad ) or isinstance(_snake_case , nn.BatchNormad )
if has_not_submodules:
self.traced.append(_snake_case )
def __call__( self , _snake_case ) -> Any:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(_snake_case )
[x.remove() for x in self.handles]
return self
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> Any:
'''simple docstring'''
return list(filter(lambda _snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class __A:
snake_case_ = 42
snake_case_ = 42
snake_case_ = 0
snake_case_ = field(default_factory=a )
snake_case_ = field(default_factory=a )
def __call__( self , _snake_case ) -> Dict:
'''simple docstring'''
__a = Tracker(self.dest )(_snake_case ).parametrized
__a = Tracker(self.src )(_snake_case ).parametrized
__a = list(filter(lambda _snake_case : type(_snake_case ) not in self.src_skip , _snake_case ) )
__a = list(filter(lambda _snake_case : type(_snake_case ) not in self.dest_skip , _snake_case ) )
if len(_snake_case ) != len(_snake_case ):
raise Exception(
F"""Numbers of operations are different. Source module has {len(_snake_case )} operations while"""
F""" destination module has {len(_snake_case )}.""" )
for dest_m, src_m in zip(_snake_case , _snake_case ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"""Transfered from={src_m} to={dest_m}""" )
def __lowerCAmelCase ( a__ , a__ , a__ , a__ = True ) -> str:
print(F"""Converting {name}...""" )
with torch.no_grad():
__a = timm.create_model(a__ , pretrained=a__ ).eval()
__a = ResNetForImageClassification(a__ ).eval()
__a = ModuleTransfer(src=a__ , dest=a__ )
__a = torch.randn((1, 3, 224, 224) )
module_transfer(a__ )
assert torch.allclose(from_model(a__ ) , our_model(a__ ).logits ), "The model logits don't match the original one."
__a = F"""resnet{'-'.join(name.split('resnet' ) )}"""
print(a__ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a__ , )
# we can use the convnext one
__a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a__ , )
print(F"""Pushed {checkpoint_name}""" )
def __lowerCAmelCase ( a__ , a__ = None , a__ = True ) -> List[Any]:
__a = '''imagenet-1k-id2label.json'''
__a = 1000
__a = (1, num_labels)
__a = '''huggingface/label-files'''
__a = num_labels
__a = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) )
__a = {int(a__ ): v for k, v in idalabel.items()}
__a = idalabel
__a = {v: k for k, v in idalabel.items()}
__a = partial(a__ , num_labels=a__ , idalabel=a__ , labelaid=a__ )
__a = {
'''resnet18''': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ),
'''resnet26''': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'''resnet34''': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ),
'''resnet50''': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'''resnet101''': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'''resnet152''': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
}
if model_name:
convert_weight_and_push(a__ , names_to_config[model_name] , a__ , a__ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(a__ , a__ , a__ , a__ )
return config, expected_shape
if __name__ == "__main__":
A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help=(
'The name of the model you wish to convert, it must be one of the supported resnet* architecture,'
' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=Path,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
default=True,
type=bool,
required=False,
help='If True, push model and image processor to the hub.',
)
A : List[Any] = parser.parse_args()
A : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 219
| 1
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ : Dict = logging.get_logger(__name__)
a_ : Optional[Any] = {
"""microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class snake_case ( lowercase ):
"""simple docstring"""
_lowerCamelCase = "wavlm"
def __init__( self , UpperCamelCase=32 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.0 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.02 , UpperCamelCase=1e-5 , UpperCamelCase="group" , UpperCamelCase="gelu" , UpperCamelCase=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase=False , UpperCamelCase=128 , UpperCamelCase=16 , UpperCamelCase=320 , UpperCamelCase=800 , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=0.05 , UpperCamelCase=10 , UpperCamelCase=2 , UpperCamelCase=0.0 , UpperCamelCase=10 , UpperCamelCase=320 , UpperCamelCase=2 , UpperCamelCase=0.1 , UpperCamelCase=100 , UpperCamelCase=256 , UpperCamelCase=256 , UpperCamelCase=0.1 , UpperCamelCase="mean" , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=256 , UpperCamelCase=(512, 512, 512, 512, 1500) , UpperCamelCase=(5, 3, 3, 1, 1) , UpperCamelCase=(1, 2, 3, 1, 1) , UpperCamelCase=512 , UpperCamelCase=80 , UpperCamelCase=0 , UpperCamelCase=1 , UpperCamelCase=2 , UpperCamelCase=False , UpperCamelCase=3 , UpperCamelCase=2 , UpperCamelCase=3 , UpperCamelCase=None , **UpperCamelCase , ):
"""simple docstring"""
super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase )
lowerCamelCase_ = hidden_size
lowerCamelCase_ = feat_extract_norm
lowerCamelCase_ = feat_extract_activation
lowerCamelCase_ = list(UpperCamelCase )
lowerCamelCase_ = list(UpperCamelCase )
lowerCamelCase_ = list(UpperCamelCase )
lowerCamelCase_ = conv_bias
lowerCamelCase_ = num_buckets
lowerCamelCase_ = max_bucket_distance
lowerCamelCase_ = num_conv_pos_embeddings
lowerCamelCase_ = num_conv_pos_embedding_groups
lowerCamelCase_ = len(self.conv_dim )
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = intermediate_size
lowerCamelCase_ = hidden_act
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = hidden_dropout
lowerCamelCase_ = attention_dropout
lowerCamelCase_ = activation_dropout
lowerCamelCase_ = feat_proj_dropout
lowerCamelCase_ = final_dropout
lowerCamelCase_ = layerdrop
lowerCamelCase_ = layer_norm_eps
lowerCamelCase_ = initializer_range
lowerCamelCase_ = num_ctc_classes
lowerCamelCase_ = vocab_size
lowerCamelCase_ = do_stable_layer_norm
lowerCamelCase_ = use_weighted_layer_sum
lowerCamelCase_ = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase_ = apply_spec_augment
lowerCamelCase_ = mask_time_prob
lowerCamelCase_ = mask_time_length
lowerCamelCase_ = mask_time_min_masks
lowerCamelCase_ = mask_feature_prob
lowerCamelCase_ = mask_feature_length
# parameters for pretraining with codevector quantized representations
lowerCamelCase_ = num_codevectors_per_group
lowerCamelCase_ = num_codevector_groups
lowerCamelCase_ = contrastive_logits_temperature
lowerCamelCase_ = num_negatives
lowerCamelCase_ = codevector_dim
lowerCamelCase_ = proj_codevector_dim
lowerCamelCase_ = diversity_loss_weight
# ctc loss
lowerCamelCase_ = ctc_loss_reduction
lowerCamelCase_ = ctc_zero_infinity
# adapter
lowerCamelCase_ = add_adapter
lowerCamelCase_ = adapter_kernel_size
lowerCamelCase_ = adapter_stride
lowerCamelCase_ = num_adapter_layers
lowerCamelCase_ = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowerCamelCase_ = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowerCamelCase_ = list(UpperCamelCase )
lowerCamelCase_ = list(UpperCamelCase )
lowerCamelCase_ = list(UpperCamelCase )
lowerCamelCase_ = xvector_output_dim
@property
def snake_case ( self ):
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 708
|
'''simple docstring'''
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def __snake_case ( UpperCAmelCase_ : dict ):
return (data["data"], data["target"])
def __snake_case ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray ):
lowerCamelCase_ = XGBClassifier()
classifier.fit(UpperCAmelCase_ , UpperCAmelCase_ )
return classifier
def __snake_case ( ):
lowerCamelCase_ = load_iris()
lowerCamelCase_ ,lowerCamelCase_ = data_handling(UpperCAmelCase_ )
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = train_test_split(
UpperCAmelCase_ , UpperCAmelCase_ , test_size=0.25 )
lowerCamelCase_ = iris["target_names"]
# Create an XGBoost Classifier from the training data
lowerCamelCase_ = xgboost(UpperCAmelCase_ , UpperCAmelCase_ )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , display_labels=UpperCAmelCase_ , cmap="Blues" , normalize="true" , )
plt.title("Normalized Confusion Matrix - IRIS Dataset" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 445
| 0
|
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class __UpperCamelCase ( A__ , unittest.TestCase ):
__A : Optional[int] = BarthezTokenizer
__A : Union[str, Any] = BarthezTokenizerFast
__A : List[Any] = True
__A : str = True
def UpperCamelCase( self ):
super().setUp()
_UpperCAmelCase = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=_UpperCamelCase )
_UpperCAmelCase = tokenizer
def UpperCamelCase( self ):
_UpperCAmelCase = '''<pad>'''
_UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_UpperCamelCase ) , 101122 )
def UpperCamelCase( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def UpperCamelCase( self ):
_UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_UpperCAmelCase = [0, 57, 3018, 70307, 91, 2]
_UpperCAmelCase = self.tokenizer(
_UpperCamelCase , max_length=len(_UpperCamelCase ) , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='''pt''' )
self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
def UpperCamelCase( self ):
if not self.test_rust_tokenizer:
return
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = '''I was born in 92000, and this is falsé.'''
_UpperCAmelCase = tokenizer.tokenize(_UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.tokenize(_UpperCamelCase )
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
_UpperCAmelCase = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase )
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = tokenizer.encode(_UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase )
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
@slow
def UpperCamelCase( self ):
# fmt: off
_UpperCAmelCase = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=_UpperCamelCase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=_UpperCamelCase , )
| 32
|
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class SCREAMING_SNAKE_CASE__ (_a , unittest.TestCase ):
lowercase_ : List[str] = WavaVecaPhonemeCTCTokenizer
lowercase_ : Dict = False
def A__ ( self : str ):
"""simple docstring"""
super().setUp()
lowerCAmelCase__ = (
'''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː '''
'''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː '''
'''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 '''
'''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ '''
'''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ '''
'''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ '''
'''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '''
'''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ '''
'''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ '''
'''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ '''
'''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ '''
'''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ '''
'''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4'''
).split(''' ''' )
lowerCAmelCase__ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCAmelCase__ = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowerCamelCase ) + '''\n''' )
def A__ ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=20 , __lowerCamelCase : Any=5 ):
"""simple docstring"""
lowerCAmelCase__ = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCamelCase )) for i in range(len(__lowerCamelCase ) )]
lowerCAmelCase__ = list(filter(lambda __lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__lowerCamelCase ) , __lowerCamelCase ) )
if max_length is not None and len(__lowerCamelCase ) > max_length:
lowerCAmelCase__ = toks[:max_length]
if min_length is not None and len(__lowerCamelCase ) < min_length and len(__lowerCamelCase ) > 0:
while len(__lowerCamelCase ) < min_length:
lowerCAmelCase__ = toks + toks
# toks_str = [t[1] for t in toks]
lowerCAmelCase__ = [t[0] for t in toks]
# Ensure consistency
lowerCAmelCase__ = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase )
if " " not in output_txt and len(__lowerCamelCase ) > 1:
lowerCAmelCase__ = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCamelCase )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCamelCase )
)
if with_prefix_space:
lowerCAmelCase__ = ''' ''' + output_txt
lowerCAmelCase__ = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
return output_txt, output_ids
def A__ ( self : List[str] , **__lowerCamelCase : Any ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def A__ ( self : Dict ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
# check adding a single token
tokenizer.add_tokens('''xxx''' )
lowerCAmelCase__ = tokenizer('''m xxx ɪ''' , do_phonemize=__lowerCamelCase ).input_ids
self.assertEqual(__lowerCamelCase , [13, 3_92, 17] ) # xxx should be last token
tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] )
lowerCAmelCase__ = tokenizer('''m aaa ɪ ccc''' , do_phonemize=__lowerCamelCase ).input_ids
self.assertEqual(__lowerCamelCase , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa
lowerCAmelCase__ = tokenizer('''maɪ c''' , do_phonemize=__lowerCamelCase ).input_ids
self.assertEqual(__lowerCamelCase , [3, 2_00] ) # mai should be <unk> (=3)
def A__ ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
lowerCAmelCase__ = '''Hello how are you'''
lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' )
self.assertEqual(__lowerCamelCase , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
def A__ ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
lowerCAmelCase__ = '''Hello how are you'''
lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(__lowerCamelCase ).input_ids , tokenizer(__lowerCamelCase , do_phonemize=__lowerCamelCase ).input_ids )
def A__ ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
lowerCAmelCase__ = '''Hello how are you'''
lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' )
lowerCAmelCase__ = tokenizer.decode(tokenizer(__lowerCamelCase ).input_ids )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def A__ ( self : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
lowerCAmelCase__ = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
lowerCAmelCase__ = tokenizer.decode(sample_ids[0] )
lowerCAmelCase__ = tokenizer.batch_decode(__lowerCamelCase )
self.assertEqual(__lowerCamelCase , batch_tokens[0] )
self.assertEqual(__lowerCamelCase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
def A__ ( self : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
lowerCAmelCase__ = '''Hello how are you'''
lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' )
self.assertEqual(__lowerCamelCase , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' )
def A__ ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
lowerCAmelCase__ = '''Hello how are you'''
lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(__lowerCamelCase ).input_ids , tokenizer(__lowerCamelCase , do_phonemize=__lowerCamelCase ).input_ids )
def A__ ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
lowerCAmelCase__ = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
lowerCAmelCase__ = tokenizer.decode(sample_ids[0] )
lowerCAmelCase__ = tokenizer.batch_decode(__lowerCamelCase )
self.assertEqual(__lowerCamelCase , batch_tokens[0] )
self.assertEqual(__lowerCamelCase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
# decode with no word_del_token filter
lowerCAmelCase__ = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__lowerCamelCase )
lowerCAmelCase__ = tokenizer.batch_decode(__lowerCamelCase , filter_word_delimiter_token=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , batch_tokens[0] )
self.assertEqual(__lowerCamelCase , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] )
def A__ ( self : Optional[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
lowerCAmelCase__ = '''Hello how are you'''
lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' )
lowerCAmelCase__ = tokenizer.decode(tokenizer(__lowerCamelCase ).input_ids , filter_word_delimiter_token=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def A__ ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
lowerCAmelCase__ = '''Hello how are you'''
lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' )
lowerCAmelCase__ = tokenizer.decode(tokenizer(__lowerCamelCase ).input_ids , filter_word_delimiter_token=__lowerCamelCase )
self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , __lowerCamelCase )
def A__ ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=__lowerCamelCase )
lowerCAmelCase__ = '''Hello how are you'''
lowerCAmelCase__ = tokenizer(__lowerCamelCase , phonemizer_lang='''en-us''' ).input_ids
lowerCAmelCase__ = tokenizer(__lowerCamelCase , phonemizer_lang='''fr-fr''' ).input_ids
self.assertNotEqual(__lowerCamelCase , __lowerCamelCase )
lowerCAmelCase__ = tokenizer.decode(__lowerCamelCase )
lowerCAmelCase__ = tokenizer.decode(__lowerCamelCase )
self.assertEqual(__lowerCamelCase , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
self.assertEqual(__lowerCamelCase , '''ɛ l o h aʊ a ʁ j u''' )
def A__ ( self : int ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
lowerCAmelCase__ = '''Hello how Are you'''
lowerCAmelCase__ = '''hello how are you'''
lowerCAmelCase__ = tokenizer(__lowerCamelCase ).input_ids
lowerCAmelCase__ = tokenizer(__lowerCamelCase ).input_ids
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def A__ ( self : str ):
"""simple docstring"""
lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
tokenizer.add_tokens(['''!''', '''?'''] )
tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} )
# fmt: off
lowerCAmelCase__ = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94],
]
# fmt: on
lowerCAmelCase__ = tokenizer.batch_decode(__lowerCamelCase )
self.assertEqual(__lowerCamelCase , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] )
@staticmethod
def A__ ( __lowerCamelCase : Any , __lowerCamelCase : Tuple ):
"""simple docstring"""
lowerCAmelCase__ = [d[key] for d in offsets]
return retrieved_list
def A__ ( self : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.get_tokenizer(word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
lowerCAmelCase__ = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
lowerCAmelCase__ = tokenizer.decode(__lowerCamelCase , output_char_offsets=__lowerCamelCase , filter_word_delimiter_token=__lowerCamelCase )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''char_offsets''' in outputs )
self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def A__ ( self : Union[str, Any] ):
"""simple docstring"""
lowerCAmelCase__ = self.get_tokenizer(word_delimiter_token='''|''' )
def check_list_tuples_equal(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ):
self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) )
self.assertTrue(isinstance(outputs_list[0] , __lowerCamelCase ) )
# transform list to ModelOutput
lowerCAmelCase__ = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] )
def recursive_check(__lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ):
if isinstance(__lowerCamelCase , __lowerCamelCase ):
[recursive_check(__lowerCamelCase , __lowerCamelCase ) for la, la in zip(__lowerCamelCase , __lowerCamelCase )]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] )
# fmt: off
lowerCAmelCase__ = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
lowerCAmelCase__ = tokenizer.batch_decode(__lowerCamelCase , output_char_offsets=__lowerCamelCase )
lowerCAmelCase__ = [tokenizer.decode(__lowerCamelCase , output_char_offsets=__lowerCamelCase ) for ids in sample_ids]
check_list_tuples_equal(__lowerCamelCase , __lowerCamelCase )
@unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' )
def A__ ( self : str ):
"""simple docstring"""
pass
@unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' )
def A__ ( self : Union[str, Any] ):
"""simple docstring"""
pass
@unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' )
def A__ ( self : List[Any] ):
"""simple docstring"""
pass
@unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' )
def A__ ( self : Union[str, Any] ):
"""simple docstring"""
pass
def A__ ( self : Optional[int] ):
"""simple docstring"""
lowerCAmelCase__ = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
lowerCAmelCase__ = tokenizer.vocab_size
lowerCAmelCase__ = len(__lowerCamelCase )
self.assertNotEqual(__lowerCamelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
lowerCAmelCase__ = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
lowerCAmelCase__ = tokenizer.add_tokens(__lowerCamelCase )
lowerCAmelCase__ = tokenizer.vocab_size
lowerCAmelCase__ = len(__lowerCamelCase )
self.assertNotEqual(__lowerCamelCase , 0 )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(__lowerCamelCase , len(__lowerCamelCase ) )
self.assertEqual(__lowerCamelCase , all_size + len(__lowerCamelCase ) )
lowerCAmelCase__ = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__lowerCamelCase )
self.assertGreaterEqual(len(__lowerCamelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
lowerCAmelCase__ = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
lowerCAmelCase__ = tokenizer.add_special_tokens(__lowerCamelCase )
lowerCAmelCase__ = tokenizer.vocab_size
lowerCAmelCase__ = len(__lowerCamelCase )
self.assertNotEqual(__lowerCamelCase , 0 )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(__lowerCamelCase , len(__lowerCamelCase ) )
self.assertEqual(__lowerCamelCase , all_size_a + len(__lowerCamelCase ) )
lowerCAmelCase__ = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__lowerCamelCase )
self.assertGreaterEqual(len(__lowerCamelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def A__ ( self : Tuple ):
"""simple docstring"""
pass
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def A__ ( self : Optional[Any] ):
"""simple docstring"""
pass
def A__ ( self : int ):
"""simple docstring"""
# The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which
# is not the case for Wav2Vec2PhonemeCTCTokenizer.
lowerCAmelCase__ = self.get_tokenizers(fast=__lowerCamelCase , do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
lowerCAmelCase__ = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t''']
lowerCAmelCase__ = tokenizer.convert_tokens_to_string(__lowerCamelCase )
self.assertIsInstance(output['''text'''] , __lowerCamelCase )
| 615
| 0
|
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def A_ ( snake_case : Any=None , snake_case : Union[str, Any]=None ) -> Union[str, Any]:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=snake_case )
@dataclass
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
_snake_case = field(
metadata={'help': 'The csv file to plot.'} , )
_snake_case = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , )
_snake_case = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , )
_snake_case = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Disable logarithmic scale when plotting'} , )
_snake_case = field(
default=SCREAMING_SNAKE_CASE_ , metadata={
'help': 'Whether the csv file has training results or inference results. Defaults to inference results.'
} , )
_snake_case = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , )
_snake_case = list_field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} )
def A_ ( snake_case : int ) -> int:
'''simple docstring'''
try:
int(snake_case )
return True
except ValueError:
return False
def A_ ( snake_case : int ) -> Any:
'''simple docstring'''
try:
float(snake_case )
return True
except ValueError:
return False
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
__UpperCamelCase = args
__UpperCamelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
__UpperCamelCase = csv.DictReader(SCREAMING_SNAKE_CASE_ )
for row in reader:
__UpperCamelCase = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
__UpperCamelCase = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
__UpperCamelCase = float(row['''result'''] )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = plt.subplots()
__UpperCamelCase = '''Time usage''' if self.args.is_time else '''Memory usage'''
__UpperCamelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
__UpperCamelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
__UpperCamelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
__UpperCamelCase = self.result_dict[model_name]['''result''']
((__UpperCamelCase) , (__UpperCamelCase)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
__UpperCamelCase = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
__UpperCamelCase = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=SCREAMING_SNAKE_CASE_ , )
else:
__UpperCamelCase = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((__UpperCamelCase) , (__UpperCamelCase)) = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
__UpperCamelCase = np.asarray(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[: len(SCREAMING_SNAKE_CASE_ )]
plt.scatter(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" )
plt.plot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''--''' )
title_str += F" {label_model_name} vs."
__UpperCamelCase = title_str[:-4]
__UpperCamelCase = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(SCREAMING_SNAKE_CASE_ )
plt.xlabel(SCREAMING_SNAKE_CASE_ )
plt.ylabel(SCREAMING_SNAKE_CASE_ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def A_ ( ) -> Tuple:
'''simple docstring'''
__UpperCamelCase = HfArgumentParser(snake_case )
__UpperCamelCase = parser.parse_args_into_dataclasses()[0]
__UpperCamelCase = Plot(args=snake_case )
plot.plot()
if __name__ == "__main__":
main()
| 715
|
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def A_ ( snake_case : str , snake_case : str , **snake_case : List[str] ) -> Dict:
'''simple docstring'''
__UpperCamelCase = AutoConfig.from_pretrained(snake_case , **snake_case )
__UpperCamelCase = AutoModelForSeqaSeqLM.from_config(snake_case )
model.save_pretrained(snake_case )
AutoTokenizer.from_pretrained(snake_case ).save_pretrained(snake_case )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 451
| 0
|
'''simple docstring'''
import argparse
import os
from pathlib import Path
import fairseq
import torch
from packaging import version
from torch import nn
from transformers import (
BartConfig,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
BartTokenizer,
)
from transformers.utils import logging
__UpperCAmelCase =["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"]
__UpperCAmelCase ={"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification}
if version.parse(fairseq.__version__) < version.parse("0.9.0"):
raise Exception("requires fairseq >= 0.9.0")
logging.set_verbosity_info()
__UpperCAmelCase =logging.get_logger(__name__)
__UpperCAmelCase =" Hello world! cécé herlolip"
__UpperCAmelCase =[
("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"),
("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"),
("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"),
("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"),
]
def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[Any]:
__lowerCamelCase = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase__ , UpperCamelCase__ )
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]:
__lowerCamelCase = dct.pop(UpperCamelCase__ )
__lowerCamelCase = val
def __lowerCAmelCase ( UpperCamelCase__ ) -> List[str]:
__lowerCamelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' )
__lowerCamelCase = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval()
hub_interface.model.load_state_dict(sd['''model'''] )
return hub_interface
def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase = emb.weight.shape
__lowerCamelCase = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ )
__lowerCamelCase = emb.weight.data
return lin_layer
@torch.no_grad()
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]:
if not os.path.exists(UpperCamelCase__ ):
__lowerCamelCase = torch.hub.load('''pytorch/fairseq''' , UpperCamelCase__ ).eval()
else:
__lowerCamelCase = load_xsum_checkpoint(UpperCamelCase__ )
bart.model.upgrade_state_dict(bart.model.state_dict() )
if hf_checkpoint_name is None:
__lowerCamelCase = checkpoint_path.replace('''.''' , '''-''' )
__lowerCamelCase = BartConfig.from_pretrained(UpperCamelCase__ )
__lowerCamelCase = bart.encode(UpperCamelCase__ ).unsqueeze(0 )
__lowerCamelCase = BartTokenizer.from_pretrained(UpperCamelCase__ ).encode(UpperCamelCase__ , return_tensors='''pt''' ).unsqueeze(0 )
if not torch.eq(UpperCamelCase__ , UpperCamelCase__ ).all():
raise ValueError(
f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" )
if checkpoint_path == "bart.large.mnli":
__lowerCamelCase = bart.state_dict()
remove_ignore_keys_(UpperCamelCase__ )
__lowerCamelCase = state_dict['''model.decoder.embed_tokens.weight''']
for src, dest in mnli_rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = BartForSequenceClassification(UpperCamelCase__ ).eval()
model.load_state_dict(UpperCamelCase__ )
__lowerCamelCase = bart.predict('''mnli''' , UpperCamelCase__ , return_logits=UpperCamelCase__ )
__lowerCamelCase = model(UpperCamelCase__ )[0] # logits
else: # no classification heads to worry about
__lowerCamelCase = bart.model.state_dict()
remove_ignore_keys_(UpperCamelCase__ )
__lowerCamelCase = state_dict['''decoder.embed_tokens.weight''']
__lowerCamelCase = bart.extract_features(UpperCamelCase__ )
if hf_checkpoint_name == "facebook/bart-large":
__lowerCamelCase = BartModel(UpperCamelCase__ ).eval()
model.load_state_dict(UpperCamelCase__ )
__lowerCamelCase = model(UpperCamelCase__ ).model[0]
else:
__lowerCamelCase = BartForConditionalGeneration(UpperCamelCase__ ).eval() # an existing summarization ckpt
model.model.load_state_dict(UpperCamelCase__ )
if hasattr(UpperCamelCase__ , '''lm_head''' ):
__lowerCamelCase = make_linear_from_emb(model.model.shared )
__lowerCamelCase = model.model(UpperCamelCase__ )[0]
# Check results
if fairseq_output.shape != new_model_outputs.shape:
raise ValueError(
f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" )
if (fairseq_output != new_model_outputs).any().item():
raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' )
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
__UpperCAmelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem."
)
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum"
)
__UpperCAmelCase =parser.parse_args()
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
| 546
|
'''simple docstring'''
import numpy as np
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str:
__lowerCamelCase = int(np.ceil((x_end - xa) / h ) )
__lowerCamelCase = np.zeros((n + 1,) )
__lowerCamelCase = ya
__lowerCamelCase = xa
for k in range(UpperCamelCase__ ):
__lowerCamelCase = f(UpperCamelCase__ , y[k] )
__lowerCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
__lowerCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
__lowerCamelCase = f(x + h , y[k] + h * ka )
__lowerCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 546
| 1
|
'''simple docstring'''
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 710
|
'''simple docstring'''
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class __a ( unittest.TestCase ):
def __init__( self : Dict , lowercase__ : Optional[int] , lowercase__ : Optional[Any]=7 , lowercase__ : Dict=3 , lowercase__ : Optional[int]=18 , lowercase__ : Any=30 , lowercase__ : Tuple=4_00 , lowercase__ : Dict=True , lowercase__ : List[str]=None , lowercase__ : Tuple=True , lowercase__ : Optional[int]=None , lowercase__ : Any=True , lowercase__ : Union[str, Any]=[0.5, 0.5, 0.5] , lowercase__ : Tuple=[0.5, 0.5, 0.5] , lowercase__ : Optional[Any]=False , ) ->str:
"""simple docstring"""
_lowercase = size if size is not None else {"""height""": 20, """width""": 20}
_lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_lowercase = parent
_lowercase = batch_size
_lowercase = num_channels
_lowercase = image_size
_lowercase = min_resolution
_lowercase = max_resolution
_lowercase = do_resize
_lowercase = size
_lowercase = do_center_crop
_lowercase = crop_size
_lowercase = do_normalize
_lowercase = image_mean
_lowercase = image_std
_lowercase = do_reduce_labels
def _UpperCAmelCase ( self : Union[str, Any]) ->str:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def _SCREAMING_SNAKE_CASE ( ):
_lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
_lowercase = Image.open(dataset[0]["""file"""] )
_lowercase = Image.open(dataset[1]["""file"""] )
return image, map
def _SCREAMING_SNAKE_CASE ( ):
_lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
_lowercase = Image.open(ds[0]["""file"""] )
_lowercase = Image.open(ds[1]["""file"""] )
_lowercase = Image.open(ds[2]["""file"""] )
_lowercase = Image.open(ds[3]["""file"""] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class __a ( _snake_case ,unittest.TestCase ):
__SCREAMING_SNAKE_CASE : List[str] = BeitImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self : Any) ->str:
"""simple docstring"""
_lowercase = BeitImageProcessingTester(self)
@property
def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self : Optional[int]) ->Any:
"""simple docstring"""
_lowercase = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowercase__ , """do_resize"""))
self.assertTrue(hasattr(lowercase__ , """size"""))
self.assertTrue(hasattr(lowercase__ , """do_center_crop"""))
self.assertTrue(hasattr(lowercase__ , """center_crop"""))
self.assertTrue(hasattr(lowercase__ , """do_normalize"""))
self.assertTrue(hasattr(lowercase__ , """image_mean"""))
self.assertTrue(hasattr(lowercase__ , """image_std"""))
def _UpperCAmelCase ( self : Optional[Any]) ->str:
"""simple docstring"""
_lowercase = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20})
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18})
self.assertEqual(image_processor.do_reduce_labels , lowercase__)
_lowercase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowercase__)
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42})
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84})
self.assertEqual(image_processor.do_reduce_labels , lowercase__)
def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]:
"""simple docstring"""
pass
def _UpperCAmelCase ( self : List[str]) ->int:
"""simple docstring"""
_lowercase = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
_lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__)
for image in image_inputs:
self.assertIsInstance(lowercase__ , Image.Image)
# Test not batched input
_lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _UpperCAmelCase ( self : str) ->int:
"""simple docstring"""
_lowercase = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
_lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__)
for image in image_inputs:
self.assertIsInstance(lowercase__ , np.ndarray)
# Test not batched input
_lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _UpperCAmelCase ( self : Dict) ->Union[str, Any]:
"""simple docstring"""
_lowercase = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
_lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__)
for image in image_inputs:
self.assertIsInstance(lowercase__ , torch.Tensor)
# Test not batched input
_lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _UpperCAmelCase ( self : Dict) ->Any:
"""simple docstring"""
_lowercase = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
_lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__)
_lowercase = []
for image in image_inputs:
self.assertIsInstance(lowercase__ , torch.Tensor)
maps.append(torch.zeros(image.shape[-2:]).long())
# Test not batched input
_lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""")
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long)
self.assertTrue(encoding["""labels"""].min().item() >= 0)
self.assertTrue(encoding["""labels"""].max().item() <= 2_55)
# Test batched
_lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""")
self.assertEqual(
encoding["""pixel_values"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long)
self.assertTrue(encoding["""labels"""].min().item() >= 0)
self.assertTrue(encoding["""labels"""].max().item() <= 2_55)
# Test not batched input (PIL images)
_lowercase , _lowercase = prepare_semantic_single_inputs()
_lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""")
self.assertEqual(
encoding["""pixel_values"""].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
1,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long)
self.assertTrue(encoding["""labels"""].min().item() >= 0)
self.assertTrue(encoding["""labels"""].max().item() <= 2_55)
# Test batched input (PIL images)
_lowercase , _lowercase = prepare_semantic_batch_inputs()
_lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""")
self.assertEqual(
encoding["""pixel_values"""].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(
encoding["""labels"""].shape , (
2,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
self.assertEqual(encoding["""labels"""].dtype , torch.long)
self.assertTrue(encoding["""labels"""].min().item() >= 0)
self.assertTrue(encoding["""labels"""].max().item() <= 2_55)
def _UpperCAmelCase ( self : Dict) ->Optional[Any]:
"""simple docstring"""
_lowercase = self.image_processing_class(**self.image_processor_dict)
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
_lowercase , _lowercase = prepare_semantic_single_inputs()
_lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""")
self.assertTrue(encoding["""labels"""].min().item() >= 0)
self.assertTrue(encoding["""labels"""].max().item() <= 1_50)
_lowercase = True
_lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""")
self.assertTrue(encoding["""labels"""].min().item() >= 0)
self.assertTrue(encoding["""labels"""].max().item() <= 2_55)
| 572
| 0
|
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Optional[Any]:
assert isinstance(__snake_case , __snake_case )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Optional[Any]:
_UpperCAmelCase = tmp_path / """cache"""
_UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_UpperCAmelCase = ParquetDatasetReader(__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case ).read()
_check_parquet_dataset(__snake_case , __snake_case )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Optional[int]:
_UpperCAmelCase = tmp_path / """cache"""
_UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_UpperCAmelCase = features.copy() if features else default_expected_features
_UpperCAmelCase = (
Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None
)
_UpperCAmelCase = ParquetDatasetReader(__snake_case , features=__snake_case , cache_dir=__snake_case ).read()
_check_parquet_dataset(__snake_case , __snake_case )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Any:
_UpperCAmelCase = tmp_path / """cache"""
_UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_UpperCAmelCase = ParquetDatasetReader(__snake_case , cache_dir=__snake_case , split=__snake_case ).read()
_check_parquet_dataset(__snake_case , __snake_case )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("""path_type""" , [str, list] )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Any:
if issubclass(__snake_case , __snake_case ):
_UpperCAmelCase = parquet_path
elif issubclass(__snake_case , __snake_case ):
_UpperCAmelCase = [parquet_path]
_UpperCAmelCase = tmp_path / """cache"""
_UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_UpperCAmelCase = ParquetDatasetReader(__snake_case , cache_dir=__snake_case ).read()
_check_parquet_dataset(__snake_case , __snake_case )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case=("train",) ) -> List[str]:
assert isinstance(__snake_case , __snake_case )
for split in splits:
_UpperCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("""keep_in_memory""" , [False, True] )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Tuple:
_UpperCAmelCase = tmp_path / """cache"""
_UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_UpperCAmelCase = ParquetDatasetReader(
{"""train""": parquet_path} , cache_dir=__snake_case , keep_in_memory=__snake_case ).read()
_check_parquet_datasetdict(__snake_case , __snake_case )
@pytest.mark.parametrize(
"""features""" , [
None,
{"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""},
{"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""},
{"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""},
{"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""},
] , )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Optional[Any]:
_UpperCAmelCase = tmp_path / """cache"""
_UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_UpperCAmelCase = features.copy() if features else default_expected_features
_UpperCAmelCase = (
Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None
)
_UpperCAmelCase = ParquetDatasetReader({"""train""": parquet_path} , features=__snake_case , cache_dir=__snake_case ).read()
_check_parquet_datasetdict(__snake_case , __snake_case )
@pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> List[Any]:
if split:
_UpperCAmelCase = {split: parquet_path}
else:
_UpperCAmelCase = """train"""
_UpperCAmelCase = {"""train""": parquet_path, """test""": parquet_path}
_UpperCAmelCase = tmp_path / """cache"""
_UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}
_UpperCAmelCase = ParquetDatasetReader(__snake_case , cache_dir=__snake_case ).read()
_check_parquet_datasetdict(__snake_case , __snake_case , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Dict:
_UpperCAmelCase = ParquetDatasetWriter(__snake_case , tmp_path / """foo.parquet""" )
assert writer.write() > 0
_UpperCAmelCase = pq.ParquetFile(tmp_path / """foo.parquet""" )
_UpperCAmelCase = pf.read()
assert dataset.data.table == output_table
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> List[Any]:
_UpperCAmelCase = str(shared_datadir / """test_image_rgb.jpg""" )
_UpperCAmelCase = {"""image""": [image_path]}
_UpperCAmelCase = Features({"""image""": Image()} )
_UpperCAmelCase = Dataset.from_dict(__snake_case , features=__snake_case )
_UpperCAmelCase = ParquetDatasetWriter(__snake_case , tmp_path / """foo.parquet""" )
assert writer.write() > 0
_UpperCAmelCase = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) )
assert dataset.features == reloaded_dataset.features
_UpperCAmelCase = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__snake_case ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"""feature, expected""" , [
(Features({"""foo""": Value("""int32""" )} ), None),
(Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> List[Any]:
assert get_writer_batch_size(__snake_case ) == expected
| 108
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : List[str] ) -> str:
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
__magic_name__ = [[1, 2, 4], [1, 2, 3, 4]]
__magic_name__ = DisjunctiveConstraint(_lowerCamelCase )
self.assertTrue(isinstance(dc.token_ids , _lowerCamelCase ) )
with self.assertRaises(_lowerCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(_lowerCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __A ( self : List[Any] ) -> str:
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
__magic_name__ = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(_lowerCamelCase ):
DisjunctiveConstraint(_lowerCamelCase ) # fails here
def __A ( self : List[Any] ) -> int:
__magic_name__ = [[1, 2, 3], [1, 2, 4]]
__magic_name__ = DisjunctiveConstraint(_lowerCamelCase )
__magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 )
__magic_name__ = stepped is True and completed is False and reset is False
self.assertTrue(_lowerCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 )
__magic_name__ = stepped is True and completed is False and reset is False
self.assertTrue(_lowerCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ = dc.update(3 )
__magic_name__ = stepped is True and completed is True and reset is False
self.assertTrue(_lowerCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __A ( self : Any ) -> Union[str, Any]:
__magic_name__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
__magic_name__ = DisjunctiveConstraint(_lowerCamelCase )
__magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
__magic_name__ , __magic_name__ , __magic_name__ = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
__magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
__magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
__magic_name__ , __magic_name__ , __magic_name__ = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 664
| 0
|
"""simple docstring"""
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = 42
lowerCamelCase__ = 42
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
lowerCamelCase__ = 42
lowerCamelCase__ = (16, 32, 96, 2_56)
lowerCamelCase__ = jnp.floataa
def A_ ( self ):
_lowerCamelCase : Optional[Any] = nn.Conv(
self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
_lowerCamelCase : Any = []
for i in range(len(self.block_out_channels ) - 1 ):
_lowerCamelCase : str = self.block_out_channels[i]
_lowerCamelCase : Any = self.block_out_channels[i + 1]
_lowerCamelCase : Tuple = nn.Conv(
lowercase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(lowercase )
_lowerCamelCase : Optional[int] = nn.Conv(
lowercase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(lowercase )
_lowerCamelCase : str = blocks
_lowerCamelCase : int = nn.Conv(
self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self , lowercase ):
_lowerCamelCase : Dict = self.conv_in(lowercase )
_lowerCamelCase : Optional[Any] = nn.silu(lowercase )
for block in self.blocks:
_lowerCamelCase : Any = block(lowercase )
_lowerCamelCase : Optional[int] = nn.silu(lowercase )
_lowerCamelCase : List[str] = self.conv_out(lowercase )
return embedding
@flax_register_to_config
class lowerCAmelCase__ ( nn.Module, lowercase, lowercase ):
'''simple docstring'''
lowerCamelCase__ = 32
lowerCamelCase__ = 4
lowerCamelCase__ = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
lowerCamelCase__ = False
lowerCamelCase__ = (3_20, 6_40, 12_80, 12_80)
lowerCamelCase__ = 2
lowerCamelCase__ = 8
lowerCamelCase__ = None
lowerCamelCase__ = 12_80
lowerCamelCase__ = 0.0
lowerCamelCase__ = False
lowerCamelCase__ = jnp.floataa
lowerCamelCase__ = True
lowerCamelCase__ = 0
lowerCamelCase__ = "rgb"
lowerCamelCase__ = (16, 32, 96, 2_56)
def A_ ( self , lowercase ):
# init input tensors
_lowerCamelCase : int = (1, self.in_channels, self.sample_size, self.sample_size)
_lowerCamelCase : Optional[Any] = jnp.zeros(lowercase , dtype=jnp.floataa )
_lowerCamelCase : List[Any] = jnp.ones((1,) , dtype=jnp.intaa )
_lowerCamelCase : Any = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_lowerCamelCase : int = (1, 3, self.sample_size * 8, self.sample_size * 8)
_lowerCamelCase : Optional[Any] = jnp.zeros(lowercase , dtype=jnp.floataa )
_lowerCamelCase, _lowerCamelCase : List[Any] = jax.random.split(lowercase )
_lowerCamelCase : List[str] = {'params': params_rng, 'dropout': dropout_rng}
return self.init(lowercase , lowercase , lowercase , lowercase , lowercase )["params"]
def A_ ( self ):
_lowerCamelCase : Dict = self.block_out_channels
_lowerCamelCase : List[str] = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_lowerCamelCase : List[str] = self.num_attention_heads or self.attention_head_dim
# input
_lowerCamelCase : Optional[int] = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_lowerCamelCase : Optional[Any] = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_lowerCamelCase : int = FlaxTimestepEmbedding(lowercase , dtype=self.dtype )
_lowerCamelCase : Dict = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , )
_lowerCamelCase : int = self.only_cross_attention
if isinstance(lowercase , lowercase ):
_lowerCamelCase : Tuple = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowercase , lowercase ):
_lowerCamelCase : int = (num_attention_heads,) * len(self.down_block_types )
# down
_lowerCamelCase : List[str] = []
_lowerCamelCase : List[Any] = []
_lowerCamelCase : Union[str, Any] = block_out_channels[0]
_lowerCamelCase : List[str] = nn.Conv(
lowercase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(lowercase )
for i, down_block_type in enumerate(self.down_block_types ):
_lowerCamelCase : Optional[int] = output_channel
_lowerCamelCase : Union[str, Any] = block_out_channels[i]
_lowerCamelCase : List[Any] = i == len(lowercase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_lowerCamelCase : Optional[int] = FlaxCrossAttnDownBlockaD(
in_channels=lowercase , out_channels=lowercase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , )
else:
_lowerCamelCase : Union[str, Any] = FlaxDownBlockaD(
in_channels=lowercase , out_channels=lowercase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowercase )
for _ in range(self.layers_per_block ):
_lowerCamelCase : Tuple = nn.Conv(
lowercase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(lowercase )
if not is_final_block:
_lowerCamelCase : Tuple = nn.Conv(
lowercase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(lowercase )
_lowerCamelCase : Optional[Any] = down_blocks
_lowerCamelCase : List[Any] = controlnet_down_blocks
# mid
_lowerCamelCase : List[Any] = block_out_channels[-1]
_lowerCamelCase : str = FlaxUNetMidBlockaDCrossAttn(
in_channels=lowercase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , )
_lowerCamelCase : str = nn.Conv(
lowercase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self , lowercase , lowercase , lowercase , lowercase , lowercase = 1.0 , lowercase = True , lowercase = False , ):
_lowerCamelCase : Dict = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
_lowerCamelCase : int = jnp.flip(lowercase , axis=1 )
# 1. time
if not isinstance(lowercase , jnp.ndarray ):
_lowerCamelCase : str = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowercase , jnp.ndarray ) and len(timesteps.shape ) == 0:
_lowerCamelCase : Union[str, Any] = timesteps.astype(dtype=jnp.floataa )
_lowerCamelCase : List[Any] = jnp.expand_dims(lowercase , 0 )
_lowerCamelCase : Dict = self.time_proj(lowercase )
_lowerCamelCase : Tuple = self.time_embedding(lowercase )
# 2. pre-process
_lowerCamelCase : Dict = jnp.transpose(lowercase , (0, 2, 3, 1) )
_lowerCamelCase : Tuple = self.conv_in(lowercase )
_lowerCamelCase : Any = jnp.transpose(lowercase , (0, 2, 3, 1) )
_lowerCamelCase : List[str] = self.controlnet_cond_embedding(lowercase )
sample += controlnet_cond
# 3. down
_lowerCamelCase : int = (sample,)
for down_block in self.down_blocks:
if isinstance(lowercase , lowercase ):
_lowerCamelCase, _lowerCamelCase : Optional[int] = down_block(lowercase , lowercase , lowercase , deterministic=not train )
else:
_lowerCamelCase, _lowerCamelCase : str = down_block(lowercase , lowercase , deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
_lowerCamelCase : Tuple = self.mid_block(lowercase , lowercase , lowercase , deterministic=not train )
# 5. contronet blocks
_lowerCamelCase : Dict = ()
for down_block_res_sample, controlnet_block in zip(lowercase , self.controlnet_down_blocks ):
_lowerCamelCase : Any = controlnet_block(lowercase )
controlnet_down_block_res_samples += (down_block_res_sample,)
_lowerCamelCase : str = controlnet_down_block_res_samples
_lowerCamelCase : int = self.controlnet_mid_block(lowercase )
# 6. scaling
_lowerCamelCase : Dict = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=lowercase , mid_block_res_sample=lowercase )
| 492
|
"""simple docstring"""
def _snake_case ( lowercase__ ):
_lowerCamelCase : Optional[int] = int(lowercase__ )
if decimal in (0, 1): # Exit cases for the recursion
return str(lowercase__ )
_lowerCamelCase, _lowerCamelCase : Dict = divmod(lowercase__ , 2 )
return binary_recursive(lowercase__ ) + str(lowercase__ )
def _snake_case ( lowercase__ ):
_lowerCamelCase : List[Any] = str(lowercase__ ).strip()
if not number:
raise ValueError('No input value was provided' )
_lowerCamelCase : str = '-' if number.startswith('-' ) else ''
_lowerCamelCase : Union[str, Any] = number.lstrip('-' )
if not number.isnumeric():
raise ValueError('Input value is not an integer' )
return f'''{negative}0b{binary_recursive(int(lowercase__ ) )}'''
if __name__ == "__main__":
from doctest import testmod
testmod()
| 492
| 1
|
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def _a ( ) -> Any:
"""simple docstring"""
__snake_case : Tuple = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=_lowerCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=_lowerCamelCase , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=_lowerCamelCase )
return parser.parse_args()
def _a ( ) -> str:
"""simple docstring"""
__snake_case : Optional[Any] = parse_args()
# Import training_script as a module.
__snake_case : Optional[int] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
__snake_case : Any = script_fpath.stem
__snake_case : List[str] = importlib.import_module(_lowerCamelCase )
# Patch sys.argv
__snake_case : int = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 26
|
'''simple docstring'''
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
__UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _A ( __lowercase ):
def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" )
self.register_modules(
speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , )
def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]:
"""simple docstring"""
if slice_size == "auto":
__snake_case : str = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def lowercase__ ( self : str ) -> Any:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int:
"""simple docstring"""
__snake_case : List[Any] = self.speech_processor.feature_extractor(
__magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device )
__snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 )
__snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[
0
]
if isinstance(__magic_name__ , __magic_name__ ):
__snake_case : Tuple = 1
elif isinstance(__magic_name__ , __magic_name__ ):
__snake_case : Optional[int] = len(__magic_name__ )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(__magic_name__ )}.''' )
# get prompt text embeddings
__snake_case : Dict = self.tokenizer(
__magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
__snake_case : Optional[Any] = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
__snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length]
__snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
__snake_case , __snake_case , __snake_case : Any = text_embeddings.shape
__snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 )
__snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__snake_case : Optional[int] = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__snake_case : List[str]
if negative_prompt is None:
__snake_case : Optional[Any] = [""""""] * batch_size
elif type(__magic_name__ ) is not type(__magic_name__ ):
raise TypeError(
f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !='''
f''' {type(__magic_name__ )}.''' )
elif isinstance(__magic_name__ , __magic_name__ ):
__snake_case : Dict = [negative_prompt]
elif batch_size != len(__magic_name__ ):
raise ValueError(
f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:'''
f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'''
""" the batch size of `prompt`.""" )
else:
__snake_case : int = negative_prompt
__snake_case : List[str] = text_input_ids.shape[-1]
__snake_case : Any = self.tokenizer(
__magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , )
__snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__snake_case : Optional[int] = uncond_embeddings.shape[1]
__snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 )
__snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
__snake_case : List[Any] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
__snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to(
self.device )
else:
__snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
__snake_case : List[str] = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(__magic_name__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
__snake_case : Optional[int] = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__snake_case : str = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__snake_case : List[str] = {}
if accepts_eta:
__snake_case : str = eta
for i, t in enumerate(self.progress_bar(__magic_name__ ) ):
# expand the latents if we are doing classifier free guidance
__snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ )
# predict the noise residual
__snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample
# perform guidance
if do_classifier_free_guidance:
__snake_case , __snake_case : str = noise_pred.chunk(2 )
__snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
__snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(__magic_name__ , __magic_name__ , __magic_name__ )
__snake_case : int = 1 / 0.18215 * latents
__snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample
__snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__snake_case : Tuple = self.numpy_to_pil(__magic_name__ )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
| 26
| 1
|
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class snake_case__(_UpperCamelCase ):
"""simple docstring"""
def __init__( self : str , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : int ):
warnings.warn(
"The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use PoolFormerImageProcessor instead." , SCREAMING_SNAKE_CASE , )
super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
| 81
|
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def __lowerCamelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowercase__ : List[str] = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
lowercase__ : Tuple = 192
lowercase__ : List[Any] = 768
lowercase__ : Tuple = 12
lowercase__ : List[str] = 3
lowercase__ : List[Any] = [800, 1_333]
lowercase__ : Union[str, Any] = False
elif yolos_name == "yolos_s_dWr":
lowercase__ : str = 330
lowercase__ : List[Any] = 14
lowercase__ : Tuple = 6
lowercase__ : Optional[int] = 1_320
elif "yolos_s" in yolos_name:
lowercase__ : Dict = 384
lowercase__ : str = 1_536
lowercase__ : List[Any] = 12
lowercase__ : List[Any] = 6
elif "yolos_b" in yolos_name:
lowercase__ : int = [800, 1_344]
lowercase__ : Tuple = 91
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : Optional[int] = "coco-detection-id2label.json"
lowercase__ : Any = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) )
lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()}
lowercase__ : List[Any] = idalabel
lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()}
return config
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Any = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
lowercase__ : Any = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Union[str, Any] = in_proj_bias[: config.hidden_size]
lowercase__ : Dict = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : str = in_proj_weight[-config.hidden_size :, :]
lowercase__ : Tuple = in_proj_bias[-config.hidden_size :]
def __lowerCamelCase ( lowerCamelCase__ ):
"""simple docstring"""
if "backbone" in name:
lowercase__ : Union[str, Any] = name.replace("backbone" , "vit" )
if "cls_token" in name:
lowercase__ : List[str] = name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
lowercase__ : List[str] = name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
lowercase__ : List[Any] = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
lowercase__ : Dict = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
lowercase__ : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
lowercase__ : int = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
lowercase__ : Optional[Any] = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
lowercase__ : Optional[int] = name.replace("attn" , "attention.self" )
if "norm1" in name:
lowercase__ : int = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
lowercase__ : int = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
lowercase__ : Union[str, Any] = name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
lowercase__ : int = name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
lowercase__ : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
lowercase__ : Optional[Any] = name.replace("vit.norm" , "vit.layernorm" )
return name
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowercase__ : List[Any] = orig_state_dict.pop(lowerCamelCase__ )
if "qkv" in key:
lowercase__ : Dict = key.split("." )
lowercase__ : List[Any] = int(key_split[2] )
lowercase__ : Optional[int] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
lowercase__ : str = val[:dim, :]
lowercase__ : int = val[
dim : dim * 2, :
]
lowercase__ : str = val[-dim:, :]
else:
lowercase__ : Tuple = val[:dim]
lowercase__ : Any = val[dim : dim * 2]
lowercase__ : Optional[Any] = val[-dim:]
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def __lowerCamelCase ( ):
"""simple docstring"""
lowercase__ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : List[str] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ):
"""simple docstring"""
lowercase__ : List[Any] = get_yolos_config(lowerCamelCase__ )
# load original state_dict
lowercase__ : Dict = torch.load(lowerCamelCase__ , map_location="cpu" )["model"]
# load 🤗 model
lowercase__ : Dict = YolosForObjectDetection(lowerCamelCase__ )
model.eval()
lowercase__ : int = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ )
model.load_state_dict(lowerCamelCase__ )
# Check outputs on an image, prepared by YolosImageProcessor
lowercase__ : Dict = 800 if yolos_name != "yolos_ti" else 512
lowercase__ : Optional[Any] = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ )
lowercase__ : int = image_processor(images=prepare_img() , return_tensors="pt" )
lowercase__ : int = model(**lowerCamelCase__ )
lowercase__ , lowercase__ : int = outputs.logits, outputs.pred_boxes
lowercase__ , lowercase__ : int = None, None
if yolos_name == "yolos_ti":
lowercase__ : Optional[int] = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
lowercase__ : Dict = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
lowercase__ : Any = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
lowercase__ : List[str] = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
lowercase__ : Dict = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
lowercase__ : Tuple = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
lowercase__ : Optional[Any] = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
lowercase__ : int = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
lowercase__ : List[str] = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
lowercase__ : List[str] = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(F"""Unknown yolos_name: {yolos_name}""" )
assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 )
Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ )
print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowerCamelCase__ )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(lowerCamelCase__ )
if push_to_hub:
lowercase__ : Tuple = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
lowercase__ : Optional[int] = model_mapping[yolos_name]
image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" )
model.push_to_hub(lowerCamelCase__ , organization="hustvl" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--yolos_name''',
default='''yolos_s_200_pre''',
type=str,
help=(
'''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','''
''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
lowerCAmelCase__ = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 81
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''megatron-bert'''
def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
| 4
|
"""simple docstring"""
from __future__ import annotations
from math import pi
def lowercase__(A , A , A ) ->dict[str, float]:
"""simple docstring"""
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 218
| 0
|
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase__)
class _UpperCAmelCase ( lowerCAmelCase__):
def __init__( self : Any , **lowercase_ : Optional[Any] ):
super().__init__(**lowercase_ )
if self.framework == "tf":
raise ValueError(f"The {self.__class__} is only available in PyTorch." )
requires_backends(self , '''vision''' )
self.check_model_type(lowercase_ )
def __call__( self : Optional[int] , lowercase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , lowercase_ : Union[str, List[str]] = None , **lowercase_ : int , ):
if "text_queries" in kwargs:
snake_case_ : str = kwargs.pop('''text_queries''' )
if isinstance(lowercase_ , (str, Image.Image) ):
snake_case_ : List[Any] = {'''image''': image, '''candidate_labels''': candidate_labels}
else:
snake_case_ : List[Any] = image
snake_case_ : Tuple = super().__call__(lowercase_ , **lowercase_ )
return results
def _snake_case ( self : List[str] , **lowercase_ : str ):
snake_case_ : Optional[int] = {}
if "threshold" in kwargs:
snake_case_ : Tuple = kwargs['''threshold''']
if "top_k" in kwargs:
snake_case_ : Dict = kwargs['''top_k''']
return {}, {}, postprocess_params
def _snake_case ( self : str , lowercase_ : List[Any] ):
snake_case_ : Optional[Any] = load_image(inputs['''image'''] )
snake_case_ : Tuple = inputs['''candidate_labels''']
if isinstance(lowercase_ , lowercase_ ):
snake_case_ : Optional[int] = candidate_labels.split(''',''' )
snake_case_ : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(lowercase_ ):
snake_case_ : Any = self.tokenizer(lowercase_ , return_tensors=self.framework )
snake_case_ : Tuple = self.image_processor(lowercase_ , return_tensors=self.framework )
yield {
"is_last": i == len(lowercase_ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def _snake_case ( self : List[Any] , lowercase_ : Optional[int] ):
snake_case_ : Optional[Any] = model_inputs.pop('''target_size''' )
snake_case_ : Tuple = model_inputs.pop('''candidate_label''' )
snake_case_ : int = model_inputs.pop('''is_last''' )
snake_case_ : List[Any] = self.model(**lowercase_ )
snake_case_ : Optional[int] = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs}
return model_outputs
def _snake_case ( self : Dict , lowercase_ : Optional[int] , lowercase_ : List[str]=0.1 , lowercase_ : Optional[int]=None ):
snake_case_ : Any = []
for model_output in model_outputs:
snake_case_ : Any = model_output['''candidate_label''']
snake_case_ : Tuple = BaseModelOutput(lowercase_ )
snake_case_ : int = self.image_processor.post_process_object_detection(
outputs=lowercase_ , threshold=lowercase_ , target_sizes=model_output['''target_size'''] )[0]
for index in outputs["scores"].nonzero():
snake_case_ : str = outputs['''scores'''][index].item()
snake_case_ : Dict = self._get_bounding_box(outputs['''boxes'''][index][0] )
snake_case_ : List[str] = {'''score''': score, '''label''': label, '''box''': box}
results.append(lowercase_ )
snake_case_ : str = sorted(lowercase_ , key=lambda lowercase_ : x["score"] , reverse=lowercase_ )
if top_k:
snake_case_ : Optional[Any] = results[:top_k]
return results
def _snake_case ( self : List[Any] , lowercase_ : "torch.Tensor" ):
if self.framework != "pt":
raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' )
snake_case_, snake_case_, snake_case_, snake_case_ : Optional[Any] = box.int().tolist()
snake_case_ : Any = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 485
|
"""simple docstring"""
def __lowercase ( _a , _a ):
snake_case_ : str = [0 for i in range(r + 1 )]
# nc0 = 1
snake_case_ : int = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
snake_case_ : Any = min(_a , _a )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 485
| 1
|
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self :Optional[Any] , snake_case :List[str] , snake_case :Any=13 , snake_case :Optional[Any]=7 , snake_case :Tuple=True , snake_case :int=True , snake_case :str=True , snake_case :str=True , snake_case :Optional[int]=99 , snake_case :Optional[Any]=32 , snake_case :Dict=5 , snake_case :Union[str, Any]=4 , snake_case :List[str]=37 , snake_case :Dict="gelu" , snake_case :Optional[Any]=0.1 , snake_case :List[str]=0.1 , snake_case :Dict=512 , snake_case :str=16 , snake_case :Optional[int]=2 , snake_case :Any=0.02 , snake_case :Dict=4 , ):
'''simple docstring'''
A_ : int = parent
A_ : Any = batch_size
A_ : int = seq_length
A_ : List[str] = is_training
A_ : List[Any] = use_attention_mask
A_ : Any = use_token_type_ids
A_ : Any = use_labels
A_ : int = vocab_size
A_ : Tuple = hidden_size
A_ : Dict = num_hidden_layers
A_ : str = num_attention_heads
A_ : Optional[Any] = intermediate_size
A_ : Tuple = hidden_act
A_ : List[Any] = hidden_dropout_prob
A_ : List[str] = attention_probs_dropout_prob
A_ : List[Any] = max_position_embeddings
A_ : Dict = type_vocab_size
A_ : List[Any] = type_sequence_label_size
A_ : Dict = initializer_range
A_ : Optional[Any] = num_choices
def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ):
'''simple docstring'''
A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ : Any = None
if self.use_attention_mask:
A_ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
A_ : List[Any] = None
if self.use_token_type_ids:
A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ : List[Any] = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def SCREAMING_SNAKE_CASE ( self :Optional[int] ):
'''simple docstring'''
A_ : Dict = self.prepare_config_and_inputs()
A_ , A_ , A_ , A_ : Tuple = config_and_inputs
A_ : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def SCREAMING_SNAKE_CASE ( self :List[str] ):
'''simple docstring'''
A_ : str = self.prepare_config_and_inputs()
A_ , A_ , A_ , A_ : List[str] = config_and_inputs
A_ : int = True
A_ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = True
__UpperCamelCase = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def SCREAMING_SNAKE_CASE ( self :int ):
'''simple docstring'''
A_ : Dict = FlaxRobertaPreLayerNormModelTester(self )
@slow
def SCREAMING_SNAKE_CASE ( self :Any ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
A_ : Optional[int] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=snake_case )
A_ : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(snake_case )
@require_flax
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE ( self :int ):
'''simple docstring'''
A_ : List[Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=snake_case )
A_ : Any = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
A_ : str = model(snake_case )[0]
A_ : Union[str, Any] = [1, 11, 50_265]
self.assertEqual(list(output.shape ) , snake_case )
# compare the actual values for a slice.
A_ : int = np.array(
[[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def SCREAMING_SNAKE_CASE ( self :Dict ):
'''simple docstring'''
A_ : Optional[int] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=snake_case )
A_ : Optional[int] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa )
A_ : int = model(snake_case )[0]
# compare the actual values for a slice.
A_ : str = np.array(
[[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
| 454
|
import logging
from transformers import PretrainedConfig
_lowerCAmelCase : str = logging.getLogger(__name__)
_lowerCAmelCase : Dict = {
'''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''',
}
class __magic_name__ ( lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase = '''bertabs'''
def __init__( self :Optional[int] , snake_case :Any=30_522 , snake_case :List[str]=512 , snake_case :str=6 , snake_case :int=512 , snake_case :Optional[Any]=8 , snake_case :Tuple=512 , snake_case :str=0.2 , snake_case :Any=6 , snake_case :Optional[Any]=768 , snake_case :Optional[Any]=8 , snake_case :List[Any]=2_048 , snake_case :Dict=0.2 , **snake_case :List[str] , ):
'''simple docstring'''
super().__init__(**snake_case )
A_ : List[str] = vocab_size
A_ : int = max_pos
A_ : Tuple = enc_layers
A_ : Tuple = enc_hidden_size
A_ : str = enc_heads
A_ : Optional[Any] = enc_ff_size
A_ : Optional[Any] = enc_dropout
A_ : List[str] = dec_layers
A_ : List[Any] = dec_hidden_size
A_ : Optional[int] = dec_heads
A_ : Any = dec_ff_size
A_ : Optional[int] = dec_dropout
| 454
| 1
|
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False ) -> list[float]:
'''simple docstring'''
if radian_mode:
return [magnitude * cos(UpperCamelCase_ ), magnitude * sin(UpperCamelCase_ )]
return [magnitude * cos(radians(UpperCamelCase_ ) ), magnitude * sin(radians(UpperCamelCase_ ) )]
def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 10**-1 ) -> bool:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = cross(UpperCamelCase_ , UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase_ )
return abs(UpperCamelCase_ ) < eps
if __name__ == "__main__":
# Test to check if it works
__snake_case = array(
[
polar_force(718.4, 1_80 - 30),
polar_force(879.54, 45),
polar_force(1_00, -90),
]
)
__snake_case = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
__snake_case = array(
[
polar_force(30 * 9.81, 15),
polar_force(2_15, 1_80 - 45),
polar_force(2_64, 90 - 30),
]
)
__snake_case = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
__snake_case = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]])
__snake_case = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 400
|
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__snake_case = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
__snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 400
| 1
|
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
A : Any = ''
A : Any = ''
A : Dict = ''
A : Tuple = 1 # (0 is vertical, 1 is horizontal)
def __lowerCAmelCase ( ) -> None:
__a , __a = get_dataset(a__ , a__ )
print('''Processing...''' )
__a , __a , __a = update_image_and_anno(a__ , a__ , a__ )
for index, image in enumerate(a__ ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__a = random_chars(32 )
__a = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__a = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"""
cva.imwrite(F"""/{file_root}.jpg""" , a__ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"""Success {index+1}/{len(a__ )} with {file_name}""" )
__a = []
for anno in new_annos[index]:
__a = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"""
annos_list.append(a__ )
with open(F"""/{file_root}.txt""" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def __lowerCAmelCase ( a__ , a__ ) -> tuple[list, list]:
__a = []
__a = []
for label_file in glob.glob(os.path.join(a__ , '''*.txt''' ) ):
__a = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(a__ ) as in_file:
__a = in_file.readlines()
__a = os.path.join(a__ , F"""{label_name}.jpg""" )
__a = []
for obj_list in obj_lists:
__a = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(a__ )
labels.append(a__ )
return img_paths, labels
def __lowerCAmelCase ( a__ , a__ , a__ = 1 ) -> tuple[list, list, list]:
__a = []
__a = []
__a = []
for idx in range(len(a__ ) ):
__a = []
__a = img_list[idx]
path_list.append(a__ )
__a = anno_list[idx]
__a = cva.imread(a__ )
if flip_type == 1:
__a = cva.flip(a__ , a__ )
for bbox in img_annos:
__a = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__a = cva.flip(a__ , a__ )
for bbox in img_annos:
__a = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(a__ )
new_imgs_list.append(a__ )
return new_imgs_list, new_annos_lists, path_list
def __lowerCAmelCase ( a__ = 32 ) -> str:
assert number_char > 1, "The number of character should greater than 1"
__a = ascii_lowercase + digits
return "".join(random.choice(a__ ) for _ in range(a__ ) )
if __name__ == "__main__":
main()
print('DONE ✅')
| 219
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A : List[str] = {
'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Any = [
'LILT_PRETRAINED_MODEL_ARCHIVE_LIST',
'LiltForQuestionAnswering',
'LiltForSequenceClassification',
'LiltForTokenClassification',
'LiltModel',
'LiltPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 219
| 1
|
"""simple docstring"""
import os
def A_ ():
'''simple docstring'''
A_ = os.path.join(os.path.dirname(__a ) , "num.txt" )
with open(__a ) as file_hand:
return str(sum(int(__a ) for line in file_hand ) )[:10]
if __name__ == "__main__":
print(solution())
| 482
|
"""simple docstring"""
from __future__ import annotations
def A_ (__a , __a = None , __a = None , __a = False , ):
'''simple docstring'''
A_ = cipher_alphabet or [chr(__a ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
A_ = {
"a": 0.08497,
"b": 0.01492,
"c": 0.02202,
"d": 0.04253,
"e": 0.11162,
"f": 0.02228,
"g": 0.02015,
"h": 0.06094,
"i": 0.07546,
"j": 0.00153,
"k": 0.01292,
"l": 0.04025,
"m": 0.02406,
"n": 0.06749,
"o": 0.07507,
"p": 0.01929,
"q": 0.00095,
"r": 0.07587,
"s": 0.06327,
"t": 0.09356,
"u": 0.02758,
"v": 0.00978,
"w": 0.02560,
"x": 0.00150,
"y": 0.01994,
"z": 0.00077,
}
else:
# Custom frequencies dictionary
A_ = frequencies_dict
if not case_sensitive:
A_ = ciphertext.lower()
# Chi squared statistic values
A_ = {}
# cycle through all of the shifts
for shift in range(len(__a ) ):
A_ = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
A_ = (alphabet_letters.index(letter.lower() ) - shift) % len(
__a )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
A_ = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
A_ = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
A_ = decrypted_with_shift.lower().count(__a )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
A_ = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
A_ = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
A_ = decrypted_with_shift.count(__a )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
A_ = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
A_ = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
A_ = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(__a ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
A_ = min(
__a , key=__a , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
A_
) , (
A_
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 482
| 1
|
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase_ ( lowercase , unittest.TestCase ):
__lowercase : Optional[int] = LayoutLMTokenizer
__lowercase : Optional[int] = LayoutLMTokenizerFast
__lowercase : Optional[Any] = True
__lowercase : Optional[int] = True
def lowercase ( self ) -> Tuple:
"""simple docstring"""
super().setUp()
_UpperCamelCase = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def lowercase ( self , **lowerCamelCase_ ) -> Dict:
"""simple docstring"""
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ )
def lowercase ( self , lowerCamelCase_ ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = "UNwant\u00E9d,running"
_UpperCamelCase = "unwanted, running"
return input_text, output_text
def lowercase ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = self.tokenizer_class(self.vocab_file )
_UpperCamelCase = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(lowerCamelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [7, 4, 5, 10, 8, 9] )
def lowercase ( self ) -> Dict:
"""simple docstring"""
pass
| 147
|
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__lowerCAmelCase = datasets.utils.logging.get_logger(__name__)
__lowerCAmelCase = ["""names""", """prefix"""]
__lowerCAmelCase = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""]
__lowerCAmelCase = ["""encoding_errors""", """on_bad_lines"""]
__lowerCAmelCase = ["""date_format"""]
@dataclass
class lowerCamelCase_ ( datasets.BuilderConfig ):
__lowercase : str = ","
__lowercase : Optional[str] = None
__lowercase : Optional[Union[int, List[int], str]] = "infer"
__lowercase : Optional[List[str]] = None
__lowercase : Optional[List[str]] = None
__lowercase : Optional[Union[int, str, List[int], List[str]]] = None
__lowercase : Optional[Union[List[int], List[str]]] = None
__lowercase : Optional[str] = None
__lowercase : bool = True
__lowercase : Optional[Literal["c", "python", "pyarrow"]] = None
__lowercase : Dict[Union[int, str], Callable[[Any], Any]] = None
__lowercase : Optional[list] = None
__lowercase : Optional[list] = None
__lowercase : bool = False
__lowercase : Optional[Union[int, List[int]]] = None
__lowercase : Optional[int] = None
__lowercase : Optional[Union[str, List[str]]] = None
__lowercase : bool = True
__lowercase : bool = True
__lowercase : bool = False
__lowercase : bool = True
__lowercase : Optional[str] = None
__lowercase : str = "."
__lowercase : Optional[str] = None
__lowercase : str = '"'
__lowercase : int = 0
__lowercase : Optional[str] = None
__lowercase : Optional[str] = None
__lowercase : Optional[str] = None
__lowercase : Optional[str] = None
__lowercase : bool = True
__lowercase : bool = True
__lowercase : int = 0
__lowercase : bool = True
__lowercase : bool = False
__lowercase : Optional[str] = None
__lowercase : int = 10000
__lowercase : Optional[datasets.Features] = None
__lowercase : Optional[str] = "strict"
__lowercase : Literal["error", "warn", "skip"] = "error"
__lowercase : Optional[str] = None
def lowercase ( self ) -> Any:
"""simple docstring"""
if self.delimiter is not None:
_UpperCamelCase = self.delimiter
if self.column_names is not None:
_UpperCamelCase = self.column_names
@property
def lowercase ( self ) -> int:
"""simple docstring"""
_UpperCamelCase = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase_ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class lowerCamelCase_ ( datasets.ArrowBasedBuilder ):
__lowercase : Optional[int] = CsvConfig
def lowercase ( self ) -> List[Any]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def lowercase ( self , lowerCamelCase_ ) -> Dict:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
_UpperCamelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCamelCase_ , (str, list, tuple) ):
_UpperCamelCase = data_files
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
_UpperCamelCase = [files]
_UpperCamelCase = [dl_manager.iter_files(lowerCamelCase_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCamelCase = []
for split_name, files in data_files.items():
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
_UpperCamelCase = [files]
_UpperCamelCase = [dl_manager.iter_files(lowerCamelCase_ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCamelCase_ , gen_kwargs={"files": files} ) )
return splits
def lowercase ( self , lowerCamelCase_ ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCamelCase = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCamelCase_ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase_ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCamelCase = table_cast(lowerCamelCase_ , lowerCamelCase_ )
return pa_table
def lowercase ( self , lowerCamelCase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCamelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase_ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase_ ) ):
_UpperCamelCase = pd.read_csv(lowerCamelCase_ , iterator=lowerCamelCase_ , dtype=lowerCamelCase_ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCamelCase_ ):
_UpperCamelCase = pa.Table.from_pandas(lowerCamelCase_ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCamelCase_ )
except ValueError as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(lowerCamelCase_ )}: {e}''' )
raise
| 147
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase_ = {'processing_layoutxlm': ['LayoutXLMProcessor']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['LayoutXLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['LayoutXLMTokenizerFast']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 714
|
import os
lowerCAmelCase_ = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00}
def snake_case( __magic_name__ ) -> int:
'''simple docstring'''
lowercase : Any = 0
lowercase : Any = 0
while index < len(__magic_name__ ) - 1:
lowercase : List[Any] = SYMBOLS[numerals[index]]
lowercase : Optional[Any] = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def snake_case( __magic_name__ ) -> str:
'''simple docstring'''
lowercase : List[Any] = ''''''
lowercase : Tuple = num // 10_00
numerals += m_count * "M"
num %= 10_00
lowercase : int = num // 1_00
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 1_00
lowercase : Optional[Any] = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def snake_case( __magic_name__ = "/p089_roman.txt" ) -> int:
'''simple docstring'''
lowercase : Union[str, Any] = 0
with open(os.path.dirname(__magic_name__ ) + roman_numerals_filename ) as filea:
lowercase : List[str] = filea.readlines()
for line in lines:
lowercase : Dict = line.strip()
lowercase : Optional[int] = parse_roman_numerals(__magic_name__ )
lowercase : List[Any] = generate_roman_numerals(__magic_name__ )
savings += len(__magic_name__ ) - len(__magic_name__ )
return savings
if __name__ == "__main__":
print(f'''{solution() = }''')
| 596
| 0
|
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __A ( SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase__ = ["image_processor", "tokenizer"]
UpperCAmelCase__ = "FlavaImageProcessor"
UpperCAmelCase__ = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Optional[Any] , __snake_case : Dict=None , __snake_case : List[str]=None , **__snake_case : int ) -> Any:
__magic_name__: str = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __snake_case , )
__magic_name__: List[str] = kwargs.pop("""feature_extractor""" )
__magic_name__: Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__snake_case , __snake_case )
__magic_name__: Any = self.image_processor
def __call__( self : str , __snake_case : Optional[ImageInput] = None , __snake_case : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = False , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Any , ) -> Optional[int]:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__magic_name__: Optional[Any] = self.tokenizer(
text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , )
if images is not None:
__magic_name__: List[str] = self.image_processor(
__snake_case , return_image_mask=__snake_case , return_codebook_pixels=__snake_case , return_tensors=__snake_case , **__snake_case , )
if text is not None and images is not None:
encoding.update(__snake_case )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case )
def lowerCamelCase__ ( self : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : Optional[int] ) -> Dict:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def lowerCamelCase__ ( self : Dict , *__snake_case : List[Any] , **__snake_case : Optional[int] ) -> int:
return self.tokenizer.decode(*__snake_case , **__snake_case )
@property
def lowerCamelCase__ ( self : Union[str, Any] ) -> str:
__magic_name__: List[str] = self.tokenizer.model_input_names
__magic_name__: List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __snake_case , )
return self.image_processor_class
@property
def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __snake_case , )
return self.image_processor
| 96
|
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def A__ ( __A : List[str] ) ->str:
__A =[]
for line in lines:
__A =re.sub(r'''#.*''' , '''''' , __A ) # remove comments
if line:
filtered_lines.append(__A )
__A ='''\n'''.join(__A )
# Make a hash from all this code
__A =full_str.encode('''utf-8''' )
return shaaaa(__A ).hexdigest()
# get importable module names and hash for caching
_lowerCamelCase : Dict = {
'''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
_lowerCamelCase : int = {
'''.csv''': ('''csv''', {}),
'''.tsv''': ('''csv''', {'''sep''': '''\t'''}),
'''.json''': ('''json''', {}),
'''.jsonl''': ('''json''', {}),
'''.parquet''': ('''parquet''', {}),
'''.arrow''': ('''arrow''', {}),
'''.txt''': ('''text''', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_lowerCamelCase : List[str] = {'''imagefolder''', '''audiofolder'''}
# Used to filter data files based on extensions given a module name
_lowerCamelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''')
_MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
| 184
| 0
|
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = Dict[str, Any]
UpperCamelCase = List[Prediction]
@add_end_docstrings(__A )
class _lowerCamelCase ( __A ):
"""simple docstring"""
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Optional[int]:
'''simple docstring'''
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
if self.framework == "tf":
raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' )
requires_backends(self , '''vision''' )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->str:
'''simple docstring'''
A_ : List[Any] = {}
if "threshold" in kwargs:
A_ : Dict = kwargs['threshold']
return {}, {}, postprocess_kwargs
def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Optional[Any]:
'''simple docstring'''
return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Dict:
'''simple docstring'''
A_ : Optional[Any] = load_image(_SCREAMING_SNAKE_CASE )
A_ : List[Any] = torch.IntTensor([[image.height, image.width]] )
A_ : List[str] = self.image_processor(images=[image] , return_tensors='''pt''' )
if self.tokenizer is not None:
A_ : Union[str, Any] = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' )
A_ : List[str] = target_size
return inputs
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]:
'''simple docstring'''
A_ : Any = model_inputs.pop('''target_size''' )
A_ : Dict = self.model(**_SCREAMING_SNAKE_CASE )
A_ : Dict = outputs.__class__({'''target_size''': target_size, **outputs} )
if self.tokenizer is not None:
A_ : List[str] = model_inputs['bbox']
return model_outputs
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9 )->Any:
'''simple docstring'''
A_ : str = model_outputs['target_size']
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A_ : Union[str, Any] = target_size[0].tolist()
def unnormalize(_SCREAMING_SNAKE_CASE ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
A_ : Optional[Any] = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A_ : Tuple = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A_ : str = [unnormalize(_SCREAMING_SNAKE_CASE ) for bbox in model_outputs['bbox'].squeeze(0 )]
A_ : Tuple = ['score', 'label', 'box']
A_ : Any = [dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for vals in zip(scores.tolist() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A_ : List[Any] = self.image_processor.post_process_object_detection(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
A_ : Tuple = raw_annotations[0]
A_ : List[Any] = raw_annotation['scores']
A_ : Any = raw_annotation['labels']
A_ : Union[str, Any] = raw_annotation['boxes']
A_ : List[Any] = scores.tolist()
A_ : str = [self.model.config.idalabel[label.item()] for label in labels]
A_ : Union[str, Any] = [self._get_bounding_box(_SCREAMING_SNAKE_CASE ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A_ : Optional[int] = ['score', 'label', 'box']
A_ : str = [
dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] )
]
return annotation
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->int:
'''simple docstring'''
if self.framework != "pt":
raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' )
A_ : Dict = box.int().tolist()
A_ : Union[str, Any] = {
'xmin': xmin,
'ymin': ymin,
'xmax': xmax,
'ymax': ymax,
}
return bbox
| 704
|
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
snake_case = FunnelTokenizer
snake_case = FunnelTokenizerFast
snake_case = True
snake_case = True
def _snake_case ( self )->Tuple:
'''simple docstring'''
super().setUp()
A_ : Dict = [
'''<unk>''',
'''<cls>''',
'''<sep>''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
A_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Union[str, Any]:
'''simple docstring'''
return FunnelTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->str:
'''simple docstring'''
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]:
'''simple docstring'''
A_ : Optional[int] = '''UNwant\u00E9d,running'''
A_ : List[Any] = '''unwanted, running'''
return input_text, output_text
def _snake_case ( self )->int:
'''simple docstring'''
A_ : List[str] = self.tokenizer_class(self.vocab_file )
A_ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [7, 4, 5, 10, 8, 9] )
def _snake_case ( self )->str:
'''simple docstring'''
A_ : List[Any] = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE )
for tokenizer in tokenizers:
A_ : Optional[Any] = tokenizer('''UNwant\u00E9d,running''' )
A_ : Tuple = len(inputs['''input_ids'''] ) - 1
self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len )
A_ : str = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' )
self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
| 152
| 0
|
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def lowerCamelCase__ ():
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(__lowerCamelCase ):
requests.request("GET", "https://huggingface.co" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("GET", "https://huggingface.co", timeout=1.0 )
@pytest.mark.integration
def lowerCamelCase__ ():
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("GET", "https://huggingface.co" )
def lowerCamelCase__ ():
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(__lowerCamelCase ):
http_head("https://huggingface.co" )
| 249
|
import copy
import os
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ =logging.get_logger(__name__)
UpperCamelCase__ ={
'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json',
}
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = 'align_text_model'
def __init__( self , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-12 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , **__lowerCamelCase , ) -> Optional[int]:
super().__init__(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = vocab_size
_SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size
_SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers
_SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads
_SCREAMING_SNAKE_CASE : Dict = hidden_act
_SCREAMING_SNAKE_CASE : Any = intermediate_size
_SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob
_SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings
_SCREAMING_SNAKE_CASE : Dict = type_vocab_size
_SCREAMING_SNAKE_CASE : int = initializer_range
_SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps
_SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type
_SCREAMING_SNAKE_CASE : Any = use_cache
_SCREAMING_SNAKE_CASE : str = pad_token_id
@classmethod
def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__lowerCamelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase )
# get the text config dict if we are loading from AlignConfig
if config_dict.get("model_type" ) == "align":
_SCREAMING_SNAKE_CASE : Optional[int] = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__lowerCamelCase , **__lowerCamelCase )
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = 'align_vision_model'
def __init__( self , __lowerCamelCase = 3 , __lowerCamelCase = 6_0_0 , __lowerCamelCase = 2.0 , __lowerCamelCase = 3.1 , __lowerCamelCase = 8 , __lowerCamelCase = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __lowerCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __lowerCamelCase = [] , __lowerCamelCase = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase = 0.25 , __lowerCamelCase = "swish" , __lowerCamelCase = 2_5_6_0 , __lowerCamelCase = "mean" , __lowerCamelCase = 0.02 , __lowerCamelCase = 0.001 , __lowerCamelCase = 0.99 , __lowerCamelCase = 0.2 , **__lowerCamelCase , ) -> Dict:
super().__init__(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = num_channels
_SCREAMING_SNAKE_CASE : Tuple = image_size
_SCREAMING_SNAKE_CASE : Tuple = width_coefficient
_SCREAMING_SNAKE_CASE : str = depth_coefficient
_SCREAMING_SNAKE_CASE : int = depth_divisor
_SCREAMING_SNAKE_CASE : Union[str, Any] = kernel_sizes
_SCREAMING_SNAKE_CASE : Tuple = in_channels
_SCREAMING_SNAKE_CASE : int = out_channels
_SCREAMING_SNAKE_CASE : Optional[Any] = depthwise_padding
_SCREAMING_SNAKE_CASE : List[str] = strides
_SCREAMING_SNAKE_CASE : Any = num_block_repeats
_SCREAMING_SNAKE_CASE : List[str] = expand_ratios
_SCREAMING_SNAKE_CASE : List[Any] = squeeze_expansion_ratio
_SCREAMING_SNAKE_CASE : List[Any] = hidden_act
_SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dim
_SCREAMING_SNAKE_CASE : List[Any] = pooling_type
_SCREAMING_SNAKE_CASE : int = initializer_range
_SCREAMING_SNAKE_CASE : List[str] = batch_norm_eps
_SCREAMING_SNAKE_CASE : List[str] = batch_norm_momentum
_SCREAMING_SNAKE_CASE : Any = drop_connect_rate
_SCREAMING_SNAKE_CASE : Optional[int] = sum(__lowerCamelCase ) * 4
@classmethod
def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__lowerCamelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase )
# get the vision config dict if we are loading from AlignConfig
if config_dict.get("model_type" ) == "align":
_SCREAMING_SNAKE_CASE : Tuple = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__lowerCamelCase , **__lowerCamelCase )
class lowerCAmelCase__( __lowercase ):
'''simple docstring'''
__snake_case = 'align'
__snake_case = True
def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=6_4_0 , __lowerCamelCase=1.0 , __lowerCamelCase=0.02 , **__lowerCamelCase , ) -> Optional[int]:
super().__init__(**__lowerCamelCase )
if text_config is None:
_SCREAMING_SNAKE_CASE : List[Any] = {}
logger.info("text_config is None. Initializing the AlignTextConfig with default values." )
if vision_config is None:
_SCREAMING_SNAKE_CASE : Optional[Any] = {}
logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." )
_SCREAMING_SNAKE_CASE : Union[str, Any] = AlignTextConfig(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = AlignVisionConfig(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = projection_dim
_SCREAMING_SNAKE_CASE : Any = temperature_init_value
_SCREAMING_SNAKE_CASE : int = initializer_range
@classmethod
def UpperCamelCase_ ( cls , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> List[str]:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ )
_SCREAMING_SNAKE_CASE : Optional[int] = self.text_config.to_dict()
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.vision_config.to_dict()
_SCREAMING_SNAKE_CASE : int = self.__class__.model_type
return output
| 249
| 1
|
'''simple docstring'''
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
lowerCAmelCase__ : List[str] = logging.get_logger(__name__)
def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : Any ):
"""simple docstring"""
try:
with open(__lowerCAmelCase , '''rb''' ) as flax_state_f:
snake_case__ : Any = from_bytes(__lowerCAmelCase , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(__lowerCAmelCase ) as f:
if f.read().startswith('''version''' ):
raise OSError(
'''You seem to have cloned a repository without having git-lfs installed. Please'''
''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the'''
''' folder you cloned.''' )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(__lowerCAmelCase , __lowerCAmelCase )
def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ):
"""simple docstring"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
snake_case__ : int = flatten_dict(jax.tree_util.tree_map(lambda __lowerCAmelCase : x.dtype == jnp.bfloataa , __lowerCAmelCase ) ).values()
if any(__lowerCAmelCase ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
snake_case__ : int = jax.tree_util.tree_map(
lambda __lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCAmelCase )
snake_case__ : int = ''''''
snake_case__ : Tuple = flatten_dict(__lowerCAmelCase , sep='''.''' )
snake_case__ : int = pt_model.state_dict()
# keep track of unexpected & missing keys
snake_case__ : Dict = []
snake_case__ : Optional[Any] = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
snake_case__ : Dict = flax_key_tuple.split('''.''' )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
snake_case__ : Optional[Any] = flax_key_tuple_array[:-1] + ['''weight''']
snake_case__ : Any = jnp.transpose(__lowerCAmelCase , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
snake_case__ : str = flax_key_tuple_array[:-1] + ['''weight''']
snake_case__ : List[Any] = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
snake_case__ : Dict = flax_key_tuple_array[:-1] + ['''weight''']
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(__lowerCAmelCase ):
snake_case__ : Optional[int] = (
flax_key_tuple_string.replace('''_0''' , '''.0''' )
.replace('''_1''' , '''.1''' )
.replace('''_2''' , '''.2''' )
.replace('''_3''' , '''.3''' )
.replace('''_4''' , '''.4''' )
.replace('''_5''' , '''.5''' )
.replace('''_6''' , '''.6''' )
.replace('''_7''' , '''.7''' )
.replace('''_8''' , '''.8''' )
.replace('''_9''' , '''.9''' )
)
snake_case__ : int = '''.'''.join(__lowerCAmelCase )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
snake_case__ : Any = np.asarray(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , np.ndarray ) else flax_tensor
snake_case__ : int = torch.from_numpy(__lowerCAmelCase )
# remove from missing keys
missing_keys.remove(__lowerCAmelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__lowerCAmelCase )
pt_model.load_state_dict(__lowerCAmelCase )
# re-transform missing_keys to list
snake_case__ : int = list(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
if len(__lowerCAmelCase ) > 0:
logger.warning(
F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
''' use it for predictions and inference.''' )
return pt_model
| 719
|
'''simple docstring'''
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional
from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from fastapi import Body, FastAPI, HTTPException
from fastapi.routing import APIRoute
from pydantic import BaseModel
from starlette.responses import JSONResponse
from uvicorn import run
lowerCAmelCase__ : Any = True
except (ImportError, AttributeError):
lowerCAmelCase__ : Dict = object
def _a ( *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Tuple ):
"""simple docstring"""
pass
lowerCAmelCase__ : str = False
lowerCAmelCase__ : List[str] = logging.get_logger("""transformers-cli/serving""")
def _a ( __lowerCAmelCase : Namespace ):
"""simple docstring"""
snake_case__ : Union[str, Any] = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
return ServeCommand(__lowerCAmelCase , args.host , args.port , args.workers )
class a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__UpperCAmelCase = 42
class a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
class a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__UpperCAmelCase = 42
class a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__UpperCAmelCase = 42
class a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
@staticmethod
def __magic_name__ ( snake_case_ : ArgumentParser ):
'''simple docstring'''
snake_case__ : Optional[Any] = parser.add_parser(
'''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' )
serve_parser.add_argument(
'''--task''' , type=snake_case_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , )
serve_parser.add_argument('''--host''' , type=snake_case_ , default='''localhost''' , help='''Interface the server will listen on.''' )
serve_parser.add_argument('''--port''' , type=snake_case_ , default=8_8_8_8 , help='''Port the serving will listen to.''' )
serve_parser.add_argument('''--workers''' , type=snake_case_ , default=1 , help='''Number of http workers''' )
serve_parser.add_argument('''--model''' , type=snake_case_ , help='''Model\'s name or path to stored model.''' )
serve_parser.add_argument('''--config''' , type=snake_case_ , help='''Model\'s config name or path to stored model.''' )
serve_parser.add_argument('''--tokenizer''' , type=snake_case_ , help='''Tokenizer name to use.''' )
serve_parser.add_argument(
'''--device''' , type=snake_case_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , )
serve_parser.set_defaults(func=snake_case_ )
def __init__( self : Union[str, Any] , snake_case_ : Pipeline , snake_case_ : str , snake_case_ : int , snake_case_ : int ):
'''simple docstring'''
snake_case__ : Any = pipeline
snake_case__ : Tuple = host
snake_case__ : Optional[Any] = port
snake_case__ : Tuple = workers
if not _serve_dependencies_installed:
raise RuntimeError(
'''Using serve command requires FastAPI and uvicorn. '''
'''Please install transformers with [serving]: pip install "transformers[serving]".'''
'''Or install FastAPI and uvicorn separately.''' )
else:
logger.info(F"""Serving model over {host}:{port}""" )
snake_case__ : str = FastAPI(
routes=[
APIRoute(
'''/''' , self.model_info , response_model=snake_case_ , response_class=snake_case_ , methods=['''GET'''] , ),
APIRoute(
'''/tokenize''' , self.tokenize , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ),
APIRoute(
'''/detokenize''' , self.detokenize , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ),
APIRoute(
'''/forward''' , self.forward , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ),
] , timeout=6_0_0 , )
def __magic_name__ ( self : str ):
'''simple docstring'''
run(self._app , host=self.host , port=self.port , workers=self.workers )
def __magic_name__ ( self : Optional[Any] ):
'''simple docstring'''
return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) )
def __magic_name__ ( self : List[str] , snake_case_ : str = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) ):
'''simple docstring'''
try:
snake_case__ : Optional[Any] = self._pipeline.tokenizer.tokenize(snake_case_ )
if return_ids:
snake_case__ : Optional[int] = self._pipeline.tokenizer.convert_tokens_to_ids(snake_case_ )
return ServeTokenizeResult(tokens=snake_case_ , tokens_ids=snake_case_ )
else:
return ServeTokenizeResult(tokens=snake_case_ )
except Exception as e:
raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(snake_case_ )} )
def __magic_name__ ( self : List[Any] , snake_case_ : List[int] = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) , ):
'''simple docstring'''
try:
snake_case__ : Optional[int] = self._pipeline.tokenizer.decode(snake_case_ , snake_case_ , snake_case_ )
return ServeDeTokenizeResult(model='''''' , text=snake_case_ )
except Exception as e:
raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(snake_case_ )} )
async def __magic_name__ ( self : Tuple , snake_case_ : List[str]=Body(snake_case_ , embed=snake_case_ ) ):
'''simple docstring'''
if len(snake_case_ ) == 0:
return ServeForwardResult(output=[] , attention=[] )
try:
# Forward through the model
snake_case__ : Tuple = self._pipeline(snake_case_ )
return ServeForwardResult(output=snake_case_ )
except Exception as e:
raise HTTPException(5_0_0 , {'''error''': str(snake_case_ )} )
| 502
| 0
|
"""simple docstring"""
def _snake_case ( snake_case__ : int = 1000 ):
A = 2**power
A = 0
while n:
A , A = r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 91
|
"""simple docstring"""
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCAmelCase_ ( _lowercase ):
'''simple docstring'''
_lowerCamelCase: List[str] = ['''image_processor''', '''tokenizer''']
_lowerCamelCase: Optional[int] = '''Pix2StructImageProcessor'''
_lowerCamelCase: Dict = ('''T5Tokenizer''', '''T5TokenizerFast''')
def __init__( self : Optional[int] ,A_ : List[str] ,A_ : Optional[int] ) -> int:
A = False
super().__init__(A_ ,A_ )
def __call__( self : Any ,A_ : List[str]=None ,A_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,A_ : bool = True ,A_ : Union[bool, str, PaddingStrategy] = False ,A_ : Union[bool, str, TruncationStrategy] = None ,A_ : Optional[int] = None ,A_ : Optional[int] = 2048 ,A_ : int = 0 ,A_ : Optional[int] = None ,A_ : Optional[bool] = None ,A_ : bool = False ,A_ : bool = False ,A_ : bool = False ,A_ : bool = False ,A_ : bool = False ,A_ : bool = True ,A_ : Optional[Union[str, TensorType]] = None ,**A_ : Tuple ,) -> BatchEncoding:
if images is None and text is None:
raise ValueError('You have to specify either images or text.' )
# Get only text
if images is None and not self.image_processor.is_vqa:
A = self.tokenizer
A = self.tokenizer(
text=A_ ,add_special_tokens=A_ ,padding=A_ ,truncation=A_ ,max_length=A_ ,stride=A_ ,pad_to_multiple_of=A_ ,return_attention_mask=A_ ,return_overflowing_tokens=A_ ,return_special_tokens_mask=A_ ,return_offsets_mapping=A_ ,return_token_type_ids=A_ ,return_length=A_ ,verbose=A_ ,return_tensors=A_ ,**A_ ,)
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
A = self.image_processor(
A_ ,return_tensors=A_ ,max_patches=A_ ,**A_ )
else:
# add pixel_values and bbox
A = self.image_processor(
A_ ,return_tensors=A_ ,max_patches=A_ ,header_text=A_ ,**A_ )
if text is not None and not self.image_processor.is_vqa:
A = self.tokenizer(
text=A_ ,add_special_tokens=A_ ,padding=A_ ,truncation=A_ ,max_length=A_ ,stride=A_ ,pad_to_multiple_of=A_ ,return_attention_mask=A_ ,return_overflowing_tokens=A_ ,return_special_tokens_mask=A_ ,return_offsets_mapping=A_ ,return_token_type_ids=A_ ,return_length=A_ ,verbose=A_ ,return_tensors=A_ ,**A_ ,)
if "attention_mask" in text_encoding:
A = text_encoding.pop('attention_mask' )
if "input_ids" in text_encoding:
A = text_encoding.pop('input_ids' )
else:
A = None
if text_encoding is not None:
encoding_image_processor.update(A_ )
return encoding_image_processor
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,*A_ : Optional[Any] ,**A_ : Dict ) -> Union[str, Any]:
return self.tokenizer.batch_decode(*A_ ,**A_ )
def _SCREAMING_SNAKE_CASE ( self : List[str] ,*A_ : Tuple ,**A_ : List[str] ) -> Any:
return self.tokenizer.decode(*A_ ,**A_ )
@property
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
A = self.tokenizer.model_input_names
A = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 91
| 1
|
from manim import *
class A( UpperCamelCase ):
'''simple docstring'''
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 )
lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 )
lowerCamelCase_ = [mem.copy() for i in range(6 )]
lowerCamelCase_ = [mem.copy() for i in range(6 )]
lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 )
lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 )
lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 )
lowerCamelCase_ = Text('CPU' , font_size=24 )
lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(A_ )
lowerCamelCase_ = [mem.copy() for i in range(4 )]
lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 )
lowerCamelCase_ = Text('GPU' , font_size=24 )
lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ )
gpu.move_to([-1, -1, 0] )
self.add(A_ )
lowerCamelCase_ = [mem.copy() for i in range(6 )]
lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 )
lowerCamelCase_ = Text('Model' , font_size=24 )
lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ )
model.move_to([3, -1.0, 0] )
self.add(A_ )
lowerCamelCase_ = []
lowerCamelCase_ = []
for i, rect in enumerate(A_ ):
lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 )
target.move_to(A_ )
model_arr.append(A_ )
lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(A_ )
self.add(*A_ , *A_ )
lowerCamelCase_ = [meta_mem.copy() for i in range(6 )]
lowerCamelCase_ = [meta_mem.copy() for i in range(6 )]
lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 )
lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 )
lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 )
lowerCamelCase_ = Text('Disk' , font_size=24 )
lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ )
disk.move_to([-4, -1.25, 0] )
self.add(A_ , A_ )
lowerCamelCase_ = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCamelCase_ = MarkupText(
f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(A_ , A_ )
lowerCamelCase_ = MarkupText(
f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(A_ )
lowerCamelCase_ = MarkupText(
f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(A_ ) )
lowerCamelCase_ = Square(0.3 )
input.set_fill(A_ , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , A_ , buff=0.5 )
self.play(Write(A_ ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 )
self.play(MoveToTarget(A_ ) )
self.play(FadeOut(A_ ) )
lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 )
a.next_to(model_arr[0].get_left() , A_ , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
lowerCamelCase_ = MarkupText(
f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(A_ , run_time=3 ) )
lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
lowerCamelCase_ = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
lowerCamelCase_ = AnimationGroup(
FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 )
self.play(A_ )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
lowerCamelCase_ = 0.7
self.play(
Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
lowerCamelCase_ = a_c
lowerCamelCase_ = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , )
lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) )
self.wait()
| 651
|
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class A( unittest.TestCase ):
'''simple docstring'''
def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any:
"""simple docstring"""
self.assertEqual(len(A_ ) , len(A_ ) )
for a, b in zip(A_ , A_ ):
self.assertAlmostEqual(A_ , A_ , delta=A_ )
def a__ ( self : int ) -> str:
"""simple docstring"""
lowerCamelCase_ = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(A_ ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ = None
ops.enable_eager_execution_internal()
lowerCamelCase_ = tf.config.list_physical_devices('CPU' )
if len(A_ ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' )
lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
lowerCamelCase_ = GradientAccumulator()
lowerCamelCase_ = tf.Variable([4.0, 3.0] )
lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 )
lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ )
def accumulate_on_replica(A_ : Any ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(A_ : List[Any] , A_ : Tuple ):
with strategy.scope():
lowerCamelCase_ = strategy.experimental_local_results(A_ )
local_variables[0].assign(A_ )
local_variables[1].assign(A_ )
strategy.run(A_ , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(A_ )
def _check_local_values(A_ : List[Any] , A_ : str ):
lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 )
self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 651
| 1
|
'''simple docstring'''
# Imports
import numpy as np
class __a :
def __init__( self : Any ,lowerCamelCase : int=None ,lowerCamelCase : List[str]=None ,lowerCamelCase : Tuple=None ,lowerCamelCase : Tuple=None ,lowerCamelCase : str=None ):
'''simple docstring'''
self.set_matricies(red=lowerCamelCase ,green=lowerCamelCase ,blue=lowerCamelCase ,red_edge=lowerCamelCase ,nir=lowerCamelCase )
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : int=None ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Tuple=None ,lowerCamelCase : Tuple=None ,lowerCamelCase : str=None ):
'''simple docstring'''
if red is not None:
__SCREAMING_SNAKE_CASE = red
if green is not None:
__SCREAMING_SNAKE_CASE = green
if blue is not None:
__SCREAMING_SNAKE_CASE = blue
if red_edge is not None:
__SCREAMING_SNAKE_CASE = red_edge
if nir is not None:
__SCREAMING_SNAKE_CASE = nir
return True
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str="" ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=None ,lowerCamelCase : int=None ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Union[str, Any]=None ):
'''simple docstring'''
self.set_matricies(red=lowerCamelCase ,green=lowerCamelCase ,blue=lowerCamelCase ,red_edge=lowerCamelCase ,nir=lowerCamelCase )
__SCREAMING_SNAKE_CASE = {
"""ARVI2""": self.arvaa,
"""CCCI""": self.ccci,
"""CVI""": self.cvi,
"""GLI""": self.gli,
"""NDVI""": self.ndvi,
"""BNDVI""": self.bndvi,
"""redEdgeNDVI""": self.red_edge_ndvi,
"""GNDVI""": self.gndvi,
"""GBNDVI""": self.gbndvi,
"""GRNDVI""": self.grndvi,
"""RBNDVI""": self.rbndvi,
"""PNDVI""": self.pndvi,
"""ATSAVI""": self.atsavi,
"""BWDRVI""": self.bwdrvi,
"""CIgreen""": self.ci_green,
"""CIrededge""": self.ci_rededge,
"""CI""": self.ci,
"""CTVI""": self.ctvi,
"""GDVI""": self.gdvi,
"""EVI""": self.evi,
"""GEMI""": self.gemi,
"""GOSAVI""": self.gosavi,
"""GSAVI""": self.gsavi,
"""Hue""": self.hue,
"""IVI""": self.ivi,
"""IPVI""": self.ipvi,
"""I""": self.i,
"""RVI""": self.rvi,
"""MRVI""": self.mrvi,
"""MSAVI""": self.m_savi,
"""NormG""": self.norm_g,
"""NormNIR""": self.norm_nir,
"""NormR""": self.norm_r,
"""NGRDI""": self.ngrdi,
"""RI""": self.ri,
"""S""": self.s,
"""IF""": self._if,
"""DVI""": self.dvi,
"""TVI""": self.tvi,
"""NDRE""": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("""Index not in the list!""" )
return False
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
return self.nir * (self.red / (self.green**2))
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
return (self.nir - self.red) / (self.nir + self.red)
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return (self.nir - self.blue) / (self.nir + self.blue)
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
return (self.redEdge - self.red) / (self.redEdge + self.red)
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return (self.nir - self.green) / (self.nir + self.green)
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Tuple=0.08 ,lowerCamelCase : Any=1.22 ,lowerCamelCase : Union[str, Any]=0.03 ):
'''simple docstring'''
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return (self.nir / self.green) - 1
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
return (self.nir / self.redEdge) - 1
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return (self.red - self.blue) / self.red
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return self.nir - self.green
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red)
def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : List[Any]=0.16 ):
'''simple docstring'''
return (self.nir - self.green) / (self.nir + self.green + y)
def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int]=0.5 ):
'''simple docstring'''
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) )
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : List[str]=None ):
'''simple docstring'''
return (self.nir - b) / (a * self.red)
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
return (self.red + self.green + self.blue) / 30.5
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return self.nir / self.red
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return (self.rvi() - 1) / (self.rvi() + 1)
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
return self.green / (self.nir + self.red + self.green)
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
return self.nir / (self.nir + self.red + self.green)
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
return self.red / (self.nir + self.red + self.green)
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return (self.green - self.red) / (self.green + self.red)
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
return (self.red - self.green) / (self.red + self.green)
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
__SCREAMING_SNAKE_CASE = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
return self.nir / self.red
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
return (self.ndvi() + 0.5) ** (1 / 2)
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 109
|
"""simple docstring"""
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--txt2img_unclip''',
default='''kakaobrain/karlo-v1-alpha''',
type=str,
required=False,
help='''The pretrained txt2img unclip.''',
)
SCREAMING_SNAKE_CASE : Any = parser.parse_args()
SCREAMING_SNAKE_CASE : Any = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
SCREAMING_SNAKE_CASE : List[Any] = CLIPImageProcessor()
SCREAMING_SNAKE_CASE : Tuple = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''')
SCREAMING_SNAKE_CASE : int = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 260
| 0
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ : int =logging.get_logger(__name__)
UpperCAmelCase__ : Tuple ={
"""uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""",
}
class __A ( SCREAMING_SNAKE_CASE__ ):
__A = """mra"""
def __init__( self , UpperCAmelCase_=50265 , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=512 , UpperCAmelCase_=1 , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=1E-5 , UpperCAmelCase_="absolute" , UpperCAmelCase_=4 , UpperCAmelCase_="full" , UpperCAmelCase_=0 , UpperCAmelCase_=0 , UpperCAmelCase_=1 , UpperCAmelCase_=0 , UpperCAmelCase_=2 , **UpperCAmelCase_ , ):
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
lowerCamelCase =vocab_size
lowerCamelCase =max_position_embeddings
lowerCamelCase =hidden_size
lowerCamelCase =num_hidden_layers
lowerCamelCase =num_attention_heads
lowerCamelCase =intermediate_size
lowerCamelCase =hidden_act
lowerCamelCase =hidden_dropout_prob
lowerCamelCase =attention_probs_dropout_prob
lowerCamelCase =initializer_range
lowerCamelCase =type_vocab_size
lowerCamelCase =layer_norm_eps
lowerCamelCase =position_embedding_type
lowerCamelCase =block_per_row
lowerCamelCase =approx_mode
lowerCamelCase =initial_prior_first_n_blocks
lowerCamelCase =initial_prior_diagonal_n_blocks
| 719
|
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __A :
def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=32 , UpperCAmelCase_=2 , UpperCAmelCase_=3 , UpperCAmelCase_=16 , UpperCAmelCase_=[32, 64, 128] , UpperCAmelCase_=[1, 2, 1] , UpperCAmelCase_=[2, 2, 4] , UpperCAmelCase_=2 , UpperCAmelCase_=2.0 , UpperCAmelCase_=True , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_="gelu" , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=1E-5 , UpperCAmelCase_=True , UpperCAmelCase_=None , UpperCAmelCase_=True , UpperCAmelCase_=10 , UpperCAmelCase_=8 , UpperCAmelCase_=["stage1", "stage2"] , UpperCAmelCase_=[1, 2] , ):
lowerCamelCase =parent
lowerCamelCase =batch_size
lowerCamelCase =image_size
lowerCamelCase =patch_size
lowerCamelCase =num_channels
lowerCamelCase =embed_dim
lowerCamelCase =hidden_sizes
lowerCamelCase =depths
lowerCamelCase =num_heads
lowerCamelCase =window_size
lowerCamelCase =mlp_ratio
lowerCamelCase =qkv_bias
lowerCamelCase =hidden_dropout_prob
lowerCamelCase =attention_probs_dropout_prob
lowerCamelCase =drop_path_rate
lowerCamelCase =hidden_act
lowerCamelCase =use_absolute_embeddings
lowerCamelCase =patch_norm
lowerCamelCase =layer_norm_eps
lowerCamelCase =initializer_range
lowerCamelCase =is_training
lowerCamelCase =scope
lowerCamelCase =use_labels
lowerCamelCase =type_sequence_label_size
lowerCamelCase =encoder_stride
lowerCamelCase =out_features
lowerCamelCase =out_indices
def _snake_case ( self ):
lowerCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase =None
if self.use_labels:
lowerCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase =self.get_config()
return config, pixel_values, labels
def _snake_case ( self ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCamelCase =FocalNetModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
lowerCamelCase =model(UpperCAmelCase_ )
lowerCamelCase =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowerCamelCase =int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCamelCase =FocalNetBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
lowerCamelCase =model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
lowerCamelCase =None
lowerCamelCase =FocalNetBackbone(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
lowerCamelCase =model(UpperCAmelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCamelCase =FocalNetForMaskedImageModeling(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
lowerCamelCase =model(UpperCAmelCase_ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCamelCase =1
lowerCamelCase =FocalNetForMaskedImageModeling(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
lowerCamelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase =model(UpperCAmelCase_ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCamelCase =self.type_sequence_label_size
lowerCamelCase =FocalNetForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
lowerCamelCase =model(UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCamelCase =1
lowerCamelCase =FocalNetForImageClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
lowerCamelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase =model(UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self ):
lowerCamelCase =self.prepare_config_and_inputs()
lowerCamelCase , lowerCamelCase , lowerCamelCase =config_and_inputs
lowerCamelCase ={"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __A ( a , a , unittest.TestCase ):
__A = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
__A = (
{"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification}
if is_torch_available()
else {}
)
__A = False
__A = False
__A = False
__A = False
__A = False
def _snake_case ( self ):
lowerCamelCase =FocalNetModelTester(self )
lowerCamelCase =ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 , has_text_modality=UpperCAmelCase_ )
def _snake_case ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self ):
return
def _snake_case ( self ):
lowerCamelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def _snake_case ( self ):
lowerCamelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*UpperCAmelCase_ )
def _snake_case ( self ):
lowerCamelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ )
def _snake_case ( self ):
lowerCamelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def _snake_case ( self ):
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def _snake_case ( self ):
pass
def _snake_case ( self ):
lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
lowerCamelCase =model_class(UpperCAmelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCamelCase =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) )
def _snake_case ( self ):
lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
lowerCamelCase =model_class(UpperCAmelCase_ )
lowerCamelCase =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase =[*signature.parameters.keys()]
lowerCamelCase =["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase_ )
def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCamelCase =model_class(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
with torch.no_grad():
lowerCamelCase =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) )
lowerCamelCase =outputs.hidden_states
lowerCamelCase =getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
# FocalNet has a different seq_length
lowerCamelCase =(
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCamelCase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
lowerCamelCase =outputs.reshaped_hidden_states
self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ )
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =reshaped_hidden_states[0].shape
lowerCamelCase =(
reshaped_hidden_states[0].view(UpperCAmelCase_ , UpperCAmelCase_ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _snake_case ( self ):
lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase =(
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
lowerCamelCase =True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase =True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def _snake_case ( self ):
lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase =3
lowerCamelCase =(
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowerCamelCase =(
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCamelCase =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowerCamelCase =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
lowerCamelCase =True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase =True
self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) )
@slow
def _snake_case ( self ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase =FocalNetModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
def _snake_case ( self ):
lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase =_config_zero_init(UpperCAmelCase_ )
for model_class in self.all_model_classes:
lowerCamelCase =model_class(config=UpperCAmelCase_ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@require_vision
@require_torch
class __A ( unittest.TestCase ):
@cached_property
def _snake_case ( self ):
# TODO update organization
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def _snake_case ( self ):
lowerCamelCase =FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(UpperCAmelCase_ )
lowerCamelCase =self.default_image_processor
lowerCamelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCamelCase =image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ )
# forward pass
with torch.no_grad():
lowerCamelCase =model(**UpperCAmelCase_ )
# verify the logits
lowerCamelCase =torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase_ )
lowerCamelCase =torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 )
@require_torch
class __A ( a , unittest.TestCase ):
__A = (FocalNetBackbone,) if is_torch_available() else ()
__A = FocalNetConfig
__A = False
def _snake_case ( self ):
lowerCamelCase =FocalNetModelTester(self )
| 269
| 0
|
from __future__ import annotations
from collections import deque
class _A :
'''simple docstring'''
def __init__( self : Tuple , lowerCamelCase : list[str] ):
'''simple docstring'''
__lowercase = []
self.adlist.append(
{"value": "", "next_states": [], "fail_state": 0, "output": []} )
for keyword in keywords:
self.add_keyword(a_ )
self.set_fail_transitions()
def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : str ):
'''simple docstring'''
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def _snake_case ( self : Optional[Any] , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = 0
for character in keyword:
__lowercase = self.find_next_state(a_ , a_ )
if next_state is None:
self.adlist.append(
{
"value": character,
"next_states": [],
"fail_state": 0,
"output": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
__lowercase = len(self.adlist ) - 1
else:
__lowercase = next_state
self.adlist[current_state]["output"].append(a_ )
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = deque()
for node in self.adlist[0]["next_states"]:
q.append(a_ )
__lowercase = 0
while q:
__lowercase = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(a_ )
__lowercase = self.adlist[r]["fail_state"]
while (
self.find_next_state(a_ , self.adlist[child]["value"] ) is None
and state != 0
):
__lowercase = self.adlist[state]["fail_state"]
__lowercase = self.find_next_state(
a_ , self.adlist[child]["value"] )
if self.adlist[child]["fail_state"] is None:
__lowercase = 0
__lowercase = (
self.adlist[child]["output"]
+ self.adlist[self.adlist[child]["fail_state"]]["output"]
)
def _snake_case ( self : Tuple , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = {} # returns a dict with keywords and list of its occurrences
__lowercase = 0
for i in range(len(a_ ) ):
while (
self.find_next_state(a_ , string[i] ) is None
and current_state != 0
):
__lowercase = self.adlist[current_state]["fail_state"]
__lowercase = self.find_next_state(a_ , string[i] )
if next_state is None:
__lowercase = 0
else:
__lowercase = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
__lowercase = []
result[key].append(i - len(a_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 402
|
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def snake_case (UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[int]=1e-12 ):
'''simple docstring'''
lowerCamelCase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T
lowerCamelCase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T
return jnp.matmul(UpperCamelCase , norm_emb_a.T )
class lowercase ( nn.Module ):
"""simple docstring"""
snake_case_ = 42
snake_case_ = jnp.floataa
def _UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
lowerCamelCase__ = FlaxCLIPVisionModule(self.config.vision_config )
lowerCamelCase__ = nn.Dense(self.config.projection_dim , use_bias=a_ , dtype=self.dtype )
lowerCamelCase__ = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
lowerCamelCase__ = self.param(
"""special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
lowerCamelCase__ = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) )
lowerCamelCase__ = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) )
def __call__( self : Optional[Any] , a_ : int ):
"""simple docstring"""
lowerCamelCase__ = self.vision_model(a_ )[1]
lowerCamelCase__ = self.visual_projection(a_ )
lowerCamelCase__ = jax_cosine_distance(a_ , self.special_care_embeds )
lowerCamelCase__ = jax_cosine_distance(a_ , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
lowerCamelCase__ = 0.0
lowerCamelCase__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
lowerCamelCase__ = jnp.round(a_ , 3 )
lowerCamelCase__ = jnp.any(special_scores > 0 , axis=1 , keepdims=a_ )
# Use a lower threshold if an image has any special care concept
lowerCamelCase__ = is_special_care * 0.0_1
lowerCamelCase__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
lowerCamelCase__ = jnp.round(a_ , 3 )
lowerCamelCase__ = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class lowercase ( UpperCAmelCase_ ):
"""simple docstring"""
snake_case_ = CLIPConfig
snake_case_ = 'clip_input'
snake_case_ = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : List[Any] , a_ : CLIPConfig , a_ : Optional[Tuple] = None , a_ : int = 0 , a_ : jnp.dtype = jnp.floataa , a_ : bool = True , **a_ : Union[str, Any] , ):
"""simple docstring"""
if input_shape is None:
lowerCamelCase__ = (1, 2_24, 2_24, 3)
lowerCamelCase__ = self.module_class(config=a_ , dtype=a_ , **a_ )
super().__init__(a_ , a_ , input_shape=a_ , seed=a_ , dtype=a_ , _do_init=_do_init )
def _UpperCamelCase ( self : Optional[int] , a_ : jax.random.KeyArray , a_ : Tuple , a_ : FrozenDict = None ):
"""simple docstring"""
lowerCamelCase__ = jax.random.normal(a_ , a_ )
lowerCamelCase__ , lowerCamelCase__ = jax.random.split(a_ )
lowerCamelCase__ = {"""params""": params_rng, """dropout""": dropout_rng}
lowerCamelCase__ = self.module.init(a_ , a_ )["""params"""]
return random_params
def __call__( self : Union[str, Any] , a_ : Tuple , a_ : dict = None , ):
"""simple docstring"""
lowerCamelCase__ = jnp.transpose(a_ , (0, 2, 3, 1) )
return self.module.apply(
{"""params""": params or self.params} , jnp.array(a_ , dtype=jnp.floataa ) , rngs={} , )
| 165
| 0
|
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> str:
'''simple docstring'''
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE = F"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE )}"""
raise ValueError(_SCREAMING_SNAKE_CASE )
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE = F"""Expected boolean as use_pascal parameter, found {type(_SCREAMING_SNAKE_CASE )}"""
raise ValueError(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE = input_str.split("""_""" )
SCREAMING_SNAKE_CASE = 0 if use_pascal else 1
SCREAMING_SNAKE_CASE = words[start_index:]
SCREAMING_SNAKE_CASE = [word[0].upper() + word[1:] for word in words_to_capitalize]
SCREAMING_SNAKE_CASE = """""" if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 707
|
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
SCREAMING_SNAKE_CASE = []
for line in lines:
SCREAMING_SNAKE_CASE = re.sub(r"""#.*""" , """""" , _SCREAMING_SNAKE_CASE ) # remove comments
if line:
filtered_lines.append(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE = """\n""".join(_SCREAMING_SNAKE_CASE )
# Make a hash from all this code
SCREAMING_SNAKE_CASE = full_str.encode("""utf-8""" )
return shaaaa(_SCREAMING_SNAKE_CASE ).hexdigest()
# get importable module names and hash for caching
SCREAMING_SNAKE_CASE_ = {
"""csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
"""json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
"""pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
"""parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
"""arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
"""text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
"""imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
"""audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
SCREAMING_SNAKE_CASE_ = {
""".csv""": ("""csv""", {}),
""".tsv""": ("""csv""", {"""sep""": """\t"""}),
""".json""": ("""json""", {}),
""".jsonl""": ("""json""", {}),
""".parquet""": ("""parquet""", {}),
""".arrow""": ("""arrow""", {}),
""".txt""": ("""text""", {}),
}
_EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
SCREAMING_SNAKE_CASE_ = {"""imagefolder""", """audiofolder"""}
# Used to filter data files based on extensions given a module name
SCREAMING_SNAKE_CASE_ = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""")
_MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
| 116
| 0
|
"""simple docstring"""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
__A = logging.get_logger(__name__)
__A = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__A = {
'''vocab_file''': {
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json'''
),
},
}
__A = {
'''vocab_file''': {
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json'''
),
},
}
__A = {
'''vocab_file''': {
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json'''
),
},
}
__A = {
'''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2,
'''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2,
}
__A = {
'''facebook/dpr-question_encoder-single-nq-base''': 5_1_2,
'''facebook/dpr-question_encoder-multiset-base''': 5_1_2,
}
__A = {
'''facebook/dpr-reader-single-nq-base''': 5_1_2,
'''facebook/dpr-reader-multiset-base''': 5_1_2,
}
__A = {
'''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True},
'''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True},
}
__A = {
'''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True},
'''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True},
}
__A = {
'''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True},
'''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True},
}
class UpperCAmelCase (_snake_case ):
"""simple docstring"""
_UpperCAmelCase :int = VOCAB_FILES_NAMES
_UpperCAmelCase :Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase :Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase :List[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class UpperCAmelCase (_snake_case ):
"""simple docstring"""
_UpperCAmelCase :Tuple = VOCAB_FILES_NAMES
_UpperCAmelCase :List[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase :int = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase :List[Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
__A = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
__A = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
__A = R'''
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `\'tf\'`: Return TensorFlow `tf.constant` objects.
- `\'pt\'`: Return PyTorch `torch.Tensor` objects.
- `\'np\'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer\'s default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
'''
@add_start_docstrings(_snake_case )
class UpperCAmelCase :
"""simple docstring"""
def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ):
if titles is None and texts is None:
return super().__call__(
_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , )
elif titles is None or texts is None:
lowercase__: Any = titles if texts is None else texts
return super().__call__(
_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , )
lowercase__: List[Any] = titles if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [titles]
lowercase__: List[str] = texts if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [texts]
lowercase__: int = len(_lowerCamelCase )
lowercase__: Dict = questions if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [questions] * n_passages
if len(_lowerCamelCase ) != len(_lowerCamelCase ):
raise ValueError(
F"""There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts.""" )
lowercase__: Tuple = super().__call__(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids''']
lowercase__: List[str] = super().__call__(_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids''']
lowercase__: List[Any] = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_lowerCamelCase , _lowerCamelCase )
]
}
if return_attention_mask is not False:
lowercase__: Union[str, Any] = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowercase__: List[str] = attention_mask
return self.pad(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase )
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 16 , _UpperCAmelCase = 64 , _UpperCAmelCase = 4 , ):
lowercase__: List[Any] = reader_input['''input_ids''']
lowercase__: List[Any] = reader_output[:3]
lowercase__: int = len(_lowerCamelCase )
lowercase__: str = sorted(range(_lowerCamelCase ) , reverse=_lowerCamelCase , key=relevance_logits.__getitem__ )
lowercase__: List[DPRReaderOutput] = []
for doc_id in sorted_docs:
lowercase__: Any = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowercase__: Tuple = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowercase__: Optional[int] = sequence_ids.index(self.pad_token_id )
else:
lowercase__: str = len(_lowerCamelCase )
lowercase__: Any = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCamelCase , top_spans=_lowerCamelCase , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCamelCase , start_index=_lowerCamelCase , end_index=_lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_lowerCamelCase ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ):
lowercase__: Union[str, Any] = []
for start_index, start_score in enumerate(_lowerCamelCase ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowercase__: Optional[Any] = sorted(_lowerCamelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_lowerCamelCase )
lowercase__: Dict = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" )
lowercase__: Optional[Any] = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_lowerCamelCase ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(_snake_case )
class UpperCAmelCase (_snake_case ,_snake_case ):
"""simple docstring"""
_UpperCAmelCase :Union[str, Any] = VOCAB_FILES_NAMES
_UpperCAmelCase :Dict = READER_PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase :List[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase :Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION
_UpperCAmelCase :Any = ["input_ids", "attention_mask"]
| 586
|
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
snake_case : Dict = random.Random()
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=None ):
"""simple docstring"""
if rng is None:
a :str = global_rng
a :List[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class _snake_case ( unittest.TestCase ):
def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=400 , _lowerCamelCase=2000 , _lowerCamelCase=1 , _lowerCamelCase=0.0 , _lowerCamelCase=1_6000 , _lowerCamelCase=True , _lowerCamelCase=80 , _lowerCamelCase=16 , _lowerCamelCase=64 , _lowerCamelCase="hann_window" , _lowerCamelCase=80 , _lowerCamelCase=7600 , _lowerCamelCase=1e-10 , _lowerCamelCase=True , ):
a :Tuple = parent
a :Optional[int] = batch_size
a :Tuple = min_seq_length
a :List[Any] = max_seq_length
a :str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
a :Optional[int] = feature_size
a :List[Any] = padding_value
a :Dict = sampling_rate
a :Union[str, Any] = do_normalize
a :str = num_mel_bins
a :Tuple = hop_length
a :Optional[int] = win_length
a :Any = win_function
a :Dict = fmin
a :Optional[int] = fmax
a :Optional[Any] = mel_floor
a :Dict = return_attention_mask
def SCREAMING_SNAKE_CASE__ ( self ):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=False , _lowerCamelCase=False ):
def _flatten(_lowerCamelCase ):
return list(itertools.chain(*_lowerCamelCase ) )
if equal_length:
a :List[Any] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
a :str = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
a :Dict = [np.asarray(_lowerCamelCase ) for x in speech_inputs]
return speech_inputs
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=False , _lowerCamelCase=False ):
if equal_length:
a :Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
a :Optional[int] = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
a :Optional[int] = [np.asarray(_lowerCamelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
class _snake_case ( _snake_case , unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = SpeechTaFeatureExtractor
def SCREAMING_SNAKE_CASE__ ( self ):
a :Dict = SpeechTaFeatureExtractionTester(self )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
self.assertTrue(np.all(np.mean(_lowerCamelCase , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(_lowerCamelCase , axis=0 ) - 1 ) < 1e-3 ) )
def SCREAMING_SNAKE_CASE__ ( self ):
# Tests that all call wrap to encode_plus and batch_encode_plus
a :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
a :Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
a :Union[str, Any] = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs]
# Test not batched input
a :List[str] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values
a :int = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) )
# Test batched
a :Tuple = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values
a :str = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ):
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) )
def SCREAMING_SNAKE_CASE__ ( self ):
a :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
a :Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
a :Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad''']
a :List[Any] = [None, 1600, None]
for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ):
a :int = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors='''np''' )
a :List[Any] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def SCREAMING_SNAKE_CASE__ ( self ):
a :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
a :Tuple = range(800 , 1400 , 200 )
a :Dict = [floats_list((1, x) )[0] for x in lengths]
a :List[Any] = ['''longest''', '''max_length''', '''do_not_pad''']
a :Any = [None, 1600, None]
for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ):
a :Tuple = feat_extract(_lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase )
a :Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
a :Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
a :Optional[int] = feat_extract(
_lowerCamelCase , truncation=_lowerCamelCase , max_length=1000 , padding='''max_length''' , return_tensors='''np''' )
a :str = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def SCREAMING_SNAKE_CASE__ ( self ):
a :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
a :Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
a :Any = feat_extract(
_lowerCamelCase , truncation=_lowerCamelCase , max_length=1000 , padding='''longest''' , return_tensors='''np''' )
a :List[str] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
a :List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
a :str = feat_extract(
_lowerCamelCase , truncation=_lowerCamelCase , max_length=2000 , padding='''longest''' , return_tensors='''np''' )
a :Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
def SCREAMING_SNAKE_CASE__ ( self ):
a :int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
a :Any = np.random.rand(100 ).astype(np.floataa )
a :Optional[int] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
a :Optional[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
a :str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def SCREAMING_SNAKE_CASE__ ( self ):
# Tests that all call wrap to encode_plus and batch_encode_plus
a :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
a :Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
a :Tuple = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs]
# Test feature size
a :List[Any] = feature_extractor(audio_target=_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''np''' ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
a :List[Any] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values
a :Any = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) )
# Test batched
a :str = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values
a :Union[str, Any] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ):
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
a :Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)]
a :Optional[int] = np.asarray(_lowerCamelCase )
a :List[Any] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values
a :List[Any] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ):
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Optional[int] = self.feat_extract_tester.prepare_inputs_for_target()
a :List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
a :Any = feat_extract.model_input_names[0]
a :List[str] = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(_lowerCamelCase ) == len(_lowerCamelCase ) for x, y in zip(_lowerCamelCase , processed_features[input_name] ) ) )
a :Any = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCamelCase )
a :Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' )
a :Dict = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
a :Any = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ):
a :Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCamelCase )
a :Tuple = self.feature_extraction_class(**self.feat_extract_dict )
a :List[Any] = feat_extract.model_input_names[0]
a :List[str] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' )
a :Union[str, Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
a :List[str] = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ):
a :Dict = self.feature_extraction_class(**self.feat_extract_dict )
a :str = self.feat_extract_tester.prepare_inputs_for_target()
a :Optional[int] = feat_extract.model_input_names[0]
a :str = BatchFeature({input_name: speech_inputs} )
a :Dict = feat_extract.num_mel_bins # hack!
a :Optional[Any] = feat_extract.pad(_lowerCamelCase , padding='''longest''' , return_tensors='''np''' )[input_name]
a :List[str] = feat_extract.pad(_lowerCamelCase , padding='''longest''' , return_tensors='''pt''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def SCREAMING_SNAKE_CASE__ ( self ):
a :List[str] = self.feat_extract_dict
a :Any = True
a :Union[str, Any] = self.feature_extraction_class(**_lowerCamelCase )
a :int = self.feat_extract_tester.prepare_inputs_for_target()
a :Dict = [len(_lowerCamelCase ) for x in speech_inputs]
a :List[Any] = feat_extract.model_input_names[0]
a :Optional[int] = BatchFeature({input_name: speech_inputs} )
a :List[Any] = feat_extract.num_mel_bins # hack!
a :Optional[Any] = feat_extract.pad(_lowerCamelCase , padding='''longest''' , return_tensors='''np''' )
self.assertIn('''attention_mask''' , _lowerCamelCase )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = self.feat_extract_dict
a :str = True
a :Any = self.feature_extraction_class(**_lowerCamelCase )
a :Any = self.feat_extract_tester.prepare_inputs_for_target()
a :Dict = [len(_lowerCamelCase ) for x in speech_inputs]
a :Tuple = feat_extract.model_input_names[0]
a :int = BatchFeature({input_name: speech_inputs} )
a :Optional[Any] = min(_lowerCamelCase )
a :Dict = feat_extract.num_mel_bins # hack!
a :Dict = feat_extract.pad(
_lowerCamelCase , padding='''max_length''' , max_length=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors='''np''' )
self.assertIn('''attention_mask''' , _lowerCamelCase )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
from datasets import load_dataset
a :List[str] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
# automatic decoding with librispeech
a :List[str] = ds.sort('''id''' ).select(range(_lowerCamelCase ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def SCREAMING_SNAKE_CASE__ ( self ):
# fmt: off
a :Dict = torch.tensor(
[2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03,
3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03,
2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04,
4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03,
7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04,
4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03] )
# fmt: on
a :List[Any] = self._load_datasamples(1 )
a :Any = SpeechTaFeatureExtractor()
a :Optional[int] = feature_extractor(_lowerCamelCase , return_tensors='''pt''' ).input_values
self.assertEquals(input_values.shape , (1, 9_3680) )
self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCamelCase , atol=1e-6 ) )
def SCREAMING_SNAKE_CASE__ ( self ):
# fmt: off
a :str = torch.tensor(
[-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777,
-3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386,
-3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571,
-3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] )
# fmt: on
a :int = self._load_datasamples(1 )
a :int = SpeechTaFeatureExtractor()
a :List[Any] = feature_extractor(audio_target=_lowerCamelCase , return_tensors='''pt''' ).input_values
self.assertEquals(input_values.shape , (1, 366, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCamelCase , atol=1e-4 ) )
| 445
| 0
|
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
lowerCamelCase__ = logging.get_logger(__name__)
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(__lowerCAmelCase ):
return [[videos]]
raise ValueError(F'''Could not make batched video from {videos}''' )
class A__ ( UpperCAmelCase__ ):
lowercase = ["pixel_values"]
def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 255 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Any , ):
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
lowerCAmelCase__ : List[str] = size if size is not None else {"shortest_edge": 256}
lowerCAmelCase__ : Any = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ )
lowerCAmelCase__ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224}
lowerCAmelCase__ : Optional[Any] = get_size_dict(lowerCamelCase__ , param_name='crop_size' )
lowerCAmelCase__ : Optional[int] = do_resize
lowerCAmelCase__ : int = size
lowerCAmelCase__ : Dict = do_center_crop
lowerCAmelCase__ : Optional[Any] = crop_size
lowerCAmelCase__ : int = resample
lowerCAmelCase__ : Optional[Any] = do_rescale
lowerCAmelCase__ : str = rescale_factor
lowerCAmelCase__ : Union[str, Any] = offset
lowerCAmelCase__ : int = do_normalize
lowerCAmelCase__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase__ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowerCamelCase ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BILINEAR , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ):
'''simple docstring'''
lowerCAmelCase__ : int = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ )
if "shortest_edge" in size:
lowerCAmelCase__ : Union[str, Any] = get_resize_output_image_size(lowerCamelCase__ , size['shortest_edge'] , default_to_square=lowerCamelCase__ )
elif "height" in size and "width" in size:
lowerCAmelCase__ : Any = (size["height"], size["width"])
else:
raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' )
return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[Any] , ):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = get_size_dict(lowerCamelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' )
return center_crop(lowerCamelCase__ , size=(size['height'], size['width']) , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def _lowerCamelCase ( self : Any , a : np.ndarray , a : Union[int, float] , a : bool = True , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , ):
'''simple docstring'''
lowerCAmelCase__ : Dict = image.astype(np.floataa )
if offset:
lowerCAmelCase__ : Optional[Any] = image - (scale / 2)
return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def _lowerCamelCase ( self : str , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ):
'''simple docstring'''
return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ )
def _lowerCamelCase ( self : List[str] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
if offset and not do_rescale:
raise ValueError('For offset, do_rescale must also be set to True.' )
# All transformations expect numpy arrays.
lowerCAmelCase__ : int = to_numpy_array(lowerCamelCase__ )
if do_resize:
lowerCAmelCase__ : List[str] = self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ )
if do_center_crop:
lowerCAmelCase__ : Dict = self.center_crop(lowerCamelCase__ , size=lowerCamelCase__ )
if do_rescale:
lowerCAmelCase__ : List[Any] = self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ , offset=lowerCamelCase__ )
if do_normalize:
lowerCAmelCase__ : Any = self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ )
lowerCAmelCase__ : Union[str, Any] = to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ )
return image
def _lowerCamelCase ( self : Optional[Any] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Union[str, Any] , ):
'''simple docstring'''
lowerCAmelCase__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase__ : Union[str, Any] = resample if resample is not None else self.resample
lowerCAmelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCAmelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase__ : Dict = offset if offset is not None else self.offset
lowerCAmelCase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase__ : int = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase__ : int = image_std if image_std is not None else self.image_std
lowerCAmelCase__ : Dict = size if size is not None else self.size
lowerCAmelCase__ : Union[str, Any] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ )
lowerCAmelCase__ : int = crop_size if crop_size is not None else self.crop_size
lowerCAmelCase__ : Optional[Any] = get_size_dict(lowerCamelCase__ , param_name='crop_size' )
if not valid_images(lowerCamelCase__ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
lowerCAmelCase__ : Any = make_batched(lowerCamelCase__ )
lowerCAmelCase__ : Optional[Any] = [
[
self._preprocess_image(
image=lowerCamelCase__ , do_resize=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , do_center_crop=lowerCamelCase__ , crop_size=lowerCamelCase__ , do_rescale=lowerCamelCase__ , rescale_factor=lowerCamelCase__ , offset=lowerCamelCase__ , do_normalize=lowerCamelCase__ , image_mean=lowerCamelCase__ , image_std=lowerCamelCase__ , data_format=lowerCamelCase__ , )
for img in video
]
for video in videos
]
lowerCAmelCase__ : Dict = {"pixel_values": videos}
return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
| 718
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ = {
"""configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""],
"""tokenization_luke""": ["""LukeTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LukeForEntityClassification""",
"""LukeForEntityPairClassification""",
"""LukeForEntitySpanClassification""",
"""LukeForMultipleChoice""",
"""LukeForQuestionAnswering""",
"""LukeForSequenceClassification""",
"""LukeForTokenClassification""",
"""LukeForMaskedLM""",
"""LukeModel""",
"""LukePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 69
| 0
|
import re
def __a ( lowerCAmelCase_ : str ) -> bool:
'''simple docstring'''
UpperCAmelCase_= re.compile(r"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" )
if match := re.search(lowerCAmelCase_ ,lowerCAmelCase_ ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator('''+918827897895'''))
| 593
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def __a ( lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_= botoa.client("""iam""" )
UpperCAmelCase_= {
"""Version""": """2012-10-17""",
"""Statement""": [
{"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=lowerCAmelCase_ ,AssumeRolePolicyDocument=json.dumps(lowerCAmelCase_ ,indent=2 ) )
UpperCAmelCase_= {
"""Version""": """2012-10-17""",
"""Statement""": [
{
"""Effect""": """Allow""",
"""Action""": [
"""sagemaker:*""",
"""ecr:GetDownloadUrlForLayer""",
"""ecr:BatchGetImage""",
"""ecr:BatchCheckLayerAvailability""",
"""ecr:GetAuthorizationToken""",
"""cloudwatch:PutMetricData""",
"""cloudwatch:GetMetricData""",
"""cloudwatch:GetMetricStatistics""",
"""cloudwatch:ListMetrics""",
"""logs:CreateLogGroup""",
"""logs:CreateLogStream""",
"""logs:DescribeLogStreams""",
"""logs:PutLogEvents""",
"""logs:GetLogEvents""",
"""s3:CreateBucket""",
"""s3:ListBucket""",
"""s3:GetBucketLocation""",
"""s3:GetObject""",
"""s3:PutObject""",
],
"""Resource""": """*""",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=lowerCAmelCase_ ,PolicyName=F"""{role_name}_policy_permission""" ,PolicyDocument=json.dumps(lowerCAmelCase_ ,indent=2 ) ,)
except iam_client.exceptions.EntityAlreadyExistsException:
print(F"""role {role_name} already exists. Using existing one""" )
def __a ( lowerCAmelCase_ : Union[str, Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_= botoa.client("""iam""" )
return iam_client.get_role(RoleName=lowerCAmelCase_ )["Role"]["Arn"]
def __a ( ) -> int:
'''simple docstring'''
UpperCAmelCase_= _ask_options(
"""How do you want to authorize?""" ,["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] ,lowerCAmelCase_ ,)
UpperCAmelCase_= None
if credentials_configuration == 0:
UpperCAmelCase_= _ask_field("""Enter your AWS Profile name: [default] """ ,default="""default""" )
UpperCAmelCase_= aws_profile
else:
print(
"""Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"""
"""`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" )
UpperCAmelCase_= _ask_field("""AWS Access Key ID: """ )
UpperCAmelCase_= aws_access_key_id
UpperCAmelCase_= _ask_field("""AWS Secret Access Key: """ )
UpperCAmelCase_= aws_secret_access_key
UpperCAmelCase_= _ask_field("""Enter your AWS Region: [us-east-1]""" ,default="""us-east-1""" )
UpperCAmelCase_= aws_region
UpperCAmelCase_= _ask_options(
"""Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" ,["""Provide IAM Role name""", """Create new IAM role using credentials"""] ,lowerCAmelCase_ ,)
if role_management == 0:
UpperCAmelCase_= _ask_field("""Enter your IAM role name: """ )
else:
UpperCAmelCase_= """accelerate_sagemaker_execution_role"""
print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" )
_create_iam_role_for_sagemaker(lowerCAmelCase_ )
UpperCAmelCase_= _ask_field(
"""Do you want to use custom Docker image? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,)
UpperCAmelCase_= None
if is_custom_docker_image:
UpperCAmelCase_= _ask_field("""Enter your Docker image: """ ,lambda lowerCAmelCase_ : str(lowerCAmelCase_ ).lower() )
UpperCAmelCase_= _ask_field(
"""Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,)
UpperCAmelCase_= None
if is_sagemaker_inputs_enabled:
UpperCAmelCase_= _ask_field(
"""Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ ,lambda lowerCAmelCase_ : str(lowerCAmelCase_ ).lower() ,)
UpperCAmelCase_= _ask_field(
"""Do you want to enable SageMaker metrics? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,)
UpperCAmelCase_= None
if is_sagemaker_metrics_enabled:
UpperCAmelCase_= _ask_field(
"""Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ ,lambda lowerCAmelCase_ : str(lowerCAmelCase_ ).lower() ,)
UpperCAmelCase_= _ask_options(
"""What is the distributed mode?""" ,["""No distributed training""", """Data parallelism"""] ,_convert_sagemaker_distributed_mode ,)
UpperCAmelCase_= {}
UpperCAmelCase_= _ask_field(
"""Do you wish to optimize your script with torch dynamo?[yes/NO]:""" ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,)
if use_dynamo:
UpperCAmelCase_= """dynamo_"""
UpperCAmelCase_= _ask_options(
"""Which dynamo backend would you like to use?""" ,[x.lower() for x in DYNAMO_BACKENDS] ,_convert_dynamo_backend ,default=2 ,)
UpperCAmelCase_= _ask_field(
"""Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,)
if use_custom_options:
UpperCAmelCase_= _ask_options(
"""Which mode do you want to use?""" ,lowerCAmelCase_ ,lambda lowerCAmelCase_ : TORCH_DYNAMO_MODES[int(lowerCAmelCase_ )] ,default="""default""" ,)
UpperCAmelCase_= _ask_field(
"""Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,)
UpperCAmelCase_= _ask_field(
"""Do you want to enable dynamic shape tracing? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,)
UpperCAmelCase_= """Which EC2 instance type you want to use for your training?"""
if distributed_type != SageMakerDistributedType.NO:
UpperCAmelCase_= _ask_options(
lowerCAmelCase_ ,lowerCAmelCase_ ,lambda lowerCAmelCase_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowerCAmelCase_ )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
UpperCAmelCase_= _ask_field(lowerCAmelCase_ ,lambda lowerCAmelCase_ : str(lowerCAmelCase_ ).lower() ,default="""ml.p3.2xlarge""" )
UpperCAmelCase_= 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
UpperCAmelCase_= _ask_field(
"""How many machines do you want use? [1]: """ ,lowerCAmelCase_ ,default=1 ,)
UpperCAmelCase_= _ask_options(
"""Do you wish to use FP16 or BF16 (mixed precision)?""" ,["""no""", """fp16""", """bf16""", """fp8"""] ,_convert_mixed_precision ,)
if use_dynamo and mixed_precision == "no":
print(
"""Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" )
return SageMakerConfig(
image_uri=lowerCAmelCase_ ,compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER ,distributed_type=lowerCAmelCase_ ,use_cpu=lowerCAmelCase_ ,dynamo_config=lowerCAmelCase_ ,eca_instance_type=lowerCAmelCase_ ,profile=lowerCAmelCase_ ,region=lowerCAmelCase_ ,iam_role_name=lowerCAmelCase_ ,mixed_precision=lowerCAmelCase_ ,num_machines=lowerCAmelCase_ ,sagemaker_inputs_file=lowerCAmelCase_ ,sagemaker_metrics_file=lowerCAmelCase_ ,)
| 593
| 1
|
'''simple docstring'''
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
_UpperCamelCase : Tuple =logging.getLogger(__name__)
def lowerCamelCase_ ( ):
__lowerCamelCase = argparse.ArgumentParser(
description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' )
parser.add_argument('''--file_path''' , type=A_ , default='''data/dump.txt''' , help='''The path to the data.''' )
parser.add_argument('''--tokenizer_type''' , type=A_ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] )
parser.add_argument('''--tokenizer_name''' , type=A_ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' )
parser.add_argument('''--dump_file''' , type=A_ , default='''data/dump''' , help='''The dump file prefix.''' )
__lowerCamelCase = parser.parse_args()
logger.info(f'''Loading Tokenizer ({args.tokenizer_name})''' )
if args.tokenizer_type == "bert":
__lowerCamelCase = BertTokenizer.from_pretrained(args.tokenizer_name )
__lowerCamelCase = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]`
__lowerCamelCase = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]`
elif args.tokenizer_type == "roberta":
__lowerCamelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name )
__lowerCamelCase = tokenizer.special_tokens_map['''cls_token'''] # `<s>`
__lowerCamelCase = tokenizer.special_tokens_map['''sep_token'''] # `</s>`
elif args.tokenizer_type == "gpt2":
__lowerCamelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name )
__lowerCamelCase = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>`
__lowerCamelCase = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>`
logger.info(f'''Loading text from {args.file_path}''' )
with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp:
__lowerCamelCase = fp.readlines()
logger.info('''Start encoding''' )
logger.info(f'''{len(A_ )} examples to process.''' )
__lowerCamelCase = []
__lowerCamelCase = 0
__lowerCamelCase = 1_00_00
__lowerCamelCase = time.time()
for text in data:
__lowerCamelCase = f'''{bos} {text.strip()} {sep}'''
__lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ )
rslt.append(A_ )
iter += 1
if iter % interval == 0:
__lowerCamelCase = time.time()
logger.info(f'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' )
__lowerCamelCase = time.time()
logger.info('''Finished binarization''' )
logger.info(f'''{len(A_ )} examples processed.''' )
__lowerCamelCase = f'''{args.dump_file}.{args.tokenizer_name}.pickle'''
__lowerCamelCase = tokenizer.vocab_size
if vocab_size < (1 << 16):
__lowerCamelCase = [np.uintaa(A_ ) for d in rslt]
else:
__lowerCamelCase = [np.intaa(A_ ) for d in rslt]
random.shuffle(rslt_ )
logger.info(f'''Dump to {dp_file}''' )
with open(A_ , '''wb''' ) as handle:
pickle.dump(rslt_ , A_ , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 575
|
'''simple docstring'''
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
_UpperCamelCase : Any =logging.get_logger(__name__)
# General docstring
_UpperCamelCase : List[Any] ="PoolFormerConfig"
# Base docstring
_UpperCamelCase : List[str] ="sail/poolformer_s12"
_UpperCamelCase : List[Any] =[1, 5_12, 7, 7]
# Image classification docstring
_UpperCamelCase : List[str] ="sail/poolformer_s12"
_UpperCamelCase : Tuple ="tabby, tabby cat"
_UpperCamelCase : Optional[Any] =[
"sail/poolformer_s12",
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def lowerCamelCase_ ( A_ , A_ = 0.0 , A_ = False ):
if drop_prob == 0.0 or not training:
return input
__lowerCamelCase = 1 - drop_prob
__lowerCamelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
__lowerCamelCase = keep_prob + torch.rand(A_ , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
__lowerCamelCase = input.div(A_ ) * random_tensor
return output
class _SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self , _snake_case = None ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = drop_prob
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
return drop_path(_snake_case , self.drop_prob , self.training )
def _lowerCamelCase ( self ):
"""simple docstring"""
return "p={}".format(self.drop_prob )
class _SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = patch_size if isinstance(_snake_case , collections.abc.Iterable ) else (patch_size, patch_size)
__lowerCamelCase = stride if isinstance(_snake_case , collections.abc.Iterable ) else (stride, stride)
__lowerCamelCase = padding if isinstance(_snake_case , collections.abc.Iterable ) else (padding, padding)
__lowerCamelCase = nn.Convad(_snake_case , _snake_case , kernel_size=_snake_case , stride=_snake_case , padding=_snake_case )
__lowerCamelCase = norm_layer(_snake_case ) if norm_layer else nn.Identity()
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
__lowerCamelCase = self.projection(_snake_case )
__lowerCamelCase = self.norm(_snake_case )
return embeddings
class _SCREAMING_SNAKE_CASE ( nn.GroupNorm ):
"""simple docstring"""
def __init__( self , _snake_case , **_snake_case ):
"""simple docstring"""
super().__init__(1 , _snake_case , **_snake_case )
class _SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self , _snake_case ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = nn.AvgPoolad(_snake_case , stride=1 , padding=pool_size // 2 , count_include_pad=_snake_case )
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
return self.pool(_snake_case ) - hidden_states
class _SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = nn.Convad(_snake_case , _snake_case , 1 )
__lowerCamelCase = nn.Convad(_snake_case , _snake_case , 1 )
__lowerCamelCase = PoolFormerDropPath(_snake_case )
if isinstance(config.hidden_act , _snake_case ):
__lowerCamelCase = ACTaFN[config.hidden_act]
else:
__lowerCamelCase = config.hidden_act
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
__lowerCamelCase = self.conva(_snake_case )
__lowerCamelCase = self.act_fn(_snake_case )
__lowerCamelCase = self.drop(_snake_case )
__lowerCamelCase = self.conva(_snake_case )
__lowerCamelCase = self.drop(_snake_case )
return hidden_states
class _SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = PoolFormerPooling(_snake_case )
__lowerCamelCase = PoolFormerOutput(_snake_case , _snake_case , _snake_case , _snake_case )
__lowerCamelCase = PoolFormerGroupNorm(_snake_case )
__lowerCamelCase = PoolFormerGroupNorm(_snake_case )
# Useful for training neural nets
__lowerCamelCase = PoolFormerDropPath(_snake_case ) if drop_path > 0.0 else nn.Identity()
__lowerCamelCase = config.use_layer_scale
if config.use_layer_scale:
__lowerCamelCase = nn.Parameter(
config.layer_scale_init_value * torch.ones((_snake_case) ) , requires_grad=_snake_case )
__lowerCamelCase = nn.Parameter(
config.layer_scale_init_value * torch.ones((_snake_case) ) , requires_grad=_snake_case )
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
if self.use_layer_scale:
__lowerCamelCase = self.pooling(self.before_norm(_snake_case ) )
__lowerCamelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
__lowerCamelCase = hidden_states + self.drop_path(_snake_case )
__lowerCamelCase = ()
__lowerCamelCase = self.output(self.after_norm(_snake_case ) )
__lowerCamelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
__lowerCamelCase = hidden_states + self.drop_path(_snake_case )
__lowerCamelCase = (output,) + outputs
return outputs
else:
__lowerCamelCase = self.drop_path(self.pooling(self.before_norm(_snake_case ) ) )
# First residual connection
__lowerCamelCase = pooling_output + hidden_states
__lowerCamelCase = ()
# Second residual connection inside the PoolFormerOutput block
__lowerCamelCase = self.drop_path(self.output(self.after_norm(_snake_case ) ) )
__lowerCamelCase = hidden_states + layer_output
__lowerCamelCase = (output,) + outputs
return outputs
class _SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self , _snake_case ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = config
# stochastic depth decay rule
__lowerCamelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
__lowerCamelCase = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
__lowerCamelCase = nn.ModuleList(_snake_case )
# Transformer blocks
__lowerCamelCase = []
__lowerCamelCase = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
__lowerCamelCase = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
_snake_case , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(_snake_case ) )
__lowerCamelCase = nn.ModuleList(_snake_case )
def _lowerCamelCase ( self , _snake_case , _snake_case=False , _snake_case=True ):
"""simple docstring"""
__lowerCamelCase = () if output_hidden_states else None
__lowerCamelCase = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
__lowerCamelCase , __lowerCamelCase = layers
# Get patch embeddings from hidden_states
__lowerCamelCase = embedding_layer(_snake_case )
# Send the embeddings through the blocks
for _, blk in enumerate(_snake_case ):
__lowerCamelCase = blk(_snake_case )
__lowerCamelCase = layer_outputs[0]
if output_hidden_states:
__lowerCamelCase = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case , hidden_states=_snake_case )
class _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = PoolFormerConfig
SCREAMING_SNAKE_CASE_ = 'poolformer'
SCREAMING_SNAKE_CASE_ = 'pixel_values'
SCREAMING_SNAKE_CASE_ = True
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
if isinstance(_snake_case , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(_snake_case , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def _lowerCamelCase ( self , _snake_case , _snake_case=False ):
"""simple docstring"""
if isinstance(_snake_case , _snake_case ):
__lowerCamelCase = value
_UpperCamelCase : Any =R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
_UpperCamelCase : Tuple =R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n"
@add_start_docstrings(
'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , UpperCamelCase , )
class _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
def __init__( self , _snake_case ):
"""simple docstring"""
super().__init__(_snake_case )
__lowerCamelCase = config
__lowerCamelCase = PoolFormerEncoder(_snake_case )
# Initialize weights and apply final processing
self.post_init()
def _lowerCamelCase ( self ):
"""simple docstring"""
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _lowerCamelCase ( self , _snake_case = None , _snake_case = None , _snake_case = None , ):
"""simple docstring"""
__lowerCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''' )
__lowerCamelCase = self.encoder(
_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , )
__lowerCamelCase = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=_snake_case , hidden_states=encoder_outputs.hidden_states , )
class _SCREAMING_SNAKE_CASE ( nn.Module ):
"""simple docstring"""
def __init__( self , _snake_case ):
"""simple docstring"""
super().__init__()
__lowerCamelCase = nn.Linear(config.hidden_size , config.hidden_size )
def _lowerCamelCase ( self , _snake_case ):
"""simple docstring"""
__lowerCamelCase = self.dense(_snake_case )
return output
@add_start_docstrings(
'\n PoolFormer Model transformer with an image classification head on top\n ' , UpperCamelCase , )
class _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
def __init__( self , _snake_case ):
"""simple docstring"""
super().__init__(_snake_case )
__lowerCamelCase = config.num_labels
__lowerCamelCase = PoolFormerModel(_snake_case )
# Final norm
__lowerCamelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
__lowerCamelCase = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _lowerCamelCase ( self , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , ):
"""simple docstring"""
__lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
__lowerCamelCase = self.poolformer(
_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , )
__lowerCamelCase = outputs[0]
__lowerCamelCase = self.classifier(self.norm(_snake_case ).mean([-2, -1] ) )
__lowerCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowerCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowerCamelCase = '''single_label_classification'''
else:
__lowerCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
__lowerCamelCase = MSELoss()
if self.num_labels == 1:
__lowerCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowerCamelCase = loss_fct(_snake_case , _snake_case )
elif self.config.problem_type == "single_label_classification":
__lowerCamelCase = CrossEntropyLoss()
__lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowerCamelCase = BCEWithLogitsLoss()
__lowerCamelCase = loss_fct(_snake_case , _snake_case )
if not return_dict:
__lowerCamelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states )
| 575
| 1
|
import os
def UpperCAmelCase__ ( ):
'''simple docstring'''
with open(os.path.dirname(__snake_case ) + '''/p022_names.txt''' ) as file:
lowerCAmelCase : int = str(file.readlines()[0] )
lowerCAmelCase : Tuple = names.replace('''"''' , '''''' ).split(''',''' )
names.sort()
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Dict = 0
for i, name in enumerate(__snake_case ):
for letter in name:
name_score += ord(__snake_case ) - 64
total_score += (i + 1) * name_score
lowerCAmelCase : Tuple = 0
return total_score
if __name__ == "__main__":
print(solution())
| 348
|
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class lowerCamelCase (unittest.TestCase ):
'''simple docstring'''
def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=3_0 , _UpperCamelCase=4_0_0 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=True , _UpperCamelCase=1 / 2_5_5 , _UpperCamelCase=True , ) -> Dict:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
UpperCAmelCase_ : Dict = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3}
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : int = batch_size
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : Optional[int] = min_resolution
UpperCAmelCase_ : List[Any] = max_resolution
UpperCAmelCase_ : str = do_resize
UpperCAmelCase_ : Tuple = size
UpperCAmelCase_ : Tuple = do_normalize
UpperCAmelCase_ : str = image_mean
UpperCAmelCase_ : Any = image_std
UpperCAmelCase_ : Optional[Any] = do_rescale
UpperCAmelCase_ : Union[str, Any] = rescale_factor
UpperCAmelCase_ : Optional[int] = do_pad
def __UpperCAmelCase ( self ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False ) -> Tuple:
if not batched:
UpperCAmelCase_ : List[Any] = image_inputs[0]
if isinstance(_UpperCamelCase , Image.Image ):
UpperCAmelCase_ , UpperCAmelCase_ : str = image.size
else:
UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase_ : Tuple = int(self.size['shortest_edge'] * h / w )
UpperCAmelCase_ : int = self.size['shortest_edge']
elif w > h:
UpperCAmelCase_ : Any = self.size['shortest_edge']
UpperCAmelCase_ : List[Any] = int(self.size['shortest_edge'] * w / h )
else:
UpperCAmelCase_ : Optional[Any] = self.size['shortest_edge']
UpperCAmelCase_ : str = self.size['shortest_edge']
else:
UpperCAmelCase_ : Tuple = []
for image in image_inputs:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase_ : Optional[Any] = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[0] )[0]
UpperCAmelCase_ : Tuple = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowerCamelCase (_snake_case , unittest.TestCase ):
'''simple docstring'''
_snake_case : Union[str, Any] = YolosImageProcessor if is_vision_available() else None
def __UpperCAmelCase ( self ) -> Tuple:
UpperCAmelCase_ : Tuple = YolosImageProcessingTester(self )
@property
def __UpperCAmelCase ( self ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCAmelCase ( self ) -> str:
UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCamelCase , 'image_mean' ) )
self.assertTrue(hasattr(_UpperCamelCase , 'image_std' ) )
self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) )
self.assertTrue(hasattr(_UpperCamelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCamelCase , 'size' ) )
def __UpperCAmelCase ( self ) -> int:
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} )
self.assertEqual(image_processor.do_pad , _UpperCamelCase )
UpperCAmelCase_ : List[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=_UpperCamelCase )
self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} )
self.assertEqual(image_processor.do_pad , _UpperCamelCase )
def __UpperCAmelCase ( self ) -> List[str]:
pass
def __UpperCAmelCase ( self ) -> List[Any]:
# Initialize image_processing
UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase , Image.Image )
# Test not batched input
UpperCAmelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processor_tester.get_expected_values(_UpperCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase )
UpperCAmelCase_ : Dict = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __UpperCAmelCase ( self ) -> Dict:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase , np.ndarray )
# Test not batched input
UpperCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(_UpperCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ : int = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __UpperCAmelCase ( self ) -> Tuple:
# Initialize image_processing
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase , torch.Tensor )
# Test not batched input
UpperCAmelCase_ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processor_tester.get_expected_values(_UpperCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase_ : Optional[Any] = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __UpperCAmelCase ( self ) -> Union[str, Any]:
# Initialize image_processings
UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
UpperCAmelCase_ : str = self.image_processing_class(do_resize=_UpperCamelCase , do_normalize=_UpperCamelCase , do_rescale=_UpperCamelCase )
# create random PyTorch tensors
UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCamelCase , torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
UpperCAmelCase_ : int = image_processing_a.pad(_UpperCamelCase , return_tensors='pt' )
UpperCAmelCase_ : int = image_processing_a(_UpperCamelCase , return_tensors='pt' )
self.assertTrue(
torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self ) -> Optional[Any]:
# prepare image and target
UpperCAmelCase_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
UpperCAmelCase_ : str = json.loads(f.read() )
UpperCAmelCase_ : Dict = {'image_id': 3_9_7_6_9, 'annotations': target}
# encode them
UpperCAmelCase_ : str = YolosImageProcessor.from_pretrained('hustvl/yolos-small' )
UpperCAmelCase_ : Optional[Any] = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors='pt' )
# verify pixel values
UpperCAmelCase_ : Any = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase )
UpperCAmelCase_ : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) )
# verify area
UpperCAmelCase_ : int = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) )
# verify boxes
UpperCAmelCase_ : int = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase )
UpperCAmelCase_ : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1E-3 ) )
# verify image_id
UpperCAmelCase_ : List[Any] = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) )
# verify is_crowd
UpperCAmelCase_ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) )
# verify class_labels
UpperCAmelCase_ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) )
# verify orig_size
UpperCAmelCase_ : str = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) )
# verify size
UpperCAmelCase_ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) )
@slow
def __UpperCAmelCase ( self ) -> str:
# prepare image, target and masks_path
UpperCAmelCase_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
UpperCAmelCase_ : Union[str, Any] = json.loads(f.read() )
UpperCAmelCase_ : List[str] = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target}
UpperCAmelCase_ : int = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
UpperCAmelCase_ : str = YolosImageProcessor(format='coco_panoptic' )
UpperCAmelCase_ : List[Any] = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors='pt' )
# verify pixel values
UpperCAmelCase_ : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase )
UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) )
# verify area
UpperCAmelCase_ : Dict = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) )
# verify boxes
UpperCAmelCase_ : Union[str, Any] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase )
UpperCAmelCase_ : Optional[Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1E-3 ) )
# verify image_id
UpperCAmelCase_ : Dict = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) )
# verify is_crowd
UpperCAmelCase_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) )
# verify class_labels
UpperCAmelCase_ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) )
# verify masks
UpperCAmelCase_ : Optional[Any] = 8_2_2_8_7_3
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCamelCase )
# verify orig_size
UpperCAmelCase_ : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) )
# verify size
UpperCAmelCase_ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) )
| 406
| 0
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
"""microsoft/unispeech-large-1500h-cv""": (
"""https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"""
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = '''unispeech'''
def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(512, 512, 512, 512, 512, 512, 512) , _lowercase=(5, 2, 2, 2, 2, 2, 2) , _lowercase=(10, 3, 3, 3, 3, 2, 2) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=False , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase=320 , _lowercase=2 , _lowercase=0.1 , _lowercase=100 , _lowercase=256 , _lowercase=256 , _lowercase=0.1 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=80 , _lowercase=0 , _lowercase=1 , _lowercase=2 , _lowercase=0.5 , **_lowercase , ):
"""simple docstring"""
super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase )
_lowerCAmelCase = hidden_size
_lowerCAmelCase = feat_extract_norm
_lowerCAmelCase = feat_extract_activation
_lowerCAmelCase = list(_lowercase )
_lowerCAmelCase = list(_lowercase )
_lowerCAmelCase = list(_lowercase )
_lowerCAmelCase = conv_bias
_lowerCAmelCase = num_conv_pos_embeddings
_lowerCAmelCase = num_conv_pos_embedding_groups
_lowerCAmelCase = len(self.conv_dim )
_lowerCAmelCase = num_hidden_layers
_lowerCAmelCase = intermediate_size
_lowerCAmelCase = hidden_act
_lowerCAmelCase = num_attention_heads
_lowerCAmelCase = hidden_dropout
_lowerCAmelCase = attention_dropout
_lowerCAmelCase = activation_dropout
_lowerCAmelCase = feat_proj_dropout
_lowerCAmelCase = final_dropout
_lowerCAmelCase = layerdrop
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
_lowerCAmelCase = num_ctc_classes
_lowerCAmelCase = vocab_size
_lowerCAmelCase = do_stable_layer_norm
_lowerCAmelCase = use_weighted_layer_sum
_lowerCAmelCase = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCAmelCase = apply_spec_augment
_lowerCAmelCase = mask_time_prob
_lowerCAmelCase = mask_time_length
_lowerCAmelCase = mask_time_min_masks
_lowerCAmelCase = mask_feature_prob
_lowerCAmelCase = mask_feature_length
_lowerCAmelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_lowerCAmelCase = num_codevectors_per_group
_lowerCAmelCase = num_codevector_groups
_lowerCAmelCase = contrastive_logits_temperature
_lowerCAmelCase = feat_quantizer_dropout
_lowerCAmelCase = num_negatives
_lowerCAmelCase = codevector_dim
_lowerCAmelCase = proj_codevector_dim
_lowerCAmelCase = diversity_loss_weight
# ctc loss
_lowerCAmelCase = ctc_loss_reduction
_lowerCAmelCase = ctc_zero_infinity
# pretraining loss
_lowerCAmelCase = replace_prob
@property
def _lowercase ( self ):
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 162
|
'''simple docstring'''
def A (__lowerCamelCase :str , __lowerCamelCase :str ):
assert x is not None
assert y is not None
_lowerCAmelCase = len(__lowerCamelCase )
_lowerCAmelCase = len(__lowerCamelCase )
# declaring the array for storing the dp values
_lowerCAmelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
_lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0
_lowerCAmelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
_lowerCAmelCase = """"""
_lowerCAmelCase , _lowerCAmelCase = m, n
while i > 0 and j > 0:
_lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
_lowerCAmelCase = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
_lowercase = """AGGTAB"""
_lowercase = """GXTXAYB"""
_lowercase = 4
_lowercase = """GTAB"""
_lowercase , _lowercase = longest_common_subsequence(a, b)
print("""len =""", ln, """, sub-sequence =""", subseq)
import doctest
doctest.testmod()
| 162
| 1
|
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 362
|
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class lowercase ( unittest.TestCase ):
def a ( self ):
snake_case_ = 10
def a ( self ):
snake_case_ = [1, 2, 3, 4]
snake_case_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case )
def a ( self ):
snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case )
def a ( self ):
snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case )
def a ( self ):
snake_case_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.'
snake_case_ , snake_case_ = process_story(snake_case )
self.assertEqual(snake_case , [] )
def a ( self ):
snake_case_ = ''
snake_case_ , snake_case_ = process_story(snake_case )
self.assertEqual(snake_case , [] )
self.assertEqual(snake_case , [] )
def a ( self ):
snake_case_ = (
'It was the year of Our Lord one thousand seven hundred and '
'seventy-five\n\nSpiritual revelations were conceded to England '
'at that favoured period, as at this.\n@highlight\n\nIt was the best of times'
)
snake_case_ , snake_case_ = process_story(snake_case )
snake_case_ = [
'It was the year of Our Lord one thousand seven hundred and seventy-five.',
'Spiritual revelations were conceded to England at that favoured period, as at this.',
]
self.assertEqual(snake_case , snake_case )
snake_case_ = ['It was the best of times.']
self.assertEqual(snake_case , snake_case )
def a ( self ):
snake_case_ = torch.tensor([1, 2, 3, 4] )
snake_case_ = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(snake_case , 0 ).numpy() , expected.numpy() )
def a ( self ):
snake_case_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
snake_case_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(snake_case , 23 ).numpy() , expected.numpy() )
def a ( self ):
snake_case_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
snake_case_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(snake_case , 1 ).numpy() , expected.numpy() )
def a ( self ):
snake_case_ = 101
snake_case_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
snake_case_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
snake_case_ = compute_token_type_ids(snake_case , snake_case )
np.testing.assert_array_equal(snake_case , snake_case )
| 362
| 1
|
'''simple docstring'''
from __future__ import annotations
from statistics import mean
def __lowerCAmelCase ( a_ , a_ , a_ ) -> list[int]:
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * no_of_processes
SCREAMING_SNAKE_CASE : Optional[Any] = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(a_ ):
SCREAMING_SNAKE_CASE : Tuple = burst_time[i]
SCREAMING_SNAKE_CASE : list[int] = []
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[Any] = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : Dict = -1
for i in range(a_ ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(a_ )
if len(a_ ) > 0:
SCREAMING_SNAKE_CASE : Dict = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
SCREAMING_SNAKE_CASE : Union[str, Any] = i
total_time += burst_time[target_process]
completed += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
SCREAMING_SNAKE_CASE : Tuple = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def __lowerCAmelCase ( a_ , a_ , a_ ) -> list[int]:
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = [0] * no_of_processes
for i in range(a_ ):
SCREAMING_SNAKE_CASE : List[Any] = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
_lowerCAmelCase :Optional[int] = 4
_lowerCAmelCase :Optional[int] = [2, 5, 3, 7]
_lowerCAmelCase :List[str] = [0, 0, 0, 0]
_lowerCAmelCase :Union[str, Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
_lowerCAmelCase :Any = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 179
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCAmelCase :int = {
"""configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase :str = ["""AlbertTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase :Optional[int] = ["""AlbertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase :List[str] = [
"""ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AlbertForMaskedLM""",
"""AlbertForMultipleChoice""",
"""AlbertForPreTraining""",
"""AlbertForQuestionAnswering""",
"""AlbertForSequenceClassification""",
"""AlbertForTokenClassification""",
"""AlbertModel""",
"""AlbertPreTrainedModel""",
"""load_tf_weights_in_albert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase :Any = [
"""TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFAlbertForMaskedLM""",
"""TFAlbertForMultipleChoice""",
"""TFAlbertForPreTraining""",
"""TFAlbertForQuestionAnswering""",
"""TFAlbertForSequenceClassification""",
"""TFAlbertForTokenClassification""",
"""TFAlbertMainLayer""",
"""TFAlbertModel""",
"""TFAlbertPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase :Optional[int] = [
"""FlaxAlbertForMaskedLM""",
"""FlaxAlbertForMultipleChoice""",
"""FlaxAlbertForPreTraining""",
"""FlaxAlbertForQuestionAnswering""",
"""FlaxAlbertForSequenceClassification""",
"""FlaxAlbertForTokenClassification""",
"""FlaxAlbertModel""",
"""FlaxAlbertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert import AlbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert_fast import AlbertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
AlbertPreTrainedModel,
load_tf_weights_in_albert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_albert import (
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAlbertForMaskedLM,
TFAlbertForMultipleChoice,
TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
FlaxAlbertPreTrainedModel,
)
else:
import sys
_lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 179
| 1
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Any, Generic, TypeVar
_A = TypeVar("""T""")
class SCREAMING_SNAKE_CASE_ ( Generic[T] ):
def __init__( self , lowercase , lowercase ) -> Optional[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Any | T = None
__SCREAMING_SNAKE_CASE : int = len(snake_case__ )
__SCREAMING_SNAKE_CASE : list[T] = [any_type for _ in range(self.N )] + arr
__SCREAMING_SNAKE_CASE : List[str] = fnc
self.build()
def _snake_case ( self ) -> Any:
'''simple docstring'''
for p in range(self.N - 1 , 0 , -1 ):
__SCREAMING_SNAKE_CASE : Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def _snake_case ( self , lowercase , lowercase ) -> List[Any]:
'''simple docstring'''
p += self.N
__SCREAMING_SNAKE_CASE : Dict = v
while p > 1:
__SCREAMING_SNAKE_CASE : List[str] = p // 2
__SCREAMING_SNAKE_CASE : Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def _snake_case ( self , lowercase , lowercase ) -> Optional[int]: # noqa: E741
'''simple docstring'''
__SCREAMING_SNAKE_CASE : List[Any] = l + self.N, r + self.N
__SCREAMING_SNAKE_CASE : T | None = None
while l <= r:
if l % 2 == 1:
__SCREAMING_SNAKE_CASE : Tuple = self.st[l] if res is None else self.fn(snake_case__ , self.st[l] )
if r % 2 == 0:
__SCREAMING_SNAKE_CASE : List[str] = self.st[r] if res is None else self.fn(snake_case__ , self.st[r] )
__SCREAMING_SNAKE_CASE : Optional[int] = (l + 1) // 2, (r - 1) // 2
return res
if __name__ == "__main__":
from functools import reduce
_A = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12]
_A = {
0: 7,
1: 2,
2: 6,
3: -14,
4: 5,
5: 4,
6: 7,
7: -10,
8: 9,
9: 10,
10: 12,
11: 1,
}
_A = SegmentTree(test_array, min)
_A = SegmentTree(test_array, max)
_A = SegmentTree(test_array, lambda a, b: a + b)
def A_ ( ) -> None:
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
for j in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ):
__SCREAMING_SNAKE_CASE : List[str] = reduce(__SCREAMING_SNAKE_CASE , test_array[i : j + 1] )
__SCREAMING_SNAKE_CASE : Union[str, Any] = reduce(__SCREAMING_SNAKE_CASE , test_array[i : j + 1] )
__SCREAMING_SNAKE_CASE : Optional[int] = reduce(lambda __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : a + b , test_array[i : j + 1] )
assert min_range == min_segment_tree.query(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert max_range == max_segment_tree.query(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert sum_range == sum_segment_tree.query(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
test_all_segments()
for index, value in test_updates.items():
_A = value
min_segment_tree.update(index, value)
max_segment_tree.update(index, value)
sum_segment_tree.update(index, value)
test_all_segments()
| 158
|
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class __UpperCAmelCase:
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , snake_case__=1000 , ):
'''simple docstring'''
lowercase__ : Union[str, Any]= parent
lowercase__ : Any= batch_size
lowercase__ : str= seq_length
lowercase__ : str= is_training
lowercase__ : Optional[int]= use_input_mask
lowercase__ : Dict= use_token_type_ids
lowercase__ : Optional[int]= use_labels
lowercase__ : List[str]= vocab_size
lowercase__ : Optional[int]= hidden_size
lowercase__ : List[str]= num_hidden_layers
lowercase__ : Optional[int]= num_attention_heads
lowercase__ : Tuple= intermediate_size
lowercase__ : int= hidden_act
lowercase__ : Any= hidden_dropout_prob
lowercase__ : Dict= attention_probs_dropout_prob
lowercase__ : List[Any]= max_position_embeddings
lowercase__ : Optional[int]= type_vocab_size
lowercase__ : str= type_sequence_label_size
lowercase__ : Union[str, Any]= initializer_range
lowercase__ : Union[str, Any]= num_labels
lowercase__ : Dict= num_choices
lowercase__ : Dict= scope
lowercase__ : int= range_bbox
def UpperCAmelCase_ ( self ):
'''simple docstring'''
lowercase__ : List[Any]= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
lowercase__ : str= ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowercase__ : Any= bbox[i, j, 3]
lowercase__ : Tuple= bbox[i, j, 1]
lowercase__ : int= t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowercase__ : str= bbox[i, j, 2]
lowercase__ : List[Any]= bbox[i, j, 0]
lowercase__ : int= t
lowercase__ : Optional[int]= tf.convert_to_tensor(snake_case__ )
lowercase__ : Any= None
if self.use_input_mask:
lowercase__ : Dict= random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ : List[Any]= None
if self.use_token_type_ids:
lowercase__ : Dict= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase__ : int= None
lowercase__ : Tuple= None
lowercase__ : List[str]= None
if self.use_labels:
lowercase__ : Optional[Any]= ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ : List[Any]= ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase__ : Union[str, Any]= ids_tensor([self.batch_size] , self.num_choices )
lowercase__ : Any= LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
lowercase__ : Optional[Any]= TFLayoutLMModel(config=snake_case__ )
lowercase__ : Dict= model(snake_case__ , snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
lowercase__ : str= model(snake_case__ , snake_case__ , token_type_ids=snake_case__ )
lowercase__ : Any= model(snake_case__ , snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
lowercase__ : List[str]= TFLayoutLMForMaskedLM(config=snake_case__ )
lowercase__ : int= model(snake_case__ , snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
lowercase__ : Optional[Any]= self.num_labels
lowercase__ : List[Any]= TFLayoutLMForSequenceClassification(config=snake_case__ )
lowercase__ : Optional[Any]= model(snake_case__ , snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
lowercase__ : Dict= self.num_labels
lowercase__ : Union[str, Any]= TFLayoutLMForTokenClassification(config=snake_case__ )
lowercase__ : Tuple= model(snake_case__ , snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
lowercase__ : int= TFLayoutLMForQuestionAnswering(config=snake_case__ )
lowercase__ : int= model(snake_case__ , snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase_ ( self ):
'''simple docstring'''
lowercase__ : Any= self.prepare_config_and_inputs()
(
(
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
), (
lowercase__
),
) : Any= config_and_inputs
lowercase__ : Optional[Any]= {
"input_ids": input_ids,
"bbox": bbox,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_tf
class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
__lowerCamelCase = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
__lowerCamelCase = (
{
"feature-extraction": TFLayoutLMModel,
"fill-mask": TFLayoutLMForMaskedLM,
"text-classification": TFLayoutLMForSequenceClassification,
"token-classification": TFLayoutLMForTokenClassification,
"zero-shot": TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowerCamelCase = False
__lowerCamelCase = True
__lowerCamelCase = 10
def UpperCAmelCase_ ( self ):
'''simple docstring'''
lowercase__ : List[str]= TFLayoutLMModelTester(self )
lowercase__ : List[Any]= ConfigTester(self , config_class=snake_case__ , hidden_size=37 )
def UpperCAmelCase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase_ ( self ):
'''simple docstring'''
lowercase__ : Optional[Any]= self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def UpperCAmelCase_ ( self ):
'''simple docstring'''
lowercase__ : Any= self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def UpperCAmelCase_ ( self ):
'''simple docstring'''
lowercase__ : Union[str, Any]= self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case__ )
def UpperCAmelCase_ ( self ):
'''simple docstring'''
lowercase__ : str= self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case__ )
def UpperCAmelCase_ ( self ):
'''simple docstring'''
lowercase__ : Optional[Any]= self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case__ )
@slow
def UpperCAmelCase_ ( self ):
'''simple docstring'''
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : int= TFLayoutLMModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
@unittest.skip("Onnx compliancy broke with TF 2.10" )
def UpperCAmelCase_ ( self ):
'''simple docstring'''
pass
def lowercase__() ->List[Any]:
"""simple docstring"""
lowercase__ : List[str]= tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231
lowercase__ : List[str]= tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
lowercase__ : Tuple= tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231
lowercase__ : Optional[int]= tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
lowercase__ : Dict= tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class __UpperCAmelCase( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase_ ( self ):
'''simple docstring'''
lowercase__ : Optional[int]= TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" )
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ : Union[str, Any]= prepare_layoutlm_batch_inputs()
# forward pass
lowercase__ : Union[str, Any]= model(input_ids=snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
# test the sequence output on [0, :3, :3]
lowercase__ : Tuple= tf.convert_to_tensor(
[[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-3 ) )
# test the pooled output on [1, :3]
lowercase__ : Tuple= tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case__ , atol=1e-3 ) )
@slow
def UpperCAmelCase_ ( self ):
'''simple docstring'''
# initialize model with randomly initialized sequence classification head
lowercase__ : int= TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 )
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ : Dict= prepare_layoutlm_batch_inputs()
# forward pass
lowercase__ : List[Any]= model(
input_ids=snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
lowercase__ : Any= outputs.loss
lowercase__ : Union[str, Any]= (2,)
self.assertEqual(loss.shape , snake_case__ )
# test the shape of the logits
lowercase__ : Dict= outputs.logits
lowercase__ : Optional[int]= (2, 2)
self.assertEqual(logits.shape , snake_case__ )
@slow
def UpperCAmelCase_ ( self ):
'''simple docstring'''
# initialize model with randomly initialized token classification head
lowercase__ : List[str]= TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 )
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ : Any= prepare_layoutlm_batch_inputs()
# forward pass
lowercase__ : Optional[Any]= model(
input_ids=snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
# test the shape of the logits
lowercase__ : List[str]= outputs.logits
lowercase__ : Dict= tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , snake_case__ )
@slow
def UpperCAmelCase_ ( self ):
'''simple docstring'''
# initialize model with randomly initialized token classification head
lowercase__ : List[Any]= TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" )
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ : str= prepare_layoutlm_batch_inputs()
# forward pass
lowercase__ : int= model(input_ids=snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )
# test the shape of the logits
lowercase__ : List[str]= tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , snake_case__ )
self.assertEqual(outputs.end_logits.shape , snake_case__ )
| 218
| 0
|
from collections import deque
from .hash_table import HashTable
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def __init__( self : Any , *__lowercase : List[Any] , **__lowercase : List[str] ):
'''simple docstring'''
super().__init__(*__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : Union[str, Any] , __lowercase : str ):
'''simple docstring'''
__a = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowercase )
__a = self.values[key]
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
return (
sum(self.charge_factor - len(__lowercase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def UpperCamelCase_ ( self : str , __lowercase : List[Any] , __lowercase : str=None ):
'''simple docstring'''
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowercase ) == 0
):
return key
return super()._collision_resolution(__lowercase , __lowercase )
| 547
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase__ = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
__lowerCamelCase : str =['pixel_values']
def __init__( self : str , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = PIL.Image.BICUBIC , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : Union[int, float] = 1 / 255 , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Any , ):
'''simple docstring'''
super().__init__(**__lowercase )
__a = size if size is not None else {"""height""": 256, """width""": 256}
__a = get_size_dict(__lowercase )
__a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__a = get_size_dict(__lowercase , param_name="""crop_size""" )
__a = do_resize
__a = size
__a = resample
__a = do_center_crop
__a = crop_size
__a = do_rescale
__a = rescale_factor
__a = do_normalize
__a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PIL.Image.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Union[str, Any] , ):
'''simple docstring'''
__a = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" )
return resize(
__lowercase , size=(size["""height"""], size["""width"""]) , resample=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Dict , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str , ):
'''simple docstring'''
__a = get_size_dict(__lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" )
return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : int , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[str] , ):
'''simple docstring'''
return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Tuple , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str , ):
'''simple docstring'''
return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase )
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : Dict=None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : Optional[Any] , ):
'''simple docstring'''
__a = do_resize if do_resize is not None else self.do_resize
__a = resample if resample is not None else self.resample
__a = do_center_crop if do_center_crop is not None else self.do_center_crop
__a = do_rescale if do_rescale is not None else self.do_rescale
__a = rescale_factor if rescale_factor is not None else self.rescale_factor
__a = do_normalize if do_normalize is not None else self.do_normalize
__a = image_mean if image_mean is not None else self.image_mean
__a = image_std if image_std is not None else self.image_std
__a = size if size is not None else self.size
__a = get_size_dict(__lowercase )
__a = crop_size if crop_size is not None else self.crop_size
__a = get_size_dict(__lowercase , param_name="""crop_size""" )
__a = make_list_of_images(__lowercase )
if not valid_images(__lowercase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__a = [to_numpy_array(__lowercase ) for image in images]
if do_resize:
__a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images]
if do_center_crop:
__a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images]
if do_rescale:
__a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images]
if do_normalize:
__a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images]
__a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images]
__a = {"""pixel_values""": images}
return BatchFeature(data=__lowercase , tensor_type=__lowercase )
| 547
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import _LazyModule
lowercase__ = {"""tokenization_tapex""": ["""TapexTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 610
|
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def UpperCamelCase ( ):
lowerCAmelCase_ : Dict = HfArgumentParser(snake_case__)
lowerCAmelCase_ : Dict = parser.parse_args_into_dataclasses()[0]
lowerCAmelCase_ : List[Any] = TensorFlowBenchmark(args=snake_case__)
try:
lowerCAmelCase_ : str = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
lowerCAmelCase_ : Optional[Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead."
lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1])
lowerCAmelCase_ : List[Any] = ""
lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1])
lowerCAmelCase_ : List[Any] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:])
else:
wrong_args.append(snake_case__)
if len(snake_case__) > 0:
lowerCAmelCase_ : int = full_error_msg + begin_error_msg + str(snake_case__)
raise ValueError(snake_case__)
benchmark.run()
if __name__ == "__main__":
main()
| 659
| 0
|
from math import sqrt
def _lowercase ( a_ : int ) -> bool:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and (
number >= 0
), "'number' must been an int and positive"
__magic_name__ = True
# 0 and 1 are none primes.
if number <= 1:
__magic_name__ = False
for divisor in range(2 ,int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__magic_name__ = False
break
# precondition
assert isinstance(a_ ,a_ ), "'status' must been from type bool"
return status
def _lowercase ( a_ : Any ) -> str:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__magic_name__ = list(range(2 ,n + 1 ) )
__magic_name__ = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 ,len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__magic_name__ = 0
# filters actual prime numbers.
__magic_name__ = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ ,a_ ), "'ans' must been from type list"
return ans
def _lowercase ( a_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and (n > 2), "'N' must been an int and > 2"
__magic_name__ = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 ,n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ ,a_ ), "'ans' must been from type list"
return ans
def _lowercase ( a_ : Union[str, Any] ) -> Any:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and number >= 0, "'number' must been an int and >= 0"
__magic_name__ = [] # this list will be returns of the function.
# potential prime number factors.
__magic_name__ = 2
__magic_name__ = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ ,a_ ), "'ans' must been from type list"
return ans
def _lowercase ( a_ : Union[str, Any] ) -> str:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__magic_name__ = 0
# prime factorization of 'number'
__magic_name__ = prime_factorization(a_ )
__magic_name__ = max(a_ )
# precondition
assert isinstance(a_ ,a_ ), "'ans' must been from type int"
return ans
def _lowercase ( a_ : str ) -> Tuple:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__magic_name__ = 0
# prime factorization of 'number'
__magic_name__ = prime_factorization(a_ )
__magic_name__ = min(a_ )
# precondition
assert isinstance(a_ ,a_ ), "'ans' must been from type int"
return ans
def _lowercase ( a_ : Tuple ) -> Tuple:
'''simple docstring'''
assert isinstance(a_ ,a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 ,a_ ), "compare bust been from type bool"
return number % 2 == 0
def _lowercase ( a_ : Optional[int] ) -> str:
'''simple docstring'''
assert isinstance(a_ ,a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 ,a_ ), "compare bust been from type bool"
return number % 2 != 0
def _lowercase ( a_ : int ) -> Any:
'''simple docstring'''
assert (
isinstance(a_ ,a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__magic_name__ = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__magic_name__ = get_prime_numbers(a_ )
__magic_name__ = len(a_ )
# run variable for while-loops.
__magic_name__ = 0
__magic_name__ = None
# exit variable. for break up the loops
__magic_name__ = True
while i < len_pn and loop:
__magic_name__ = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__magic_name__ = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ ,a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def _lowercase ( a_ : Union[str, Any] ,a_ : List[str] ) -> int:
'''simple docstring'''
assert (
isinstance(a_ ,a_ )
and isinstance(a_ ,a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__magic_name__ = 0
while numbera != 0:
__magic_name__ = numbera % numbera
__magic_name__ = numbera
__magic_name__ = rest
# precondition
assert isinstance(a_ ,a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def _lowercase ( a_ : Optional[Any] ,a_ : List[Any] ) -> str:
'''simple docstring'''
assert (
isinstance(a_ ,a_ )
and isinstance(a_ ,a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__magic_name__ = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__magic_name__ = prime_factorization(a_ )
__magic_name__ = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__magic_name__ = []
__magic_name__ = []
__magic_name__ = max(a_ ,a_ )
__magic_name__ = 0
__magic_name__ = 0
__magic_name__ = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__magic_name__ = prime_fac_a.count(a_ )
__magic_name__ = prime_fac_a.count(a_ )
for _ in range(max(a_ ,a_ ) ):
ans *= n
else:
__magic_name__ = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__magic_name__ = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ ,a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def _lowercase ( a_ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and (n >= 0), "'number' must been a positive int"
__magic_name__ = 0
__magic_name__ = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ ,a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def _lowercase ( a_ : List[Any] ,a_ : List[str] ) -> Dict:
'''simple docstring'''
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__magic_name__ = p_number_a + 1 # jump to the next number
__magic_name__ = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ ,a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def _lowercase ( a_ : Union[str, Any] ) -> int:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and (n >= 1), "'n' must been int and >= 1"
__magic_name__ = [] # will be returned.
for divisor in range(1 ,n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def _lowercase ( a_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__magic_name__ = get_divisors(a_ )
# precondition
assert (
isinstance(a_ ,a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def _lowercase ( a_ : Any ,a_ : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
assert (
isinstance(a_ ,a_ )
and isinstance(a_ ,a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__magic_name__ = gcd(abs(a_ ) ,abs(a_ ) )
# precondition
assert (
isinstance(a_ ,a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def _lowercase ( a_ : List[Any] ) -> Tuple:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and (n >= 0), "'n' must been a int and >= 0"
__magic_name__ = 1 # this will be return.
for factor in range(1 ,n + 1 ):
ans *= factor
return ans
def _lowercase ( a_ : Optional[int] ) -> List[str]:
'''simple docstring'''
assert isinstance(a_ ,a_ ) and (n >= 0), "'n' must been an int and >= 0"
__magic_name__ = 0
__magic_name__ = 1
__magic_name__ = 1 # this will be return
for _ in range(n - 1 ):
__magic_name__ = ans
ans += fiba
__magic_name__ = tmp
return ans
| 709
|
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def _lowercase ( a_ : Optional[Any] ,a_ : Dict ,a_ : Any ,a_ : Any=None ,a_ : Any=None ,a_ : List[str]=None ,a_ : Union[str, Any]=None ,a_ : Dict=None ,) -> Optional[Any]:
'''simple docstring'''
if attention_mask is None:
__magic_name__ = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
__magic_name__ = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
__magic_name__ = torch.ones(config.encoder_layers ,config.encoder_attention_heads ,device=a_ )
if decoder_head_mask is None:
__magic_name__ = torch.ones(config.decoder_layers ,config.decoder_attention_heads ,device=a_ )
if cross_attn_head_mask is None:
__magic_name__ = torch.ones(config.decoder_layers ,config.decoder_attention_heads ,device=a_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class __UpperCamelCase :
def __init__( self: Union[str, Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: List[Any]=13 , __UpperCamelCase: Tuple=7 , __UpperCamelCase: Dict=True , __UpperCamelCase: Optional[int]=False , __UpperCamelCase: str=99 , __UpperCamelCase: Optional[Any]=16 , __UpperCamelCase: List[Any]=2 , __UpperCamelCase: Optional[int]=4 , __UpperCamelCase: Tuple=4 , __UpperCamelCase: Optional[int]="relu" , __UpperCamelCase: Optional[Any]=0.1 , __UpperCamelCase: Dict=0.1 , __UpperCamelCase: int=0.0 , __UpperCamelCase: int=0.0 , __UpperCamelCase: List[Any]=20 , __UpperCamelCase: Union[str, Any]=2 , __UpperCamelCase: List[Any]=1 , __UpperCamelCase: Tuple=0 , ):
'''simple docstring'''
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = seq_length
__magic_name__ = is_training
__magic_name__ = use_labels
__magic_name__ = vocab_size
__magic_name__ = hidden_size
__magic_name__ = num_hidden_layers
__magic_name__ = num_attention_heads
__magic_name__ = intermediate_size
__magic_name__ = hidden_act
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = encoder_layerdrop
__magic_name__ = decoder_layerdrop
__magic_name__ = max_position_embeddings
__magic_name__ = eos_token_id
__magic_name__ = pad_token_id
__magic_name__ = bos_token_id
def _SCREAMING_SNAKE_CASE ( self: Dict ):
'''simple docstring'''
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ = self.eos_token_id # Eos Token
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
__magic_name__ = input_ids.clamp(self.pad_token_id + 1 )
__magic_name__ = decoder_input_ids.clamp(self.pad_token_id + 1 )
__magic_name__ = self.get_config()
__magic_name__ = prepare_mam_aaa_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, inputs_dict
def _SCREAMING_SNAKE_CASE ( self: Optional[int] ):
'''simple docstring'''
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ):
'''simple docstring'''
__magic_name__, __magic_name__ = self.prepare_config_and_inputs()
return config, inputs_dict
def _SCREAMING_SNAKE_CASE ( self: Tuple , __UpperCamelCase: Tuple , __UpperCamelCase: Union[str, Any] ):
'''simple docstring'''
__magic_name__ = MaMaaaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval()
__magic_name__ = inputs_dict['input_ids']
__magic_name__ = inputs_dict['attention_mask']
__magic_name__ = inputs_dict['head_mask']
# first forward pass
__magic_name__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , head_mask=__UpperCamelCase , use_cache=__UpperCamelCase )
__magic_name__, __magic_name__ = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
__magic_name__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
__magic_name__ = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
__magic_name__ = torch.cat([input_ids, next_tokens] , dim=-1 )
__magic_name__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
__magic_name__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )['last_hidden_state']
__magic_name__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[
'last_hidden_state'
]
# select random slice
__magic_name__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__magic_name__ = output_from_no_past[:, -3:, random_slice_idx].detach()
__magic_name__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-2 ) )
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , __UpperCamelCase: Any , __UpperCamelCase: int ):
'''simple docstring'''
__magic_name__ = MaMaaaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
__magic_name__ = model(**__UpperCamelCase )
__magic_name__ = outputs.encoder_last_hidden_state
__magic_name__ = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__magic_name__ = model.get_encoder()
encoder.save_pretrained(__UpperCamelCase )
__magic_name__ = MaMaaaEncoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase )
__magic_name__ = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
__magic_name__ = model.get_decoder()
decoder.save_pretrained(__UpperCamelCase )
__magic_name__ = MaMaaaDecoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase )
__magic_name__ = decoder(
input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 )
@require_torch
class __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
_lowercase : Tuple = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
_lowercase : Dict = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
_lowercase : Tuple = (
{
"conversational": MaMaaaForConditionalGeneration,
"feature-extraction": MaMaaaModel,
"summarization": MaMaaaForConditionalGeneration,
"text2text-generation": MaMaaaForConditionalGeneration,
"translation": MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
_lowercase : List[str] = True
_lowercase : Dict = True
_lowercase : Union[str, Any] = False
_lowercase : List[Any] = False
def _SCREAMING_SNAKE_CASE ( self: Dict , __UpperCamelCase: Any , __UpperCamelCase: Optional[Any] , __UpperCamelCase: List[str] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Tuple ):
'''simple docstring'''
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def _SCREAMING_SNAKE_CASE ( self: Tuple ):
'''simple docstring'''
__magic_name__ = MaMaaaModelTester(self )
__magic_name__ = ConfigTester(self , config_class=__UpperCamelCase )
def _SCREAMING_SNAKE_CASE ( self: List[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self: List[Any] ):
'''simple docstring'''
__magic_name__, __magic_name__ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__magic_name__ = model_class(__UpperCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCamelCase )
__magic_name__, __magic_name__ = model_class.from_pretrained(__UpperCamelCase , output_loading_info=__UpperCamelCase )
self.assertEqual(info['missing_keys'] , [] )
def _SCREAMING_SNAKE_CASE ( self: List[Any] ):
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase )
def _SCREAMING_SNAKE_CASE ( self: List[Any] ):
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__UpperCamelCase )
def _SCREAMING_SNAKE_CASE ( self: List[str] ):
'''simple docstring'''
__magic_name__, __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
__magic_name__ = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
__magic_name__ = copy.deepcopy(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
if not self.is_encoder_decoder:
__magic_name__ = inputs['input_ids']
del inputs["input_ids"]
else:
__magic_name__ = inputs['input_ids']
__magic_name__ = inputs.get('decoder_input_ids' , __UpperCamelCase )
del inputs["input_ids"]
inputs.pop('decoder_input_ids' , __UpperCamelCase )
__magic_name__ = model.get_input_embeddings()
if not self.is_encoder_decoder:
__magic_name__ = wte(__UpperCamelCase )
else:
__magic_name__ = wte(__UpperCamelCase )
__magic_name__ = wte(__UpperCamelCase )
with torch.no_grad():
model(**__UpperCamelCase )[0]
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ):
'''simple docstring'''
__magic_name__, __magic_name__ = self.model_tester.prepare_config_and_inputs()
__magic_name__ = input_dict['input_ids']
__magic_name__ = input_ids.ne(1 ).to(__UpperCamelCase )
__magic_name__ = MaMaaaForConditionalGeneration(__UpperCamelCase ).eval().to(__UpperCamelCase )
if torch_device == "cuda":
model.half()
model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase )
model.generate(num_beams=4 , do_sample=__UpperCamelCase , early_stopping=__UpperCamelCase , num_return_sequences=3 )
def _lowercase ( a_ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
return torch.tensor(a_ ,dtype=torch.long ,device=a_ )
A__ = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def _SCREAMING_SNAKE_CASE ( self: Any ):
'''simple docstring'''
return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' )
def _SCREAMING_SNAKE_CASE ( self: int ):
'''simple docstring'''
__magic_name__ = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__UpperCamelCase )
__magic_name__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] )
__magic_name__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] )
__magic_name__ = prepare_mam_aaa_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase )
with torch.no_grad():
__magic_name__ = model(**__UpperCamelCase )[0]
__magic_name__ = torch.Size((1, 11, 10_24) )
self.assertEqual(output.shape , __UpperCamelCase )
# change to expected output here
__magic_name__ = torch.tensor(
[[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__UpperCamelCase )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
def _SCREAMING_SNAKE_CASE ( self: str ):
'''simple docstring'''
__magic_name__ = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCamelCase )
# change to intended input
__magic_name__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] )
__magic_name__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] )
__magic_name__ = prepare_mam_aaa_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase )
with torch.no_grad():
__magic_name__ = model(**__UpperCamelCase )[0]
__magic_name__ = torch.Size((1, 11, model.config.vocab_size) )
self.assertEqual(output.shape , __UpperCamelCase )
# change to expected output here
__magic_name__ = torch.tensor(
[[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__UpperCamelCase )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ):
'''simple docstring'''
__magic_name__ = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCamelCase )
__magic_name__ = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' )
__magic_name__ = [
'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement',
'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.',
'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent'
' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de'
' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.',
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
__magic_name__ = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors='pt' )
__magic_name__ = model.generate(
input_ids=dct['input_ids'].to(__UpperCamelCase ) , attention_mask=dct['attention_mask'].to(__UpperCamelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , )
__magic_name__ = [
'The NSA case highlights the total absence of intelligence debate',
'I think there are two levels of response from the French government.',
'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.'
' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all'
' communications in France.',
]
__magic_name__ = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCamelCase , skip_special_tokens=__UpperCamelCase )
assert generated == expected_en
| 184
| 0
|
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A ( UpperCAmelCase ):
a_ = ['''image_processor''', '''tokenizer''']
a_ = '''ViltImageProcessor'''
a_ = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self : Optional[Any] , __a : int=None , __a : Optional[int]=None , **__a : Union[str, Any] ) -> str:
__UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __a , )
__UpperCAmelCase = kwargs.pop('''feature_extractor''' )
__UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__a , __a )
__UpperCAmelCase = self.image_processor
def __call__( self : str , __a : Optional[Any] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : str , ) -> BatchEncoding:
__UpperCAmelCase = self.tokenizer(
text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , )
# add pixel_values + pixel_mask
__UpperCAmelCase = self.image_processor(__a , return_tensors=__a )
encoding.update(__a )
return encoding
def snake_case__ ( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> List[Any]:
return self.tokenizer.batch_decode(*__a , **__a )
def snake_case__ ( self : Any , *__a : Dict , **__a : str ) -> Tuple:
return self.tokenizer.decode(*__a , **__a )
@property
def snake_case__ ( self : List[str] ) -> Union[str, Any]:
__UpperCAmelCase = self.tokenizer.model_input_names
__UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def snake_case__ ( self : str ) -> Optional[Any]:
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , )
return self.image_processor_class
@property
def snake_case__ ( self : Optional[Any] ) -> Any:
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , )
return self.image_processor
| 262
|
'''simple docstring'''
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def lowerCAmelCase ( UpperCamelCase__ : BertModel , UpperCamelCase__ : str , UpperCamelCase__ : str ):
"""simple docstring"""
__UpperCAmelCase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''')
__UpperCAmelCase = (
('''layer.''', '''layer_'''),
('''word_embeddings.weight''', '''word_embeddings'''),
('''position_embeddings.weight''', '''position_embeddings'''),
('''token_type_embeddings.weight''', '''token_type_embeddings'''),
('''.''', '''/'''),
('''LayerNorm/weight''', '''LayerNorm/gamma'''),
('''LayerNorm/bias''', '''LayerNorm/beta'''),
('''weight''', '''kernel'''),
)
if not os.path.isdir(UpperCamelCase__ ):
os.makedirs(UpperCamelCase__ )
__UpperCAmelCase = model.state_dict()
def to_tf_var_name(UpperCamelCase__ : str ):
for patt, repl in iter(UpperCamelCase__ ):
__UpperCAmelCase = name.replace(UpperCamelCase__ , UpperCamelCase__ )
return f"""bert/{name}"""
def create_tf_var(UpperCamelCase__ : np.ndarray , UpperCamelCase__ : str , UpperCamelCase__ : tf.Session ):
__UpperCAmelCase = tf.dtypes.as_dtype(tensor.dtype )
__UpperCAmelCase = tf.get_variable(dtype=UpperCamelCase__ , shape=tensor.shape , name=UpperCamelCase__ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(UpperCamelCase__ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__UpperCAmelCase = to_tf_var_name(UpperCamelCase__ )
__UpperCAmelCase = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__UpperCAmelCase = torch_tensor.T
__UpperCAmelCase = create_tf_var(tensor=UpperCamelCase__ , name=UpperCamelCase__ , session=UpperCamelCase__ )
tf.keras.backend.set_value(UpperCamelCase__ , UpperCamelCase__ )
__UpperCAmelCase = session.run(UpperCamelCase__ )
print(f"""Successfully created {tf_name}: {np.allclose(UpperCamelCase__ , UpperCamelCase__ )}""" )
__UpperCAmelCase = tf.train.Saver(tf.trainable_variables() )
saver.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) )
def lowerCAmelCase ( UpperCamelCase__ : List[str]=None ):
"""simple docstring"""
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--model_name''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''model name e.g. bert-base-uncased''' )
parser.add_argument(
'''--cache_dir''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory containing pytorch model''' )
parser.add_argument('''--pytorch_model_path''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''/path/to/<pytorch-model-name>.bin''' )
parser.add_argument('''--tf_cache_dir''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory in which to save tensorflow model''' )
__UpperCAmelCase = parser.parse_args(UpperCamelCase__ )
__UpperCAmelCase = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=UpperCamelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 262
| 1
|
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class __A( UpperCAmelCase ):
def lowercase__ ( self : List[Any] ):
lowerCamelCase_ = SMALL_MODEL_IDENTIFIER
lowerCamelCase_ = """pt"""
lowerCamelCase_ = """tf"""
def lowercase__ ( self : Tuple , __UpperCamelCase : Optional[int] ):
lowerCamelCase_ = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(__UpperCamelCase )
def lowercase__ ( self : Any , __UpperCamelCase : Tuple ):
lowerCamelCase_ = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCamelCase )
model_tf.save_pretrained(__UpperCamelCase )
def lowercase__ ( self : Union[str, Any] ):
lowerCamelCase_ = """mock_framework"""
# Framework provided - return whatever the user provides
lowerCamelCase_ = FeaturesManager.determine_framework(self.test_model , __UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCamelCase )
lowerCamelCase_ = FeaturesManager.determine_framework(__UpperCamelCase , __UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCamelCase )
lowerCamelCase_ = FeaturesManager.determine_framework(__UpperCamelCase , __UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
def lowercase__ ( self : Optional[int] ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(__UpperCamelCase )
lowerCamelCase_ = FeaturesManager.determine_framework(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(__UpperCamelCase )
lowerCamelCase_ = FeaturesManager.determine_framework(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(__UpperCamelCase ):
lowerCamelCase_ = FeaturesManager.determine_framework(__UpperCamelCase )
def lowercase__ ( self : List[str] ):
lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase )
with patch("""transformers.onnx.features.is_tf_available""" , __UpperCamelCase ):
lowerCamelCase_ = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCamelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase )
with patch("""transformers.onnx.features.is_torch_available""" , __UpperCamelCase ):
lowerCamelCase_ = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCamelCase , self.framework_tf )
# Both in environment -> use PyTorch
lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase )
lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase )
with patch("""transformers.onnx.features.is_tf_available""" , __UpperCamelCase ), patch(
"""transformers.onnx.features.is_torch_available""" , __UpperCamelCase ):
lowerCamelCase_ = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(__UpperCamelCase , self.framework_pt )
# Both not in environment -> raise error
lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase )
lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase )
with patch("""transformers.onnx.features.is_tf_available""" , __UpperCamelCase ), patch(
"""transformers.onnx.features.is_torch_available""" , __UpperCamelCase ):
with self.assertRaises(__UpperCamelCase ):
lowerCamelCase_ = FeaturesManager.determine_framework(self.test_model )
| 721
|
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class __A:
def __init__( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Dict=7 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : List[Any]=3_7 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : List[str]=0.02 , __UpperCamelCase : Any=3 , __UpperCamelCase : int=4 , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Union[str, Any]=0 , ):
lowerCamelCase_ = parent
lowerCamelCase_ = batch_size
lowerCamelCase_ = seq_length
lowerCamelCase_ = is_training
lowerCamelCase_ = use_input_mask
lowerCamelCase_ = use_token_type_ids
lowerCamelCase_ = use_labels
lowerCamelCase_ = vocab_size
lowerCamelCase_ = hidden_size
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = intermediate_size
lowerCamelCase_ = hidden_act
lowerCamelCase_ = hidden_dropout_prob
lowerCamelCase_ = attention_probs_dropout_prob
lowerCamelCase_ = max_position_embeddings
lowerCamelCase_ = type_vocab_size
lowerCamelCase_ = type_sequence_label_size
lowerCamelCase_ = initializer_range
lowerCamelCase_ = num_labels
lowerCamelCase_ = num_choices
lowerCamelCase_ = scope
lowerCamelCase_ = projection_dim
def lowercase__ ( self : Union[str, Any] ):
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase_ = None
if self.use_input_mask:
# follow test_modeling_tf_ctrl.py
lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ = None
if self.use_token_type_ids:
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase_ = None
lowerCamelCase_ = None
lowerCamelCase_ = None
if self.use_labels:
lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase_ = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , )
lowerCamelCase_ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ):
lowerCamelCase_ = TFDPRContextEncoder(config=__UpperCamelCase )
lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase )
lowerCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase )
lowerCamelCase_ = model(__UpperCamelCase )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def lowercase__ ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] ):
lowerCamelCase_ = TFDPRQuestionEncoder(config=__UpperCamelCase )
lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase )
lowerCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase )
lowerCamelCase_ = model(__UpperCamelCase )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ):
lowerCamelCase_ = TFDPRReader(config=__UpperCamelCase )
lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) )
def lowercase__ ( self : Dict ):
lowerCamelCase_ = self.prepare_config_and_inputs()
(
(
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) ,
) = config_and_inputs
lowerCamelCase_ = {"""input_ids""": input_ids}
return config, inputs_dict
@require_tf
class __A( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
SCREAMING_SNAKE_CASE = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
SCREAMING_SNAKE_CASE = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {}
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = False
def lowercase__ ( self : Dict ):
lowerCamelCase_ = TFDPRModelTester(self )
lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 )
def lowercase__ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
def lowercase__ ( self : Any ):
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*__UpperCamelCase )
def lowercase__ ( self : Dict ):
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*__UpperCamelCase )
def lowercase__ ( self : List[str] ):
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*__UpperCamelCase )
@slow
def lowercase__ ( self : Optional[int] ):
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ = TFDPRReader.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@require_tf
class __A( unittest.TestCase ):
@slow
def lowercase__ ( self : Union[str, Any] ):
lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" )
lowerCamelCase_ = tf.constant(
[[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP]
lowerCamelCase_ = model(__UpperCamelCase )[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
lowerCamelCase_ = tf.constant(
[
[
0.03236253,
0.12753335,
0.16818509,
0.00279786,
0.3896933,
0.24264945,
0.2178971,
-0.02335227,
-0.08481959,
-0.14324117,
]
] )
self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 103
| 0
|
"""simple docstring"""
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _a ( ) -> Optional[int]:
__SCREAMING_SNAKE_CASE = HfArgumentParser(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0]
__SCREAMING_SNAKE_CASE = TensorFlowBenchmark(args=UpperCAmelCase__ )
try:
__SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
__SCREAMING_SNAKE_CASE = '''Arg --no_{0} is no longer used, please use --no-{0} instead.'''
__SCREAMING_SNAKE_CASE = ''' '''.join(str(UpperCAmelCase__ ).split(''' ''' )[:-1] )
__SCREAMING_SNAKE_CASE = ''''''
__SCREAMING_SNAKE_CASE = eval(str(UpperCAmelCase__ ).split(''' ''' )[-1] )
__SCREAMING_SNAKE_CASE = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(UpperCAmelCase__ )
if len(UpperCAmelCase__ ) > 0:
__SCREAMING_SNAKE_CASE = full_error_msg + begin_error_msg + str(UpperCAmelCase__ )
raise ValueError(UpperCAmelCase__ )
benchmark.run()
if __name__ == "__main__":
main()
| 482
|
"""simple docstring"""
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class A__:
def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : int=10 , __SCREAMING_SNAKE_CASE : List[Any]=[8, 16, 32, 64] , __SCREAMING_SNAKE_CASE : str=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[str]="relu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Dict=["stage2", "stage3", "stage4"] , __SCREAMING_SNAKE_CASE : Optional[Any]=[2, 3, 4] , __SCREAMING_SNAKE_CASE : int=1 , ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = embeddings_size
__SCREAMING_SNAKE_CASE = hidden_sizes
__SCREAMING_SNAKE_CASE = depths
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = num_labels
__SCREAMING_SNAKE_CASE = scope
__SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = out_features
__SCREAMING_SNAKE_CASE = out_indices
__SCREAMING_SNAKE_CASE = num_groups
def _a ( self : List[Any] ) -> int:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
__SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _a ( self : Any ) -> str:
"""simple docstring"""
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BitModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.num_labels
__SCREAMING_SNAKE_CASE = BitForImageClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a ( self : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BitBackbone(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = BitBackbone(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
__SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _a ( self : int ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs
__SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class A__( __magic_name__ , __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
lowerCAmelCase = (
{'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification}
if is_torch_available()
else {}
)
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def _a ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BitModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE )
def _a ( self : Optional[int] ) -> int:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _a ( self : Any ) -> Optional[int]:
"""simple docstring"""
return
@unittest.skip(reason='''Bit does not output attentions''' )
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def _a ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def _a ( self : Optional[int] ) -> Dict:
"""simple docstring"""
pass
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def _a ( self : int ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _a ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__SCREAMING_SNAKE_CASE )
def _a ( self : int ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(config=__SCREAMING_SNAKE_CASE )
for name, module in model.named_modules():
if isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def _a ( self : int ) -> Dict:
"""simple docstring"""
def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ):
__SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
__SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
__SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
__SCREAMING_SNAKE_CASE = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__SCREAMING_SNAKE_CASE = layer_type
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def _a ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def _a ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE = BitModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def _a ( ) -> List[Any]:
__SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class A__( unittest.TestCase ):
@cached_property
def _a ( self : Dict ) -> str:
"""simple docstring"""
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def _a ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = self.default_image_processor
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
__SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE )
# verify the logits
__SCREAMING_SNAKE_CASE = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
@require_torch
class A__( __magic_name__ , unittest.TestCase ):
lowerCAmelCase = (BitBackbone,) if is_torch_available() else ()
lowerCAmelCase = BitConfig
lowerCAmelCase = False
def _a ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = BitModelTester(self )
| 482
| 1
|
'''simple docstring'''
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = [1]
for i in range(2 , a__ ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : List[str] = list(range(a__ ) )
# Find permutation
while factorials:
SCREAMING_SNAKE_CASE : Tuple = factorials.pop()
SCREAMING_SNAKE_CASE : Union[str, Any] = divmod(a__ , a__ )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715
|
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = AutoencoderKL
__SCREAMING_SNAKE_CASE : Optional[int] = 'sample'
__SCREAMING_SNAKE_CASE : Any = 1E-2
@property
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : List[Any] = 4
SCREAMING_SNAKE_CASE : List[Any] = 3
SCREAMING_SNAKE_CASE : int = (32, 32)
SCREAMING_SNAKE_CASE : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase )
return {"sample": image}
@property
def __lowerCAmelCase ( self ) ->str:
return (3, 32, 32)
@property
def __lowerCAmelCase ( self ) ->Dict:
return (3, 32, 32)
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[int] = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_input
return init_dict, inputs_dict
def __lowerCAmelCase ( self ) ->Dict:
pass
def __lowerCAmelCase ( self ) ->Optional[Any]:
pass
@unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' )
def __lowerCAmelCase ( self ) ->Dict:
# enable deterministic behavior for gradient checkpointing
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_class(**_lowerCamelCase )
model.to(_lowerCamelCase )
assert not model.is_gradient_checkpointing and model.training
SCREAMING_SNAKE_CASE : Tuple = model(**_lowerCamelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn_like(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
SCREAMING_SNAKE_CASE : str = self.model_class(**_lowerCamelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(_lowerCamelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
SCREAMING_SNAKE_CASE : Any = model_a(**_lowerCamelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
SCREAMING_SNAKE_CASE : Tuple = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
SCREAMING_SNAKE_CASE : List[Any] = dict(model.named_parameters() )
SCREAMING_SNAKE_CASE : Optional[int] = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) )
def __lowerCAmelCase ( self ) ->List[str]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 )
model.to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : str = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' )
SCREAMING_SNAKE_CASE : Dict = model.to(_lowerCamelCase )
model.eval()
if torch_device == "mps":
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
SCREAMING_SNAKE_CASE : List[Any] = image.to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , sample_posterior=_lowerCamelCase , generator=_lowerCamelCase ).sample
SCREAMING_SNAKE_CASE : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[
-4.0078e-01,
-3.8323e-04,
-1.2681e-01,
-1.1462e-01,
2.0095e-01,
1.0893e-01,
-8.8247e-02,
-3.0361e-01,
-9.8644e-03,
] )
elif torch_device == "cpu":
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(
[-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] )
else:
SCREAMING_SNAKE_CASE : Dict = torch.tensor(
[-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] )
self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1e-2 ) )
@slow
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]:
return F"""gaussian_noise_s={seed}_shape={"_".join([str(_lowerCamelCase ) for s in shape] )}.npy"""
def __lowerCAmelCase ( self ) ->Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self , _lowerCamelCase=0 , _lowerCamelCase=(4, 3, 512, 512) , _lowerCamelCase=False ) ->List[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = torch.floataa if fpaa else torch.floataa
SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCamelCase , _lowerCamelCase ) ) ).to(_lowerCamelCase ).to(_lowerCamelCase )
return image
def __lowerCAmelCase ( self , _lowerCamelCase="CompVis/stable-diffusion-v1-4" , _lowerCamelCase=False ) ->List[Any]:
SCREAMING_SNAKE_CASE : List[str] = '''fp16''' if fpaa else None
SCREAMING_SNAKE_CASE : Dict = torch.floataa if fpaa else torch.floataa
SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL.from_pretrained(
_lowerCamelCase , subfolder='''vae''' , torch_dtype=_lowerCamelCase , revision=_lowerCamelCase , )
model.to(_lowerCamelCase ).eval()
return model
def __lowerCAmelCase ( self , _lowerCamelCase=0 ) ->Optional[int]:
if torch_device == "mps":
return torch.manual_seed(_lowerCamelCase )
return torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[Any] = self.get_sd_vae_model()
SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = self.get_generator(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , generator=_lowerCamelCase , sample_posterior=_lowerCamelCase ).sample
assert sample.shape == image.shape
SCREAMING_SNAKE_CASE : Any = sample[-1, -2:, -2:, :2].flatten().float().cpu()
SCREAMING_SNAKE_CASE : Any = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice )
assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]],
[47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]],
# fmt: on
] )
@require_torch_gpu
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model(fpaa=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_sd_image(_lowerCamelCase , fpaa=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = self.get_generator(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase , generator=_lowerCamelCase , sample_posterior=_lowerCamelCase ).sample
assert sample.shape == image.shape
SCREAMING_SNAKE_CASE : Optional[int] = sample[-1, -2:, :2, -2:].flatten().float().cpu()
SCREAMING_SNAKE_CASE : str = torch.tensor(_lowerCamelCase )
assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Dict = self.get_sd_vae_model()
SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Any = model(_lowerCamelCase ).sample
assert sample.shape == image.shape
SCREAMING_SNAKE_CASE : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice )
assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]],
[37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]],
# fmt: on
] )
@require_torch_gpu
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict:
SCREAMING_SNAKE_CASE : str = self.get_sd_vae_model()
SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model.decode(_lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
SCREAMING_SNAKE_CASE : Any = sample[-1, -2:, :2, -2:].flatten().cpu()
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(_lowerCamelCase )
assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]],
[16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]],
# fmt: on
] )
@require_torch_gpu
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model(fpaa=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model.decode(_lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
SCREAMING_SNAKE_CASE : str = sample[-1, -2:, :2, -2:].flatten().float().cpu()
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(_lowerCamelCase )
assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model(fpaa=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[Any] = model.decode(_lowerCamelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model.decode(_lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]:
SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model()
SCREAMING_SNAKE_CASE : int = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[Any] = model.decode(_lowerCamelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Union[str, Any] = model.decode(_lowerCamelCase ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]],
[47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]],
# fmt: on
] )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]:
SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model()
SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.get_generator(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Tuple = model.encode(_lowerCamelCase ).latent_dist
SCREAMING_SNAKE_CASE : int = dist.sample(generator=_lowerCamelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
SCREAMING_SNAKE_CASE : Optional[Any] = sample[0, -1, -3:, -3:].flatten().cpu()
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = 3e-3 if torch_device != '''mps''' else 1e-2
assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase )
| 333
| 0
|
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class SCREAMING_SNAKE_CASE ( snake_case_ ):
def lowercase_ ( self : Tuple ):
'''simple docstring'''
a_ : List[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowercase__ , """width_multiplier""" ) )
class SCREAMING_SNAKE_CASE :
def __init__( self : Optional[int] , lowercase__ : int , lowercase__ : int=13 , lowercase__ : List[str]=64 , lowercase__ : List[Any]=2 , lowercase__ : List[str]=3 , lowercase__ : Any="swish" , lowercase__ : Union[str, Any]=3 , lowercase__ : Optional[int]=32 , lowercase__ : Any=0.1 , lowercase__ : Tuple=0.02 , lowercase__ : int=True , lowercase__ : Optional[Any]=True , lowercase__ : str=10 , lowercase__ : Union[str, Any]=None , lowercase__ : str=0.25 , lowercase__ : Tuple=0.0 , lowercase__ : Optional[Any]=0.0 , ):
'''simple docstring'''
a_ : str = parent
a_ : List[Any] = batch_size
a_ : Optional[int] = image_size
a_ : Optional[Any] = patch_size
a_ : Tuple = num_channels
a_ : Any = make_divisible(512 * width_multiplier , divisor=8 )
a_ : Optional[Any] = hidden_act
a_ : Optional[int] = conv_kernel_size
a_ : Tuple = output_stride
a_ : int = classifier_dropout_prob
a_ : List[Any] = use_labels
a_ : Optional[Any] = is_training
a_ : int = num_labels
a_ : int = initializer_range
a_ : List[Any] = scope
a_ : Optional[int] = width_multiplier
a_ : str = ffn_dropout
a_ : Any = attn_dropout
def lowercase_ ( self : Any ):
'''simple docstring'''
a_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a_ : Optional[int] = None
a_ : int = None
if self.use_labels:
a_ : Dict = ids_tensor([self.batch_size] , self.num_labels )
a_ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
a_ : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase_ ( self : str ):
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def lowercase_ ( self : List[Any] , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Tuple ):
'''simple docstring'''
a_ : List[str] = MobileViTVaModel(config=lowercase__ )
model.to(lowercase__ )
model.eval()
a_ : Any = model(lowercase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase_ ( self : int , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : Dict ):
'''simple docstring'''
a_ : Dict = self.num_labels
a_ : List[Any] = MobileViTVaForImageClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
a_ : Optional[Any] = model(lowercase__ , labels=lowercase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase_ ( self : Dict , lowercase__ : Dict , lowercase__ : Any , lowercase__ : str , lowercase__ : List[Any] ):
'''simple docstring'''
a_ : Dict = self.num_labels
a_ : Optional[Any] = MobileViTVaForSemanticSegmentation(lowercase__ )
model.to(lowercase__ )
model.eval()
a_ : Tuple = model(lowercase__ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
a_ : Optional[int] = model(lowercase__ , labels=lowercase__ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase_ ( self : Tuple ):
'''simple docstring'''
a_ : List[str] = self.prepare_config_and_inputs()
a_ , a_ , a_ , a_ : Any = config_and_inputs
a_ : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ):
__magic_name__ : Union[str, Any] = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__magic_name__ : List[Any] = (
{
'''feature-extraction''': MobileViTVaModel,
'''image-classification''': MobileViTVaForImageClassification,
'''image-segmentation''': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__magic_name__ : str = False
__magic_name__ : Tuple = False
__magic_name__ : Optional[int] = False
__magic_name__ : Any = False
def lowercase_ ( self : str ):
'''simple docstring'''
a_ : int = MobileViTVaModelTester(self )
a_ : List[Any] = MobileViTVaConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ )
def lowercase_ ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" )
def lowercase_ ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" )
def lowercase_ ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""" )
def lowercase_ ( self : Optional[int] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" )
def lowercase_ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase_ ( self : List[str] ):
'''simple docstring'''
pass
def lowercase_ ( self : List[str] ):
'''simple docstring'''
a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a_ : Any = model_class(lowercase__ )
a_ : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a_ : str = [*signature.parameters.keys()]
a_ : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowercase__ )
def lowercase_ ( self : int ):
'''simple docstring'''
a_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__ )
def lowercase_ ( self : List[str] ):
'''simple docstring'''
def check_hidden_states_output(lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : int ):
a_ : int = model_class(lowercase__ )
model.to(lowercase__ )
model.eval()
with torch.no_grad():
a_ : Dict = model(**self._prepare_for_class(lowercase__ , lowercase__ ) )
a_ : List[Any] = outputs.hidden_states
a_ : Optional[Any] = 5
self.assertEqual(len(lowercase__ ) , lowercase__ )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
a_ : Optional[int] = 2
for i in range(len(lowercase__ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a_ : List[str] = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a_ : List[Any] = True
check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ )
def lowercase_ ( self : str ):
'''simple docstring'''
a_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase__ )
def lowercase_ ( self : Dict ):
'''simple docstring'''
a_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__ )
@slow
def lowercase_ ( self : Tuple ):
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a_ : Tuple = MobileViTVaModel.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
def _SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
a_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def lowercase_ ( self : List[Any] ):
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" )
if is_vision_available()
else None
)
@slow
def lowercase_ ( self : Tuple ):
'''simple docstring'''
a_ : List[Any] = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to(
lowercase__ )
a_ : Union[str, Any] = self.default_image_processor
a_ : Dict = prepare_img()
a_ : Union[str, Any] = image_processor(images=lowercase__ , return_tensors="""pt""" ).to(lowercase__ )
# forward pass
with torch.no_grad():
a_ : str = model(**lowercase__ )
# verify the logits
a_ : Optional[int] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowercase__ )
a_ : int = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(lowercase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) )
@slow
def lowercase_ ( self : Any ):
'''simple docstring'''
a_ : List[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
a_ : int = model.to(lowercase__ )
a_ : List[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
a_ : Any = prepare_img()
a_ : int = image_processor(images=lowercase__ , return_tensors="""pt""" ).to(lowercase__ )
# forward pass
with torch.no_grad():
a_ : List[str] = model(**lowercase__ )
a_ : Union[str, Any] = outputs.logits
# verify the logits
a_ : List[Any] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , lowercase__ )
a_ : Any = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=lowercase__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase__ , atol=1e-4 ) )
@slow
def lowercase_ ( self : int ):
'''simple docstring'''
a_ : Any = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
a_ : int = model.to(lowercase__ )
a_ : str = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
a_ : Optional[int] = prepare_img()
a_ : List[Any] = image_processor(images=lowercase__ , return_tensors="""pt""" ).to(lowercase__ )
# forward pass
with torch.no_grad():
a_ : List[Any] = model(**lowercase__ )
a_ : Union[str, Any] = outputs.logits.detach().cpu()
a_ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase__ , target_sizes=[(50, 60)] )
a_ : Optional[int] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , lowercase__ )
a_ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase__ )
a_ : int = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , lowercase__ )
| 442
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE ( metaclass=snake_case_ ):
__magic_name__ : Dict = ['''transformers''', '''torch''', '''note_seq''']
def __init__( self : List[str] , *lowercase__ : Dict , **lowercase__ : int ):
'''simple docstring'''
requires_backends(self , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def lowercase_ ( cls : Dict , *lowercase__ : List[str] , **lowercase__ : str ):
'''simple docstring'''
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def lowercase_ ( cls : str , *lowercase__ : Optional[int] , **lowercase__ : Any ):
'''simple docstring'''
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
| 442
| 1
|
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def snake_case ( UpperCAmelCase : Optional[Any], UpperCAmelCase : Any ):
A = args.log_outputs
A = '''_'''.join(args.dataset.split('/' ) + [args.config, args.split] )
# load metric
A = load_metric('wer' )
A = load_metric('cer' )
# compute metrics
A = wer.compute(references=result['target'], predictions=result['prediction'] )
A = cer.compute(references=result['target'], predictions=result['prediction'] )
# print & log results
A = f'WER: {wer_result}\nCER: {cer_result}'
print(UpperCAmelCase )
with open(f'{dataset_id}_eval_results.txt', 'w' ) as f:
f.write(UpperCAmelCase )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A = f'log_{dataset_id}_predictions.txt'
A = f'log_{dataset_id}_targets.txt'
with open(UpperCAmelCase, 'w' ) as p, open(UpperCAmelCase, 'w' ) as t:
# mapping function to write output
def write_to_file(UpperCAmelCase : Any, UpperCAmelCase : Union[str, Any] ):
p.write(f'{i}' + '\n' )
p.write(batch['prediction'] + '\n' )
t.write(f'{i}' + '\n' )
t.write(batch['target'] + '\n' )
result.map(UpperCAmelCase, with_indices=UpperCAmelCase )
def snake_case ( UpperCAmelCase : str ):
A = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A = re.sub(UpperCAmelCase, '', text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A = ''' '''.join(text.split(UpperCAmelCase ) )
return text
def snake_case ( UpperCAmelCase : Dict ):
A = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=UpperCAmelCase )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A = AutoFeatureExtractor.from_pretrained(args.model_id )
A = feature_extractor.sampling_rate
# resample audio
A = dataset.cast_column('audio', Audio(sampling_rate=UpperCAmelCase ) )
# load eval pipeline
if args.device is None:
A = 0 if torch.cuda.is_available() else -1
A = pipeline('automatic-speech-recognition', model=args.model_id, device=args.device )
# map function to decode audio
def map_to_pred(UpperCAmelCase : Any ):
A = asr(
batch['audio']['array'], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s )
A = prediction['''text''']
A = normalize_text(batch['sentence'] )
return batch
# run inference on all examples
A = dataset.map(UpperCAmelCase, remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(UpperCAmelCase, UpperCAmelCase )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
'--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers'
)
parser.add_argument(
'--dataset',
type=str,
required=True,
help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets',
)
parser.add_argument(
'--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice'
)
parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`')
parser.add_argument(
'--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.'
)
parser.add_argument(
'--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.'
)
parser.add_argument(
'--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.'
)
parser.add_argument(
'--device',
type=int,
default=None,
help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.',
)
lowerCAmelCase_ = parser.parse_args()
main(args)
| 718
|
import math
def snake_case ( UpperCAmelCase : list, UpperCAmelCase : int ):
A = len(UpperCAmelCase )
A = int(math.floor(math.sqrt(UpperCAmelCase ) ) )
A = 0
while arr[min(UpperCAmelCase, UpperCAmelCase ) - 1] < x:
A = step
step += int(math.floor(math.sqrt(UpperCAmelCase ) ) )
if prev >= n:
return -1
while arr[prev] < x:
A = prev + 1
if prev == min(UpperCAmelCase, UpperCAmelCase ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
lowerCAmelCase_ = input('Enter numbers separated by a comma:\n').strip()
lowerCAmelCase_ = [int(item) for item in user_input.split(',')]
lowerCAmelCase_ = int(input('Enter the number to be searched:\n'))
lowerCAmelCase_ = jump_search(arr, x)
if res == -1:
print('Number not found!')
else:
print(f'''Number {x} is at index {res}''')
| 110
| 0
|
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : str , __A : List[str] , __A : List[str]=7 , __A : Optional[Any]=3 , __A : Union[str, Any]=3_0 , __A : int=4_0_0 , __A : Union[str, Any]=True , __A : Union[str, Any]=None , __A : str=True , __A : Dict=[0.5, 0.5, 0.5] , __A : Any=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Dict=1 / 2_5_5 , __A : List[Any]=True , ):
"""simple docstring"""
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
_lowercase = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3}
_lowercase = parent
_lowercase = batch_size
_lowercase = num_channels
_lowercase = min_resolution
_lowercase = max_resolution
_lowercase = do_resize
_lowercase = size
_lowercase = do_normalize
_lowercase = image_mean
_lowercase = image_std
_lowercase = do_rescale
_lowercase = rescale_factor
_lowercase = do_pad
def snake_case ( self : Tuple ):
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case ( self : Any , __A : Optional[int] , __A : Optional[Any]=False ):
"""simple docstring"""
if not batched:
_lowercase = image_inputs[0]
if isinstance(__A , Image.Image ):
_lowercase , _lowercase = image.size
else:
_lowercase , _lowercase = image.shape[1], image.shape[2]
if w < h:
_lowercase = int(self.size["shortest_edge"] * h / w )
_lowercase = self.size["shortest_edge"]
elif w > h:
_lowercase = self.size["shortest_edge"]
_lowercase = int(self.size["shortest_edge"] * w / h )
else:
_lowercase = self.size["shortest_edge"]
_lowercase = self.size["shortest_edge"]
else:
_lowercase = []
for image in image_inputs:
_lowercase , _lowercase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_lowercase = max(__A , key=lambda __A : item[0] )[0]
_lowercase = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase__ ( lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ = DetaImageProcessor if is_vision_available() else None
def snake_case ( self : int ):
"""simple docstring"""
_lowercase = DetaImageProcessingTester(self )
@property
def snake_case ( self : List[Any] ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case ( self : Optional[Any] ):
"""simple docstring"""
_lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , "image_mean" ) )
self.assertTrue(hasattr(__A , "image_std" ) )
self.assertTrue(hasattr(__A , "do_normalize" ) )
self.assertTrue(hasattr(__A , "do_resize" ) )
self.assertTrue(hasattr(__A , "do_rescale" ) )
self.assertTrue(hasattr(__A , "do_pad" ) )
self.assertTrue(hasattr(__A , "size" ) )
def snake_case ( self : Optional[int] ):
"""simple docstring"""
_lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __A )
def snake_case ( self : Dict ):
"""simple docstring"""
pass
def snake_case ( self : str ):
"""simple docstring"""
# Initialize image_processing
_lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
_lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A , batched=__A )
_lowercase = image_processing(__A , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case ( self : Any ):
"""simple docstring"""
# Initialize image_processing
_lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
_lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowercase = image_processing(__A , return_tensors="pt" ).pixel_values
_lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case ( self : Any ):
"""simple docstring"""
# Initialize image_processing
_lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
_lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowercase = image_processing(__A , return_tensors="pt" ).pixel_values
_lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case ( self : List[Any] ):
"""simple docstring"""
# prepare image and target
_lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
_lowercase = json.loads(f.read() )
_lowercase = {"image_id": 3_9_7_6_9, "annotations": target}
# encode them
_lowercase = DetaImageProcessor()
_lowercase = image_processing(images=__A , annotations=__A , return_tensors="pt" )
# verify pixel values
_lowercase = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
_lowercase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
_lowercase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
_lowercase = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
_lowercase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
_lowercase = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
_lowercase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
_lowercase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify orig_size
_lowercase = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
_lowercase = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
@slow
def snake_case ( self : Dict ):
"""simple docstring"""
# prepare image, target and masks_path
_lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
_lowercase = json.loads(f.read() )
_lowercase = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target}
_lowercase = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
_lowercase = DetaImageProcessor(format="coco_panoptic" )
_lowercase = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" )
# verify pixel values
_lowercase = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["pixel_values"].shape , __A )
_lowercase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
_lowercase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) )
# verify boxes
_lowercase = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , __A )
_lowercase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) )
# verify image_id
_lowercase = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) )
# verify is_crowd
_lowercase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) )
# verify class_labels
_lowercase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) )
# verify masks
_lowercase = 8_2_2_8_7_3
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A )
# verify orig_size
_lowercase = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) )
# verify size
_lowercase = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
| 497
|
'''simple docstring'''
from __future__ import annotations
def A__ ( A_ , A_ ) -> list[str]:
if nth_term == "":
return [""]
_lowercase = int(A_ )
_lowercase = int(A_ )
_lowercase = []
for temp in range(int(A_ ) ):
series.append(F"""1 / {pow(temp + 1 , int(A_ ) )}""" if series else "1" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
__magic_name__ : Any = int(input('''Enter the last number (nth term) of the P-Series'''))
__magic_name__ : Dict = int(input('''Enter the power for P-Series'''))
print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''')
print(p_series(nth_term, power))
| 497
| 1
|
'''simple docstring'''
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Dict = get_tests_dir('fixtures/test_sentencepiece_bpe.model')
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = BartphoTokenizer
lowerCAmelCase_ = False
lowerCAmelCase_ = True
def UpperCAmelCase_ ( self )-> Union[str, Any]:
'''simple docstring'''
super().setUp()
UpperCamelCase = ['▁This', '▁is', '▁a', '▁t', 'est']
UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) )
UpperCamelCase = {'unk_token': '<unk>'}
UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] )
with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp:
for token in vocab_tokens:
fp.write(F'''{token} {vocab_tokens[token]}\n''' )
UpperCamelCase = BartphoTokenizer(A_ , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase_ ( self , **A_ )-> Tuple:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **A_ )
def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = 'This is a là test'
UpperCamelCase = 'This is a<unk><unk> test'
return input_text, output_text
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = BartphoTokenizer(A_ , self.monolingual_vocab_file , **self.special_tokens_map )
UpperCamelCase = 'This is a là test'
UpperCamelCase = '▁This ▁is ▁a ▁l à ▁t est'.split()
UpperCamelCase = tokenizer.tokenize(A_ )
self.assertListEqual(A_ , A_ )
UpperCamelCase = tokens + [tokenizer.unk_token]
UpperCamelCase = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
| 432
|
'''simple docstring'''
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
lowerCAmelCase : int = logging.get_logger('transformers.models.speecht5')
lowerCAmelCase : Tuple = {
'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm',
'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection',
'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv',
'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed',
}
lowerCAmelCase : List[str] = {
'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens',
'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha',
}
lowerCAmelCase : Dict = {
'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0',
'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1',
'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer',
'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha',
'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer',
}
lowerCAmelCase : Optional[Any] = {
'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out',
'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out',
'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv',
'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm',
'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv',
'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm',
'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv',
'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm',
'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv',
'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm',
'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv',
'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm',
}
lowerCAmelCase : Any = {
'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens',
}
lowerCAmelCase : Optional[int] = {
'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head',
}
lowerCAmelCase : List[Any] = {
'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj',
'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj',
'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj',
'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj',
'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm',
'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense',
'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense',
'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm',
'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k',
}
lowerCAmelCase : str = {
'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj',
'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj',
'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj',
'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj',
'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm',
'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj',
'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj',
'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj',
'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj',
'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm',
'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense',
'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense',
'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm',
}
lowerCAmelCase : Dict = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
lowerCAmelCase : int = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
lowerCAmelCase : Union[str, Any] = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : List[Any] = [
'encoder.version',
'encoder.layers.*.norm_k.weight',
'encoder.layers.*.norm_k.bias',
'decoder.version',
'decoder.layers.*.norm_k.weight',
'decoder.layers.*.norm_k.bias',
'decoder.pos_emb.pe_k',
'speech_encoder_prenet.embed_positions._float_tensor',
'text_decoder_prenet.embed_positions._float_tensor',
]
lowerCAmelCase : int = IGNORE_KEYS + [
'encoder.proj',
'text_encoder_prenet.*',
'speech_decoder_prenet.*',
'speech_decoder_postnet.*',
]
lowerCAmelCase : Optional[int] = IGNORE_KEYS + [
'encoder.proj',
'speech_encoder_prenet.*',
'text_decoder_prenet.*',
'text_decoder_postnet.*',
]
lowerCAmelCase : Any = IGNORE_KEYS + [
'encoder.proj',
'text_encoder_prenet.*',
'text_decoder_prenet.*',
'text_decoder_postnet.*',
]
def A_( A : Optional[Any] , A : Dict , A : str , A : Optional[int] , A : List[str]):
for attribute in key.split('.'):
UpperCamelCase = getattr(A , A)
if weight_type is not None:
UpperCamelCase = getattr(A , A).shape
else:
UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''')
if weight_type == "weight":
UpperCamelCase = value
elif weight_type == "weight_g":
UpperCamelCase = value
elif weight_type == "weight_v":
UpperCamelCase = value
elif weight_type == "bias":
UpperCamelCase = value
elif weight_type == "running_mean":
UpperCamelCase = value
elif weight_type == "running_var":
UpperCamelCase = value
elif weight_type == "num_batches_tracked":
UpperCamelCase = value
else:
UpperCamelCase = value
logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''')
def A_( A : List[str] , A : Tuple):
for key in ignore_keys:
if key.endswith('.*'):
if name.startswith(key[:-1]):
return True
elif ".*." in key:
UpperCamelCase , UpperCamelCase = key.split('.*.')
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_( A : Union[str, Any] , A : List[str] , A : Optional[int]):
UpperCamelCase = []
if task == "s2t":
UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
UpperCamelCase = MAPPING_S2T
UpperCamelCase = IGNORE_KEYS_S2T
elif task == "t2s":
UpperCamelCase = None
UpperCamelCase = MAPPING_T2S
UpperCamelCase = IGNORE_KEYS_T2S
elif task == "s2s":
UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder
UpperCamelCase = MAPPING_S2S
UpperCamelCase = IGNORE_KEYS_S2S
else:
raise ValueError(f'''Unsupported task: {task}''')
for name, value in fairseq_dict.items():
if should_ignore(A , A):
logger.info(f'''{name} was ignored''')
continue
UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
A , A , A , A , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
UpperCamelCase , UpperCamelCase = key.split('.*.')
if prefix in name and suffix in name:
UpperCamelCase = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
UpperCamelCase = True
if "*" in mapped_key:
UpperCamelCase = name.split(A)[0].split('.')[-2]
UpperCamelCase = mapped_key.replace('*' , A)
if "weight_g" in name:
UpperCamelCase = 'weight_g'
elif "weight_v" in name:
UpperCamelCase = 'weight_v'
elif "bias" in name:
UpperCamelCase = 'bias'
elif "weight" in name:
UpperCamelCase = 'weight'
elif "running_mean" in name:
UpperCamelCase = 'running_mean'
elif "running_var" in name:
UpperCamelCase = 'running_var'
elif "num_batches_tracked" in name:
UpperCamelCase = 'num_batches_tracked'
else:
UpperCamelCase = None
set_recursively(A , A , A , A , A)
continue
if not is_used:
unused_weights.append(A)
logger.warning(f'''Unused weights: {unused_weights}''')
def A_( A : Dict , A : Optional[int] , A : str , A : Dict , A : Any):
UpperCamelCase = full_name.split('conv_layers.')[-1]
UpperCamelCase = name.split('.')
UpperCamelCase = int(items[0])
UpperCamelCase = int(items[1])
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''')
UpperCamelCase = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
else:
unused_weights.append(A)
@torch.no_grad()
def A_( A : Optional[Any] , A : List[str] , A : Tuple , A : Optional[Any]=None , A : Any=None , A : Optional[int]=None , ):
if config_path is not None:
UpperCamelCase = SpeechTaConfig.from_pretrained(A)
else:
UpperCamelCase = SpeechTaConfig()
if task == "s2t":
UpperCamelCase = config.max_text_positions
UpperCamelCase = SpeechTaForSpeechToText(A)
elif task == "t2s":
UpperCamelCase = 1876
UpperCamelCase = 600
UpperCamelCase = config.max_speech_positions
UpperCamelCase = SpeechTaForTextToSpeech(A)
elif task == "s2s":
UpperCamelCase = 1876
UpperCamelCase = config.max_speech_positions
UpperCamelCase = SpeechTaForSpeechToSpeech(A)
else:
raise ValueError(f'''Unknown task name: {task}''')
if vocab_path:
UpperCamelCase = SpeechTaTokenizer(A , model_max_length=config.max_text_positions)
# Mask token behaves like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken('<mask>' , lstrip=A , rstrip=A)
UpperCamelCase = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token})
tokenizer.add_tokens(['<ctc_blank>'])
UpperCamelCase = SpeechTaFeatureExtractor()
UpperCamelCase = SpeechTaProcessor(tokenizer=A , feature_extractor=A)
processor.save_pretrained(A)
UpperCamelCase = torch.load(A)
recursively_load_weights(fairseq_checkpoint['model'] , A , A)
model.save_pretrained(A)
if repo_id:
print('Pushing to the hub...')
processor.push_to_hub(A)
model.push_to_hub(A)
if __name__ == "__main__":
lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--task',
default='s2t',
type=str,
help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.',
)
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
lowerCAmelCase : int = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 432
| 1
|
"""simple docstring"""
from typing import List, Optional, Union
import torch
from transformers import (
XLMRobertaTokenizer,
)
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
from .text_encoder import MultilingualCLIP
__lowerCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
__lowerCAmelCase : Any = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n"
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=8 ):
"""simple docstring"""
lowerCAmelCase__ = h // scale_factor**2
if h % scale_factor**2 != 0:
new_h += 1
lowerCAmelCase__ = w // scale_factor**2
if w % scale_factor**2 != 0:
new_w += 1
return new_h * scale_factor, new_w * scale_factor
class a_ ( __UpperCamelCase ):
def __init__( self : Any , snake_case__ : MultilingualCLIP , snake_case__ : XLMRobertaTokenizer , snake_case__ : UNetaDConditionModel , snake_case__ : Union[DDIMScheduler, DDPMScheduler] , snake_case__ : VQModel , ):
super().__init__()
self.register_modules(
text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , )
lowerCAmelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Optional[int] ):
if latents is None:
lowerCAmelCase__ = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ )
else:
if latents.shape != shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
lowerCAmelCase__ = latents.to(snake_case__ )
lowerCAmelCase__ = latents * scheduler.init_noise_sigma
return latents
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Dict , snake_case__ : str , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Any=None , ):
lowerCAmelCase__ = len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1
# get prompt text embeddings
lowerCAmelCase__ = self.tokenizer(
snake_case__ , padding="""max_length""" , truncation=snake_case__ , max_length=77 , return_attention_mask=snake_case__ , add_special_tokens=snake_case__ , return_tensors="""pt""" , )
lowerCAmelCase__ = text_inputs.input_ids
lowerCAmelCase__ = self.tokenizer(snake_case__ , padding="""longest""" , return_tensors="""pt""" ).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(snake_case__ , snake_case__ ):
lowerCAmelCase__ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
lowerCAmelCase__ = text_input_ids.to(snake_case__ )
lowerCAmelCase__ = text_inputs.attention_mask.to(snake_case__ )
lowerCAmelCase__ , lowerCAmelCase__ = self.text_encoder(
input_ids=snake_case__ , attention_mask=snake_case__ )
lowerCAmelCase__ = prompt_embeds.repeat_interleave(snake_case__ , dim=0 )
lowerCAmelCase__ = text_encoder_hidden_states.repeat_interleave(snake_case__ , dim=0 )
lowerCAmelCase__ = text_mask.repeat_interleave(snake_case__ , dim=0 )
if do_classifier_free_guidance:
lowerCAmelCase__ = 42
if negative_prompt is None:
lowerCAmelCase__ = [""""""] * batch_size
elif type(snake_case__ ) is not type(snake_case__ ):
raise TypeError(
F"""`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !="""
F""" {type(snake_case__ )}.""" )
elif isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase__ = [negative_prompt]
elif batch_size != len(snake_case__ ):
raise ValueError(
F"""`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:"""
F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
""" the batch size of `prompt`.""" )
else:
lowerCAmelCase__ = negative_prompt
lowerCAmelCase__ = self.tokenizer(
snake_case__ , padding="""max_length""" , max_length=77 , truncation=snake_case__ , return_attention_mask=snake_case__ , add_special_tokens=snake_case__ , return_tensors="""pt""" , )
lowerCAmelCase__ = uncond_input.input_ids.to(snake_case__ )
lowerCAmelCase__ = uncond_input.attention_mask.to(snake_case__ )
lowerCAmelCase__ , lowerCAmelCase__ = self.text_encoder(
input_ids=snake_case__ , attention_mask=snake_case__ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
lowerCAmelCase__ = negative_prompt_embeds.shape[1]
lowerCAmelCase__ = negative_prompt_embeds.repeat(1 , snake_case__ )
lowerCAmelCase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ )
lowerCAmelCase__ = uncond_text_encoder_hidden_states.shape[1]
lowerCAmelCase__ = uncond_text_encoder_hidden_states.repeat(1 , snake_case__ , 1 )
lowerCAmelCase__ = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt , snake_case__ , -1 )
lowerCAmelCase__ = uncond_text_mask.repeat_interleave(snake_case__ , dim=0 )
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowerCAmelCase__ = torch.cat([negative_prompt_embeds, prompt_embeds] )
lowerCAmelCase__ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] )
lowerCAmelCase__ = torch.cat([uncond_text_mask, text_mask] )
return prompt_embeds, text_encoder_hidden_states, text_mask
def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[Any]=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
lowerCAmelCase__ = torch.device(F"""cuda:{gpu_id}""" )
lowerCAmelCase__ = [
self.unet,
self.text_encoder,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(snake_case__ , snake_case__ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str=0 ):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
lowerCAmelCase__ = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=snake_case__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
lowerCAmelCase__ = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]:
lowerCAmelCase__ , lowerCAmelCase__ = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ )
if self.safety_checker is not None:
lowerCAmelCase__ , lowerCAmelCase__ = cpu_offload_with_hook(self.safety_checker , snake_case__ , prev_module_hook=snake_case__ )
# We'll offload the last model manually.
lowerCAmelCase__ = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _SCREAMING_SNAKE_CASE ( self : Dict ):
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(snake_case__ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(snake_case__ )
def __call__( self : Union[str, Any] , snake_case__ : Union[str, List[str]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Optional[Union[str, List[str]]] = None , snake_case__ : int = 512 , snake_case__ : int = 512 , snake_case__ : int = 100 , snake_case__ : float = 4.0 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ):
if isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase__ = 1
elif isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase__ = len(snake_case__ )
else:
raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}""" )
lowerCAmelCase__ = self._execution_device
lowerCAmelCase__ = batch_size * num_images_per_prompt
lowerCAmelCase__ = guidance_scale > 1.0
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._encode_prompt(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase__ = torch.cat(snake_case__ , dim=0 )
if isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase__ = torch.cat(snake_case__ , dim=0 )
if do_classifier_free_guidance:
lowerCAmelCase__ = image_embeds.repeat_interleave(snake_case__ , dim=0 )
lowerCAmelCase__ = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 )
lowerCAmelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(
dtype=prompt_embeds.dtype , device=snake_case__ )
self.scheduler.set_timesteps(snake_case__ , device=snake_case__ )
lowerCAmelCase__ = self.scheduler.timesteps
lowerCAmelCase__ = self.unet.config.in_channels
lowerCAmelCase__ , lowerCAmelCase__ = get_new_h_w(snake_case__ , snake_case__ , self.movq_scale_factor )
# create initial latent
lowerCAmelCase__ = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , snake_case__ , snake_case__ , snake_case__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(snake_case__ ) ):
# expand the latents if we are doing classifier free guidance
lowerCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowerCAmelCase__ = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds}
lowerCAmelCase__ = self.unet(
sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0]
if do_classifier_free_guidance:
lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 )
lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.chunk(2 )
lowerCAmelCase__ , lowerCAmelCase__ = variance_pred.chunk(2 )
lowerCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
lowerCAmelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
lowerCAmelCase__ = self.scheduler.step(
snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , ).prev_sample
# post-processing
lowerCAmelCase__ = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
lowerCAmelCase__ = image * 0.5 + 0.5
lowerCAmelCase__ = image.clamp(0 , 1 )
lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowerCAmelCase__ = self.numpy_to_pil(snake_case__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case__ )
| 644
|
"""simple docstring"""
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if (ksize % 2) == 0:
lowerCAmelCase__ = ksize + 1
lowerCAmelCase__ = np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(lowerCamelCase__ ):
for x in range(lowerCamelCase__ ):
# distance from center
lowerCAmelCase__ = x - ksize // 2
lowerCAmelCase__ = y - ksize // 2
# degree to radiant
lowerCAmelCase__ = theta / 180 * np.pi
lowerCAmelCase__ = np.cos(_theta )
lowerCAmelCase__ = np.sin(_theta )
# get kernel x
lowerCAmelCase__ = cos_theta * px + sin_theta * py
# get kernel y
lowerCAmelCase__ = -sin_theta * px + cos_theta * py
# fill kernel
lowerCAmelCase__ = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
__lowerCAmelCase : Tuple = imread("../image_data/lena.jpg")
# turn image in gray scale value
__lowerCAmelCase : List[str] = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
__lowerCAmelCase : Union[str, Any] = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 1_20, 1_50]:
__lowerCAmelCase : Union[str, Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
__lowerCAmelCase : Optional[int] = out / out.max() * 2_55
__lowerCAmelCase : Tuple = out.astype(np.uinta)
imshow("Original", gray)
imshow("Gabor filter with 20x20 mask and 6 directions", out)
waitKey(0)
| 644
| 1
|
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""}
__UpperCAmelCase = {
"""vocab_file""": {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""",
}
}
__UpperCAmelCase = {
"""camembert-base""": 512,
}
__UpperCAmelCase = """▁"""
class SCREAMING_SNAKE_CASE ( a_ ):
"""simple docstring"""
lowerCamelCase : Optional[Any] =VOCAB_FILES_NAMES
lowerCamelCase : int =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : int =["input_ids", "attention_mask"]
def __init__( self : str , lowerCAmelCase : Dict , lowerCAmelCase : Dict="<s>" , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Optional[int]="<s>" , lowerCAmelCase : Optional[Any]="<unk>" , lowerCAmelCase : Optional[Any]="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : List[Any]=["<s>NOTUSED", "</s>NOTUSED"] , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Any , ) -> None:
"""simple docstring"""
__lowerCAmelCase : str = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token
__lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
__lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowercase_ ) )
__lowerCAmelCase : Any = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__lowerCAmelCase : List[str] = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3}
__lowerCAmelCase : int = len(self.fairseq_tokens_to_ids )
__lowerCAmelCase : Optional[int] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowerCAmelCase : Dict = [self.cls_token_id]
__lowerCAmelCase : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowercase_ )) + [1]
return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1]
def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowerCAmelCase : Dict = [self.sep_token_id]
__lowerCAmelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def SCREAMING_SNAKE_CASE ( self : int ) -> Dict:
"""simple docstring"""
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(lowercase_ , out_type=lowercase_ )
def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(lowercase_ ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(lowercase_ )
def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : int ) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase : Any = []
__lowerCAmelCase : Union[str, Any] = """"""
__lowerCAmelCase : List[Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase_ ) + token
__lowerCAmelCase : Optional[int] = True
__lowerCAmelCase : str = []
else:
current_sub_tokens.append(lowercase_ )
__lowerCAmelCase : Tuple = False
out_string += self.sp_model.decode(lowercase_ )
return out_string.strip()
def __getstate__( self : Tuple ) -> List[Any]:
"""simple docstring"""
__lowerCAmelCase : List[Any] = self.__dict__.copy()
__lowerCAmelCase : int = None
return state
def __setstate__( self : Optional[Any] , lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowerCAmelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__lowerCAmelCase : Tuple = {}
__lowerCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowercase_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__lowerCAmelCase : List[str] = os.path.join(
lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase_ , """wb""" ) as fi:
__lowerCAmelCase : str = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (out_vocab_file,)
| 716
|
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def snake_case_ (__A : str , __A : str , __A : str , __A : PreTrainedTokenizer , __A : int , __A : Optional[int] = None , ) -> Tuple:
__lowerCAmelCase : int = {}
if train_file is not None:
__lowerCAmelCase : Optional[Any] = [train_file]
if eval_file is not None:
__lowerCAmelCase : Dict = [eval_file]
if test_file is not None:
__lowerCAmelCase : Tuple = [test_file]
__lowerCAmelCase : Dict = datasets.load_dataset("""csv""" , data_files=__A )
__lowerCAmelCase : Optional[Any] = list(ds[list(files.keys() )[0]].features.keys() )
__lowerCAmelCase : Optional[Any] = features_name.pop(__A )
__lowerCAmelCase : int = list(set(ds[list(files.keys() )[0]][label_name] ) )
__lowerCAmelCase : Optional[Any] = {label: i for i, label in enumerate(__A )}
__lowerCAmelCase : Union[str, Any] = tokenizer.model_input_names
__lowerCAmelCase : List[Any] = {}
if len(__A ) == 1:
for k in files.keys():
__lowerCAmelCase : Tuple = ds[k].map(
lambda __A : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=__A , max_length=__A , padding="""max_length""" ) , batched=__A , )
elif len(__A ) == 2:
for k in files.keys():
__lowerCAmelCase : Optional[int] = ds[k].map(
lambda __A : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=__A , max_length=__A , padding="""max_length""" , ) , batched=__A , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__lowerCAmelCase : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names}
__lowerCAmelCase : str = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__lowerCAmelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names}
__lowerCAmelCase : List[str] = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__lowerCAmelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names}
__lowerCAmelCase : str = labelaid[ex[label_name]]
yield (d, label)
__lowerCAmelCase : Dict = (
tf.data.Dataset.from_generator(
__A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__lowerCAmelCase : str = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__lowerCAmelCase : Dict = (
tf.data.Dataset.from_generator(
__A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__lowerCAmelCase : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__lowerCAmelCase : Optional[Any] = (
tf.data.Dataset.from_generator(
__A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__lowerCAmelCase : Any = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__UpperCAmelCase = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE :
"""simple docstring"""
lowerCamelCase : int =field(metadata={"help": "Which column contains the label"} )
lowerCamelCase : str =field(default=a_ , metadata={"help": "The path of the training file"} )
lowerCamelCase : Optional[str] =field(default=a_ , metadata={"help": "The path of the development file"} )
lowerCamelCase : Optional[str] =field(default=a_ , metadata={"help": "The path of the test file"} )
lowerCamelCase : int =field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase : bool =field(
default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
@dataclass
class SCREAMING_SNAKE_CASE :
"""simple docstring"""
lowerCamelCase : str =field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase : Optional[str] =field(
default=a_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase : Optional[str] =field(
default=a_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase : bool =field(default=a_ , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowerCamelCase : Optional[str] =field(
default=a_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
def snake_case_ () -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.info(
f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '''
f'''16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : int = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__A , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
__lowerCAmelCase : int = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__A ) , labelaid=__A , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
__lowerCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , )
def compute_metrics(__A : EvalPrediction ) -> Dict:
__lowerCAmelCase : str = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__lowerCAmelCase : Tuple = TFTrainer(
model=__A , args=__A , train_dataset=__A , eval_dataset=__A , compute_metrics=__A , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__lowerCAmelCase : Dict = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__lowerCAmelCase : List[str] = trainer.evaluate()
__lowerCAmelCase : Any = os.path.join(training_args.output_dir , """eval_results.txt""" )
with open(__A , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(f''' {key} = {value}''' )
writer.write(f'''{key} = {value}\n''' )
results.update(__A )
return results
if __name__ == "__main__":
main()
| 218
| 0
|
import numpy
# List of input, output pairs
lowerCamelCase__ = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
lowerCamelCase__ = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
lowerCamelCase__ = [2, 4, 1, 5]
lowerCamelCase__ = len(train_data)
lowerCamelCase__ = 0.0_09
def _lowerCamelCase( __snake_case , __snake_case="train" ) -> Union[str, Any]:
return calculate_hypothesis_value(a__ , a__ ) - output(
a__ , a__ )
def _lowerCamelCase( __snake_case ) -> Union[str, Any]:
__snake_case = 0
for i in range(len(a__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def _lowerCamelCase( __snake_case , __snake_case ) -> Union[str, Any]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def _lowerCamelCase( __snake_case , __snake_case ) -> int:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def _lowerCamelCase( __snake_case , __snake_case=m ) -> Dict:
__snake_case = 0
for i in range(a__ ):
if index == -1:
summation_value += _error(a__ )
else:
summation_value += _error(a__ ) * train_data[i][0][index]
return summation_value
def _lowerCamelCase( __snake_case ) -> Optional[Any]:
__snake_case = summation_of_cost_derivative(a__ , a__ ) / m
return cost_derivative_value
def _lowerCamelCase( ) -> Union[str, Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
__snake_case = 0.0_0_0_0_0_2
__snake_case = 0
__snake_case = 0
while True:
j += 1
__snake_case = [0, 0, 0, 0]
for i in range(0 , len(a__ ) ):
__snake_case = get_cost_derivative(i - 1 )
__snake_case = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
a__ , a__ , atol=a__ , rtol=a__ , ):
break
__snake_case = temp_parameter_vector
print(("Number of iterations:", j) )
def _lowerCamelCase( ) -> Optional[Any]:
for i in range(len(a__ ) ):
print(("Actual output value:", output(a__ , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(a__ , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 524
|
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class A__ ( UpperCamelCase__ ):
def __UpperCamelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =tempfile.mkdtemp()
_SCREAMING_SNAKE_CASE =8
# DPR tok
_SCREAMING_SNAKE_CASE =[
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
_SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dpr_tokenizer''' )
os.makedirs(_a , exist_ok=_a )
_SCREAMING_SNAKE_CASE =os.path.join(_a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
# BART tok
_SCREAMING_SNAKE_CASE =[
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) )
_SCREAMING_SNAKE_CASE =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_SCREAMING_SNAKE_CASE ={'''unk_token''': '''<unk>'''}
_SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''bart_tokenizer''' )
os.makedirs(_a , exist_ok=_a )
_SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''vocab_file'''] )
_SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_a ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(_a ) )
def __UpperCamelCase ( self : List[str] ) -> DPRQuestionEncoderTokenizer:
"""simple docstring"""
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def __UpperCamelCase ( self : Dict ) -> DPRContextEncoderTokenizer:
"""simple docstring"""
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def __UpperCamelCase ( self : Union[str, Any] ) -> BartTokenizer:
"""simple docstring"""
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) )
def __UpperCamelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __UpperCamelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def __UpperCamelCase ( self : str ) -> List[str]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.get_dummy_dataset()
_SCREAMING_SNAKE_CASE =RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
_SCREAMING_SNAKE_CASE =dataset
_SCREAMING_SNAKE_CASE =RagRetriever(
_a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def __UpperCamelCase ( self : Optional[int] , _a : bool ) -> Any:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.get_dummy_dataset()
_SCREAMING_SNAKE_CASE =RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , )
if from_disk:
_SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dataset''' )
_SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''index.faiss''' )
dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) )
dataset.drop_index('''embeddings''' )
dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) )
del dataset
_SCREAMING_SNAKE_CASE =RagRetriever(
_a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
_SCREAMING_SNAKE_CASE =RagRetriever(
_a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _a ) , )
return retriever
def __UpperCamelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
_SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' )
dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' )
pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) )
_SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' )
_SCREAMING_SNAKE_CASE ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset}
pickle.dump(_a , open(_a , '''wb''' ) )
_SCREAMING_SNAKE_CASE =RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , )
_SCREAMING_SNAKE_CASE =RagRetriever(
_a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def __UpperCamelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =1
_SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever()
_SCREAMING_SNAKE_CASE =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __UpperCamelCase ( self : Any ) -> str:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
_SCREAMING_SNAKE_CASE =self.get_dummy_dataset()
retriever.save_pretrained(_a )
_SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a )
self.assertIsInstance(_a , _a )
_SCREAMING_SNAKE_CASE =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 )
self.assertTrue(out is not None )
def __UpperCamelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =1
_SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a )
_SCREAMING_SNAKE_CASE =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __UpperCamelCase ( self : Optional[Any] ) -> Any:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(_a )
_SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a )
self.assertIsInstance(_a , _a )
_SCREAMING_SNAKE_CASE =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 )
self.assertTrue(out is not None )
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =1
_SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a )
_SCREAMING_SNAKE_CASE =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __UpperCamelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(_a )
_SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a )
self.assertIsInstance(_a , _a )
_SCREAMING_SNAKE_CASE =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 )
self.assertTrue(out is not None )
def __UpperCamelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =1
_SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever()
_SCREAMING_SNAKE_CASE =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''text'''] ) , _a )
self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __UpperCamelCase ( self : Dict ) -> Dict:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(_a )
_SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a )
self.assertIsInstance(_a , _a )
_SCREAMING_SNAKE_CASE =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def __UpperCamelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
import torch
_SCREAMING_SNAKE_CASE =1
_SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever()
_SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]]
_SCREAMING_SNAKE_CASE =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =(
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(_a , _a )
self.assertIsInstance(_a , _a )
self.assertIsInstance(_a , np.ndarray )
_SCREAMING_SNAKE_CASE =retriever(
_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a , return_tensors='''pt''' , )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( # noqa: F841
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
out['''doc_ids'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(_a , torch.Tensor )
self.assertIsInstance(_a , torch.Tensor )
self.assertIsInstance(_a , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def __UpperCamelCase ( self : str ) -> Any:
"""simple docstring"""
_SCREAMING_SNAKE_CASE =self.get_dpr_ctx_encoder_tokenizer()
_SCREAMING_SNAKE_CASE =1
_SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a )
retriever.set_ctx_encoder_tokenizer(_a )
_SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]]
_SCREAMING_SNAKE_CASE =np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a )
self.assertEqual(
len(_a ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , _a ) # check for doc token related keys in dictionary.
| 691
| 0
|
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase : List[str] = get_tests_dir('fixtures/test_sentencepiece.model')
__UpperCamelCase : Tuple = {'target_lang': 'fi', 'source_lang': 'en'}
__UpperCamelCase : Dict = '>>zh<<'
__UpperCamelCase : int = 'Helsinki-NLP/'
if is_torch_available():
__UpperCamelCase : List[str] = 'pt'
elif is_tf_available():
__UpperCamelCase : Union[str, Any] = 'tf'
else:
__UpperCamelCase : Union[str, Any] = 'jax'
@require_sentencepiece
class lowercase__ ( UpperCamelCase_ , unittest.TestCase):
UpperCamelCase_ = MarianTokenizer
UpperCamelCase_ = False
UpperCamelCase_ = True
def __A ( self : Optional[int] ):
'''simple docstring'''
super().setUp()
SCREAMING_SNAKE_CASE : Dict = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>''']
SCREAMING_SNAKE_CASE : List[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) )
SCREAMING_SNAKE_CASE : Optional[int] = Path(self.tmpdirname )
save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab'''] )
save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] )
copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] )
SCREAMING_SNAKE_CASE : int = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __A ( self : Any , **UpperCamelCase__ : List[str] ):
'''simple docstring'''
return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ )
def __A ( self : Dict , UpperCamelCase__ : Optional[int] ):
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def __A ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = '''</s>'''
SCREAMING_SNAKE_CASE : Any = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ )
def __A ( self : Tuple ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''</s>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(UpperCamelCase__ ) , 9 )
def __A ( self : str ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def __A ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" )
SCREAMING_SNAKE_CASE : List[str] = en_de_tokenizer(['''I am a small frog'''] , return_tensors=UpperCamelCase__ )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE : int = [38, 121, 14, 697, 3_8848, 0]
self.assertListEqual(UpperCamelCase__ , batch.input_ids[0] )
SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(UpperCamelCase__ )
SCREAMING_SNAKE_CASE : str = [x.name for x in Path(UpperCamelCase__ ).glob('''*''' )]
self.assertIn('''source.spm''' , UpperCamelCase__ )
MarianTokenizer.from_pretrained(UpperCamelCase__ )
def __A ( self : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Optional[Any] = tok(
['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 512) )
def __A ( self : Any ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE : int = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def __A ( self : Optional[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = {'''input_ids''': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase__ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , )
def __A ( self : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' )
SCREAMING_SNAKE_CASE : List[Any] = '''Tämä on testi'''
SCREAMING_SNAKE_CASE : Dict = '''This is a test'''
SCREAMING_SNAKE_CASE : List[Any] = [76, 7, 2047, 2]
SCREAMING_SNAKE_CASE : int = [69, 12, 11, 940, 2]
SCREAMING_SNAKE_CASE : List[Any] = tokenizer(UpperCamelCase__ ).input_ids
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Tuple = tokenizer(text_target=UpperCamelCase__ ).input_ids
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Any = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )
self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
| 720
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
__UpperCamelCase : Dict = [
'EAGER',
'AOT_EAGER',
'INDUCTOR',
'NVFUSER',
'AOT_NVFUSER',
'AOT_CUDAGRAPHS',
'OFI',
'FX2TRT',
'ONNXRT',
'IPEX',
]
def A ( _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ):
SCREAMING_SNAKE_CASE : Union[str, Any] = True
while ask_again:
SCREAMING_SNAKE_CASE : Optional[Any] = input(_lowercase )
try:
if default is not None and len(_lowercase ) == 0:
return default
return convert_value(_lowercase ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(_lowercase )
def A ( _lowercase , _lowercase=[] , _lowercase=None , _lowercase=0 ):
SCREAMING_SNAKE_CASE : Dict = BulletMenu(_lowercase , _lowercase )
SCREAMING_SNAKE_CASE : str = menu.run(default_choice=_lowercase )
return convert_value(_lowercase ) if convert_value is not None else result
def A ( _lowercase ):
SCREAMING_SNAKE_CASE : Dict = int(_lowercase )
return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] )
def A ( _lowercase ):
SCREAMING_SNAKE_CASE : Any = int(_lowercase )
return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] )
def A ( _lowercase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = int(_lowercase )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def A ( _lowercase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = int(_lowercase )
return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] )
def A ( _lowercase ):
SCREAMING_SNAKE_CASE : Dict = int(_lowercase )
return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] )
def A ( _lowercase ):
return {"yes": True, "no": False}[value.lower()]
class lowercase__ ( argparse.RawDescriptionHelpFormatter):
def __A ( self : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = super()._format_usage(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Optional[Any] = usage.replace('''<command> [<args>] ''' , '''''' )
return usage
| 34
| 0
|
import requests
from bsa import BeautifulSoup
def snake_case (UpperCAmelCase__ = "AAPL" ) -> str:
UpperCamelCase_: List[Any] = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
UpperCamelCase_: List[Any] = BeautifulSoup(requests.get(UpperCAmelCase__ ).text , 'html.parser' )
UpperCamelCase_: List[Any] = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_ ).find('span' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 57
|
'''simple docstring'''
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class lowercase_ ( lowerCAmelCase_ ):
def _lowerCAmelCase ( self : Optional[int] ):
snake_case__ : Tuple = tempfile.mkdtemp()
snake_case__ : Dict = 8
# DPR tok
snake_case__ : Any = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
snake_case__ : Optional[int] = os.path.join(self.tmpdirname , 'dpr_tokenizer' )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
snake_case__ : Tuple = os.path.join(__lowerCamelCase , DPR_VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
# BART tok
snake_case__ : Dict = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
snake_case__ : str = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
snake_case__ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
snake_case__ : Any = {'unk_token': '<unk>'}
snake_case__ : List[str] = os.path.join(self.tmpdirname , 'bart_tokenizer' )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
snake_case__ : Dict = os.path.join(__lowerCamelCase , BART_VOCAB_FILES_NAMES['vocab_file'] )
snake_case__ : int = os.path.join(__lowerCamelCase , BART_VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(__lowerCamelCase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(__lowerCamelCase ) )
def _lowerCAmelCase ( self : Optional[int] ):
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) )
def _lowerCAmelCase ( self : Union[str, Any] ):
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) )
def _lowerCAmelCase ( self : Any ):
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) )
def _lowerCAmelCase ( self : int ):
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self : str ):
snake_case__ : int = Dataset.from_dict(
{
'id': ['0', '1'],
'text': ['foo', 'bar'],
'title': ['Foo', 'Bar'],
'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def _lowerCAmelCase ( self : Any ):
snake_case__ : List[str] = self.get_dummy_dataset()
snake_case__ : Dict = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset:
snake_case__ : Optional[Any] = dataset
snake_case__ : List[Any] = RagRetriever(
__lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : bool ):
snake_case__ : Union[str, Any] = self.get_dummy_dataset()
snake_case__ : Dict = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , )
if from_disk:
snake_case__ : List[Any] = os.path.join(self.tmpdirname , 'dataset' )
snake_case__ : List[str] = os.path.join(self.tmpdirname , 'index.faiss' )
dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) )
dataset.drop_index('embeddings' )
dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) )
del dataset
snake_case__ : Optional[int] = RagRetriever(
__lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
snake_case__ : Union[str, Any] = RagRetriever(
__lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __lowerCamelCase ) , )
return retriever
def _lowerCAmelCase ( self : Tuple ):
snake_case__ : Dict = Dataset.from_dict(
{
'id': ['0', '1'],
'text': ['foo', 'bar'],
'title': ['Foo', 'Bar'],
'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT )
snake_case__ : List[str] = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' )
dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' )
pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) )
snake_case__ : Optional[int] = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' )
snake_case__ : Optional[Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset}
pickle.dump(__lowerCamelCase , open(__lowerCamelCase , 'wb' ) )
snake_case__ : Union[str, Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , )
snake_case__ : List[str] = RagRetriever(
__lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def _lowerCAmelCase ( self : List[Any] ):
snake_case__ : List[str] = 1
snake_case__ : int = self.get_dummy_canonical_hf_index_retriever()
snake_case__ : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
snake_case__ , snake_case__ , snake_case__ : int = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__lowerCamelCase ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase )
self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def _lowerCAmelCase ( self : List[str] ):
snake_case__ : str = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset:
snake_case__ : Union[str, Any] = self.get_dummy_dataset()
retriever.save_pretrained(__lowerCamelCase )
snake_case__ : List[Any] = RagRetriever.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
snake_case__ : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
snake_case__ : Tuple = retriever.retrieve(__lowerCamelCase , n_docs=1 )
self.assertTrue(out is not None )
def _lowerCAmelCase ( self : int ):
snake_case__ : Any = 1
snake_case__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase )
snake_case__ : Dict = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
snake_case__ , snake_case__ , snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__lowerCamelCase ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase )
self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def _lowerCAmelCase ( self : int ):
snake_case__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__lowerCamelCase )
snake_case__ : int = RagRetriever.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
snake_case__ : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=1 )
self.assertTrue(out is not None )
def _lowerCAmelCase ( self : List[str] ):
snake_case__ : Any = 1
snake_case__ : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase )
snake_case__ : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
snake_case__ , snake_case__ , snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__lowerCamelCase ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase )
self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def _lowerCAmelCase ( self : Optional[int] ):
snake_case__ : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__lowerCamelCase )
snake_case__ : int = RagRetriever.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
snake_case__ : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=1 )
self.assertTrue(out is not None )
def _lowerCAmelCase ( self : int ):
snake_case__ : Tuple = 1
snake_case__ : Tuple = self.get_dummy_legacy_index_retriever()
snake_case__ : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
snake_case__ , snake_case__ , snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__lowerCamelCase ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] )
self.assertEqual(len(doc_dicts[0]['text'] ) , __lowerCamelCase )
self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def _lowerCAmelCase ( self : Union[str, Any] ):
snake_case__ : Any = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__lowerCamelCase )
snake_case__ : Dict = RagRetriever.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
snake_case__ : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def _lowerCAmelCase ( self : Any ):
import torch
snake_case__ : Optional[Any] = 1
snake_case__ : int = self.get_dummy_canonical_hf_index_retriever()
snake_case__ : List[Any] = [[5, 7], [10, 11]]
snake_case__ : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
snake_case__ : Any = retriever(__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase )
snake_case__ , snake_case__ , snake_case__ : Any = (
out['context_input_ids'],
out['context_attention_mask'],
out['retrieved_doc_embeds'],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , np.ndarray )
snake_case__ : Dict = retriever(
__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase , return_tensors='pt' , )
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] = ( # noqa: F841
out['context_input_ids'],
out['context_attention_mask'],
out['retrieved_doc_embeds'],
out['doc_ids'],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def _lowerCAmelCase ( self : Optional[Any] ):
snake_case__ : List[Any] = self.get_dpr_ctx_encoder_tokenizer()
snake_case__ : List[Any] = 1
snake_case__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase )
retriever.set_ctx_encoder_tokenizer(__lowerCamelCase )
snake_case__ : Optional[int] = [[5, 7], [10, 11]]
snake_case__ : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
snake_case__ : Tuple = retriever(__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase )
self.assertEqual(
len(__lowerCamelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , __lowerCamelCase ) # check for doc token related keys in dictionary.
| 270
| 0
|
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase_ ( a__ , unittest.TestCase ):
__UpperCAmelCase = RobertaTokenizer
__UpperCAmelCase = RobertaTokenizerFast
__UpperCAmelCase = True
__UpperCAmelCase = {'cls_token': '<s>'}
def __a ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase__ = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
UpperCamelCase__ = dict(zip(a , range(len(a ) ) ) )
UpperCamelCase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCamelCase__ = {"unk_token": "<unk>"}
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(a ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(a ) )
def __a ( self , **a ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **a )
def __a ( self , **a ):
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **a )
def __a ( self , a ):
UpperCamelCase__ = "lower newer"
UpperCamelCase__ = "lower newer"
return input_text, output_text
def __a ( self ):
UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCamelCase__ = "lower newer"
UpperCamelCase__ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
UpperCamelCase__ = tokenizer.tokenize(a ) # , add_prefix_space=True)
self.assertListEqual(a , a )
UpperCamelCase__ = tokens + [tokenizer.unk_token]
UpperCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a )
def __a ( self ):
UpperCamelCase__ = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=a ) , [0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=a ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def __a ( self ):
UpperCamelCase__ = self.tokenizer_class.from_pretrained("roberta-base" )
UpperCamelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=a )
UpperCamelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=a )
UpperCamelCase__ = tokenizer.encode(
"sequence builders" , add_special_tokens=a , add_prefix_space=a )
UpperCamelCase__ = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=a , add_prefix_space=a )
UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a )
UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a , a )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def __a ( self ):
UpperCamelCase__ = self.get_tokenizer()
UpperCamelCase__ = "Encode this sequence."
UpperCamelCase__ = tokenizer.byte_encoder[" ".encode("utf-8" )[0]]
# Testing encoder arguments
UpperCamelCase__ = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(a , a )
UpperCamelCase__ = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(a , a )
tokenizer.add_special_tokens({"bos_token": "<s>"} )
UpperCamelCase__ = tokenizer.encode(a , add_special_tokens=a )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(a , a )
# Testing spaces after special tokens
UpperCamelCase__ = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(a , lstrip=a , rstrip=a )} ) # mask token has a left space
UpperCamelCase__ = tokenizer.convert_tokens_to_ids(a )
UpperCamelCase__ = "Encode <mask> sequence"
UpperCamelCase__ = "Encode <mask>sequence"
UpperCamelCase__ = tokenizer.encode(a )
UpperCamelCase__ = encoded.index(a )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(a , a )
UpperCamelCase__ = tokenizer.encode(a )
UpperCamelCase__ = encoded.index(a )
UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(a , a )
def __a ( self ):
pass
def __a ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a , **a )
UpperCamelCase__ = self.tokenizer_class.from_pretrained(a , **a )
UpperCamelCase__ = "A, <mask> AllenNLP sentence."
UpperCamelCase__ = tokenizer_r.encode_plus(a , add_special_tokens=a , return_token_type_ids=a )
UpperCamelCase__ = tokenizer_p.encode_plus(a , add_special_tokens=a , return_token_type_ids=a )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
def __a ( self ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=a , add_prefix_space=a , trim_offsets=a )
UpperCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
UpperCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["add_prefix_space"] , a )
self.assertEqual(post_processor_state["add_prefix_space"] , a )
self.assertEqual(post_processor_state["trim_offsets"] , a )
def __a ( self ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
UpperCamelCase__ = f'''{text_of_1_token} {text_of_1_token}'''
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , )
UpperCamelCase__ = f''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , )
UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(
a , use_fast=a , add_prefix_space=a , trim_offsets=a )
UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , )
| 706
|
'''simple docstring'''
def _UpperCamelCase ( __A ) -> float:
'''simple docstring'''
if edge <= 0 or not isinstance(__A , __A ):
raise ValueError("Length must be a positive." )
return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2)
def _UpperCamelCase ( __A ) -> float:
'''simple docstring'''
if edge <= 0 or not isinstance(__A , __A ):
raise ValueError("Length must be a positive." )
return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 223
| 0
|
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self: Optional[Any] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any=13 , _UpperCAmelCase: Union[str, Any]=7 , _UpperCAmelCase: Optional[int]=6 , _UpperCAmelCase: Dict=17 , _UpperCAmelCase: List[str]=23 , _UpperCAmelCase: Optional[int]=11 , _UpperCAmelCase: Optional[Any]=True , ):
_lowerCAmelCase :List[str] = parent
_lowerCAmelCase :Union[str, Any] = batch_size
_lowerCAmelCase :List[str] = seq_length
_lowerCAmelCase :List[Any] = act_dim
_lowerCAmelCase :Optional[int] = state_dim
_lowerCAmelCase :Union[str, Any] = hidden_size
_lowerCAmelCase :Any = max_length
_lowerCAmelCase :Any = is_training
def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ):
_lowerCAmelCase :Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
_lowerCAmelCase :Tuple = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
_lowerCAmelCase :Any = floats_tensor((self.batch_size, self.seq_length, 1) )
_lowerCAmelCase :List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) )
_lowerCAmelCase :str = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 )
_lowerCAmelCase :Any = random_attention_mask((self.batch_size, self.seq_length) )
_lowerCAmelCase :int = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def SCREAMING_SNAKE_CASE__ ( self: Any ):
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: str , _UpperCAmelCase: Dict , _UpperCAmelCase: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: str , ):
_lowerCAmelCase :Any = DecisionTransformerModel(config=__a )
model.to(__a )
model.eval()
_lowerCAmelCase :Tuple = model(__a , __a , __a , __a , __a , __a )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def SCREAMING_SNAKE_CASE__ ( self: List[Any] ):
_lowerCAmelCase :Optional[Any] = self.prepare_config_and_inputs()
(
_lowerCAmelCase
) :int = config_and_inputs
_lowerCAmelCase :int = {
"""states""": states,
"""actions""": actions,
"""rewards""": rewards,
"""returns_to_go""": returns_to_go,
"""timesteps""": timesteps,
"""attention_mask""": attention_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (a__ , a__ , a__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = (DecisionTransformerModel,) if is_torch_available() else ()
lowerCamelCase : Tuple = ()
lowerCamelCase : str = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
lowerCamelCase : List[str] = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
lowerCamelCase : Dict = False
lowerCamelCase : int = False
lowerCamelCase : Optional[int] = False
lowerCamelCase : List[Any] = False
lowerCamelCase : List[Any] = False
lowerCamelCase : Any = False
lowerCamelCase : Optional[Any] = False
lowerCamelCase : Optional[int] = False
lowerCamelCase : Any = False
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :int = DecisionTransformerModelTester(self )
_lowerCAmelCase :int = ConfigTester(self , config_class=__a , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
_lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@slow
def SCREAMING_SNAKE_CASE__ ( self: List[str] ):
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase :Union[str, Any] = DecisionTransformerModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def SCREAMING_SNAKE_CASE__ ( self: Tuple ):
_lowerCAmelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase :Optional[int] = model_class(__a )
_lowerCAmelCase :Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase :Union[str, Any] = [*signature.parameters.keys()]
_lowerCAmelCase :Optional[Any] = [
"""states""",
"""actions""",
"""rewards""",
"""returns_to_go""",
"""timesteps""",
"""attention_mask""",
]
self.assertListEqual(arg_names[: len(__a )] , __a )
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ):
_lowerCAmelCase :Optional[int] = 2 # number of steps of autoregressive prediction we will perform
_lowerCAmelCase :Union[str, Any] = 10 # defined by the RL environment, may be normalized
_lowerCAmelCase :Tuple = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' )
_lowerCAmelCase :List[Any] = model.to(__a )
_lowerCAmelCase :int = model.config
torch.manual_seed(0 )
_lowerCAmelCase :Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=__a , dtype=torch.floataa ) # env.reset()
_lowerCAmelCase :List[str] = torch.tensor(
[[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=__a )
_lowerCAmelCase :Optional[Any] = torch.tensor(__a , device=__a , dtype=torch.floataa ).reshape(1 , 1 , 1 )
_lowerCAmelCase :Optional[int] = state
_lowerCAmelCase :List[Any] = torch.zeros(1 , 0 , config.act_dim , device=__a , dtype=torch.floataa )
_lowerCAmelCase :Tuple = torch.zeros(1 , 0 , device=__a , dtype=torch.floataa )
_lowerCAmelCase :Tuple = torch.tensor(0 , device=__a , dtype=torch.long ).reshape(1 , 1 )
for step in range(__a ):
_lowerCAmelCase :str = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__a )] , dim=1 )
_lowerCAmelCase :Tuple = torch.cat([rewards, torch.zeros(1 , 1 , device=__a )] , dim=1 )
_lowerCAmelCase :List[str] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
_lowerCAmelCase :List[Any] = model(
states=__a , actions=__a , rewards=__a , returns_to_go=__a , timesteps=__a , attention_mask=__a , return_dict=__a , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
_lowerCAmelCase :str = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=__a , dtype=torch.floataa ),
1.0,
False,
{},
)
_lowerCAmelCase :Dict = action_pred[0, -1]
_lowerCAmelCase :Optional[int] = torch.cat([states, state] , dim=1 )
_lowerCAmelCase :Tuple = returns_to_go[0, -1] - reward
_lowerCAmelCase :Tuple = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
_lowerCAmelCase :List[str] = torch.cat(
[timesteps, torch.ones((1, 1) , device=__a , dtype=torch.long ) * (step + 1)] , dim=1 )
| 687
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase : Optional[int] = {
"""configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : int = [
"""PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PegasusXForConditionalGeneration""",
"""PegasusXModel""",
"""PegasusXPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 116
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ : int = {
'''configuration_time_series_transformer''': [
'''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TimeSeriesTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
'''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TimeSeriesTransformerForPrediction''',
'''TimeSeriesTransformerModel''',
'''TimeSeriesTransformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 711
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"""configuration_blip_2""": [
"""BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Blip2Config""",
"""Blip2QFormerConfig""",
"""Blip2VisionConfig""",
],
"""processing_blip_2""": ["""Blip2Processor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : str = [
"""BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Blip2Model""",
"""Blip2QFormerModel""",
"""Blip2PreTrainedModel""",
"""Blip2ForConditionalGeneration""",
"""Blip2VisionModel""",
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 233
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = {
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
lowercase__ = "deberta-v2"
def __init__( self : List[str] ,lowercase_ : Union[str, Any]=1_2_8_1_0_0 ,lowercase_ : Any=1_5_3_6 ,lowercase_ : Any=2_4 ,lowercase_ : Optional[Any]=2_4 ,lowercase_ : Optional[Any]=6_1_4_4 ,lowercase_ : List[Any]="gelu" ,lowercase_ : Tuple=0.1 ,lowercase_ : List[str]=0.1 ,lowercase_ : str=5_1_2 ,lowercase_ : List[Any]=0 ,lowercase_ : int=0.02 ,lowercase_ : str=1E-7 ,lowercase_ : Optional[Any]=False ,lowercase_ : List[str]=-1 ,lowercase_ : Tuple=0 ,lowercase_ : Optional[int]=True ,lowercase_ : str=None ,lowercase_ : Dict=0 ,lowercase_ : List[str]="gelu" ,**lowercase_ : int ,):
super().__init__(**_lowercase )
lowerCAmelCase__ : Dict = hidden_size
lowerCAmelCase__ : Tuple = num_hidden_layers
lowerCAmelCase__ : Optional[Any] = num_attention_heads
lowerCAmelCase__ : Tuple = intermediate_size
lowerCAmelCase__ : Optional[int] = hidden_act
lowerCAmelCase__ : int = hidden_dropout_prob
lowerCAmelCase__ : str = attention_probs_dropout_prob
lowerCAmelCase__ : int = max_position_embeddings
lowerCAmelCase__ : int = type_vocab_size
lowerCAmelCase__ : Dict = initializer_range
lowerCAmelCase__ : str = relative_attention
lowerCAmelCase__ : Dict = max_relative_positions
lowerCAmelCase__ : List[Any] = pad_token_id
lowerCAmelCase__ : List[Any] = position_biased_input
# Backwards compatibility
if type(_lowercase ) == str:
lowerCAmelCase__ : Any = [x.strip() for x in pos_att_type.lower().split('''|''' )]
lowerCAmelCase__ : List[str] = pos_att_type
lowerCAmelCase__ : Union[str, Any] = vocab_size
lowerCAmelCase__ : Dict = layer_norm_eps
lowerCAmelCase__ : Dict = kwargs.get('''pooler_hidden_size''' ,_lowercase )
lowerCAmelCase__ : Union[str, Any] = pooler_dropout
lowerCAmelCase__ : List[str] = pooler_hidden_act
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
@property
def __lowerCAmelCase ( self : Union[str, Any] ):
if self.task == "multiple-choice":
lowerCAmelCase__ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowerCAmelCase__ : Any = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] )
else:
return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] )
@property
def __lowerCAmelCase ( self : Optional[Any] ):
return 1_2
def __lowerCAmelCase ( self : int ,lowercase_ : List[str] ,lowercase_ : List[str] = -1 ,lowercase_ : str = -1 ,lowercase_ : Tuple = -1 ,lowercase_ : str = False ,lowercase_ : List[Any] = None ,lowercase_ : Dict = 3 ,lowercase_ : Tuple = 4_0 ,lowercase_ : Dict = 4_0 ,lowercase_ : Dict = None ,):
lowerCAmelCase__ : Tuple = super().generate_dummy_inputs(preprocessor=_lowercase ,framework=_lowercase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 450
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__lowerCAmelCase : List[Any] = {
'''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] = ['''VivitImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] = [
'''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''VivitModel''',
'''VivitPreTrainedModel''',
'''VivitForVideoClassification''',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 58
| 0
|
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = StableUnCLIPImgaImgPipeline
UpperCAmelCase_ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
UpperCAmelCase_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
UpperCAmelCase_ : Optional[int] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCAmelCase_ : Optional[int] = frozenset([] )
def snake_case ( self ) -> Any:
A : Dict = 32
A : Optional[int] = embedder_hidden_size
# image encoding components
A : str = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
A : List[Any] = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=__UpperCAmelCase , projection_dim=__UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
A : int = StableUnCLIPImageNormalizer(embedding_dim=__UpperCAmelCase )
A : str = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
A : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
A : Optional[Any] = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
A : List[Any] = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__UpperCAmelCase , layers_per_block=1 , upcast_attention=__UpperCAmelCase , use_linear_projection=__UpperCAmelCase , )
torch.manual_seed(0 )
A : Optional[Any] = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , )
torch.manual_seed(0 )
A : Union[str, Any] = AutoencoderKL()
A : Tuple = {
# image encoding components
'''feature_extractor''': feature_extractor,
'''image_encoder''': image_encoder.eval(),
# image noising components
'''image_normalizer''': image_normalizer.eval(),
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder.eval(),
'''unet''': unet.eval(),
'''scheduler''': scheduler,
'''vae''': vae.eval(),
}
return components
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=True ) -> Tuple:
if str(__UpperCAmelCase ).startswith('''mps''' ):
A : List[Any] = torch.manual_seed(__UpperCAmelCase )
else:
A : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
A : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
if pil_image:
A : int = input_image * 0.5 + 0.5
A : List[str] = input_image.clamp(0 , 1 )
A : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
A : Tuple = DiffusionPipeline.numpy_to_pil(__UpperCAmelCase )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def snake_case ( self ) -> Dict:
A : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A : Dict = self.get_dummy_components()
A : Dict = StableUnCLIPImgaImgPipeline(**__UpperCAmelCase )
A : Union[str, Any] = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
A : int = self.get_dummy_inputs(__UpperCAmelCase )
inputs.update({'''image_embeds''': None} )
A : Union[str, Any] = sd_pipe(**__UpperCAmelCase ).images
A : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Dict = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def snake_case ( self ) -> int:
A : List[Any] = torch_device in ['''cpu''', '''mps''']
self._test_attention_slicing_forward_pass(test_max_difference=__UpperCAmelCase )
def snake_case ( self ) -> List[str]:
A : Any = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=__UpperCAmelCase )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def snake_case ( self ) -> List[Any]:
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__UpperCAmelCase )
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ) -> Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case ( self ) -> Optional[Any]:
A : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' )
A : Union[str, Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' )
A : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained(
'''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
A : str = torch.Generator(device='''cpu''' ).manual_seed(0 )
A : Tuple = pipe(__UpperCAmelCase , '''anime turle''' , generator=__UpperCAmelCase , output_type='''np''' )
A : str = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
def snake_case ( self ) -> Any:
A : str = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' )
A : List[str] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' )
A : int = StableUnCLIPImgaImgPipeline.from_pretrained(
'''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
A : Any = torch.Generator(device='''cpu''' ).manual_seed(0 )
A : List[Any] = pipe(__UpperCAmelCase , '''anime turle''' , generator=__UpperCAmelCase , output_type='''np''' )
A : int = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
def snake_case ( self ) -> Optional[int]:
A : int = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
A : str = StableUnCLIPImgaImgPipeline.from_pretrained(
'''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa )
A : Dict = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
A : List[Any] = pipe(
__UpperCAmelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , )
A : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 423
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : Dict = logging.get_logger(__name__)
lowercase : List[str] = {
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __lowercase ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = '''vit_mae'''
def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=2_24 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , __UpperCAmelCase=5_12 , __UpperCAmelCase=8 , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.7_5 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
A : List[Any] = hidden_size
A : str = num_hidden_layers
A : Optional[Any] = num_attention_heads
A : List[str] = intermediate_size
A : Any = hidden_act
A : str = hidden_dropout_prob
A : Optional[int] = attention_probs_dropout_prob
A : Optional[Any] = initializer_range
A : Optional[int] = layer_norm_eps
A : List[Any] = image_size
A : Tuple = patch_size
A : Optional[int] = num_channels
A : int = qkv_bias
A : Optional[Any] = decoder_num_attention_heads
A : Optional[Any] = decoder_hidden_size
A : Union[str, Any] = decoder_num_hidden_layers
A : List[str] = decoder_intermediate_size
A : List[Any] = mask_ratio
A : Union[str, Any] = norm_pix_loss
| 423
| 1
|
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def a ( snake_case__: Tuple ):
'''simple docstring'''
lowercase_ = SwinConfig(image_size=192 )
if "base" in model_name:
lowercase_ = 6
lowercase_ = 128
lowercase_ = (2, 2, 18, 2)
lowercase_ = (4, 8, 16, 32)
elif "large" in model_name:
lowercase_ = 12
lowercase_ = 192
lowercase_ = (2, 2, 18, 2)
lowercase_ = (6, 12, 24, 48)
else:
raise ValueError('''Model not supported, only supports base and large variants''' )
lowercase_ = window_size
lowercase_ = embed_dim
lowercase_ = depths
lowercase_ = num_heads
return config
def a ( snake_case__: str ):
'''simple docstring'''
if "encoder.mask_token" in name:
lowercase_ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' )
if "encoder.patch_embed.proj" in name:
lowercase_ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "encoder.patch_embed.norm" in name:
lowercase_ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' )
if "attn.proj" in name:
lowercase_ = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
lowercase_ = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
lowercase_ = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
lowercase_ = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
lowercase_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowercase_ = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "encoder.norm.weight":
lowercase_ = '''layernorm.weight'''
if name == "encoder.norm.bias":
lowercase_ = '''layernorm.bias'''
if "decoder" in name:
pass
else:
lowercase_ = '''swin.''' + name
return name
def a ( snake_case__: str , snake_case__: Union[str, Any] ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase_ = orig_state_dict.pop(snake_case__ )
if "attn_mask" in key:
pass
elif "qkv" in key:
lowercase_ = key.split('''.''' )
lowercase_ = int(key_split[2] )
lowercase_ = int(key_split[4] )
lowercase_ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowercase_ = val[:dim, :]
lowercase_ = val[
dim : dim * 2, :
]
lowercase_ = val[-dim:, :]
else:
lowercase_ = val[
:dim
]
lowercase_ = val[
dim : dim * 2
]
lowercase_ = val[
-dim:
]
else:
lowercase_ = val
return orig_state_dict
def a ( snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: List[str] , snake_case__: Optional[Any] ):
'''simple docstring'''
lowercase_ = torch.load(snake_case__ , map_location='''cpu''' )['''model''']
lowercase_ = get_swin_config(snake_case__ )
lowercase_ = SwinForMaskedImageModeling(snake_case__ )
model.eval()
lowercase_ = convert_state_dict(snake_case__ , snake_case__ )
model.load_state_dict(snake_case__ )
lowercase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowercase_ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} )
lowercase_ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
lowercase_ = image_processor(images=snake_case__ , return_tensors='''pt''' )
with torch.no_grad():
lowercase_ = model(**snake_case__ ).logits
print(outputs.keys() )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
print(F'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(F'''microsoft/{model_name}''' )
image_processor.push_to_hub(F'''microsoft/{model_name}''' )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='swin-base-simmim-window6-192',
type=str,
choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'],
help='Name of the Swin SimMIM model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth',
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__a = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 97
|
"""simple docstring"""
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
__snake_case : Union[str, Any] = collections.namedtuple('_Datasets', ['train', 'validation', 'test'])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
__snake_case : Any = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
def _lowercase ( __snake_case ) -> List[Any]:
__lowerCAmelCase : int = numpy.dtype(numpy.uintaa ).newbyteorder(">" )
return numpy.frombuffer(bytestream.read(4 ) ,dtype=__snake_case )[0]
@deprecated(__snake_case ,"Please use tf.data to implement this functionality." )
def _lowercase ( __snake_case ) -> Union[str, Any]:
print("Extracting" ,f.name )
with gzip.GzipFile(fileobj=__snake_case ) as bytestream:
__lowerCAmelCase : Union[str, Any] = _readaa(__snake_case )
if magic != 2_051:
raise ValueError(
"Invalid magic number %d in MNIST image file: %s" % (magic, f.name) )
__lowerCAmelCase : List[str] = _readaa(__snake_case )
__lowerCAmelCase : Union[str, Any] = _readaa(__snake_case )
__lowerCAmelCase : int = _readaa(__snake_case )
__lowerCAmelCase : int = bytestream.read(rows * cols * num_images )
__lowerCAmelCase : Optional[Any] = numpy.frombuffer(__snake_case ,dtype=numpy.uinta )
__lowerCAmelCase : str = data.reshape(__snake_case ,__snake_case ,__snake_case ,1 )
return data
@deprecated(__snake_case ,"Please use tf.one_hot on tensors." )
def _lowercase ( __snake_case ,__snake_case ) -> Any:
__lowerCAmelCase : Union[str, Any] = labels_dense.shape[0]
__lowerCAmelCase : Optional[int] = numpy.arange(__snake_case ) * num_classes
__lowerCAmelCase : int = numpy.zeros((num_labels, num_classes) )
__lowerCAmelCase : str = 1
return labels_one_hot
@deprecated(__snake_case ,"Please use tf.data to implement this functionality." )
def _lowercase ( __snake_case ,__snake_case=False ,__snake_case=10 ) -> str:
print("Extracting" ,f.name )
with gzip.GzipFile(fileobj=__snake_case ) as bytestream:
__lowerCAmelCase : List[str] = _readaa(__snake_case )
if magic != 2_049:
raise ValueError(
"Invalid magic number %d in MNIST label file: %s" % (magic, f.name) )
__lowerCAmelCase : Union[str, Any] = _readaa(__snake_case )
__lowerCAmelCase : Union[str, Any] = bytestream.read(__snake_case )
__lowerCAmelCase : Dict = numpy.frombuffer(__snake_case ,dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__snake_case ,__snake_case )
return labels
class A__ :
'''simple docstring'''
@deprecated(
_SCREAMING_SNAKE_CASE , "Please use alternatives such as official/mnist/_DataSet.py"
" from tensorflow/models." , )
def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: int=False , _SCREAMING_SNAKE_CASE: str=dtypes.floataa , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , ) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase , __lowerCAmelCase : Optional[Any] = random_seed.get_seed(_SCREAMING_SNAKE_CASE)
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda)
__lowerCAmelCase : Optional[Any] = dtypes.as_dtype(_SCREAMING_SNAKE_CASE).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype)
if fake_data:
__lowerCAmelCase : Tuple = 1_0000
__lowerCAmelCase : Optional[Any] = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), F"""images.shape: {images.shape} labels.shape: {labels.shape}"""
__lowerCAmelCase : Union[str, Any] = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__lowerCAmelCase : List[str] = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2])
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__lowerCAmelCase : Dict = images.astype(numpy.floataa)
__lowerCAmelCase : int = numpy.multiply(_SCREAMING_SNAKE_CASE , 1.0 / 255.0)
__lowerCAmelCase : Optional[Any] = images
__lowerCAmelCase : int = labels
__lowerCAmelCase : Optional[Any] = 0
__lowerCAmelCase : Optional[int] = 0
@property
def _SCREAMING_SNAKE_CASE ( self: Dict) -> Tuple:
"""simple docstring"""
return self._images
@property
def _SCREAMING_SNAKE_CASE ( self: Dict) -> int:
"""simple docstring"""
return self._labels
@property
def _SCREAMING_SNAKE_CASE ( self: int) -> str:
"""simple docstring"""
return self._num_examples
@property
def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]:
"""simple docstring"""
return self._epochs_completed
def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int=False , _SCREAMING_SNAKE_CASE: List[str]=True) -> int:
"""simple docstring"""
if fake_data:
__lowerCAmelCase : Dict = [1] * 784
__lowerCAmelCase : str = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(_SCREAMING_SNAKE_CASE)],
[fake_label for _ in range(_SCREAMING_SNAKE_CASE)],
)
__lowerCAmelCase : Tuple = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__lowerCAmelCase : Any = numpy.arange(self._num_examples)
numpy.random.shuffle(_SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Union[str, Any] = self.images[perma]
__lowerCAmelCase : Dict = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__lowerCAmelCase : Tuple = self._num_examples - start
__lowerCAmelCase : List[str] = self._images[start : self._num_examples]
__lowerCAmelCase : Tuple = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__lowerCAmelCase : Tuple = numpy.arange(self._num_examples)
numpy.random.shuffle(_SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Optional[Any] = self.images[perm]
__lowerCAmelCase : Dict = self.labels[perm]
# Start next epoch
__lowerCAmelCase : str = 0
__lowerCAmelCase : Dict = batch_size - rest_num_examples
__lowerCAmelCase : str = self._index_in_epoch
__lowerCAmelCase : Optional[Any] = self._images[start:end]
__lowerCAmelCase : Optional[Any] = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0),
)
else:
self._index_in_epoch += batch_size
__lowerCAmelCase : int = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__snake_case ,"Please write your own downloading logic." )
def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any:
if not gfile.Exists(__snake_case ):
gfile.MakeDirs(__snake_case )
__lowerCAmelCase : Tuple = os.path.join(__snake_case ,__snake_case )
if not gfile.Exists(__snake_case ):
urllib.request.urlretrieve(__snake_case ,__snake_case ) # noqa: S310
with gfile.GFile(__snake_case ) as f:
__lowerCAmelCase : Union[str, Any] = f.size()
print("Successfully downloaded" ,__snake_case ,__snake_case ,"bytes." )
return filepath
@deprecated(
__snake_case ,"Please use alternatives such as:" " tensorflow_datasets.load('mnist')" )
def _lowercase ( __snake_case ,__snake_case=False ,__snake_case=False ,__snake_case=dtypes.floataa ,__snake_case=True ,__snake_case=5_000 ,__snake_case=None ,__snake_case=DEFAULT_SOURCE_URL ,) -> Tuple:
if fake_data:
def fake():
return _DataSet(
[] ,[] ,fake_data=__snake_case ,one_hot=__snake_case ,dtype=__snake_case ,seed=__snake_case )
__lowerCAmelCase : Union[str, Any] = fake()
__lowerCAmelCase : Optional[Any] = fake()
__lowerCAmelCase : List[Any] = fake()
return _Datasets(train=__snake_case ,validation=__snake_case ,test=__snake_case )
if not source_url: # empty string check
__lowerCAmelCase : Optional[Any] = DEFAULT_SOURCE_URL
__lowerCAmelCase : Dict = "train-images-idx3-ubyte.gz"
__lowerCAmelCase : int = "train-labels-idx1-ubyte.gz"
__lowerCAmelCase : List[str] = "t10k-images-idx3-ubyte.gz"
__lowerCAmelCase : Any = "t10k-labels-idx1-ubyte.gz"
__lowerCAmelCase : Any = _maybe_download(
__snake_case ,__snake_case ,source_url + train_images_file )
with gfile.Open(__snake_case ,"rb" ) as f:
__lowerCAmelCase : Union[str, Any] = _extract_images(__snake_case )
__lowerCAmelCase : Optional[int] = _maybe_download(
__snake_case ,__snake_case ,source_url + train_labels_file )
with gfile.Open(__snake_case ,"rb" ) as f:
__lowerCAmelCase : Optional[int] = _extract_labels(__snake_case ,one_hot=__snake_case )
__lowerCAmelCase : Optional[int] = _maybe_download(
__snake_case ,__snake_case ,source_url + test_images_file )
with gfile.Open(__snake_case ,"rb" ) as f:
__lowerCAmelCase : List[Any] = _extract_images(__snake_case )
__lowerCAmelCase : str = _maybe_download(
__snake_case ,__snake_case ,source_url + test_labels_file )
with gfile.Open(__snake_case ,"rb" ) as f:
__lowerCAmelCase : List[Any] = _extract_labels(__snake_case ,one_hot=__snake_case )
if not 0 <= validation_size <= len(__snake_case ):
__lowerCAmelCase : Tuple = (
"Validation size should be between 0 and "
F"""{len(__snake_case )}. Received: {validation_size}."""
)
raise ValueError(__snake_case )
__lowerCAmelCase : Any = train_images[:validation_size]
__lowerCAmelCase : Any = train_labels[:validation_size]
__lowerCAmelCase : List[str] = train_images[validation_size:]
__lowerCAmelCase : Optional[Any] = train_labels[validation_size:]
__lowerCAmelCase : Dict = {"dtype": dtype, "reshape": reshape, "seed": seed}
__lowerCAmelCase : str = _DataSet(__snake_case ,__snake_case ,**__snake_case )
__lowerCAmelCase : Dict = _DataSet(__snake_case ,__snake_case ,**__snake_case )
__lowerCAmelCase : Union[str, Any] = _DataSet(__snake_case ,__snake_case ,**__snake_case )
return _Datasets(train=__snake_case ,validation=__snake_case ,test=__snake_case )
| 293
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['''LayoutLMv2FeatureExtractor''']
lowerCAmelCase__ = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 708
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ = {
'''configuration_efficientformer''': [
'''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''EfficientFormerConfig''',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['''EfficientFormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''EfficientFormerForImageClassification''',
'''EfficientFormerForImageClassificationWithTeacher''',
'''EfficientFormerModel''',
'''EfficientFormerPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFEfficientFormerForImageClassification''',
'''TFEfficientFormerForImageClassificationWithTeacher''',
'''TFEfficientFormerModel''',
'''TFEfficientFormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 681
| 0
|
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
"kwargs, expected" , [
({"num_shards": 0, "max_num_jobs": 1}, []),
({"num_shards": 1_0, "max_num_jobs": 1}, [range(1_0 )]),
({"num_shards": 1_0, "max_num_jobs": 1_0}, [range(lowerCAmelCase_ , i + 1 ) for i in range(1_0 )]),
({"num_shards": 1, "max_num_jobs": 1_0}, [range(1 )]),
({"num_shards": 1_0, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]),
({"num_shards": 3, "max_num_jobs": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: List[Any] , lowerCAmelCase_: int ):
snake_case_ : List[str] = _distribute_shards(**lowerCAmelCase_ )
assert out == expected
@pytest.mark.parametrize(
"gen_kwargs, max_num_jobs, expected" , [
({"foo": 0}, 1_0, [{"foo": 0}]),
({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]),
({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]),
({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]),
({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]),
] , )
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: str , lowerCAmelCase_: Any , lowerCAmelCase_: Optional[int] ):
snake_case_ : Tuple = _split_gen_kwargs(lowerCAmelCase_ , lowerCAmelCase_ )
assert out == expected
@pytest.mark.parametrize(
"gen_kwargs, expected" , [
({"foo": 0}, 1),
({"shards": [0]}, 1),
({"shards": [0, 1, 2, 3]}, 4),
({"shards": [0, 1, 2, 3], "foo": 0}, 4),
({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4),
({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError),
] , )
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: List[Any] , lowerCAmelCase_: Union[str, Any] ):
if expected is RuntimeError:
with pytest.raises(lowerCAmelCase_ ):
_number_of_shards_in_gen_kwargs(lowerCAmelCase_ )
else:
snake_case_ : Any = _number_of_shards_in_gen_kwargs(lowerCAmelCase_ )
assert out == expected
| 666
|
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: str , lowerCAmelCase_: str ):
def get_matched_characters(lowerCAmelCase_: str , lowerCAmelCase_: str ) -> str:
snake_case_ : Tuple = []
snake_case_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
snake_case_ : str = int(max(0 , i - limit ) )
snake_case_ : Optional[int] = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(lowerCAmelCase_ )
snake_case_ : List[Any] = f"{_stra[0:_stra.index(lowerCAmelCase_ )]} {_stra[_stra.index(lowerCAmelCase_ ) + 1:]}"
return "".join(lowerCAmelCase_ )
# matching characters
snake_case_ : List[Any] = get_matched_characters(lowerCAmelCase_ , lowerCAmelCase_ )
snake_case_ : int = get_matched_characters(lowerCAmelCase_ , lowerCAmelCase_ )
snake_case_ : Optional[int] = len(lowerCAmelCase_ )
# transposition
snake_case_ : List[str] = (
len([(ca, ca) for ca, ca in zip(lowerCAmelCase_ , lowerCAmelCase_ ) if ca != ca] ) // 2
)
if not match_count:
snake_case_ : str = 0.0
else:
snake_case_ : Optional[Any] = (
1
/ 3
* (
match_count / len(lowerCAmelCase_ )
+ match_count / len(lowerCAmelCase_ )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
snake_case_ : Optional[Any] = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("hello", "world"))
| 666
| 1
|
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
lowerCamelCase = logging.getLogger(__name__)
def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ):
"""simple docstring"""
__lowerCAmelCase = np.argmax(UpperCAmelCase__ , axis=1 )
return np.sum(outputs == labels )
def __lowercase ( UpperCAmelCase__ ):
"""simple docstring"""
with open(UpperCAmelCase__ , encoding='utf_8' ) as f:
__lowerCAmelCase = csv.reader(UpperCAmelCase__ )
__lowerCAmelCase = []
next(UpperCAmelCase__ ) # skip the first line
for line in tqdm(UpperCAmelCase__ ):
output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ):
"""simple docstring"""
__lowerCAmelCase = []
for dataset in encoded_datasets:
__lowerCAmelCase = len(UpperCAmelCase__ )
__lowerCAmelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
__lowerCAmelCase = np.zeros((n_batch, 2) , dtype=np.intaa )
__lowerCAmelCase = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa )
__lowerCAmelCase = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(UpperCAmelCase__ ):
__lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
__lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
__lowerCAmelCase = with_conta
__lowerCAmelCase = with_conta
__lowerCAmelCase = len(UpperCAmelCase__ ) - 1
__lowerCAmelCase = len(UpperCAmelCase__ ) - 1
__lowerCAmelCase = with_conta
__lowerCAmelCase = with_conta
__lowerCAmelCase = mc_label
__lowerCAmelCase = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(UpperCAmelCase__ ) for t in all_inputs ) )
return tensor_datasets
def __lowercase ( ):
"""simple docstring"""
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--model_name' , type=UpperCAmelCase__ , default='openai-gpt' , help='pretrained model name' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' )
parser.add_argument(
'--output_dir' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument('--train_dataset' , type=UpperCAmelCase__ , default='' )
parser.add_argument('--eval_dataset' , type=UpperCAmelCase__ , default='' )
parser.add_argument('--seed' , type=UpperCAmelCase__ , default=42 )
parser.add_argument('--num_train_epochs' , type=UpperCAmelCase__ , default=3 )
parser.add_argument('--train_batch_size' , type=UpperCAmelCase__ , default=8 )
parser.add_argument('--eval_batch_size' , type=UpperCAmelCase__ , default=16 )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=UpperCAmelCase__ , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , type=UpperCAmelCase__ , default=1 )
parser.add_argument(
'--max_steps' , default=-1 , type=UpperCAmelCase__ , help=(
'If > 0: set total number of training steps to perform. Override num_train_epochs.'
) , )
parser.add_argument(
'--gradient_accumulation_steps' , type=UpperCAmelCase__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--learning_rate' , type=UpperCAmelCase__ , default=6.25E-5 )
parser.add_argument('--warmup_steps' , default=0 , type=UpperCAmelCase__ , help='Linear warmup over warmup_steps.' )
parser.add_argument('--lr_schedule' , type=UpperCAmelCase__ , default='warmup_linear' )
parser.add_argument('--weight_decay' , type=UpperCAmelCase__ , default=0.01 )
parser.add_argument('--lm_coef' , type=UpperCAmelCase__ , default=0.9 )
parser.add_argument('--n_valid' , type=UpperCAmelCase__ , default=374 )
parser.add_argument('--server_ip' , type=UpperCAmelCase__ , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=UpperCAmelCase__ , default='' , help='Can be used for distant debugging.' )
__lowerCAmelCase = parser.parse_args()
print(UpperCAmelCase__ )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCAmelCase__ )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
__lowerCAmelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
__lowerCAmelCase = torch.cuda.device_count()
logger.info('device: {}, n_gpu {}'.format(UpperCAmelCase__ , UpperCAmelCase__ ) )
if not args.do_train and not args.do_eval:
raise ValueError('At least one of `do_train` or `do_eval` must be True.' )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
__lowerCAmelCase = ['_start_', '_delimiter_', '_classify_']
__lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(UpperCAmelCase__ )
__lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ )
__lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(UpperCAmelCase__ ) )
model.to(UpperCAmelCase__ )
# Load and encode the datasets
def tokenize_and_encode(UpperCAmelCase__ ):
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(UpperCAmelCase__ ) )
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
return obj
return [tokenize_and_encode(UpperCAmelCase__ ) for o in obj]
logger.info('Encoding dataset...' )
__lowerCAmelCase = load_rocstories_dataset(args.train_dataset )
__lowerCAmelCase = load_rocstories_dataset(args.eval_dataset )
__lowerCAmelCase = (train_dataset, eval_dataset)
__lowerCAmelCase = tokenize_and_encode(UpperCAmelCase__ )
# Compute the max input length for the Transformer
__lowerCAmelCase = model.config.n_positions // 2 - 2
__lowerCAmelCase = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
__lowerCAmelCase = min(UpperCAmelCase__ , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
__lowerCAmelCase = pre_process_datasets(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ )
__lowerCAmelCase, __lowerCAmelCase = tensor_datasets[0], tensor_datasets[1]
__lowerCAmelCase = TensorDataset(*UpperCAmelCase__ )
__lowerCAmelCase = RandomSampler(UpperCAmelCase__ )
__lowerCAmelCase = DataLoader(UpperCAmelCase__ , sampler=UpperCAmelCase__ , batch_size=args.train_batch_size )
__lowerCAmelCase = TensorDataset(*UpperCAmelCase__ )
__lowerCAmelCase = SequentialSampler(UpperCAmelCase__ )
__lowerCAmelCase = DataLoader(UpperCAmelCase__ , sampler=UpperCAmelCase__ , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
__lowerCAmelCase = args.max_steps
__lowerCAmelCase = args.max_steps // (len(UpperCAmelCase__ ) // args.gradient_accumulation_steps) + 1
else:
__lowerCAmelCase = len(UpperCAmelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs
__lowerCAmelCase = list(model.named_parameters() )
__lowerCAmelCase = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
__lowerCAmelCase = [
{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
'weight_decay': args.weight_decay,
},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0},
]
__lowerCAmelCase = AdamW(UpperCAmelCase__ , lr=args.learning_rate , eps=args.adam_epsilon )
__lowerCAmelCase = get_linear_schedule_with_warmup(
UpperCAmelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=UpperCAmelCase__ )
if args.do_train:
__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ):
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = tqdm(UpperCAmelCase__ , desc='Training' )
for step, batch in enumerate(UpperCAmelCase__ ):
__lowerCAmelCase = tuple(t.to(UpperCAmelCase__ ) for t in batch )
__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = batch
__lowerCAmelCase = model(UpperCAmelCase__ , mc_token_ids=UpperCAmelCase__ , lm_labels=UpperCAmelCase__ , mc_labels=UpperCAmelCase__ )
__lowerCAmelCase = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
__lowerCAmelCase = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
__lowerCAmelCase = 'Training loss: {:.2e} lr: {:.2e}'.format(UpperCAmelCase__ , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
__lowerCAmelCase = model.module if hasattr(UpperCAmelCase__ , 'module' ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
__lowerCAmelCase = os.path.join(args.output_dir , UpperCAmelCase__ )
__lowerCAmelCase = os.path.join(args.output_dir , UpperCAmelCase__ )
torch.save(model_to_save.state_dict() , UpperCAmelCase__ )
model_to_save.config.to_json_file(UpperCAmelCase__ )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
__lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
__lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(UpperCAmelCase__ )
if args.do_eval:
model.eval()
__lowerCAmelCase, __lowerCAmelCase = 0, 0
__lowerCAmelCase, __lowerCAmelCase = 0, 0
for batch in tqdm(UpperCAmelCase__ , desc='Evaluating' ):
__lowerCAmelCase = tuple(t.to(UpperCAmelCase__ ) for t in batch )
__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = batch
with torch.no_grad():
__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = model(
UpperCAmelCase__ , mc_token_ids=UpperCAmelCase__ , lm_labels=UpperCAmelCase__ , mc_labels=UpperCAmelCase__ )
__lowerCAmelCase = mc_logits.detach().cpu().numpy()
__lowerCAmelCase = mc_labels.to('cpu' ).numpy()
__lowerCAmelCase = accuracy(UpperCAmelCase__ , UpperCAmelCase__ )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
__lowerCAmelCase = eval_loss / nb_eval_steps
__lowerCAmelCase = eval_accuracy / nb_eval_examples
__lowerCAmelCase = tr_loss / nb_tr_steps if args.do_train else None
__lowerCAmelCase = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss}
__lowerCAmelCase = os.path.join(args.output_dir , 'eval_results.txt' )
with open(UpperCAmelCase__ , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key in sorted(result.keys() ):
logger.info(' %s = %s' , UpperCAmelCase__ , str(result[key] ) )
writer.write('%s = %s\n' % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 102
|
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class snake_case_ ( _a ):
"""simple docstring"""
__UpperCAmelCase =42
class snake_case_ ( _a , _a ):
"""simple docstring"""
__UpperCAmelCase =True
@register_to_config
def __init__( self , _A = 3 , _A = 3 , _A = ("DownEncoderBlock2D",) , _A = ("UpDecoderBlock2D",) , _A = (6_4,) , _A = 1 , _A = "silu" , _A = 4 , _A = 3_2 , _A = 3_2 , _A = 0.1_8215 , ):
super().__init__()
# pass init params to Encoder
__lowerCAmelCase = Encoder(
in_channels=_A , out_channels=_A , down_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , double_z=_A , )
# pass init params to Decoder
__lowerCAmelCase = Decoder(
in_channels=_A , out_channels=_A , up_block_types=_A , block_out_channels=_A , layers_per_block=_A , norm_num_groups=_A , act_fn=_A , )
__lowerCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
__lowerCAmelCase = nn.Convad(_A , _A , 1 )
__lowerCAmelCase = False
__lowerCAmelCase = False
# only relevant if vae tiling is enabled
__lowerCAmelCase = self.config.sample_size
__lowerCAmelCase = (
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
__lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
__lowerCAmelCase = 0.25
def A__ ( self , _A , _A=False ):
if isinstance(_A , (Encoder, Decoder) ):
__lowerCAmelCase = value
def A__ ( self , _A = True ):
__lowerCAmelCase = use_tiling
def A__ ( self ):
self.enable_tiling(_A )
def A__ ( self ):
__lowerCAmelCase = True
def A__ ( self ):
__lowerCAmelCase = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def A__ ( self ):
__lowerCAmelCase = {}
def fn_recursive_add_processors(_A , _A , _A ):
if hasattr(_A , 'set_processor' ):
__lowerCAmelCase = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" , _A , _A )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_A , _A , _A )
return processors
def A__ ( self , _A ):
__lowerCAmelCase = len(self.attn_processors.keys() )
if isinstance(_A , _A ) and len(_A ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(_A , _A , _A ):
if hasattr(_A , 'set_processor' ):
if not isinstance(_A , _A ):
module.set_processor(_A )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" , _A , _A )
for name, module in self.named_children():
fn_recursive_attn_processor(_A , _A , _A )
def A__ ( self ):
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def A__ ( self , _A , _A = True ):
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(_A , return_dict=_A )
if self.use_slicing and x.shape[0] > 1:
__lowerCAmelCase = [self.encoder(_A ) for x_slice in x.split(1 )]
__lowerCAmelCase = torch.cat(_A )
else:
__lowerCAmelCase = self.encoder(_A )
__lowerCAmelCase = self.quant_conv(_A )
__lowerCAmelCase = DiagonalGaussianDistribution(_A )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=_A )
def A__ ( self , _A , _A = True ):
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(_A , return_dict=_A )
__lowerCAmelCase = self.post_quant_conv(_A )
__lowerCAmelCase = self.decoder(_A )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_A )
@apply_forward_hook
def A__ ( self , _A , _A = True ):
if self.use_slicing and z.shape[0] > 1:
__lowerCAmelCase = [self._decode(_A ).sample for z_slice in z.split(1 )]
__lowerCAmelCase = torch.cat(_A )
else:
__lowerCAmelCase = self._decode(_A ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=_A )
def A__ ( self , _A , _A , _A ):
__lowerCAmelCase = min(a.shape[2] , b.shape[2] , _A )
for y in range(_A ):
__lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def A__ ( self , _A , _A , _A ):
__lowerCAmelCase = min(a.shape[3] , b.shape[3] , _A )
for x in range(_A ):
__lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def A__ ( self , _A , _A = True ):
__lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
__lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor )
__lowerCAmelCase = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
__lowerCAmelCase = []
for i in range(0 , x.shape[2] , _A ):
__lowerCAmelCase = []
for j in range(0 , x.shape[3] , _A ):
__lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
__lowerCAmelCase = self.encoder(_A )
__lowerCAmelCase = self.quant_conv(_A )
row.append(_A )
rows.append(_A )
__lowerCAmelCase = []
for i, row in enumerate(_A ):
__lowerCAmelCase = []
for j, tile in enumerate(_A ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
__lowerCAmelCase = self.blend_v(rows[i - 1][j] , _A , _A )
if j > 0:
__lowerCAmelCase = self.blend_h(row[j - 1] , _A , _A )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(_A , dim=3 ) )
__lowerCAmelCase = torch.cat(_A , dim=2 )
__lowerCAmelCase = DiagonalGaussianDistribution(_A )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=_A )
def A__ ( self , _A , _A = True ):
__lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
__lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor )
__lowerCAmelCase = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
__lowerCAmelCase = []
for i in range(0 , z.shape[2] , _A ):
__lowerCAmelCase = []
for j in range(0 , z.shape[3] , _A ):
__lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
__lowerCAmelCase = self.post_quant_conv(_A )
__lowerCAmelCase = self.decoder(_A )
row.append(_A )
rows.append(_A )
__lowerCAmelCase = []
for i, row in enumerate(_A ):
__lowerCAmelCase = []
for j, tile in enumerate(_A ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
__lowerCAmelCase = self.blend_v(rows[i - 1][j] , _A , _A )
if j > 0:
__lowerCAmelCase = self.blend_h(row[j - 1] , _A , _A )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(_A , dim=3 ) )
__lowerCAmelCase = torch.cat(_A , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_A )
def A__ ( self , _A , _A = False , _A = True , _A = None , ):
__lowerCAmelCase = sample
__lowerCAmelCase = self.encode(_A ).latent_dist
if sample_posterior:
__lowerCAmelCase = posterior.sample(generator=_A )
else:
__lowerCAmelCase = posterior.mode()
__lowerCAmelCase = self.decode(_A ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_A )
| 102
| 1
|
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowercase_ :
def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]:
a__ =parent
a__ =13
a__ =7
a__ =True
a__ =True
a__ =True
a__ =True
a__ =99
a__ =384
a__ =2
a__ =4
a__ =37
a__ ="gelu"
a__ =0.1
a__ =0.1
a__ =512
a__ =16
a__ =2
a__ =0.02
a__ =3
a__ =4
a__ =128
a__ =2
a__ =9
a__ =1
a__ =None
def __UpperCamelCase ( self) -> str:
a__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
a__ =None
if self.use_input_mask:
a__ =random_attention_mask([self.batch_size, self.seq_length])
a__ =None
if self.use_token_type_ids:
a__ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
a__ =None
a__ =None
a__ =None
if self.use_labels:
a__ =ids_tensor([self.batch_size] , self.type_sequence_label_size)
a__ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
a__ =ids_tensor([self.batch_size] , self.num_choices)
a__ =ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowerCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any:
a__ =TFConvBertModel(config=_lowerCAmelCase)
a__ ={"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
a__ =[input_ids, input_mask]
a__ =model(_lowerCAmelCase)
a__ =model(_lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[str]:
a__ =TFConvBertForMaskedLM(config=_lowerCAmelCase)
a__ ={
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
a__ =model(_lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[Any]:
a__ =self.num_labels
a__ =TFConvBertForSequenceClassification(config=_lowerCAmelCase)
a__ ={
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
a__ =model(_lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any:
a__ =self.num_choices
a__ =TFConvBertForMultipleChoice(config=_lowerCAmelCase)
a__ =tf.tile(tf.expand_dims(_lowerCAmelCase , 1) , (1, self.num_choices, 1))
a__ =tf.tile(tf.expand_dims(_lowerCAmelCase , 1) , (1, self.num_choices, 1))
a__ =tf.tile(tf.expand_dims(_lowerCAmelCase , 1) , (1, self.num_choices, 1))
a__ ={
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
a__ =model(_lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Dict:
a__ =self.num_labels
a__ =TFConvBertForTokenClassification(config=_lowerCAmelCase)
a__ ={
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
a__ =model(_lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> int:
a__ =TFConvBertForQuestionAnswering(config=_lowerCAmelCase)
a__ ={
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
a__ =model(_lowerCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def __UpperCamelCase ( self) -> int:
a__ =self.prepare_config_and_inputs()
(
a__
) =config_and_inputs
a__ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class lowercase_ (_A , _A , unittest.TestCase ):
snake_case =(
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
snake_case =(
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case =False
snake_case =False
snake_case =False
def __UpperCamelCase ( self) -> Optional[Any]:
a__ =TFConvBertModelTester(self)
a__ =ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37)
def __UpperCamelCase ( self) -> Optional[Any]:
self.config_tester.run_common_tests()
def __UpperCamelCase ( self) -> Dict:
a__ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase)
def __UpperCamelCase ( self) -> str:
a__ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase)
def __UpperCamelCase ( self) -> int:
a__ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase)
def __UpperCamelCase ( self) -> Optional[Any]:
a__ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase)
def __UpperCamelCase ( self) -> Any:
a__ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase)
def __UpperCamelCase ( self) -> Dict:
a__ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase)
@slow
def __UpperCamelCase ( self) -> Optional[int]:
a__ =self.model_tester.prepare_config_and_inputs_for_common()
a__ =True
a__ =True
if hasattr(_lowerCAmelCase , 'use_cache'):
a__ =True
a__ =getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
a__ =getattr(self.model_tester , 'key_length' , _lowerCAmelCase)
for model_class in self.all_model_classes:
a__ =self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase)
a__ =model_class(_lowerCAmelCase)
a__ =len(model(_lowerCAmelCase))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCAmelCase , saved_model=_lowerCAmelCase)
a__ =os.path.join(_lowerCAmelCase , 'saved_model' , '1')
a__ =tf.keras.models.load_model(_lowerCAmelCase)
a__ =model(_lowerCAmelCase)
if self.is_encoder_decoder:
a__ =outputs["encoder_hidden_states"]
a__ =outputs["encoder_attentions"]
else:
a__ =outputs["hidden_states"]
a__ =outputs["attentions"]
self.assertEqual(len(_lowerCAmelCase) , _lowerCAmelCase)
a__ =getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(_lowerCAmelCase) , _lowerCAmelCase)
self.assertListEqual(
list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_lowerCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __UpperCamelCase ( self) -> Optional[int]:
a__ =TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
self.assertIsNotNone(_lowerCAmelCase)
def __UpperCamelCase ( self) -> Any:
a__ =self.model_tester.prepare_config_and_inputs_for_common()
a__ =True
a__ =getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length)
a__ =getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length)
a__ =getattr(self.model_tester , 'key_length' , _lowerCAmelCase)
a__ =getattr(self.model_tester , 'key_length' , _lowerCAmelCase)
def check_decoder_attentions_output(lowercase_):
a__ =len(_lowerCAmelCase)
self.assertEqual(out_len % 2 , 0)
a__ =outputs.decoder_attentions
self.assertEqual(len(_lowerCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(lowercase_):
a__ =[
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_lowerCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
a__ =True
a__ =False
a__ =model_class(_lowerCAmelCase)
a__ =model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase))
a__ =len(_lowerCAmelCase)
self.assertEqual(config.output_hidden_states , _lowerCAmelCase)
check_encoder_attentions_output(_lowerCAmelCase)
if self.is_encoder_decoder:
a__ =model_class(_lowerCAmelCase)
a__ =model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase))
self.assertEqual(config.output_hidden_states , _lowerCAmelCase)
check_decoder_attentions_output(_lowerCAmelCase)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
a__ =True
a__ =model_class(_lowerCAmelCase)
a__ =model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase))
self.assertEqual(config.output_hidden_states , _lowerCAmelCase)
check_encoder_attentions_output(_lowerCAmelCase)
# Check attention is always last and order is fine
a__ =True
a__ =True
a__ =model_class(_lowerCAmelCase)
a__ =model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowerCAmelCase))
self.assertEqual(model.config.output_hidden_states , _lowerCAmelCase)
check_encoder_attentions_output(_lowerCAmelCase)
@require_tf
class lowercase_ (unittest.TestCase ):
@slow
def __UpperCamelCase ( self) -> Any:
a__ =TFConvBertModel.from_pretrained('YituTech/conv-bert-base')
a__ =tf.constant([[0, 1, 2, 3, 4, 5]])
a__ =model(_lowerCAmelCase)[0]
a__ =[1, 6, 768]
self.assertEqual(output.shape , _lowerCAmelCase)
a__ =tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
])
tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4)
| 20
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : Dict = logging.get_logger(__name__)
_a : Union[str, Any] = {
"""google/vivit-b-16x2-kinetics400""": (
"""https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json"""
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class _UpperCAmelCase ( _A ):
"""simple docstring"""
A = '''vivit'''
def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=32 , _lowerCAmelCase=[2, 16, 16] , _lowerCAmelCase=3 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3_072 , _lowerCAmelCase="gelu_fast" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-06 , _lowerCAmelCase=True , **_lowerCAmelCase , ):
'''simple docstring'''
lowerCAmelCase__ :Any = hidden_size
lowerCAmelCase__ :Union[str, Any] = num_hidden_layers
lowerCAmelCase__ :Dict = num_attention_heads
lowerCAmelCase__ :int = intermediate_size
lowerCAmelCase__ :List[Any] = hidden_act
lowerCAmelCase__ :str = hidden_dropout_prob
lowerCAmelCase__ :Tuple = attention_probs_dropout_prob
lowerCAmelCase__ :Optional[int] = initializer_range
lowerCAmelCase__ :Optional[int] = layer_norm_eps
lowerCAmelCase__ :Optional[int] = image_size
lowerCAmelCase__ :Any = num_frames
lowerCAmelCase__ :List[str] = tubelet_size
lowerCAmelCase__ :List[str] = num_channels
lowerCAmelCase__ :str = qkv_bias
super().__init__(**_lowerCAmelCase )
| 145
| 0
|
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float:
"""simple docstring"""
if mass < 0:
raise ValueError('''The mass of a body cannot be negative''' )
return 0.5 * mass * abs(lowercase_ ) * abs(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 721
|
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
_lowerCamelCase : Any = logging.getLogger(__name__)
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''Whether to pad all samples to `max_seq_length`. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch.'''
)
} , )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of prediction examples to this '''
'''value if set.'''
)
} , )
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCAmelCase__ = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
UpperCAmelCase__ = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , )
def SCREAMING_SNAKE_CASE ( ) -> str:
"""simple docstring"""
A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
A__ , A__ , A__ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_xnli''' , lowercase_ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
A__ = training_args.get_process_log_level()
logger.setLevel(lowercase_ )
datasets.utils.logging.set_verbosity(lowercase_ )
transformers.utils.logging.set_verbosity(lowercase_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
A__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
A__ = load_dataset(
'''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
A__ = load_dataset(
'''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
A__ = train_dataset.features['''label'''].names
if training_args.do_eval:
A__ = load_dataset(
'''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
A__ = eval_dataset.features['''label'''].names
if training_args.do_predict:
A__ = load_dataset(
'''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
A__ = predict_dataset.features['''label'''].names
# Labels
A__ = len(lowercase_ )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
A__ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase_ , idalabel={str(lowercase_ ): label for i, label in enumerate(lowercase_ )} , labelaid={label: i for i, label in enumerate(lowercase_ )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
A__ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
A__ = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
A__ = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
A__ = False
def preprocess_function(lowercase_ ):
# Tokenize the texts
return tokenizer(
examples['''premise'''] , examples['''hypothesis'''] , padding=lowercase_ , max_length=data_args.max_seq_length , truncation=lowercase_ , )
if training_args.do_train:
if data_args.max_train_samples is not None:
A__ = min(len(lowercase_ ) , data_args.max_train_samples )
A__ = train_dataset.select(range(lowercase_ ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
A__ = train_dataset.map(
lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , )
# Log a few random samples from the training set:
for index in random.sample(range(len(lowercase_ ) ) , 3 ):
logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
A__ = min(len(lowercase_ ) , data_args.max_eval_samples )
A__ = eval_dataset.select(range(lowercase_ ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
A__ = eval_dataset.map(
lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
A__ = min(len(lowercase_ ) , data_args.max_predict_samples )
A__ = predict_dataset.select(range(lowercase_ ) )
with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ):
A__ = predict_dataset.map(
lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , )
# Get the metric function
A__ = evaluate.load('''xnli''' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowercase_ ):
A__ = p.predictions[0] if isinstance(p.predictions , lowercase_ ) else p.predictions
A__ = np.argmax(lowercase_ , axis=1 )
return metric.compute(predictions=lowercase_ , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
A__ = default_data_collator
elif training_args.fpaa:
A__ = DataCollatorWithPadding(lowercase_ , pad_to_multiple_of=8 )
else:
A__ = None
# Initialize our Trainer
A__ = Trainer(
model=lowercase_ , args=lowercase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , data_collator=lowercase_ , )
# Training
if training_args.do_train:
A__ = None
if training_args.resume_from_checkpoint is not None:
A__ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
A__ = last_checkpoint
A__ = trainer.train(resume_from_checkpoint=lowercase_ )
A__ = train_result.metrics
A__ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase_ )
)
A__ = min(lowercase_ , len(lowercase_ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' , lowercase_ )
trainer.save_metrics('''train''' , lowercase_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
A__ = trainer.evaluate(eval_dataset=lowercase_ )
A__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase_ )
A__ = min(lowercase_ , len(lowercase_ ) )
trainer.log_metrics('''eval''' , lowercase_ )
trainer.save_metrics('''eval''' , lowercase_ )
# Prediction
if training_args.do_predict:
logger.info('''*** Predict ***''' )
A__ , A__ , A__ = trainer.predict(lowercase_ , metric_key_prefix='''predict''' )
A__ = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowercase_ )
)
A__ = min(lowercase_ , len(lowercase_ ) )
trainer.log_metrics('''predict''' , lowercase_ )
trainer.save_metrics('''predict''' , lowercase_ )
A__ = np.argmax(lowercase_ , axis=1 )
A__ = os.path.join(training_args.output_dir , '''predictions.txt''' )
if trainer.is_world_process_zero():
with open(lowercase_ , '''w''' ) as writer:
writer.write('''index\tprediction\n''' )
for index, item in enumerate(lowercase_ ):
A__ = label_list[item]
writer.write(f"""{index}\t{item}\n""" )
if __name__ == "__main__":
main()
| 177
| 0
|
def _UpperCAmelCase ():
'''simple docstring'''
for n in range(1 , 1000000 ):
yield n * (n + 1) // 2
def _UpperCAmelCase (UpperCamelCase_ : List[str] ):
'''simple docstring'''
_lowerCAmelCase : int = 1
_lowerCAmelCase : List[Any] = 2
while i * i <= n:
_lowerCAmelCase : Optional[Any] = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def _UpperCAmelCase ():
'''simple docstring'''
return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 )
if __name__ == "__main__":
print(solution())
| 429
|
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
def __init__( self :Union[str, Any] , *__magic_name__ :int , **__magic_name__ :str ):
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , __magic_name__ , )
super().__init__(*__magic_name__ , **__magic_name__ )
| 468
| 0
|
from typing import Any
import numpy as np
def lowercase ( _a ) -> bool:
return np.array_equal(_a ,matrix.conjugate().T )
def lowercase ( _a ,_a ) -> Any:
UpperCAmelCase_: Optional[Any] = v.conjugate().T
UpperCAmelCase_: Optional[Any] = v_star.dot(_a )
assert isinstance(_a ,np.ndarray )
return (v_star_dot.dot(_a )) / (v_star.dot(_a ))
def lowercase ( ) -> None:
UpperCAmelCase_: Optional[int] = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] )
UpperCAmelCase_: int = np.array([[1], [2], [3]] )
assert is_hermitian(_a ), f"{a} is not hermitian."
print(rayleigh_quotient(_a ,_a ) )
UpperCAmelCase_: int = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(_a ), f"{a} is not hermitian."
assert rayleigh_quotient(_a ,_a ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 306
|
class UpperCAmelCase__ :
def __init__( self , A__ ):
"""simple docstring"""
UpperCAmelCase_: Tuple = arr.split("," )
def snake_case_ ( self ):
"""simple docstring"""
UpperCAmelCase_: str = [int(self.array[0] )] * len(self.array )
UpperCAmelCase_: List[str] = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
UpperCAmelCase_: Dict = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
UpperCAmelCase_: Tuple = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
_lowerCAmelCase = input("""please input some numbers:""")
_lowerCAmelCase = SubArray(whole_array)
_lowerCAmelCase = array.solve_sub_array()
print(("""the results is:""", re))
| 306
| 1
|
"""simple docstring"""
__UpperCAmelCase : str = tuple[float, float, float]
__UpperCAmelCase : List[str] = tuple[float, float, float]
def A ( _A, _A ):
"""simple docstring"""
snake_case_ :Optional[int] = end_pointa[0] - end_pointa[0]
snake_case_ :List[str] = end_pointa[1] - end_pointa[1]
snake_case_ :Tuple = end_pointa[2] - end_pointa[2]
return (x, y, z)
def A ( _A, _A ):
"""simple docstring"""
snake_case_ :int = ab[1] * ac[2] - ab[2] * ac[1] # *i
snake_case_ :List[Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
snake_case_ :List[Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def A ( _A, _A ):
"""simple docstring"""
return tuple(round(_lowerCAmelCase, _lowerCAmelCase ) for x in vector ) == (0, 0, 0)
def A ( _A, _A, _A, _A = 10 ):
"""simple docstring"""
snake_case_ :Optional[int] = create_vector(_lowerCAmelCase, _lowerCAmelCase )
snake_case_ :Any = create_vector(_lowerCAmelCase, _lowerCAmelCase )
return is_zero_vector(get_ad_vectors_cross(_lowerCAmelCase, _lowerCAmelCase ), _lowerCAmelCase )
| 584
|
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCamelCase ( self ) -> List[str]:
'''simple docstring'''
__UpperCamelCase : List[str] = tempfile.mkdtemp()
__UpperCamelCase : Tuple = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"的",
"价",
"格",
"是",
"15",
"便",
"alex",
"##andra",
",",
"。",
"-",
"t",
"shirt",
]
__UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
__UpperCamelCase : Optional[Any] = {
"do_resize": True,
"size": {"height": 2_24, "width": 2_24},
"do_center_crop": True,
"crop_size": {"height": 18, "width": 18},
"do_normalize": True,
"image_mean": [0.48145466, 0.4578275, 0.40821073],
"image_std": [0.26862954, 0.26130258, 0.27577711],
"do_convert_rgb": True,
}
__UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , __UpperCamelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCamelCase , __UpperCamelCase )
def __lowerCamelCase ( self , **__UpperCamelCase ) -> Dict:
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def __lowerCamelCase ( self , **__UpperCamelCase ) -> Any:
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def __lowerCamelCase ( self , **__UpperCamelCase ) -> Dict:
'''simple docstring'''
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def __lowerCamelCase ( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __lowerCamelCase ( self ) -> Tuple:
'''simple docstring'''
__UpperCamelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__UpperCamelCase : Dict = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCamelCase ( self ) -> Tuple:
'''simple docstring'''
__UpperCamelCase : str = self.get_tokenizer()
__UpperCamelCase : Union[str, Any] = self.get_rust_tokenizer()
__UpperCamelCase : Any = self.get_image_processor()
__UpperCamelCase : str = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
__UpperCamelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase )
__UpperCamelCase : Union[str, Any] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
__UpperCamelCase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer , __UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor , __UpperCamelCase )
def __lowerCamelCase ( self ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__UpperCamelCase : Optional[Any] = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" )
__UpperCamelCase : Tuple = self.get_image_processor(do_normalize=__UpperCamelCase )
__UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__UpperCamelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCamelCase )
def __lowerCamelCase ( self ) -> str:
'''simple docstring'''
__UpperCamelCase : List[str] = self.get_image_processor()
__UpperCamelCase : List[str] = self.get_tokenizer()
__UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
__UpperCamelCase : Optional[Any] = self.prepare_image_inputs()
__UpperCamelCase : List[str] = image_processor(__UpperCamelCase , return_tensors="np" )
__UpperCamelCase : List[Any] = processor(images=__UpperCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __lowerCamelCase ( self ) -> List[str]:
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = self.get_image_processor()
__UpperCamelCase : Union[str, Any] = self.get_tokenizer()
__UpperCamelCase : int = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
__UpperCamelCase : int = "Alexandra,T-shirt的价格是15便士。"
__UpperCamelCase : int = processor(text=__UpperCamelCase )
__UpperCamelCase : int = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCamelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase : List[str] = self.get_image_processor()
__UpperCamelCase : List[str] = self.get_tokenizer()
__UpperCamelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
__UpperCamelCase : str = "Alexandra,T-shirt的价格是15便士。"
__UpperCamelCase : List[Any] = self.prepare_image_inputs()
__UpperCamelCase : Union[str, Any] = processor(text=__UpperCamelCase , images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def __lowerCamelCase ( self ) -> Dict:
'''simple docstring'''
__UpperCamelCase : Tuple = self.get_image_processor()
__UpperCamelCase : Any = self.get_tokenizer()
__UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
__UpperCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__UpperCamelCase : str = processor.batch_decode(__UpperCamelCase )
__UpperCamelCase : Dict = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
def __lowerCamelCase ( self ) -> int:
'''simple docstring'''
__UpperCamelCase : Optional[int] = self.get_image_processor()
__UpperCamelCase : Tuple = self.get_tokenizer()
__UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
__UpperCamelCase : Tuple = "Alexandra,T-shirt的价格是15便士。"
__UpperCamelCase : Optional[int] = self.prepare_image_inputs()
__UpperCamelCase : Tuple = processor(text=__UpperCamelCase , images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 327
| 0
|
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowercase ( unittest.TestCase ):
@slow
def A__ ( self):
lowercase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''')
lowercase = tf.convert_to_tensor(
[[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !"
lowercase = model(A__)['''last_hidden_state''']
lowercase = tf.TensorShape((1, 1_0, 7_6_8))
self.assertEqual(output.shape ,A__)
# compare the actual values for a slice.
lowercase = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,)
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4))
| 712
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ :Tuple = {
"configuration_instructblip": [
"INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"InstructBlipConfig",
"InstructBlipQFormerConfig",
"InstructBlipVisionConfig",
],
"processing_instructblip": ["InstructBlipProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ :List[str] = [
"INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"InstructBlipQFormerModel",
"InstructBlipPreTrainedModel",
"InstructBlipForConditionalGeneration",
"InstructBlipVisionModel",
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
lowercase__ :List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 633
| 0
|
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
_lowerCamelCase : int = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''adapter_layer''': '''encoder.layers.*.adapter_layer''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
'''pooling_layer.linear''': '''projector''',
'''pooling_layer.projection''': '''classifier''',
}
_lowerCamelCase : str = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
'''projector''',
'''classifier''',
]
def A__ ( __A : Dict ) ->Optional[int]:
__A ={}
with open(__A , '''r''' ) as file:
for line_number, line in enumerate(__A ):
__A =line.strip()
if line:
__A =line.split()
__A =line_number
__A =words[0]
__A =value
return result
def A__ ( __A : Optional[int] , __A : Dict , __A : Tuple , __A : List[str] , __A : Optional[Any] ) ->Dict:
for attribute in key.split('''.''' ):
__A =getattr(__A , __A )
__A =None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__A =PARAM_MAPPING[full_name.split('''.''' )[-1]]
__A ='''param'''
if weight_type is not None and weight_type != "param":
__A =getattr(__A , __A ).shape
elif weight_type is not None and weight_type == "param":
__A =hf_pointer
for attribute in hf_param_name.split('''.''' ):
__A =getattr(__A , __A )
__A =shape_pointer.shape
# let's reduce dimension
__A =value[0]
else:
__A =hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
__A =value
elif weight_type == "weight_g":
__A =value
elif weight_type == "weight_v":
__A =value
elif weight_type == "bias":
__A =value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
__A =getattr(__A , __A )
__A =value
else:
__A =value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def A__ ( __A : Optional[int] , __A : Optional[Any] , __A : Dict , __A : str , __A : Optional[int] ) ->str:
__A =None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__A =PARAM_MAPPING[full_name.split('''.''' )[-1]]
__A ='''param'''
if weight_type is not None and weight_type != "param":
__A ='''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__A ='''.'''.join([key, hf_param_name] )
else:
__A =key
__A =value if '''lm_head''' in full_key else value[0]
_lowerCamelCase : str = {
'''W_a''': '''linear_1.weight''',
'''W_b''': '''linear_2.weight''',
'''b_a''': '''linear_1.bias''',
'''b_b''': '''linear_2.bias''',
'''ln_W''': '''norm.weight''',
'''ln_b''': '''norm.bias''',
}
def A__ ( __A : List[Any] , __A : Any , __A : Optional[Any]=None , __A : List[Any]=None ) ->Optional[Any]:
__A =False
for key, mapped_key in MAPPING.items():
__A ='''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__A =True
if "*" in mapped_key:
__A =name.split(__A )[0].split('''.''' )[-2]
__A =mapped_key.replace('''*''' , __A )
if "weight_g" in name:
__A ='''weight_g'''
elif "weight_v" in name:
__A ='''weight_v'''
elif "bias" in name:
__A ='''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__A ='''weight'''
else:
__A =None
if hf_dict is not None:
rename_dict(__A , __A , __A , __A , __A )
else:
set_recursively(__A , __A , __A , __A , __A )
return is_used
return is_used
def A__ ( __A : List[str] , __A : Tuple , __A : Optional[Any] ) ->str:
__A =[]
__A =fairseq_model.state_dict()
__A =hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__A =False
if "conv_layers" in name:
load_conv_layer(
__A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , )
__A =True
else:
__A =load_wavaveca_layer(__A , __A , __A )
if not is_used:
unused_weights.append(__A )
logger.warning(F'''Unused weights: {unused_weights}''' )
def A__ ( __A : Union[str, Any] , __A : Any , __A : Union[str, Any] , __A : Tuple , __A : Dict ) ->List[str]:
__A =full_name.split('''conv_layers.''' )[-1]
__A =name.split('''.''' )
__A =int(items[0] )
__A =int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
__A =value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
__A =value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
__A =value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
__A =value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(__A )
@torch.no_grad()
def A__ ( __A : List[str] , __A : str , __A : Dict=None , __A : Tuple=None , __A : Tuple=True , __A : Union[str, Any]=False ) ->Optional[Any]:
if config_path is not None:
__A =WavaVecaConfig.from_pretrained(__A )
else:
__A =WavaVecaConfig()
if is_seq_class:
__A =read_txt_into_dict(__A )
__A =idalabel
__A =WavaVecaForSequenceClassification(__A )
__A =WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , )
feature_extractor.save_pretrained(__A )
elif is_finetuned:
if dict_path:
__A =Dictionary.load(__A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__A =target_dict.pad_index
__A =target_dict.bos_index
__A =target_dict.eos_index
__A =len(target_dict.symbols )
__A =os.path.join(__A , '''vocab.json''' )
if not os.path.isdir(__A ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__A ) )
return
os.makedirs(__A , exist_ok=__A )
__A =target_dict.indices
# fairseq has the <pad> and <s> switched
__A =0
__A =1
with open(__A , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(__A , __A )
__A =WavaVecaCTCTokenizer(
__A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__A , )
__A =True if config.feat_extract_norm == '''layer''' else False
__A =WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , )
__A =WavaVecaProcessor(feature_extractor=__A , tokenizer=__A )
processor.save_pretrained(__A )
__A =WavaVecaForCTC(__A )
else:
__A =WavaVecaForPreTraining(__A )
if is_finetuned or is_seq_class:
__A , __A , __A =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
__A =argparse.Namespace(task='''audio_pretraining''' )
__A =fairseq.tasks.setup_task(__A )
__A , __A , __A =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__A )
__A =model[0].eval()
recursively_load_weights(__A , __A , not is_finetuned )
hf_wavavec.save_pretrained(__A )
if __name__ == "__main__":
_lowerCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
parser.add_argument(
'''--is_seq_class''',
action='''store_true''',
help='''Whether the model to convert is a fine-tuned sequence classification model or not''',
)
_lowerCamelCase : List[Any] = parser.parse_args()
_lowerCamelCase : Dict = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 184
|
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {
'''nielsr/canine-s''': 2048,
}
# Unicode defines 1,114,112 total “codepoints”
_lowerCamelCase : List[str] = 111_4112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Any = 0xe_0_0_0
_lowerCamelCase : Union[str, Any] = 0xe_0_0_1
_lowerCamelCase : Any = 0xe_0_0_2
_lowerCamelCase : List[str] = 0xe_0_0_3
_lowerCamelCase : Any = 0xe_0_0_4
# Maps special codepoints to human-readable names.
_lowerCamelCase : Dict[int, str] = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
_lowerCamelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class lowerCAmelCase__ ( __magic_name__ ):
'''simple docstring'''
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=False , lowercase__=2_0_4_8 , **lowercase__ , ):
'''simple docstring'''
__A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token
__A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token
__A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token
__A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token
__A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token
super().__init__(
bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , model_max_length=lowercase__ , **lowercase__ , )
# Creates a mapping for looking up the IDs of special symbols.
__A ={}
for codepoint, name in SPECIAL_CODEPOINTS.items():
__A =codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
__A ={
codepoint: name for name, codepoint in self._special_codepoints.items()
}
__A =UNICODE_VOCAB_SIZE
__A =len(self._special_codepoints )
@property
def __UpperCamelCase ( self ):
'''simple docstring'''
return self._unicode_vocab_size
def __UpperCamelCase ( self , lowercase__ ):
'''simple docstring'''
return list(lowercase__ )
def __UpperCamelCase ( self , lowercase__ ):
'''simple docstring'''
try:
return ord(lowercase__ )
except TypeError:
raise ValueError(f'''invalid token: \'{token}\'''' )
def __UpperCamelCase ( self , lowercase__ ):
'''simple docstring'''
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(lowercase__ )
except TypeError:
raise ValueError(f'''invalid id: {index}''' )
def __UpperCamelCase ( self , lowercase__ ):
'''simple docstring'''
return "".join(lowercase__ )
def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ):
'''simple docstring'''
__A =[self.sep_token_id]
__A =[self.cls_token_id]
__A =cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def __UpperCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ )
__A =[1] + ([0] * len(lowercase__ )) + [1]
if token_ids_a is not None:
result += ([0] * len(lowercase__ )) + [1]
return result
def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ):
'''simple docstring'''
__A =[self.sep_token_id]
__A =[self.cls_token_id]
__A =len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ):
'''simple docstring'''
return ()
| 184
| 1
|
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A_ : Tuple = 'pt'
elif is_tf_available():
A_ : Optional[int] = 'tf'
else:
A_ : str = 'jax'
class _a (__magic_name__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__: Dict = PerceiverTokenizer
UpperCAmelCase__: str = False
def __A ( self ):
super().setUp()
A__ : int = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __A ( self ):
return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" )
def __A ( self , **A__ ):
return self.tokenizer_class.from_pretrained(self.tmpdirname , **A__ )
def __A ( self , A__ , A__=False , A__=20 , A__=5 ):
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
A__ : int = []
for i in range(len(A__ ) ):
try:
A__ : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=A__ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
A__ : Dict = list(filter(lambda A__ : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , A__ ) )
A__ : str = list(filter(lambda A__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=A__ ) , A__ ) )
if max_length is not None and len(A__ ) > max_length:
A__ : List[Any] = toks[:max_length]
if min_length is not None and len(A__ ) < min_length and len(A__ ) > 0:
while len(A__ ) < min_length:
A__ : List[Any] = toks + toks
# toks_str = [t[1] for t in toks]
A__ : Tuple = [t[0] for t in toks]
# Ensure consistency
A__ : Union[str, Any] = tokenizer.decode(A__ , clean_up_tokenization_spaces=A__ )
if " " not in output_txt and len(A__ ) > 1:
A__ : List[Any] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A__ )
+ """ """
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A__ )
)
if with_prefix_space:
A__ : List[Any] = """ """ + output_txt
A__ : Optional[Any] = tokenizer.encode(A__ , add_special_tokens=A__ )
return output_txt, output_ids
def __A ( self ):
A__ : Union[str, Any] = self.perceiver_tokenizer
A__ : str = """Unicode €."""
A__ : Union[str, Any] = tokenizer(A__ )
A__ : Any = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded["""input_ids"""] , A__ )
# decoding
A__ : List[Any] = tokenizer.decode(A__ )
self.assertEqual(A__ , """[CLS]Unicode €.[SEP]""" )
A__ : Any = tokenizer("""e è é ê ë""" )
A__ : str = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded["""input_ids"""] , A__ )
# decoding
A__ : Tuple = tokenizer.decode(A__ )
self.assertEqual(A__ , """[CLS]e è é ê ë[SEP]""" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" )
def __A ( self ):
A__ : int = self.perceiver_tokenizer
A__ : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
# fmt: off
A__ : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
A__ : Union[str, Any] = tokenizer(A__ , padding=A__ , return_tensors=A__ )
self.assertIsInstance(A__ , A__ )
if FRAMEWORK != "jax":
A__ : Dict = list(batch.input_ids.numpy()[0] )
else:
A__ : List[Any] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(A__ , A__ )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def __A ( self ):
A__ : Tuple = self.perceiver_tokenizer
A__ : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
A__ : List[str] = tokenizer(A__ , padding=A__ , return_tensors=A__ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("""input_ids""" , A__ )
self.assertIn("""attention_mask""" , A__ )
self.assertNotIn("""decoder_input_ids""" , A__ )
self.assertNotIn("""decoder_attention_mask""" , A__ )
def __A ( self ):
A__ : Optional[int] = self.perceiver_tokenizer
A__ : Optional[Any] = [
"""Summary of the text.""",
"""Another summary.""",
]
A__ : Optional[Any] = tokenizer(
text_target=A__ , max_length=32 , padding="""max_length""" , truncation=A__ , return_tensors=A__ )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
def __A ( self ):
# safety check on max_len default value so we are sure the test works
A__ : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
A__ : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
A__ : Tuple = tempfile.mkdtemp()
A__ : Tuple = """ He is very happy, UNwant\u00E9d,running"""
A__ : Optional[Any] = tokenizer.encode(A__ , add_special_tokens=A__ )
tokenizer.save_pretrained(A__ )
A__ : List[str] = tokenizer.__class__.from_pretrained(A__ )
A__ : int = after_tokenizer.encode(A__ , add_special_tokens=A__ )
self.assertListEqual(A__ , A__ )
shutil.rmtree(A__ )
A__ : List[str] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
A__ : Optional[Any] = tempfile.mkdtemp()
A__ : Any = """ He is very happy, UNwant\u00E9d,running"""
tokenizer.add_tokens(["""bim""", """bambam"""] )
A__ : Optional[Any] = tokenizer.additional_special_tokens
additional_special_tokens.append("""new_additional_special_token""" )
tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} )
A__ : Optional[Any] = tokenizer.encode(A__ , add_special_tokens=A__ )
tokenizer.save_pretrained(A__ )
A__ : List[Any] = tokenizer.__class__.from_pretrained(A__ )
A__ : Optional[int] = after_tokenizer.encode(A__ , add_special_tokens=A__ )
self.assertListEqual(A__ , A__ )
self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
A__ : Dict = tokenizer.__class__.from_pretrained(A__ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(A__ )
def __A ( self ):
A__ : Dict = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(A__ )
with open(os.path.join(A__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file:
A__ : int = json.load(A__ )
with open(os.path.join(A__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file:
A__ : Tuple = json.load(A__ )
A__ : str = [F"""<extra_id_{i}>""" for i in range(125 )]
A__ : Optional[Any] = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
A__ : Dict = added_tokens_extra_ids + [
"""an_additional_special_token"""
]
with open(os.path.join(A__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(A__ , A__ )
with open(os.path.join(A__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile:
json.dump(A__ , A__ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
A__ : List[str] = tokenizer_class.from_pretrained(
A__ , )
self.assertIn(
"""an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
A__ : Tuple = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=A__ )]
A__ : Tuple = tokenizer_class.from_pretrained(
A__ , additional_special_tokens=A__ , )
self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens )
self.assertEqual(
["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , )
def __A ( self ):
A__ : Any = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , """�""" )
def __A ( self ):
pass
def __A ( self ):
pass
def __A ( self ):
pass
def __A ( self ):
pass
def __A ( self ):
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
A__ : int = self.get_tokenizers(fast=A__ , do_lower_case=A__ )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
A__ : Tuple = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""]
A__ : Dict = tokenizer.convert_tokens_to_string(A__ )
self.assertIsInstance(A__ , A__ )
| 64
|
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def UpperCamelCase (lowercase_: List[str] , lowercase_: str ) -> Optional[Any]:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
A__ : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",)
A__ : Optional[int] = torch.permute(lowercase_ , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase_ ):
# linear layer
A__ : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",)
A__ : int = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
A__ : Optional[int] = flax_key_tuple[:-1] + ("""weight""",)
return flax_key_tuple, flax_tensor
def UpperCamelCase (lowercase_: Tuple , lowercase_: Optional[int] , lowercase_: str ) -> Union[str, Any]:
if "metadata" in layer:
A__ : Tuple = layer.split("""metadata""" )
A__ : Optional[Any] = """""".join(split_layer[0] )[:-1]
A__ : Optional[Any] = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )]
elif "kvstore" in layer:
A__ : str = layer.split("""kvstore""" )
A__ : int = """""".join(split_layer[0] )[:-1]
A__ : Optional[int] = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )]
else:
A__ : Any = layer.split("""/""" )
A__ : int = """/""".join(split_layer[:-1] )
A__ : str = (split_layer[-1],)
if "kvstore/path" in layer:
A__ : Dict = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}"""
elif "kvstore/driver" in layer:
A__ : Optional[int] = """file"""
else:
A__ : str = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def UpperCamelCase (lowercase_: str , lowercase_: List[Any] ) -> int:
A__ : int = rename_keys(lowercase_ )
A__ : Any = {}
for k, v in current_block.items():
A__ : Dict = v
A__ : str = new_current_block
torch.save(lowercase_ , lowercase_ )
def UpperCamelCase (lowercase_: Dict , lowercase_: Optional[Any] , lowercase_: Optional[Any] , lowercase_: Optional[int] , lowercase_: str = WEIGHTS_NAME ) -> Tuple:
A__ : Optional[int] = convert_file_size_to_int(lowercase_ )
A__ : List[Any] = []
A__ : int = {}
A__ : List[str] = 0
A__ : Any = 0
os.makedirs(lowercase_ , exist_ok=lowercase_ )
with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp:
A__ : Optional[Any] = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""]
A__ : Dict = flatten_dict(lowercase_ , sep="""/""" )
A__ : Any = {}
for layer in checkpoint_info.keys():
A__ , A__ , A__ : Union[str, Any] = get_key_and_tensorstore_dict(
lowercase_ , lowercase_ , lowercase_ )
if curr_real_layer_name in all_layers:
A__ : Optional[int] = content
else:
A__ : List[Any] = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
A__ : Optional[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
A__ : List[Any] = torch.tensor(lowercase_ )
A__ : List[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
A__ , A__ : Any = rename_base_flax_keys(tuple(key.split("""/""" ) ) , lowercase_ )
A__ : Any = """/""".join(lowercase_ )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
A__ : List[Any] = os.path.join(
lowercase_ , weights_name.replace(""".bin""" , f"""-{len(lowercase_ )+1:05d}-of-???.bin""" ) )
rename_and_save_block(lowercase_ , lowercase_ )
sharded_state_dicts.append(current_block.keys() )
del current_block
A__ : Any = {}
A__ : str = 0
A__ : List[str] = raw_weights.to(getattr(lowercase_ , lowercase_ ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
A__ : Union[str, Any] = os.path.join(lowercase_ , weights_name.replace(""".bin""" , f"""-{len(lowercase_ )+1:05d}-of-???.bin""" ) )
rename_and_save_block(lowercase_ , lowercase_ )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(lowercase_ ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
A__ : str = {}
A__ : Any = {}
for idx, shard in enumerate(lowercase_ ):
A__ : Any = weights_name.replace(
""".bin""" , f"""-{idx+1:05d}-of-{len(lowercase_ ):05d}.bin""" ) # len(sharded_state_dicts):05d}
A__ : Dict = os.path.join(lowercase_ , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(lowercase_ , os.path.join(lowercase_ , lowercase_ ) )
A__ : str = shard
for key in shard:
A__ : Any = shard_file
# Add the metadata
A__ : Tuple = {"""total_size""": total_size}
A__ : Union[str, Any] = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(lowercase_ , lowercase_ ) , """w""" , encoding="""utf-8""" ) as f:
A__ : Dict = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + """\n"""
f.write(lowercase_ )
return metadata, index
if __name__ == "__main__":
A_ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--switch_t5x_checkpoint_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size')
parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted',
type=str,
required=False,
help='Path to the output pytorch model.',
)
A_ : Dict = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def UpperCamelCase () -> int:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
A__ : str = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" )
config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" )
A__ : str = SwitchTransformersForConditionalGeneration.from_pretrained(
"""/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" )
A__ : Tuple = TaTokenizer.from_pretrained("""t5-small""" )
A__ : Dict = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>."""
A__ : Union[str, Any] = tokenizer(lowercase_ , return_tensors="""pt""" ).input_ids
A__ : Tuple = model.generate(lowercase_ , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 64
| 1
|
import numpy as np
import datasets
__a = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n'
__a = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n'
__a = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __a( datasets.Metric ):
"""simple docstring"""
def a__ ( self ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''X''': datasets.Sequence(datasets.Value('''float''' ,id='''sequence''' ) ,id='''X''' ),
} ) ,)
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any:
# convert to numpy arrays
UpperCAmelCase_ : str = np.array(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[Any] = np.array(_SCREAMING_SNAKE_CASE )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError('''Expected `X` to be a 2D vector''' )
if len(reference_distribution.shape ) != 2:
raise ValueError('''Expected `reference_distribution` to be a 2D vector''' )
if reference_distribution.shape[0] < 2:
raise ValueError(
'''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' )
# Get mahalanobis distance for each prediction
UpperCAmelCase_ : List[str] = X - np.mean(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Dict = np.cov(reference_distribution.T )
try:
UpperCAmelCase_ : Any = np.linalg.inv(_SCREAMING_SNAKE_CASE )
except np.linalg.LinAlgError:
UpperCAmelCase_ : List[str] = np.linalg.pinv(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Union[str, Any] = np.dot(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[Any] = np.dot(_SCREAMING_SNAKE_CASE ,X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 30
|
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
snake_case_ = '2.13.1'
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse('3.7'):
raise ImportWarning(
'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.'
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n'
'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.'
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
snake_case_ = concatenate_datasets
snake_case_ = DownloadConfig
snake_case_ = DownloadManager
snake_case_ = DownloadMode
snake_case_ = DownloadConfig
snake_case_ = DownloadMode
snake_case_ = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 592
| 0
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class __magic_name__ :
UpperCamelCase__ = XGLMConfig
UpperCamelCase__ = {}
UpperCamelCase__ = 'gelu'
def __init__( self , snake_case_ , snake_case_=14 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_12 , snake_case_=0.02 , ):
lowercase =parent
lowercase =batch_size
lowercase =seq_length
lowercase =is_training
lowercase =use_input_mask
lowercase =use_labels
lowercase =vocab_size
lowercase =d_model
lowercase =num_hidden_layers
lowercase =num_attention_heads
lowercase =ffn_dim
lowercase =activation_function
lowercase =activation_dropout
lowercase =attention_dropout
lowercase =max_position_embeddings
lowercase =initializer_range
lowercase =None
lowercase =0
lowercase =2
lowercase =1
def _A( self ):
return XGLMConfig.from_pretrained('''facebook/xglm-564M''' )
def _A( self ):
lowercase =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
lowercase =None
if self.use_input_mask:
lowercase =random_attention_mask([self.batch_size, self.seq_length] )
lowercase =self.get_config()
lowercase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _A( self ):
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=snake_case_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=snake_case_ , )
def _A( self ):
lowercase =self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) =config_and_inputs
lowercase ={
'''input_ids''': input_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_tf
class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
UpperCamelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase__ = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def _A( self ):
lowercase =TFXGLMModelTester(self )
lowercase =ConfigTester(self , config_class=snake_case_ , n_embd=37 )
def _A( self ):
self.config_tester.run_common_tests()
@slow
def _A( self ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase =TFXGLMModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' )
def _A( self ):
super().test_resize_token_embeddings()
@require_tf
class __magic_name__ ( unittest.TestCase ):
@slow
def _A( self , snake_case_=True ):
lowercase =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
lowercase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
lowercase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
lowercase =model.generate(snake_case_ , do_sample=snake_case_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , snake_case_ )
@slow
def _A( self ):
lowercase =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
lowercase =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
tf.random.set_seed(0 )
lowercase =tokenizer('''Today is a nice day and''' , return_tensors='''tf''' )
lowercase =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(''':/CPU:0''' ):
lowercase =model.generate(snake_case_ , do_sample=snake_case_ , seed=[7, 0] )
lowercase =tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case_ )
lowercase =(
'''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'''
)
self.assertEqual(snake_case_ , snake_case_ )
@slow
def _A( self ):
lowercase =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
lowercase =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
lowercase ='''left'''
# use different length sentences to test batching
lowercase =[
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When''',
'''Hello, my dog is a little''',
]
lowercase =tokenizer(snake_case_ , return_tensors='''tf''' , padding=snake_case_ )
lowercase =inputs['''input_ids''']
lowercase =model.generate(input_ids=snake_case_ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 )
lowercase =tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids
lowercase =model.generate(input_ids=snake_case_ , max_new_tokens=12 )
lowercase =tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids
lowercase =model.generate(input_ids=snake_case_ , max_new_tokens=12 )
lowercase =tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ )
lowercase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_ )
lowercase =tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_ )
lowercase =[
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '''
'''a single''',
'''Hello, my dog is a little bit of a shy one, but he is very friendly''',
]
self.assertListEqual(snake_case_ , snake_case_ )
self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence] )
| 145
|
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __magic_name__ :
def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_12 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ):
lowercase =parent
lowercase =13
lowercase =7
lowercase =True
lowercase =True
lowercase =True
lowercase =True
lowercase =99
lowercase =3_84
lowercase =2
lowercase =4
lowercase =37
lowercase ='''gelu'''
lowercase =0.1
lowercase =0.1
lowercase =5_12
lowercase =16
lowercase =2
lowercase =0.02
lowercase =3
lowercase =4
lowercase =1_28
lowercase =2
lowercase =9
lowercase =1
lowercase =None
def _A( self ):
lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase =None
if self.use_input_mask:
lowercase =random_attention_mask([self.batch_size, self.seq_length] )
lowercase =None
if self.use_token_type_ids:
lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase =None
lowercase =None
lowercase =None
if self.use_labels:
lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase =ids_tensor([self.batch_size] , self.num_choices )
lowercase =ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
lowercase =TFConvBertModel(config=snake_case_ )
lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
lowercase =[input_ids, input_mask]
lowercase =model(snake_case_ )
lowercase =model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
lowercase =TFConvBertForMaskedLM(config=snake_case_ )
lowercase ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase =model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
lowercase =self.num_labels
lowercase =TFConvBertForSequenceClassification(config=snake_case_ )
lowercase ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase =model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
lowercase =self.num_choices
lowercase =TFConvBertForMultipleChoice(config=snake_case_ )
lowercase =tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
lowercase =tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
lowercase =tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) )
lowercase ={
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
lowercase =model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
lowercase =self.num_labels
lowercase =TFConvBertForTokenClassification(config=snake_case_ )
lowercase ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase =model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
lowercase =TFConvBertForQuestionAnswering(config=snake_case_ )
lowercase ={
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase =model(snake_case_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _A( self ):
lowercase =self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) =config_and_inputs
lowercase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
UpperCamelCase__ = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase__ = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def _A( self ):
lowercase =TFConvBertModelTester(self )
lowercase =ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def _A( self ):
self.config_tester.run_common_tests()
def _A( self ):
lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def _A( self ):
lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def _A( self ):
lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
def _A( self ):
lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case_ )
def _A( self ):
lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case_ )
def _A( self ):
lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def _A( self ):
lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common()
lowercase =True
lowercase =True
if hasattr(snake_case_ , '''use_cache''' ):
lowercase =True
lowercase =getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length )
lowercase =getattr(self.model_tester , '''key_length''' , snake_case_ )
for model_class in self.all_model_classes:
lowercase =self._prepare_for_class(snake_case_ , snake_case_ )
lowercase =model_class(snake_case_ )
lowercase =len(model(snake_case_ ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ , saved_model=snake_case_ )
lowercase =os.path.join(snake_case_ , '''saved_model''' , '''1''' )
lowercase =tf.keras.models.load_model(snake_case_ )
lowercase =model(snake_case_ )
if self.is_encoder_decoder:
lowercase =outputs['''encoder_hidden_states''']
lowercase =outputs['''encoder_attentions''']
else:
lowercase =outputs['''hidden_states''']
lowercase =outputs['''attentions''']
self.assertEqual(len(snake_case_ ) , snake_case_ )
lowercase =getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(snake_case_ ) , snake_case_ )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def _A( self ):
lowercase =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' )
self.assertIsNotNone(snake_case_ )
def _A( self ):
lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common()
lowercase =True
lowercase =getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length )
lowercase =getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length )
lowercase =getattr(self.model_tester , '''key_length''' , snake_case_ )
lowercase =getattr(self.model_tester , '''key_length''' , snake_case_ )
def check_decoder_attentions_output(snake_case_ ):
lowercase =len(snake_case_ )
self.assertEqual(out_len % 2 , 0 )
lowercase =outputs.decoder_attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(snake_case_ ):
lowercase =[
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
lowercase =True
lowercase =False
lowercase =model_class(snake_case_ )
lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) )
lowercase =len(snake_case_ )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
if self.is_encoder_decoder:
lowercase =model_class(snake_case_ )
lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_decoder_attentions_output(snake_case_ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
lowercase =True
lowercase =model_class(snake_case_ )
lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
# Check attention is always last and order is fine
lowercase =True
lowercase =True
lowercase =model_class(snake_case_ )
lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) )
self.assertEqual(model.config.output_hidden_states , snake_case_ )
check_encoder_attentions_output(snake_case_ )
@require_tf
class __magic_name__ ( unittest.TestCase ):
@slow
def _A( self ):
lowercase =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' )
lowercase =tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase =model(snake_case_ )[0]
lowercase =[1, 6, 7_68]
self.assertEqual(output.shape , snake_case_ )
lowercase =tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
| 145
| 1
|
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('''Googling.....''')
_SCREAMING_SNAKE_CASE : List[str] = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:])
_SCREAMING_SNAKE_CASE : List[str] = requests.get(url, headers={'''UserAgent''': UserAgent().random})
# res.raise_for_status()
with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
_SCREAMING_SNAKE_CASE : Any = BeautifulSoup(res.text, '''html.parser''')
_SCREAMING_SNAKE_CASE : str = list(soup.select('''.eZt8xd'''))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('''href'''))
else:
webbrowser.open(F"https://google.com{link.get('href')}")
| 493
|
import math
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = [True] * n
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
SCREAMING_SNAKE_CASE__ = i * 2
while index < n:
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = index + i
SCREAMING_SNAKE_CASE__ = [2]
for i in range(3 , _A , 2 ):
if is_prime[i]:
primes.append(_A )
return primes
def UpperCAmelCase_ ( _A = 99_99_66_66_33_33 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = math.floor(math.sqrt(_A ) ) + 1_00
SCREAMING_SNAKE_CASE__ = prime_sieve(_A )
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = primes[prime_index]
while (last_prime**2) <= limit:
SCREAMING_SNAKE_CASE__ = primes[prime_index + 1]
SCREAMING_SNAKE_CASE__ = last_prime**2
SCREAMING_SNAKE_CASE__ = next_prime**2
# Get numbers divisible by lps(current)
SCREAMING_SNAKE_CASE__ = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
SCREAMING_SNAKE_CASE__ = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
SCREAMING_SNAKE_CASE__ = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
SCREAMING_SNAKE_CASE__ = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 493
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCAmelCase_ : List[Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Any = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11
|
'''simple docstring'''
import warnings
from ..trainer import Trainer
from ..utils import logging
UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__)
class UpperCAmelCase__ ( A ):
def __init__( self : int,__A : Any=None,**__A : Optional[Any] ):
warnings.warn(
"`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` "
"instead.",__A,)
super().__init__(args=__A,**__A )
| 11
| 1
|
"""simple docstring"""
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__UpperCAmelCase : Dict = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
__UpperCAmelCase : List[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS)
__UpperCAmelCase : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
__UpperCAmelCase : List[Any] = {
# used to compute the property `self.chunk_length`
'''EncodecConfig''': ['''overlap'''],
# used as `self.bert_model = BertModel(config, ...)`
'''DPRConfig''': True,
# not used in modeling files, but it's an important information
'''FSMTConfig''': ['''langs'''],
# used internally in the configuration class file
'''GPTNeoConfig''': ['''attention_types'''],
# used internally in the configuration class file
'''EsmConfig''': ['''is_folding_model'''],
# used during training (despite we don't have training script for these models yet)
'''Mask2FormerConfig''': ['''ignore_value'''],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
'''OneFormerConfig''': ['''ignore_value''', '''norm'''],
# used during preprocessing and collation, see `collating_graphormer.py`
'''GraphormerConfig''': ['''spatial_pos_max'''],
# used internally in the configuration class file
'''T5Config''': ['''feed_forward_proj'''],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
'''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''],
'''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''],
# used internally in the configuration class file
'''LongT5Config''': ['''feed_forward_proj'''],
# used internally in the configuration class file
'''SwitchTransformersConfig''': ['''feed_forward_proj'''],
# having default values other than `1e-5` - we can't fix them without breaking
'''BioGptConfig''': ['''layer_norm_eps'''],
# having default values other than `1e-5` - we can't fix them without breaking
'''GLPNConfig''': ['''layer_norm_eps'''],
# having default values other than `1e-5` - we can't fix them without breaking
'''SegformerConfig''': ['''layer_norm_eps'''],
# having default values other than `1e-5` - we can't fix them without breaking
'''CvtConfig''': ['''layer_norm_eps'''],
# having default values other than `1e-5` - we can't fix them without breaking
'''PerceiverConfig''': ['''layer_norm_eps'''],
# used internally to calculate the feature size
'''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''],
# used internally to calculate the feature size
'''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''],
# used internally to calculate the feature size
'''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''],
# used internally to calculate `mlp_dim`
'''SamVisionConfig''': ['''mlp_ratio'''],
# For (head) training, but so far not implemented
'''ClapAudioConfig''': ['''num_classes'''],
# Not used, but providing useful information to users
'''SpeechT5HifiGanConfig''': ['''sampling_rate'''],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
'CLIPSegConfig': True,
'DeformableDetrConfig': True,
'DetaConfig': True,
'DinatConfig': True,
'DonutSwinConfig': True,
'EfficientFormerConfig': True,
'FSMTConfig': True,
'JukeboxConfig': True,
'LayoutLMv2Config': True,
'MaskFormerSwinConfig': True,
'MT5Config': True,
'NatConfig': True,
'OneFormerConfig': True,
'PerceiverConfig': True,
'RagConfig': True,
'SpeechT5Config': True,
'SwinConfig': True,
'Swin2SRConfig': True,
'Swinv2Config': True,
'SwitchTransformersConfig': True,
'TableTransformerConfig': True,
'TapasConfig': True,
'TransfoXLConfig': True,
'UniSpeechConfig': True,
'UniSpeechSatConfig': True,
'WavLMConfig': True,
'WhisperConfig': True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
'JukeboxPriorConfig': True,
# TODO: @Younes (for `is_decoder`)
'Pix2StructTextConfig': True,
}
)
def A ( _A, _A, _A, _A ):
"""simple docstring"""
snake_case_ :Tuple = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F'''config.{attribute}''' in modeling_source
or F'''getattr(config, "{attribute}"''' in modeling_source
or F'''getattr(self.config, "{attribute}"''' in modeling_source
):
snake_case_ :Optional[int] = True
# Deal with multi-line cases
elif (
re.search(
RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''', snake_case_, )
is not None
):
snake_case_ :Optional[Any] = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
snake_case_ :Any = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
snake_case_ :Dict = [
"""bos_index""",
"""eos_index""",
"""pad_index""",
"""unk_index""",
"""mask_index""",
"""image_size""",
"""use_cache""",
"""out_features""",
"""out_indices""",
]
snake_case_ :Union[str, Any] = ["""encoder_no_repeat_ngram_size"""]
# Special cases to be allowed
snake_case_ :List[Any] = True
if not attribute_used:
snake_case_ :List[str] = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
snake_case_ :Any = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
snake_case_ :str = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
snake_case_ :List[str] = True
elif attribute.endswith("_token_id" ):
snake_case_ :List[Any] = True
# configuration class specific cases
if not case_allowed:
snake_case_ :Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] )
snake_case_ :Union[str, Any] = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def A ( _A ):
"""simple docstring"""
snake_case_ :Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters )
snake_case_ :Any = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]]
snake_case_ :Any = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
snake_case_ :Dict = {}
if len(config_class.attribute_map ) > 0:
snake_case_ :Any = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
snake_case_ :Optional[Any] = inspect.getsourcefile(snake_case_ )
snake_case_ :Optional[Any] = os.path.dirname(snake_case_ )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
snake_case_ :str = [os.path.join(snake_case_, snake_case_ ) for fn in os.listdir(snake_case_ ) if fn.startswith("modeling_" )]
# Get the source code strings
snake_case_ :List[Any] = []
for path in modeling_paths:
if os.path.isfile(snake_case_ ):
with open(snake_case_ ) as fp:
modeling_sources.append(fp.read() )
snake_case_ :List[Any] = []
for config_param, default_value in zip(snake_case_, snake_case_ ):
# `attributes` here is all the variant names for `config_param`
snake_case_ :Optional[Any] = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(snake_case_, snake_case_, snake_case_, snake_case_ ):
unused_attributes.append(attributes[0] )
return sorted(snake_case_ )
def A ( ):
"""simple docstring"""
snake_case_ :Tuple = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
snake_case_ :int = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ), lambda _A : inspect.isclass(snake_case_ )
and issubclass(snake_case_, snake_case_ )
and inspect.getmodule(snake_case_ ) == inspect.getmodule(_config_class ), )
]
for config_class in config_classes_in_module:
snake_case_ :Dict = check_config_attributes_being_used(snake_case_ )
if len(snake_case_ ) > 0:
snake_case_ :Dict = unused_attributes
if len(snake_case_ ) > 0:
snake_case_ :str = """The following configuration classes contain unused attributes in the corresponding modeling files:\n"""
for name, attributes in configs_with_unused_attributes.items():
error += F'''{name}: {attributes}\n'''
raise ValueError(snake_case_ )
if __name__ == "__main__":
check_config_attributes()
| 584
|
"""simple docstring"""
def A_ ( snake_case_ : int = 1_0_0_0_0_0_0 ):
'''simple docstring'''
UpperCamelCase : List[Any] = [i - 1 for i in range(limit + 1 )]
for i in range(2 ,limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i ,limit + 1 ,snake_case_ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 499
| 0
|
'''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class _lowerCAmelCase( unittest.TestCase):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Any:
__A = 3
__A = 2_50
__A = ids_tensor((batch_size, length) , UpperCAmelCase )
__A = torch.ones((batch_size, length) , device=UpperCAmelCase , dtype=torch.float ) / length
return input_ids, scores
def SCREAMING_SNAKE_CASE__ ( self )-> Optional[int]:
__A , __A = self._get_tensors(5 )
__A = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) )
__A , __A = self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) )
__A , __A = self._get_tensors(10 )
self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE__ ( self )-> Dict:
__A = MaxLengthCriteria(max_length=10 )
__A , __A = self._get_tensors(5 )
self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) )
__A , __A = self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) )
__A , __A = self._get_tensors(10 )
self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE__ ( self )-> Union[str, Any]:
__A = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
__A , __A = self._get_tensors(5 )
self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) )
__A , __A = self._get_tensors(9 )
self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) )
__A , __A = self._get_tensors(10 )
self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) )
__A = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]:
__A , __A = self._get_tensors(5 )
__A = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) )
__A = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE__ ( self )-> int:
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(UpperCAmelCase ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
__A = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(UpperCAmelCase ) , 1 )
| 700
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_UpperCamelCase : str = {
"""configuration_bridgetower""": [
"""BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BridgeTowerConfig""",
"""BridgeTowerTextConfig""",
"""BridgeTowerVisionConfig""",
],
"""processing_bridgetower""": ["""BridgeTowerProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : Any = ["""BridgeTowerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : str = [
"""BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BridgeTowerForContrastiveLearning""",
"""BridgeTowerForImageAndTextRetrieval""",
"""BridgeTowerForMaskedLM""",
"""BridgeTowerModel""",
"""BridgeTowerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
_UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 341
| 0
|
"""simple docstring"""
from copy import deepcopy
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] ,A_ : list[int] | None = None ,A_ : int | None = None ) -> None:
if arr is None and size is not None:
A = size
A = [0] * size
elif arr is not None:
self.init(A_ )
else:
raise ValueError('Either arr or size must be specified' )
def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : list[int] ) -> None:
A = len(A_ )
A = deepcopy(A_ )
for i in range(1 ,self.size ):
A = self.next_(A_ )
if j < self.size:
self.tree[j] += self.tree[i]
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> list[int]:
A = self.tree[:]
for i in range(self.size - 1 ,0 ,-1 ):
A = self.next_(A_ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def _SCREAMING_SNAKE_CASE ( A_ : int ) -> int:
return index + (index & (-index))
@staticmethod
def _SCREAMING_SNAKE_CASE ( A_ : int ) -> int:
return index - (index & (-index))
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ,A_ : int ) -> None:
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
A = self.next_(A_ )
def _SCREAMING_SNAKE_CASE ( self : int ,A_ : int ,A_ : int ) -> None:
self.add(A_ ,value - self.get(A_ ) )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> int:
if right == 0:
return 0
A = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
A = self.prev(A_ )
return result
def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : int ) -> int:
return self.prefix(A_ ) - self.prefix(A_ )
def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : int ) -> int:
return self.query(A_ ,index + 1 )
def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : int ) -> int:
value -= self.tree[0]
if value < 0:
return -1
A = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
A = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 91
|
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __A(lowerCAmelCase ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = np.inf
def set_batch_size(lowerCAmelCase ) -> None:
nonlocal batch_size
if isinstance(lowerCAmelCase , lowerCAmelCase ):
_UpperCamelCase = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(lowerCAmelCase , lowerCAmelCase ):
_UpperCamelCase = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(lowerCAmelCase , lowerCAmelCase ) and feature.dtype == "binary":
_UpperCamelCase = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(lowerCAmelCase , lowerCAmelCase )
return None if batch_size is np.inf else batch_size
class lowerCAmelCase__ ( __lowercase ):
def __init__( self , a , a = None , a = None , a = None , a = False , a = False , a = None , **a , ) -> Tuple:
'''simple docstring'''
super().__init__(
a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , )
_UpperCamelCase = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths}
_UpperCamelCase = _PACKAGED_DATASETS_MODULES["""parquet"""][1]
_UpperCamelCase = Parquet(
cache_dir=a , data_files=a , features=a , hash=a , **a , )
def A_ ( self ) -> Optional[int]:
'''simple docstring'''
if self.streaming:
_UpperCamelCase = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
self.builder.download_and_prepare(
download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , )
_UpperCamelCase = self.builder.as_dataset(
split=self.split , verification_mode=a , in_memory=self.keep_in_memory )
return dataset
class lowerCAmelCase__ :
def __init__( self , a , a , a = None , **a , ) -> str:
'''simple docstring'''
_UpperCamelCase = dataset
_UpperCamelCase = path_or_buf
_UpperCamelCase = batch_size or get_writer_batch_size(dataset.features )
_UpperCamelCase = parquet_writer_kwargs
def A_ ( self ) -> int:
'''simple docstring'''
_UpperCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , """wb+""" ) as buffer:
_UpperCamelCase = self._write(file_obj=a , batch_size=a , **self.parquet_writer_kwargs )
else:
_UpperCamelCase = self._write(file_obj=self.path_or_buf , batch_size=a , **self.parquet_writer_kwargs )
return written
def A_ ( self , a , a , **a ) -> int:
'''simple docstring'''
_UpperCamelCase = 0
_UpperCamelCase = parquet_writer_kwargs.pop("""path_or_buf""" , a )
_UpperCamelCase = self.dataset.features.arrow_schema
_UpperCamelCase = pq.ParquetWriter(a , schema=a , **a )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , a ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ):
_UpperCamelCase = query_table(
table=self.dataset._data , key=slice(a , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(a )
written += batch.nbytes
writer.close()
return written
| 612
| 0
|
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def a_ ( __snake_case ) -> Optional[int]:
'''simple docstring'''
def wrapper(*__snake_case , **__snake_case ):
UpperCamelCase_ = timeit.default_timer()
UpperCamelCase_ = func(*__snake_case , **__snake_case )
UpperCamelCase_ = timeit.default_timer() - starttime
return delta
UpperCamelCase_ = func.__name__
return wrapper
def a_ ( __snake_case , __snake_case=1_0_0 , __snake_case=None ) -> List[Any]:
'''simple docstring'''
UpperCamelCase_ = []
UpperCamelCase_ = seq_shapes or {}
for i in range(__snake_case ):
UpperCamelCase_ = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(__snake_case , _ArrayXD ):
UpperCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(__snake_case , datasets.Value ):
if v.dtype == "string":
UpperCamelCase_ = 'The small grey turtle was surprisingly fast when challenged.'
else:
UpperCamelCase_ = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item()
elif isinstance(__snake_case , datasets.Sequence ):
while isinstance(__snake_case , datasets.Sequence ):
UpperCamelCase_ = v.feature
UpperCamelCase_ = seq_shapes[k]
UpperCamelCase_ = np.random.rand(*__snake_case ).astype(v.dtype )
UpperCamelCase_ = data
dummy_data.append((i, example) )
return dummy_data
def a_ ( __snake_case , __snake_case , __snake_case=1_0_0 , __snake_case=None ) -> Tuple:
'''simple docstring'''
UpperCamelCase_ = generate_examples(__snake_case , num_examples=__snake_case , seq_shapes=__snake_case )
with ArrowWriter(features=__snake_case , path=__snake_case ) as writer:
for key, record in dummy_data:
UpperCamelCase_ = features.encode_example(__snake_case )
writer.write(__snake_case )
UpperCamelCase_ , UpperCamelCase_ = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' )
UpperCamelCase_ = datasets.Dataset.from_file(filename=__snake_case , info=datasets.DatasetInfo(features=__snake_case ) )
return dataset
| 701
|
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : str = inspect.getfile(accelerate.test_utils )
_SCREAMING_SNAKE_CASE : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] )
_SCREAMING_SNAKE_CASE : Optional[Any] = ['''accelerate''', '''launch''']
_SCREAMING_SNAKE_CASE : Optional[int] = Path.home() / '''.cache/huggingface/accelerate'''
_SCREAMING_SNAKE_CASE : str = '''default_config.yaml'''
_SCREAMING_SNAKE_CASE : Optional[int] = config_folder / config_file
_SCREAMING_SNAKE_CASE : Optional[Any] = config_folder / '''_default_config.yaml'''
_SCREAMING_SNAKE_CASE : Optional[Any] = Path('''tests/test_configs''' )
@classmethod
def lowercase__ ( cls : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def lowercase__ ( cls : Union[str, Any] ) -> str:
"""simple docstring"""
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def lowercase__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase_ = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def lowercase__ ( self : str ) -> Tuple:
"""simple docstring"""
for config in sorted(self.test_config_path.glob('**/*.yaml' ) ):
with self.subTest(config_file=__UpperCAmelCase ):
execute_subprocess_async(
self.base_cmd + ['--config_file', str(__UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() )
def lowercase__ ( self : int ) -> List[Any]:
"""simple docstring"""
execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() )
class A ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[Any] = '''test-tpu'''
_SCREAMING_SNAKE_CASE : List[str] = '''us-central1-a'''
_SCREAMING_SNAKE_CASE : Optional[int] = '''ls'''
_SCREAMING_SNAKE_CASE : Dict = ['''accelerate''', '''tpu-config''']
_SCREAMING_SNAKE_CASE : List[Any] = '''cd /usr/share'''
_SCREAMING_SNAKE_CASE : Optional[Any] = '''tests/test_samples/test_command_file.sh'''
_SCREAMING_SNAKE_CASE : Dict = '''Running gcloud compute tpus tpu-vm ssh'''
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCamelCase_ = run_command(
self.cmd
+ ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __UpperCAmelCase , )
def lowercase__ ( self : Tuple ) -> int:
"""simple docstring"""
UpperCamelCase_ = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/0_12_0.yaml',
'--command',
self.command,
'--tpu_zone',
self.tpu_zone,
'--tpu_name',
self.tpu_name,
'--debug',
] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __UpperCAmelCase , )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase_ = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=__UpperCAmelCase )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , )
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase_ = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __UpperCAmelCase , )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
UpperCamelCase_ = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/latest.yaml',
'--command',
self.command,
'--command',
'echo "Hello World"',
'--debug',
] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , __UpperCAmelCase , )
def lowercase__ ( self : List[str] ) -> int:
"""simple docstring"""
UpperCamelCase_ = run_command(
self.cmd
+ ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
UpperCamelCase_ = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/0_12_0.yaml',
'--command_file',
self.command_file,
'--tpu_zone',
self.tpu_zone,
'--tpu_name',
self.tpu_name,
'--debug',
] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , )
def lowercase__ ( self : Tuple ) -> Any:
"""simple docstring"""
UpperCamelCase_ = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , )
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/latest.yaml',
'--install_accelerate',
'--accelerate_version',
'12.0.0',
'--debug',
] , return_stdout=__UpperCAmelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , )
| 559
| 0
|
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _a ( lowerCamelCase_ ):
"""simple docstring"""
A_ = 42
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=("DownEncoderBlock2D",) , _UpperCAmelCase=(64,) , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase="silu" , _UpperCAmelCase=True , ) -> Tuple:
super().__init__()
UpperCamelCase_ = layers_per_block
UpperCamelCase_ = torch.nn.Convad(
lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
UpperCamelCase_ = None
UpperCamelCase_ = nn.ModuleList([] )
# down
UpperCamelCase_ = block_out_channels[0]
for i, down_block_type in enumerate(lowerCamelCase_ ):
UpperCamelCase_ = output_channel
UpperCamelCase_ = block_out_channels[i]
UpperCamelCase_ = i == len(lowerCamelCase_ ) - 1
UpperCamelCase_ = get_down_block(
lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
self.down_blocks.append(lowerCamelCase_ )
# mid
UpperCamelCase_ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# out
UpperCamelCase_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 )
UpperCamelCase_ = nn.SiLU()
UpperCamelCase_ = 2 * out_channels if double_z else out_channels
UpperCamelCase_ = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 )
UpperCamelCase_ = False
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Any:
UpperCamelCase_ = x
UpperCamelCase_ = self.conv_in(lowerCamelCase_ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(_UpperCAmelCase ):
def custom_forward(*_UpperCAmelCase ):
return module(*lowerCamelCase_ )
return custom_forward
# down
if is_torch_version('>=' , '1.11.0' ):
for down_block in self.down_blocks:
UpperCamelCase_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
# middle
UpperCamelCase_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
for down_block in self.down_blocks:
UpperCamelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ )
# middle
UpperCamelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ )
else:
# down
for down_block in self.down_blocks:
UpperCamelCase_ = down_block(lowerCamelCase_ )
# middle
UpperCamelCase_ = self.mid_block(lowerCamelCase_ )
# post-process
UpperCamelCase_ = self.conv_norm_out(lowerCamelCase_ )
UpperCamelCase_ = self.conv_act(lowerCamelCase_ )
UpperCamelCase_ = self.conv_out(lowerCamelCase_ )
return sample
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=("UpDecoderBlock2D",) , _UpperCAmelCase=(64,) , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase="silu" , _UpperCAmelCase="group" , ) -> Optional[int]:
super().__init__()
UpperCamelCase_ = layers_per_block
UpperCamelCase_ = nn.Convad(
lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
UpperCamelCase_ = None
UpperCamelCase_ = nn.ModuleList([] )
UpperCamelCase_ = in_channels if norm_type == 'spatial' else None
# mid
UpperCamelCase_ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , )
# up
UpperCamelCase_ = list(reversed(lowerCamelCase_ ) )
UpperCamelCase_ = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowerCamelCase_ ):
UpperCamelCase_ = output_channel
UpperCamelCase_ = reversed_block_out_channels[i]
UpperCamelCase_ = i == len(lowerCamelCase_ ) - 1
UpperCamelCase_ = get_up_block(
lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , )
self.up_blocks.append(lowerCamelCase_ )
UpperCamelCase_ = output_channel
# out
if norm_type == "spatial":
UpperCamelCase_ = SpatialNorm(block_out_channels[0] , lowerCamelCase_ )
else:
UpperCamelCase_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 )
UpperCamelCase_ = nn.SiLU()
UpperCamelCase_ = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 )
UpperCamelCase_ = False
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> str:
UpperCamelCase_ = z
UpperCamelCase_ = self.conv_in(lowerCamelCase_ )
UpperCamelCase_ = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(_UpperCAmelCase ):
def custom_forward(*_UpperCAmelCase ):
return module(*lowerCamelCase_ )
return custom_forward
if is_torch_version('>=' , '1.11.0' ):
# middle
UpperCamelCase_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
UpperCamelCase_ = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
UpperCamelCase_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ )
else:
# middle
UpperCamelCase_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase_ = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
UpperCamelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ )
else:
# middle
UpperCamelCase_ = self.mid_block(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase_ = sample.to(lowerCamelCase_ )
# up
for up_block in self.up_blocks:
UpperCamelCase_ = up_block(lowerCamelCase_ , lowerCamelCase_ )
# post-process
if latent_embeds is None:
UpperCamelCase_ = self.conv_norm_out(lowerCamelCase_ )
else:
UpperCamelCase_ = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase_ = self.conv_act(lowerCamelCase_ )
UpperCamelCase_ = self.conv_out(lowerCamelCase_ )
return sample
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="random" , _UpperCAmelCase=False , _UpperCAmelCase=True ) -> Any:
super().__init__()
UpperCamelCase_ = n_e
UpperCamelCase_ = vq_embed_dim
UpperCamelCase_ = beta
UpperCamelCase_ = legacy
UpperCamelCase_ = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
UpperCamelCase_ = remap
if self.remap is not None:
self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) )
UpperCamelCase_ = self.used.shape[0]
UpperCamelCase_ = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
UpperCamelCase_ = self.re_embed
UpperCamelCase_ = self.re_embed + 1
print(
f"""Remapping {self.n_e} indices to {self.re_embed} indices. """
f"""Using {self.unknown_index} for unknown indices.""" )
else:
UpperCamelCase_ = n_e
UpperCamelCase_ = sane_index_shape
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]:
UpperCamelCase_ = inds.shape
assert len(lowerCamelCase_ ) > 1
UpperCamelCase_ = inds.reshape(ishape[0] , -1 )
UpperCamelCase_ = self.used.to(lowerCamelCase_ )
UpperCamelCase_ = (inds[:, :, None] == used[None, None, ...]).long()
UpperCamelCase_ = match.argmax(-1 )
UpperCamelCase_ = match.sum(2 ) < 1
if self.unknown_index == "random":
UpperCamelCase_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
UpperCamelCase_ = self.unknown_index
return new.reshape(lowerCamelCase_ )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int:
UpperCamelCase_ = inds.shape
assert len(lowerCamelCase_ ) > 1
UpperCamelCase_ = inds.reshape(ishape[0] , -1 )
UpperCamelCase_ = self.used.to(lowerCamelCase_ )
if self.re_embed > self.used.shape[0]: # extra token
UpperCamelCase_ = 0 # simply set to zero
UpperCamelCase_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ )
return back.reshape(lowerCamelCase_ )
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]:
# reshape z -> (batch, height, width, channel) and flatten
UpperCamelCase_ = z.permute(0 , 2 , 3 , 1 ).contiguous()
UpperCamelCase_ = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
UpperCamelCase_ = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 )
UpperCamelCase_ = self.embedding(lowerCamelCase_ ).view(z.shape )
UpperCamelCase_ = None
UpperCamelCase_ = None
# compute loss for embedding
if not self.legacy:
UpperCamelCase_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
UpperCamelCase_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
UpperCamelCase_ = z + (z_q - z).detach()
# reshape back to match original input shape
UpperCamelCase_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
UpperCamelCase_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
UpperCamelCase_ = self.remap_to_used(lowerCamelCase_ )
UpperCamelCase_ = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
UpperCamelCase_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
UpperCamelCase_ = indices.reshape(shape[0] , -1 ) # add batch axis
UpperCamelCase_ = self.unmap_to_all(lowerCamelCase_ )
UpperCamelCase_ = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
UpperCamelCase_ = self.embedding(lowerCamelCase_ )
if shape is not None:
UpperCamelCase_ = z_q.view(lowerCamelCase_ )
# reshape back to match original input shape
UpperCamelCase_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class _a ( lowerCamelCase_ ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=False ) -> str:
UpperCamelCase_ = parameters
UpperCamelCase_ , UpperCamelCase_ = torch.chunk(lowerCamelCase_ , 2 , dim=1 )
UpperCamelCase_ = torch.clamp(self.logvar , -3_0.0 , 2_0.0 )
UpperCamelCase_ = deterministic
UpperCamelCase_ = torch.exp(0.5 * self.logvar )
UpperCamelCase_ = torch.exp(self.logvar )
if self.deterministic:
UpperCamelCase_ = UpperCamelCase_ = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def _UpperCAmelCase ( self , _UpperCAmelCase = None ) -> torch.FloatTensor:
# make sure sample is on the same device as the parameters and has same dtype
UpperCamelCase_ = randn_tensor(
self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype )
UpperCamelCase_ = self.mean + self.std * sample
return x
def _UpperCAmelCase ( self , _UpperCAmelCase=None ) -> int:
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=[1, 2, 3] ) -> Optional[int]:
if self.deterministic:
return torch.Tensor([0.0] )
UpperCamelCase_ = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ )
def _UpperCAmelCase ( self ) -> str:
return self.mean
| 23
|
"""simple docstring"""
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase = analyze_text(_lowercase )
UpperCamelCase = list(''' ''' + ascii_lowercase )
# what is our total sum of probabilities.
UpperCamelCase = sum(single_char_strings.values() )
# one length string
UpperCamelCase = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
UpperCamelCase = single_char_strings[ch]
UpperCamelCase = my_str / all_sum
my_fir_sum += prob * math.loga(_lowercase ) # entropy formula.
# print entropy
print(f'{round(-1 * my_fir_sum ):.1f}' )
# two len string
UpperCamelCase = sum(two_char_strings.values() )
UpperCamelCase = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
UpperCamelCase = cha + cha
if sequence in two_char_strings:
UpperCamelCase = two_char_strings[sequence]
UpperCamelCase = int(_lowercase ) / all_sum
my_sec_sum += prob * math.loga(_lowercase )
# print second entropy
print(f'{round(-1 * my_sec_sum ):.1f}' )
# print the difference between them
print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' )
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = Counter() # type: ignore
UpperCamelCase = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 ,len(_lowercase ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def __snake_case ( ):
"""simple docstring"""
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 34
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase_ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["NllbTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase_ = ["NllbTokenizerFast"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 701
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json",
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json",
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json",
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json",
"bert-large-uncased-whole-word-masking": (
"https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"
),
"bert-large-cased-whole-word-masking": (
"https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"
),
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json",
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json",
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json",
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json",
"cl-tohoku/bert-base-japanese-whole-word-masking": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"
),
"cl-tohoku/bert-base-japanese-char": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"
),
"cl-tohoku/bert-base-japanese-char-whole-word-masking": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"
),
"TurkuNLP/bert-base-finnish-cased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"
),
"TurkuNLP/bert-base-finnish-uncased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"
),
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class a_ ( _snake_case ):
UpperCamelCase__ : Union[str, Any] ="bert"
def __init__( self :Any , _lowercase :Optional[int]=30522 , _lowercase :str=768 , _lowercase :Union[str, Any]=12 , _lowercase :Dict=12 , _lowercase :Optional[Any]=3072 , _lowercase :List[Any]="gelu" , _lowercase :Dict=0.1 , _lowercase :Union[str, Any]=0.1 , _lowercase :Optional[int]=512 , _lowercase :List[str]=2 , _lowercase :List[str]=0.02 , _lowercase :Union[str, Any]=1E-1_2 , _lowercase :Dict=0 , _lowercase :List[str]="absolute" , _lowercase :Union[str, Any]=True , _lowercase :str=None , **_lowercase :Union[str, Any] , ) -> Dict:
super().__init__(pad_token_id=_lowercase , **_lowercase)
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = position_embedding_type
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = classifier_dropout
class a_ ( _snake_case ):
@property
def __a ( self :str) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
])
| 561
| 0
|
'''simple docstring'''
import argparse
lowercase ='docs/source/_static/js/custom.js'
def lowerCamelCase__ ( __lowerCamelCase : List[Any] ):
'''simple docstring'''
with open(__lowerCamelCase , encoding='utf-8' , newline='\n' ) as f:
_UpperCAmelCase : Optional[Any] =f.readlines()
_UpperCAmelCase : Dict =0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_UpperCAmelCase : Tuple =f"const stableVersion = \"v{version}\"\n"
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += f" \"v{version}\": \"v{version}\",\n"
with open(__lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(__lowerCamelCase )
if __name__ == "__main__":
lowercase =argparse.ArgumentParser()
parser.add_argument('--version', help='Release version.')
lowercase =parser.parse_args()
update_custom_js(args.version)
| 446
|
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __magic_name__ :
@staticmethod
def lowerCAmelCase ( *snake_case , **snake_case) -> str:
'''simple docstring'''
pass
def lowerCamelCase__ ( __lowerCamelCase : Image ):
'''simple docstring'''
_UpperCAmelCase : Optional[Any] =hashlib.mda(image.tobytes() )
return m.hexdigest()[:1_0]
def lowerCamelCase__ ( __lowerCamelCase : Image ):
'''simple docstring'''
_UpperCAmelCase : List[str] =np.array(__lowerCamelCase )
_UpperCAmelCase : List[str] =npimg.shape
return {"hash": hashimage(__lowerCamelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __magic_name__ ( unittest.TestCase ):
UpperCAmelCase =dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
UpperCAmelCase =dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> str:
'''simple docstring'''
_UpperCAmelCase : List[str] =MaskGenerationPipeline(model=snake_case , image_processor=snake_case)
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def lowerCAmelCase ( self , snake_case , snake_case) -> Optional[Any]:
'''simple docstring'''
pass
@require_tf
@unittest.skip('Image segmentation not implemented in TF')
def lowerCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
pass
@slow
@require_torch
def lowerCAmelCase ( self) -> str:
'''simple docstring'''
_UpperCAmelCase : Any =pipeline('mask-generation' , model='facebook/sam-vit-huge')
_UpperCAmelCase : Union[str, Any] =image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_5_6)
# Shortening by hashing
_UpperCAmelCase : str =[]
for i, o in enumerate(outputs['masks']):
new_outupt += [{"mask": mask_to_test_readable(snake_case), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(snake_case , decimals=4) , [
{'mask': {'hash': '115ad19f5f', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.04_44},
{'mask': {'hash': '6affa964c6', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0_21},
{'mask': {'hash': 'dfe28a0388', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_67},
{'mask': {'hash': 'c0a5f4a318', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_32},
{'mask': {'hash': 'fe8065c197', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.00_53},
{'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.99_67},
{'mask': {'hash': '453c7844bd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_93},
{'mask': {'hash': '3d44f2926d', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.99_09},
{'mask': {'hash': '64033ddc3f', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.98_79},
{'mask': {'hash': '801064ff79', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.98_34},
{'mask': {'hash': '6172f276ef', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.97_16},
{'mask': {'hash': 'b49e60e084', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.96_12},
{'mask': {'hash': 'a811e775fd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_99},
{'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_52},
{'mask': {'hash': '9d8257e080', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_32},
{'mask': {'hash': '32de6454a8', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_16},
{'mask': {'hash': 'af3d4af2c8', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_99},
{'mask': {'hash': '3c6db475fb', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_83},
{'mask': {'hash': 'c290813fb9', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_64},
{'mask': {'hash': 'b6f0b8f606', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_43},
{'mask': {'hash': '92ce16bfdf', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_43},
{'mask': {'hash': 'c749b25868', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_08},
{'mask': {'hash': 'efb6cab859', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.93_35},
{'mask': {'hash': '1ff2eafb30', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.93_26},
{'mask': {'hash': '788b798e24', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.92_62},
{'mask': {'hash': 'abea804f0e', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_99},
{'mask': {'hash': '7b9e8ddb73', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_86},
{'mask': {'hash': 'cd24047c8a', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_84},
{'mask': {'hash': '6943e6bcbd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.88_73},
{'mask': {'hash': 'b5f47c9191', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.88_71}
] , )
# fmt: on
@require_torch
@slow
def lowerCAmelCase ( self) -> Optional[Any]:
'''simple docstring'''
_UpperCAmelCase : List[str] ='facebook/sam-vit-huge'
_UpperCAmelCase : Optional[int] =pipeline('mask-generation' , model=snake_case)
_UpperCAmelCase : str =image_segmenter(
'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_5_6)
# Shortening by hashing
_UpperCAmelCase : Tuple =[]
for i, o in enumerate(outputs['masks']):
new_outupt += [{"mask": mask_to_test_readable(snake_case), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(snake_case , decimals=4) , [
{'mask': {'hash': '115ad19f5f', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.04_44},
{'mask': {'hash': '6affa964c6', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.02_10},
{'mask': {'hash': 'dfe28a0388', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_67},
{'mask': {'hash': 'c0a5f4a318', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_32},
{'mask': {'hash': 'fe8065c197', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.00_53},
] , )
| 446
| 1
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__ = {
"configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"],
"tokenization_luke": ["LukeTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = [
"LUKE_PRETRAINED_MODEL_ARCHIVE_LIST",
"LukeForEntityClassification",
"LukeForEntityPairClassification",
"LukeForEntitySpanClassification",
"LukeForMultipleChoice",
"LukeForQuestionAnswering",
"LukeForSequenceClassification",
"LukeForTokenClassification",
"LukeForMaskedLM",
"LukeModel",
"LukePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
A__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 701
|
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def _lowercase ( a_ : str ,a_ : str ,a_ : str ,a_ : Path ,a_ : str = None ,a_ : str = None ,a_ : str = None ,) -> Tuple:
'''simple docstring'''
if config_name_or_path is None:
__magic_name__ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base'
if generator_tokenizer_name_or_path is None:
__magic_name__ = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
__magic_name__ = question_encoder_name_or_path
__magic_name__ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration
# Save model.
__magic_name__ = RagConfig.from_pretrained(a_ )
__magic_name__ = AutoConfig.from_pretrained(a_ )
__magic_name__ = AutoConfig.from_pretrained(a_ )
__magic_name__ = gen_config
__magic_name__ = question_encoder_config
__magic_name__ = model_class.from_pretrained_question_encoder_generator(
a_ ,a_ ,config=a_ )
rag_model.save_pretrained(a_ )
# Sanity check.
model_class.from_pretrained(a_ )
# Save tokenizers.
__magic_name__ = AutoTokenizer.from_pretrained(a_ )
gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' )
__magic_name__ = AutoTokenizer.from_pretrained(a_ )
question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' )
if __name__ == "__main__":
A__ = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token"],
required=True,
type=str,
help="RAG model type: rag_sequence, rag_token",
)
parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.")
parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier")
parser.add_argument(
"--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier"
)
parser.add_argument(
"--generator_tokenizer_name_or_path",
type=str,
help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``",
)
parser.add_argument(
"--question_encoder_tokenizer_name_or_path",
type=str,
help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``",
)
parser.add_argument(
"--config_name_or_path",
type=str,
help=(
"Identifier of the model config to use, if not provided, resolves to a base config for a given"
" ``model_type``"
),
)
A__ = parser.parse_args()
A__ = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 184
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.