code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import itertools import string from collections.abc import Generator, Iterable def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = iter(_lowerCamelCase ) while True: SCREAMING_SNAKE_CASE_: Any = tuple(itertools.islice(_lowerCamelCase , _lowerCamelCase ) ) if not chunk: return yield chunk def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE_: Optional[int] = "" if len(_lowerCamelCase ) < 2: return dirty for i in range(len(_lowerCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_lowerCamelCase ) & 1: clean += "X" return clean def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE_: List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_lowerCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_lowerCamelCase ) return table def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = generate_table(_lowerCamelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = prepare_input(_lowerCamelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCamelCase , 2 ): SCREAMING_SNAKE_CASE_: int = divmod(table.index(_lowerCamelCase ) , 5 ) SCREAMING_SNAKE_CASE_: str = divmod(table.index(_lowerCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = generate_table(_lowerCamelCase ) SCREAMING_SNAKE_CASE_: List[str] = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_lowerCamelCase , 2 ): SCREAMING_SNAKE_CASE_: Optional[int] = divmod(table.index(_lowerCamelCase ) , 5 ) SCREAMING_SNAKE_CASE_: List[str] = divmod(table.index(_lowerCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
671
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase : Optional[int] = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ['MobileViTFeatureExtractor'] lowercase : Tuple = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
557
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case : List[str] = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
182
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCAmelCase__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes __A : Optional[Any] = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def snake_case__ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": A__ : Optional[Any] = CursorInfo() A__ : Tuple = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) A__ : Any = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case__ ( ) -> Dict: """simple docstring""" if os.name == "nt": A__ : List[str] = CursorInfo() A__ : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) A__ : int = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case__ ( ) -> Optional[int]: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
182
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : List[Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
691
from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case_ : Dict = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
691
1
"""simple docstring""" def snake_case_ ( A_ : Dict, A_ : Optional[Any], A_ : Dict, A_ : Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [False] * len(A_ ) _lowerCamelCase : str = [] queue.append(A_ ) _lowerCamelCase : Optional[Any] = True while queue: _lowerCamelCase : Tuple = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A_ ) _lowerCamelCase : Any = True _lowerCamelCase : Any = u return visited[t] def snake_case_ ( A_ : List[str], A_ : str, A_ : Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = [-1] * (len(A_ )) _lowerCamelCase : Dict = 0 while bfs(A_, A_, A_, A_ ): _lowerCamelCase : Dict = float('''Inf''' ) _lowerCamelCase : str = sink while s != source: # Find the minimum value in select path _lowerCamelCase : str = min(A_, graph[parent[s]][s] ) _lowerCamelCase : int = parent[s] max_flow += path_flow _lowerCamelCase : int = sink while v != source: _lowerCamelCase : List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCamelCase : Optional[int] = parent[v] return max_flow lowerCAmelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase__ , lowerCAmelCase__ = 0, 5 print(ford_fulkerson(graph, source, sink))
598
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def snake_case_ ( A_ : Dict, A_ : Dict=False ): '''simple docstring''' _lowerCamelCase : List[str] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : int = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def snake_case_ ( A_ : Union[str, Any], A_ : Optional[Any], A_ : int=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Optional[int] = '''''' else: _lowerCamelCase : str = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _lowerCamelCase : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Tuple = in_proj_bias[-config.hidden_size :] def snake_case_ ( A_ : Tuple ): '''simple docstring''' _lowerCamelCase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(A_, A_ ) def snake_case_ ( A_ : int, A_ : Any, A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = dct.pop(A_ ) _lowerCamelCase : List[Any] = val def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase : Any = Image.open(requests.get(A_, stream=A_ ).raw ) return im @torch.no_grad() def snake_case_ ( A_ : Dict, A_ : Optional[Any], A_ : str=False ): '''simple docstring''' _lowerCamelCase : List[str] = BitConfig( global_padding='''same''', layer_type='''bottleneck''', depths=(3, 4, 9), out_features=['''stage3'''], embedding_dynamic_padding=A_, ) _lowerCamelCase : Any = ViTHybridConfig(backbone_config=A_, image_size=3_84, num_labels=10_00 ) _lowerCamelCase : Optional[Any] = False # load original model from timm _lowerCamelCase : Any = timm.create_model(A_, pretrained=A_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(A_ ) _lowerCamelCase : int = create_rename_keys(A_, A_ ) for src, dest in rename_keys: rename_key(A_, A_, A_ ) read_in_q_k_v(A_, A_, A_ ) _lowerCamelCase : Optional[Any] = '''huggingface/label-files''' _lowerCamelCase : Tuple = '''imagenet-1k-id2label.json''' _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(A_, A_, repo_type='''dataset''' ), '''r''' ) ) _lowerCamelCase : List[Any] = {int(A_ ): v for k, v in idalabel.items()} _lowerCamelCase : Union[str, Any] = idalabel _lowerCamelCase : Tuple = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : List[Any] = ViTHybridModel(A_ ).eval() else: _lowerCamelCase : Dict = ViTHybridForImageClassification(A_ ).eval() model.load_state_dict(A_ ) # create image processor _lowerCamelCase : Any = create_transform(**resolve_data_config({}, model=A_ ) ) _lowerCamelCase : str = transform.transforms _lowerCamelCase : Union[str, Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } _lowerCamelCase : Any = ViTHybridImageProcessor( do_resize=A_, size={'''shortest_edge''': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=A_, crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]}, do_normalize=A_, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : int = transform(A_ ).unsqueeze(0 ) _lowerCamelCase : Any = processor(A_, return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(A_, A_ ) # verify logits with torch.no_grad(): _lowerCamelCase : Tuple = model(A_ ) _lowerCamelCase : List[Any] = outputs.logits print('''Predicted class:''', logits.argmax(-1 ).item() ) if base_model: _lowerCamelCase : List[Any] = timm_model.forward_features(A_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A_, outputs.pooler_output, atol=1E-3 ) else: _lowerCamelCase : str = timm_model(A_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A_, outputs.logits, atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A_ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
598
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCAmelCase = False @skip_mps class lowercase__ ( A_ ,A_ ,A_ ,unittest.TestCase ): __UpperCAmelCase = StableDiffusionAttendAndExcitePipeline __UpperCAmelCase = False __UpperCAmelCase = TEXT_TO_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def UpperCamelCase_ ( cls) -> List[Any]: super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE) @classmethod def UpperCamelCase_ ( cls) -> Optional[Any]: super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Dict: torch.manual_seed(0) _lowerCamelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE , ) _lowerCamelCase : int = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , ) torch.manual_seed(0) _lowerCamelCase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) _lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) _lowerCamelCase : Dict = CLIPTextModel(SCREAMING_SNAKE_CASE) _lowerCamelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") _lowerCamelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0) -> Any: if str(SCREAMING_SNAKE_CASE).startswith("""mps"""): _lowerCamelCase : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _lowerCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def UpperCamelCase_ ( self) -> List[Any]: _lowerCamelCase : Dict = """cpu""" _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE) pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = pipe(**SCREAMING_SNAKE_CASE).images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3)) _lowerCamelCase : int = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96]) _lowerCamelCase : Any = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(SCREAMING_SNAKE_CASE , 1e-3) def UpperCamelCase_ ( self) -> List[str]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4) def UpperCamelCase_ ( self) -> Optional[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def UpperCamelCase_ ( self) -> Optional[Any]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4) def UpperCamelCase_ ( self) -> Tuple: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def UpperCamelCase_ ( self) -> str: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4) def UpperCamelCase_ ( self) -> str: super().test_save_load_local(expected_max_difference=5e-4) def UpperCamelCase_ ( self) -> int: super().test_save_load_optional_components(expected_max_difference=4e-4) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): @classmethod def UpperCamelCase_ ( cls) -> Any: super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE) @classmethod def UpperCamelCase_ ( cls) -> str: super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Dict = torch.manual_seed(51) _lowerCamelCase : str = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa) pipe.to("""cuda""") _lowerCamelCase : List[str] = """a painting of an elephant with glasses""" _lowerCamelCase : Optional[Any] = [5, 7] _lowerCamelCase : List[Any] = pipe( prompt=SCREAMING_SNAKE_CASE , token_indices=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] _lowerCamelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""") assert np.abs((expected_image - image).max()) < 5e-1
88
'''simple docstring''' import unittest from knapsack import knapsack as k class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def a_ ( self ): __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Dict = [0] __SCREAMING_SNAKE_CASE : Union[str, Any] = [0] __SCREAMING_SNAKE_CASE : str = len(a__ ) self.assertEqual(k.knapsack(a__ , a__ , a__ , a__ ) , 0 ) __SCREAMING_SNAKE_CASE : Dict = [60] __SCREAMING_SNAKE_CASE : int = [10] __SCREAMING_SNAKE_CASE : Optional[int] = len(a__ ) self.assertEqual(k.knapsack(a__ , a__ , a__ , a__ ) , 0 ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[int] = 3 __SCREAMING_SNAKE_CASE : int = [1, 2, 3] __SCREAMING_SNAKE_CASE : List[Any] = [3, 2, 1] __SCREAMING_SNAKE_CASE : Optional[int] = len(a__ ) self.assertEqual(k.knapsack(a__ , a__ , a__ , a__ ) , 5 ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 50 __SCREAMING_SNAKE_CASE : Optional[int] = [60, 100, 120] __SCREAMING_SNAKE_CASE : Union[str, Any] = [10, 20, 30] __SCREAMING_SNAKE_CASE : Any = len(a__ ) self.assertEqual(k.knapsack(a__ , a__ , a__ , a__ ) , 220 ) if __name__ == "__main__": unittest.main()
211
0
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> int: """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : List[str] = len(set_a.intersection(__lowerCAmelCase ) ) if alternative_union: snake_case__ : List[str] = len(__lowerCAmelCase ) + len(__lowerCAmelCase ) else: snake_case__ : Dict = len(set_a.union(__lowerCAmelCase ) ) return intersection / union if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(__lowerCAmelCase , (list, tuple) ): snake_case__ : int = [element for element in set_a if element in set_b] if alternative_union: snake_case__ : List[Any] = len(__lowerCAmelCase ) + len(__lowerCAmelCase ) return len(__lowerCAmelCase ) / union else: snake_case__ : List[str] = set_a + [element for element in set_b if element not in set_a] return len(__lowerCAmelCase ) / len(__lowerCAmelCase ) return len(__lowerCAmelCase ) / len(__lowerCAmelCase ) return None if __name__ == "__main__": A__ = {'''a''', '''b''', '''c''', '''d''', '''e'''} A__ = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
219
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = BertConfig.from_json_file(__lowerCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case__ : Optional[Any] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
219
1
'''simple docstring''' import os from pathlib import Path def __A ( ): from torch.utils.cpp_extension import load lowerCAmelCase : int = Path(a_ ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowerCAmelCase : Dict = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" ,"ms_deform_attn_cpu.cpp" ), os.path.join("cuda" ,"ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" ,a_ ,with_cuda=a_ ,extra_include_paths=[str(a_ )] ,extra_cflags=["-DWITH_CUDA=1"] ,extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] ,) import MultiScaleDeformableAttention as MSDA return MSDA
525
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
525
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase: Optional[int] = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' _UpperCamelCase: Tuple = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('''RGB''' ) return image def lowerCAmelCase_ ( lowercase: Tuple ) -> str: '''simple docstring''' _UpperCamelCase: str = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def lowerCAmelCase_ ( lowercase: Any , lowercase: str , lowercase: str ) -> Dict: '''simple docstring''' _UpperCamelCase: Any = dct.pop(lowercase ) _UpperCamelCase: Optional[Any] = val def lowerCAmelCase_ ( lowercase: Union[str, Any] , lowercase: Tuple ) -> Optional[Any]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCamelCase: Tuple = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) _UpperCamelCase: Optional[int] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict _UpperCamelCase: Optional[Any] = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) _UpperCamelCase: Tuple = qkv_bias def lowerCAmelCase_ ( lowercase: str , lowercase: Any ) -> Any: '''simple docstring''' _UpperCamelCase: Dict = 364 if '''coco''' in model_name else 224 _UpperCamelCase: Optional[Any] = BlipaVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _UpperCamelCase: str = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=lowercase ).to_dict() elif "opt-6.7b" in model_name: _UpperCamelCase: Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=lowercase ).to_dict() elif "t5-xl" in model_name: _UpperCamelCase: str = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCamelCase: Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() _UpperCamelCase: Union[str, Any] = BlipaConfig(vision_config=lowercase , text_config=lowercase ) return config, image_size @torch.no_grad() def lowerCAmelCase_ ( lowercase: str , lowercase: Tuple=None , lowercase: str=False ) -> Dict: '''simple docstring''' _UpperCamelCase: List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) _UpperCamelCase: Tuple = tokenizer('''\n''' , add_special_tokens=lowercase ).input_ids[0] _UpperCamelCase , _UpperCamelCase: Tuple = get_blipa_config(lowercase , eos_token_id=lowercase ) _UpperCamelCase: List[Any] = BlipaForConditionalGeneration(lowercase ).eval() _UpperCamelCase: List[str] = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } _UpperCamelCase , _UpperCamelCase: List[str] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) _UpperCamelCase: Dict = '''cuda''' if torch.cuda.is_available() else '''cpu''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: Optional[Any] = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys _UpperCamelCase: Optional[int] = original_model.state_dict() _UpperCamelCase: Tuple = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCamelCase: Optional[Any] = state_dict.pop(lowercase ) if key.startswith('''Qformer.bert''' ): _UpperCamelCase: str = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: _UpperCamelCase: int = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: _UpperCamelCase: Union[str, Any] = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: _UpperCamelCase: str = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): _UpperCamelCase: List[str] = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): _UpperCamelCase: Union[str, Any] = key.replace('''t5''' , '''language''' ) _UpperCamelCase: List[Any] = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) _UpperCamelCase , _UpperCamelCase: Union[str, Any] = hf_model.load_state_dict(lowercase , strict=lowercase ) assert len(lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _UpperCamelCase: Union[str, Any] = load_demo_image() _UpperCamelCase: str = vis_processors['''eval'''](lowercase ).unsqueeze(0 ).to(lowercase ) _UpperCamelCase: Dict = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(lowercase ) # create processor _UpperCamelCase: Any = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=lowercase , image_std=lowercase ) _UpperCamelCase: Union[str, Any] = BlipaProcessor(image_processor=lowercase , tokenizer=lowercase ) _UpperCamelCase: Any = processor(images=lowercase , return_tensors='''pt''' ).pixel_values.to(lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "opt" in model_name: _UpperCamelCase: Any = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits _UpperCamelCase: Optional[Any] = hf_model(lowercase , lowercase ).logits else: _UpperCamelCase: int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits _UpperCamelCase: Optional[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) _UpperCamelCase: List[Any] = hf_model(lowercase , lowercase , labels=lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _UpperCamelCase: Union[str, Any] = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": _UpperCamelCase: Optional[Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase ) else: # cast to same type _UpperCamelCase: Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(lowercase ) , lowercase , atol=1E-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) _UpperCamelCase: Optional[Any] = '''''' _UpperCamelCase: List[Any] = tokenizer(lowercase , return_tensors='''pt''' ).input_ids.to(lowercase ) _UpperCamelCase: List[Any] = original_model.generate({'''image''': original_pixel_values} ) _UpperCamelCase: Any = hf_model.generate( lowercase , lowercase , do_sample=lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , lowercase ) _UpperCamelCase: List[str] = input_ids.shape[1] _UpperCamelCase: int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase ) _UpperCamelCase: Tuple = [text.strip() for text in output_text] print('''HF generation:''' , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() UpperCAmelCase_ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) UpperCAmelCase_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
264
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCAmelCase_ ( lowercase: Optional[Any] , lowercase: Tuple ) -> Any: '''simple docstring''' _UpperCamelCase: Union[str, Any] = [] for part_id in partition_order: _UpperCamelCase: int = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(lowercase ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCamelCase: Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: int = spark.range(100 ).repartition(1 ) _UpperCamelCase: int = Spark(lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCamelCase: List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: Optional[Any] = spark.range(10 ).repartition(2 ) _UpperCamelCase: int = [1, 0] _UpperCamelCase: Any = _generate_iterable_examples(lowercase , lowercase ) # Reverse the partitions. _UpperCamelCase: List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _UpperCamelCase , _UpperCamelCase: List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' _UpperCamelCase: Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: Any = spark.range(10 ).repartition(1 ) _UpperCamelCase: int = SparkExamplesIterable(lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowercase ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase: Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: _UpperCamelCase: Union[str, Any] = lambda lowercase : x.reverse() _UpperCamelCase: List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [2, 1, 0] ) _UpperCamelCase: Union[str, Any] = SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCamelCase , _UpperCamelCase: List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase: str = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _UpperCamelCase: List[Any] = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _UpperCamelCase: Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCamelCase , _UpperCamelCase: Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _UpperCamelCase: str = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _UpperCamelCase: str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCamelCase , _UpperCamelCase: str = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase: Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() _UpperCamelCase: Union[str, Any] = spark.range(100 ).repartition(1 ) _UpperCamelCase: Optional[Any] = Spark(lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
264
1
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCamelCase : def __init__( self , a_ , a_=99 , a_=13 , a_=7 , a_=9 , a_=True , a_=True , a_=False , a_=32 , a_=5 , a_=4 , a_=37 , a_=8 , a_=0.1 , a_=0.002 , a_=1 , a_=0 , a_=0 , a_=None , a_=None , ): lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : Optional[Any] = encoder_seq_length lowerCAmelCase : List[Any] = decoder_seq_length # For common tests lowerCAmelCase : Union[str, Any] = self.decoder_seq_length lowerCAmelCase : int = is_training lowerCAmelCase : Dict = use_attention_mask lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : List[str] = d_ff lowerCAmelCase : Union[str, Any] = relative_attention_num_buckets lowerCAmelCase : List[str] = dropout_rate lowerCAmelCase : str = initializer_factor lowerCAmelCase : Optional[int] = eos_token_id lowerCAmelCase : Optional[int] = pad_token_id lowerCAmelCase : int = decoder_start_token_id lowerCAmelCase : Optional[Any] = None lowerCAmelCase : List[Any] = decoder_layers def _lowerCamelCase ( self ): return TaConfig.from_pretrained("google/umt5-base" ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_=None , a_=None , a_=None , a_=None , a_=None , ): if attention_mask is None: lowerCAmelCase : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase : Dict = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase : Union[str, Any] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=a_ ) if decoder_head_mask is None: lowerCAmelCase : int = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=a_ ) if cross_attn_head_mask is None: lowerCAmelCase : Optional[int] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=a_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowerCamelCase ( self ): lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase : Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase : Union[str, Any] = self.get_config() lowerCAmelCase : Optional[Any] = config.num_attention_heads lowerCAmelCase : List[str] = self.prepare_inputs_dict(a_ , a_ , a_ ) return config, input_dict def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCamelCase ( self ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , ): lowerCAmelCase : List[str] = UMTaModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase : List[Any] = model( input_ids=a_ , decoder_input_ids=a_ , attention_mask=a_ , decoder_attention_mask=a_ , ) lowerCAmelCase : Optional[int] = model(input_ids=a_ , decoder_input_ids=a_ ) lowerCAmelCase : str = result.last_hidden_state lowerCAmelCase : str = result.past_key_values lowerCAmelCase : Optional[int] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(a_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , ): lowerCAmelCase : str = UMTaModel(config=a_ ).get_decoder().to(a_ ).eval() # first forward pass lowerCAmelCase : Union[str, Any] = model(a_ , use_cache=a_ ) lowerCAmelCase : Any = model(a_ ) lowerCAmelCase : int = model(a_ , use_cache=a_ ) self.parent.assertTrue(len(a_ ) == len(a_ ) ) self.parent.assertTrue(len(a_ ) == len(a_ ) + 1 ) lowerCAmelCase , lowerCAmelCase : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : Union[str, Any] = model(a_ )["last_hidden_state"] lowerCAmelCase : str = model(a_ , past_key_values=a_ )["last_hidden_state"] # select random slice lowerCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() lowerCAmelCase : Dict = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a_ , a_ , atol=1e-3 ) ) def _lowerCamelCase ( self , a_ , a_ , ): lowerCAmelCase : Any = UMTaModel(config=a_ ).to(a_ ).half().eval() lowerCAmelCase : Union[str, Any] = model(**a_ )["last_hidden_state"] self.parent.assertFalse(torch.isnan(a_ ).any().item() ) @require_torch class lowerCamelCase ( _A , _A , _A , unittest.TestCase ): snake_case_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) snake_case_ = (UMTaForConditionalGeneration,) if is_torch_available() else () snake_case_ = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = True snake_case_ = True # The small UMT5 model needs higher percentages for CPU/MP tests snake_case_ = [0.8, 0.9] def _lowerCamelCase ( self ): lowerCAmelCase : int = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def _lowerCamelCase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : List[str] = UMTaModel(config_and_inputs[0] ).to(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( a_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=a_ , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def _lowerCamelCase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = ["encoder_attentions", "decoder_attentions", "cross_attentions"] lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Dict = config_and_inputs[0] lowerCAmelCase : str = UMTaForConditionalGeneration(a_ ).eval() model.to(a_ ) lowerCAmelCase : Any = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=a_ ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=a_ ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=a_ ), } for attn_name, (name, mask) in zip(a_ , head_masking.items() ): lowerCAmelCase : Optional[Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCAmelCase : List[Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=a_ ) lowerCAmelCase : List[str] = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=a_ , return_dict_in_generate=a_ , **a_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCAmelCase : Any = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def _lowerCamelCase ( self ): pass @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def _lowerCamelCase ( self ): lowerCAmelCase : Dict = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=a_ ).to(a_ ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=a_ , legacy=a_ ) lowerCAmelCase : Dict = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] lowerCAmelCase : Dict = tokenizer(a_ , return_tensors="pt" , padding=a_ ).input_ids # fmt: off lowerCAmelCase : Optional[int] = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(a_ , a_ ) lowerCAmelCase : Optional[Any] = model.generate(input_ids.to(a_ ) ) lowerCAmelCase : List[str] = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] lowerCAmelCase : Tuple = tokenizer.batch_decode(a_ ) self.assertEqual(a_ , a_ )
525
'''simple docstring''' from __future__ import annotations lowerCAmelCase = [] def __A ( a_ : list[list[int]] ,a_ : int ,a_ : int ): for i in range(len(a_ ) ): if board[row][i] == 1: return False for i in range(len(a_ ) ): if board[i][column] == 1: return False for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,-1 ,-1 ) ): if board[i][j] == 1: return False for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,len(a_ ) ) ): if board[i][j] == 1: return False return True def __A ( a_ : list[list[int]] ,a_ : int ): if row >= len(a_ ): solution.append(a_ ) printboard(a_ ) print() return True for i in range(len(a_ ) ): if is_safe(a_ ,a_ ,a_ ): lowerCAmelCase : Dict = 1 solve(a_ ,row + 1 ) lowerCAmelCase : Optional[int] = 0 return False def __A ( a_ : list[list[int]] ): for i in range(len(a_ ) ): for j in range(len(a_ ) ): if board[i][j] == 1: print("Q" ,end=" " ) else: print("." ,end=" " ) print() # n=int(input("The no. of queens")) lowerCAmelCase = 8 lowerCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
525
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __SCREAMING_SNAKE_CASE : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=True , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = weight_tying UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def _lowerCamelCase ( self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = True return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = GPTNeoXJapaneseModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) UpperCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = True UpperCamelCase__ = GPTNeoXJapaneseModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = GPTNeoXJapaneseForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = True UpperCamelCase__ = GPTNeoXJapaneseForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # first forward pass UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) UpperCamelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) UpperCamelCase__ = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )["""hidden_states"""][0] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case : int = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () snake_case : Optional[Any] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () snake_case : Dict = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) snake_case : int = False snake_case : Optional[Any] = False snake_case : List[str] = False snake_case : List[Any] = False def _lowerCamelCase ( self ): UpperCamelCase__ = GPTNeoXJapaneseModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ = None self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowerCAmelCase ) @slow def _lowerCamelCase ( self ): UpperCamelCase__ = """abeja/gpt-neox-japanese-2.7b""" UpperCamelCase__ = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCamelCase__ = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCamelCase__ = GPTNeoXJapaneseTokenizer.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = GPTNeoXJapaneseForCausalLM.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = [] for prompt in prompts: UpperCamelCase__ = tokenizer(__lowerCAmelCase , return_tensors="""pt""" ).input_ids UpperCamelCase__ = model.generate(__lowerCAmelCase , max_length=50 ) UpperCamelCase__ = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
548
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCAmelCase ): UpperCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCAmelCase ): UpperCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = FlaxBertModel.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCAmelCase ): return model(**__lowerCAmelCase ) eval(**__lowerCAmelCase ).block_until_ready() @slow def _lowerCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: UpperCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = FlaxRobertaModel.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCAmelCase ): return model(**__lowerCAmelCase ) eval(**__lowerCAmelCase ).block_until_ready() def _lowerCamelCase ( self ): with self.assertRaisesRegex( __lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ = FlaxAutoModel.from_pretrained("""bert-base""" ) def _lowerCamelCase ( self ): with self.assertRaisesRegex( __lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase , revision="""aaaaaa""" ) def _lowerCamelCase ( self ): with self.assertRaisesRegex( __lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): UpperCamelCase__ = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def _lowerCamelCase ( self ): with self.assertRaisesRegex(__lowerCAmelCase , """Use `from_pt=True` to load this model""" ): UpperCamelCase__ = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
548
1
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( __a, unittest.TestCase ): '''simple docstring''' _snake_case = CLIPTokenizer _snake_case = CLIPTokenizerFast _snake_case = True _snake_case = {} _snake_case = False def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # fmt: off UpperCamelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCamelCase = dict(zip(a_ , range(len(a_ ) ) ) ) UpperCamelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] UpperCamelCase = {"""unk_token""": """<unk>"""} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a_ ) ) def UpperCAmelCase ( self , **lowerCamelCase__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self , **lowerCamelCase__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = """lower newer""" UpperCamelCase = """lower newer""" return input_text, output_text def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = """lower newer""" UpperCamelCase = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] UpperCamelCase = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) @require_ftfy def UpperCAmelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase = self.tokenizer_class.from_pretrained(a_ , **a_ ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) UpperCamelCase = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" UpperCamelCase = tokenizer_s.tokenize(a_ ) UpperCamelCase = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase = """xa\u0303y""" + """ """ + """x\xe3y""" UpperCamelCase = tokenizer_s.tokenize(a_ ) UpperCamelCase = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase = tokenizer_s.tokenize(a_ ) UpperCamelCase = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase = tokenizer_s.tokenize(a_ ) UpperCamelCase = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def UpperCAmelCase ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , ) UpperCamelCase = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) UpperCamelCase = f' {text}' UpperCamelCase = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , ) UpperCamelCase = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )) , ) def UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def UpperCAmelCase ( self ): '''simple docstring''' super().test_tokenization_python_rust_equals() def UpperCAmelCase ( self ): '''simple docstring''' pass
212
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A_ = logging.get_logger(__name__) A_ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class lowercase( __a ): '''simple docstring''' def __init__( self: List[str], a_: Dict=None, a_: int=None, *a_: List[Any], **a_: Union[str, Any] ): '''simple docstring''' super().__init__(*a_, **a_ ) if config is None: assert isinstance(self.model, a_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) _snake_case : Any = self.model.config else: _snake_case : int = config _snake_case : Union[str, Any] = data_args _snake_case : Union[str, Any] = self.config.tgt_vocab_size if isinstance(self.config, a_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" """ padding..""" ) if self.args.label_smoothing == 0: _snake_case : Tuple = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _snake_case : Dict = label_smoothed_nll_loss def UpperCamelCase_ ( self: int, a_: int ): '''simple docstring''' if self.optimizer is None: _snake_case : Optional[Any] = ["""bias""", """LayerNorm.weight"""] _snake_case : Optional[Any] = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _snake_case : int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _snake_case : str = Adafactor _snake_case : List[Any] = {"""scale_parameter""": False, """relative_step""": False} else: _snake_case : Any = AdamW _snake_case : Tuple = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _snake_case : List[Any] = self.args.learning_rate if self.sharded_ddp: _snake_case : Dict = OSS( params=a_, optim=a_, **a_, ) else: _snake_case : Union[str, Any] = optimizer_cls(a_, **a_ ) if self.lr_scheduler is None: _snake_case : Optional[int] = self._get_lr_scheduler(a_ ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def UpperCamelCase_ ( self: Dict, a_: List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _snake_case : Union[str, Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _snake_case : List[Any] = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps ) else: _snake_case : Tuple = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=a_ ) return scheduler def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def UpperCamelCase_ ( self: List[str], a_: int, a_: Optional[int], a_: str ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _snake_case : int = model(**a_, use_cache=a_ )[0] _snake_case : Union[str, Any] = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) ) else: # compute usual loss via models _snake_case , _snake_case : Optional[Any] = model(**a_, labels=a_, use_cache=a_ )[:2] else: # compute label smoothed loss _snake_case : Union[str, Any] = model(**a_, use_cache=a_ )[0] _snake_case : Optional[Any] = torch.nn.functional.log_softmax(a_, dim=-1 ) _snake_case , _snake_case : List[Any] = self.loss_fn(a_, a_, self.args.label_smoothing, ignore_index=self.config.pad_token_id ) return loss, logits def UpperCamelCase_ ( self: List[str], a_: List[Any], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Any = inputs.pop("""labels""" ) _snake_case , _snake_case : str = self._compute_loss(a_, a_, a_ ) return loss def UpperCamelCase_ ( self: Optional[int], a_: nn.Module, a_: Dict[str, Union[torch.Tensor, Any]], a_: bool, a_: Optional[List[str]] = None, ): '''simple docstring''' _snake_case : str = self._prepare_inputs(a_ ) _snake_case : List[str] = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _snake_case : List[str] = self.model.generate( inputs["""input_ids"""], attention_mask=inputs["""attention_mask"""], **a_, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _snake_case : Union[str, Any] = self._pad_tensors_to_max_len(a_, gen_kwargs["""max_length"""] ) _snake_case : Tuple = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _snake_case , _snake_case : Dict = self._compute_loss(a_, a_, a_ ) _snake_case : int = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _snake_case : Optional[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _snake_case : Tuple = self._pad_tensors_to_max_len(a_, gen_kwargs["""max_length"""] ) return (loss, logits, labels) def UpperCamelCase_ ( self: Tuple, a_: List[str], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f" padded to `max_length`={max_length}" ) _snake_case : List[str] = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) _snake_case : Tuple = tensor return padded_tensor
609
0
"""simple docstring""" def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str: _lowerCamelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Any = sum(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _lowerCamelCase : Any = True for i in range(1 , s + 1 ): _lowerCamelCase : Optional[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _lowerCamelCase : int = dp[i][j - 1] if arr[i - 1] <= j: _lowerCamelCase : str = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _lowerCamelCase : Dict = s - 2 * j break return diff
700
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict ={ 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """dpt""" def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=384 , _lowercase=16 , _lowercase=3 , _lowercase=False , _lowercase=True , _lowercase=[2, 5, 8, 11] , _lowercase="project" , _lowercase=[4, 2, 1, 0.5] , _lowercase=[96, 192, 384, 768] , _lowercase=256 , _lowercase=-1 , _lowercase=False , _lowercase=True , _lowercase=0.4 , _lowercase=255 , _lowercase=0.1 , _lowercase=[1, 1024, 24, 24] , _lowercase=[0, 1] , _lowercase=None , **_lowercase , ) -> Optional[int]: super().__init__(**_lowercase ) _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Optional[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) _lowerCamelCase : List[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } _lowerCamelCase : Any = BitConfig(**_lowercase ) elif isinstance(_lowercase , _lowercase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) _lowerCamelCase : int = BitConfig(**_lowercase ) elif isinstance(_lowercase , _lowercase ): _lowerCamelCase : int = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _lowerCamelCase : List[Any] = backbone_featmap_shape _lowerCamelCase : Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: _lowerCamelCase : Optional[int] = None _lowerCamelCase : int = None _lowerCamelCase : Dict = [] _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = layer_norm_eps _lowerCamelCase : str = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Tuple = qkv_bias _lowerCamelCase : Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) _lowerCamelCase : Union[str, Any] = readout_type _lowerCamelCase : List[str] = reassemble_factors _lowerCamelCase : Union[str, Any] = neck_hidden_sizes _lowerCamelCase : List[Any] = fusion_hidden_size _lowerCamelCase : List[Any] = head_in_index _lowerCamelCase : List[str] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _lowerCamelCase : List[str] = use_auxiliary_head _lowerCamelCase : List[str] = auxiliary_loss_weight _lowerCamelCase : str = semantic_loss_ignore_index _lowerCamelCase : Optional[Any] = semantic_classifier_dropout def a__ ( self ) -> Any: _lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCamelCase : int = self.backbone_config.to_dict() _lowerCamelCase : List[Any] = self.__class__.model_type return output
558
0
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[int] = int(_SCREAMING_SNAKE_CASE) if decimal in (0, 1): # Exit cases for the recursion return str(_SCREAMING_SNAKE_CASE) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = divmod(_SCREAMING_SNAKE_CASE , 2) return binary_recursive(_SCREAMING_SNAKE_CASE) + str(_SCREAMING_SNAKE_CASE) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Tuple = str(_SCREAMING_SNAKE_CASE).strip() if not number: raise ValueError("No input value was provided") SCREAMING_SNAKE_CASE : Optional[Any] = "-" if number.startswith("-") else "" SCREAMING_SNAKE_CASE : Union[str, Any] = number.lstrip("-") if not number.isnumeric(): raise ValueError("Input value is not an integer") return f"{negative}0b{binary_recursive(int(_SCREAMING_SNAKE_CASE))}" if __name__ == "__main__": from doctest import testmod testmod()
25
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"{price_plus_tax(100, 0.2_5) = }") print(f"{price_plus_tax(1_2_5.5_0, 0.0_5) = }")
27
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
202
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=1_28 , a=32 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ) -> Optional[Any]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def A_ ( self ) -> int: '''simple docstring''' ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = self.prepare_config_and_inputs() _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A_ ( self , a , a , a , a , a , a , a ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = NezhaModel(config=a ) model.to(a ) model.eval() _UpperCamelCase = model(a , attention_mask=a , token_type_ids=a ) _UpperCamelCase = model(a , token_type_ids=a ) _UpperCamelCase = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self , a , a , a , a , a , a , a , a , a , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = True _UpperCamelCase = NezhaModel(a ) model.to(a ) model.eval() _UpperCamelCase = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , encoder_attention_mask=a , ) _UpperCamelCase = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , ) _UpperCamelCase = model(a , attention_mask=a , token_type_ids=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self , a , a , a , a , a , a , a ) -> Dict: '''simple docstring''' _UpperCamelCase = NezhaForMaskedLM(config=a ) model.to(a ) model.eval() _UpperCamelCase = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , a , a , a , a , a , a , a ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = NezhaForNextSentencePrediction(config=a ) model.to(a ) model.eval() _UpperCamelCase = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A_ ( self , a , a , a , a , a , a , a ) -> Dict: '''simple docstring''' _UpperCamelCase = NezhaForPreTraining(config=a ) model.to(a ) model.eval() _UpperCamelCase = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A_ ( self , a , a , a , a , a , a , a ) -> List[str]: '''simple docstring''' _UpperCamelCase = NezhaForQuestionAnswering(config=a ) model.to(a ) model.eval() _UpperCamelCase = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , a , a , a , a , a , a , a ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = NezhaForSequenceClassification(a ) model.to(a ) model.eval() _UpperCamelCase = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , a , a , a , a , a , a , a ) -> Dict: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = NezhaForTokenClassification(config=a ) model.to(a ) model.eval() _UpperCamelCase = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , a , a , a , a , a , a , a ) -> Any: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = NezhaForMultipleChoice(config=a ) model.to(a ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : int = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : Dict = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Dict = True def A_ ( self , a , a , a=False ) -> List[Any]: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): _UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = NezhaModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=a , hidden_size=37 ) def A_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a ) def A_ ( self ) -> Dict: '''simple docstring''' ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCamelCase = None self.model_tester.create_and_check_model_as_decoder( a , a , a , a , a , a , a , a , a , ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*a ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def A_ ( self ) -> List[Any]: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = NezhaModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _UpperCamelCase = True _UpperCamelCase = model_class(config=a ) _UpperCamelCase = self._prepare_for_class(a , a ) _UpperCamelCase = torch.jit.trace( a , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , """bert.pt""" ) ) _UpperCamelCase = torch.jit.load(os.path.join(a , """bert.pt""" ) , map_location=a ) loaded(inputs_dict["""input_ids"""].to(a ) , inputs_dict["""attention_mask"""].to(a ) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) _UpperCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase = model(a , attention_mask=a )[0] _UpperCamelCase = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , a ) _UpperCamelCase = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) ) @slow def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) _UpperCamelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase = model(a , attention_mask=a )[0] _UpperCamelCase = torch.Size((1, 6, 2_11_28) ) self.assertEqual(output.shape , a ) _UpperCamelCase = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
202
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A_ ( _a ): lowerCAmelCase__ = ['image_processor', 'tokenizer'] lowerCAmelCase__ = 'AutoImageProcessor' lowerCAmelCase__ = 'AutoTokenizer' def __init__( self: Optional[int] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = self.image_processor def __call__( self: int ,__lowerCAmelCase: int=None ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[int]=None ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _lowerCamelCase : Dict = self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if images is not None: _lowerCamelCase : Any = self.image_processor(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) if text is not None and images is not None: _lowerCamelCase : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) ,tensor_type=__lowerCAmelCase ) def _lowercase ( self: Dict ,*__lowerCAmelCase: Optional[Any] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: List[str] ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase ,**__lowerCAmelCase ) @property def _lowercase ( self: Dict ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
46
import re def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' if len(re.findall('[ATCG]' , lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
106
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=10 , _lowercase=18 , _lowercase=30 , _lowercase=400 , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=[0.5, 0.5, 0.5] , _lowercase=[0.5, 0.5, 0.5] , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = size if size is not None else {"""shortest_edge""": 18} _lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def _lowercase ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Tuple = VivitImageProcessor if is_vision_available() else None def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = VivitImageProcessingTester(self ) @property def _lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """image_mean""" ) ) self.assertTrue(hasattr(_lowercase , """image_std""" ) ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowercase , """size""" ) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for video in video_inputs: self.assertIsInstance(_lowercase , _lowercase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for video in video_inputs: self.assertIsInstance(_lowercase , _lowercase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for video in video_inputs: self.assertIsInstance(_lowercase , _lowercase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
162
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_choices def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_attention_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : List[str] = True _lowercase : str = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = FlaxRoFormerModelTester(self ) @slow def _lowercase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) _lowerCAmelCase = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(_lowercase )[0] _lowerCAmelCase = 50_000 _lowerCAmelCase = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) )
162
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'git_vision_model' def __init__( self :Dict , _lowercase :Dict=7_68 , _lowercase :Dict=30_72 , _lowercase :Tuple=12 , _lowercase :List[str]=12 , _lowercase :Tuple=3 , _lowercase :Dict=2_24 , _lowercase :Tuple=16 , _lowercase :Optional[int]="quick_gelu" , _lowercase :Union[str, Any]=1e-5 , _lowercase :Tuple=0.0 , _lowercase :Tuple=0.02 , **_lowercase :Optional[Any] , ): '''simple docstring''' super().__init__(**_lowercase ) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_channels lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def UpperCAmelCase ( cls :List[str] , _lowercase :Union[str, os.PathLike] , **_lowercase :Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) lowercase__ , lowercase__ = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": lowercase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'git' def __init__( self :Union[str, Any] , _lowercase :Dict=None , _lowercase :List[str]=3_05_22 , _lowercase :Tuple=7_68 , _lowercase :Any=6 , _lowercase :Dict=12 , _lowercase :Any=30_72 , _lowercase :List[Any]="gelu" , _lowercase :Tuple=0.1 , _lowercase :Optional[int]=0.1 , _lowercase :Optional[Any]=10_24 , _lowercase :Any=0.02 , _lowercase :int=1e-12 , _lowercase :List[Any]=0 , _lowercase :int="absolute" , _lowercase :List[str]=True , _lowercase :Any=False , _lowercase :int=1_01 , _lowercase :str=1_02 , _lowercase :Dict=None , **_lowercase :List[str] , ): '''simple docstring''' super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , pad_token_id=_lowercase , **_lowercase ) if vision_config is None: lowercase__ = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) lowercase__ = GitVisionConfig(**_lowercase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = tie_word_embeddings lowercase__ = num_image_with_embedding lowercase__ = bos_token_id lowercase__ = eos_token_id def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
655
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _snake_case = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val def _A ( __magic_name__ ): lowercase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) lowercase__ = value else: lowercase__ = value return new_state_dict def _A ( __magic_name__ ): lowercase__ = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowercase__ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ = in_proj_weight_cross_attn[:256, :] lowercase__ = in_proj_bias_cross_attn[:256] lowercase__ = in_proj_weight_cross_attn[256:512, :] lowercase__ = in_proj_bias_cross_attn[256:512] lowercase__ = in_proj_weight_cross_attn[-256:, :] lowercase__ = in_proj_bias_cross_attn[-256:] def _A ( __magic_name__ , __magic_name__ ): lowercase__ , lowercase__ = image.size lowercase__ = max(__magic_name__ , __magic_name__ ) lowercase__ = 800 if "detection" in checkpoint_url else 1000 lowercase__ = target_max_size / current_max_size lowercase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _A ( __magic_name__ ): lowercase__ = F.to_tensor(__magic_name__ ) lowercase__ = F.normalize(__magic_name__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): logger.info("Converting model..." ) # load original state dict lowercase__ = torch.hub.load_state_dict_from_url(__magic_name__ , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = rename_backbone_keys(__magic_name__ ) # query, key and value matrices need special treatment read_in_q_k_v(__magic_name__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowercase__ = state_dict.pop(__magic_name__ ) lowercase__ = val # create HuggingFace model and load state dict lowercase__ = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowercase__ = 15 lowercase__ = 2 lowercase__ = {0: "table", 1: "table rotated"} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} else: lowercase__ = 125 lowercase__ = 6 lowercase__ = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1000 ) lowercase__ = TableTransformerForObjectDetection(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() # verify our conversion lowercase__ = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" lowercase__ = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=__magic_name__ ) lowercase__ = Image.open(__magic_name__ ).convert("RGB" ) lowercase__ = normalize(resize(__magic_name__ , __magic_name__ ) ).unsqueeze(0 ) lowercase__ = model(__magic_name__ ) if "detection" in checkpoint_url: lowercase__ = (1, 15, 3) lowercase__ = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) lowercase__ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: lowercase__ = (1, 125, 7) lowercase__ = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) lowercase__ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) lowercase__ = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(__magic_name__ ) image_processor.push_to_hub(__magic_name__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _snake_case = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
655
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
704
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) __magic_name__ = parser.parse_args() __magic_name__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
530
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : List[str] = logging.get_logger(__name__) def __lowerCAmelCase ( a__ ) -> Optional[int]: __a = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: __a = 1024 __a = 4096 __a = 24 __a = 16 __a = [5, 11, 17, 23] __a = [256, 512, 1024, 1024] __a = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __a = 768 __a = [1, 1, 1, 0.5] __a = [256, 512, 768, 768] __a = 150 __a = 16 __a = (1, 384, 384) __a = False __a = '''project''' if "ade" in checkpoint_url: __a = True __a = 768 __a = [1, 1, 1, 0.5] __a = 150 __a = 16 __a = '''huggingface/label-files''' __a = '''ade20k-id2label.json''' __a = json.load(open(cached_download(hf_hub_url(a__ , a__ , repo_type='''dataset''' ) ) , '''r''' ) ) __a = {int(a__ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = [1, 150, 480, 480] return config, expected_shape def __lowerCAmelCase ( a__ ) -> Optional[Any]: __a = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def __lowerCAmelCase ( a__ ) -> str: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __a = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: __a = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: __a = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: __a = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: __a = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: __a = name.replace('''proj''' , '''projection''' ) if "blocks" in name: __a = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: __a = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __a = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: __a = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: __a = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: __a = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: __a = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: __a = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: __a = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: __a = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: __a = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: __a = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __a = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: __a = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: __a = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: __a = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: __a = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: __a = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __a = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: __a = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: __a = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: __a = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __a = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: __a = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: __a = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: __a = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: __a = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: __a = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: __a = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: __a = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: __a = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: __a = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: __a = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: __a = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: __a = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: __a = name.replace('''..''' , '''.''' ) if "stem.conv" in name: __a = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: __a = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: __a = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: __a = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: __a = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: __a = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: __a = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def __lowerCAmelCase ( a__ , a__ ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __a = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) __a = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __a = in_proj_weight[: config.hidden_size, :] __a = in_proj_bias[: config.hidden_size] __a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __a = in_proj_weight[ -config.hidden_size :, : ] __a = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase ( ) -> Tuple: __a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Optional[int]: __a , __a = get_dpt_config(a__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __a = torch.load(a__ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(a__ ) # rename keys for key in state_dict.copy().keys(): __a = state_dict.pop(a__ ) __a = val # read in qkv matrices read_in_q_k_v(a__ , a__ ) # load HuggingFace model __a = DPTForSemanticSegmentation(a__ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(a__ ) model.load_state_dict(a__ ) model.eval() # Check outputs on an image __a = 480 if '''ade''' in checkpoint_url else 384 __a = DPTImageProcessor(size=a__ ) __a = prepare_img() __a = image_processor(a__ , return_tensors='''pt''' ) # forward pass __a = model(**a__ ).logits if '''ade''' in checkpoint_url else model(**a__ ).predicted_depth if show_prediction: __a = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=a__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(a__ ).mkdir(exist_ok=a__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) A : Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
219
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A : str = logging.get_logger() @dataclass class __A: snake_case_ = 42 snake_case_ = field(default_factory=a ) snake_case_ = field(default_factory=a ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = len(list(m.modules() ) ) == 1 or isinstance(_snake_case , nn.Convad ) or isinstance(_snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(_snake_case ) def __call__( self , _snake_case ) -> Any: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_snake_case ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return list(filter(lambda _snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __A: snake_case_ = 42 snake_case_ = 42 snake_case_ = 0 snake_case_ = field(default_factory=a ) snake_case_ = field(default_factory=a ) def __call__( self , _snake_case ) -> Dict: '''simple docstring''' __a = Tracker(self.dest )(_snake_case ).parametrized __a = Tracker(self.src )(_snake_case ).parametrized __a = list(filter(lambda _snake_case : type(_snake_case ) not in self.src_skip , _snake_case ) ) __a = list(filter(lambda _snake_case : type(_snake_case ) not in self.dest_skip , _snake_case ) ) if len(_snake_case ) != len(_snake_case ): raise Exception( F"""Numbers of operations are different. Source module has {len(_snake_case )} operations while""" F""" destination module has {len(_snake_case )}.""" ) for dest_m, src_m in zip(_snake_case , _snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = True ) -> str: print(F"""Converting {name}...""" ) with torch.no_grad(): __a = timm.create_model(a__ , pretrained=a__ ).eval() __a = ResNetForImageClassification(a__ ).eval() __a = ModuleTransfer(src=a__ , dest=a__ ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(a__ ) assert torch.allclose(from_model(a__ ) , our_model(a__ ).logits ), "The model logits don't match the original one." __a = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(a__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a__ , ) # we can use the convnext one __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a__ , ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCAmelCase ( a__ , a__ = None , a__ = True ) -> List[Any]: __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = (1, num_labels) __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(a__ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(a__ , num_labels=a__ , idalabel=a__ , labelaid=a__ ) __a = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(a__ , names_to_config[model_name] , a__ , a__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a__ , a__ , a__ , a__ ) return config, expected_shape if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) A : List[Any] = parser.parse_args() A : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
219
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : Optional[Any] = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "wavlm" def __init__( self , UpperCamelCase=32 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.0 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.02 , UpperCamelCase=1e-5 , UpperCamelCase="group" , UpperCamelCase="gelu" , UpperCamelCase=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase=False , UpperCamelCase=128 , UpperCamelCase=16 , UpperCamelCase=320 , UpperCamelCase=800 , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=0.05 , UpperCamelCase=10 , UpperCamelCase=2 , UpperCamelCase=0.0 , UpperCamelCase=10 , UpperCamelCase=320 , UpperCamelCase=2 , UpperCamelCase=0.1 , UpperCamelCase=100 , UpperCamelCase=256 , UpperCamelCase=256 , UpperCamelCase=0.1 , UpperCamelCase="mean" , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=256 , UpperCamelCase=(512, 512, 512, 512, 1500) , UpperCamelCase=(5, 3, 3, 1, 1) , UpperCamelCase=(1, 2, 3, 1, 1) , UpperCamelCase=512 , UpperCamelCase=80 , UpperCamelCase=0 , UpperCamelCase=1 , UpperCamelCase=2 , UpperCamelCase=False , UpperCamelCase=3 , UpperCamelCase=2 , UpperCamelCase=3 , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = feat_extract_norm lowerCamelCase_ = feat_extract_activation lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = conv_bias lowerCamelCase_ = num_buckets lowerCamelCase_ = max_bucket_distance lowerCamelCase_ = num_conv_pos_embeddings lowerCamelCase_ = num_conv_pos_embedding_groups lowerCamelCase_ = len(self.conv_dim ) lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = feat_proj_dropout lowerCamelCase_ = final_dropout lowerCamelCase_ = layerdrop lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = num_ctc_classes lowerCamelCase_ = vocab_size lowerCamelCase_ = do_stable_layer_norm lowerCamelCase_ = use_weighted_layer_sum lowerCamelCase_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = apply_spec_augment lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCamelCase_ = num_codevectors_per_group lowerCamelCase_ = num_codevector_groups lowerCamelCase_ = contrastive_logits_temperature lowerCamelCase_ = num_negatives lowerCamelCase_ = codevector_dim lowerCamelCase_ = proj_codevector_dim lowerCamelCase_ = diversity_loss_weight # ctc loss lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # adapter lowerCamelCase_ = add_adapter lowerCamelCase_ = adapter_kernel_size lowerCamelCase_ = adapter_stride lowerCamelCase_ = num_adapter_layers lowerCamelCase_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = xvector_output_dim @property def snake_case ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
708
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __snake_case ( UpperCAmelCase_ : dict ): return (data["data"], data["target"]) def __snake_case ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray ): lowerCamelCase_ = XGBClassifier() classifier.fit(UpperCAmelCase_ , UpperCAmelCase_ ) return classifier def __snake_case ( ): lowerCamelCase_ = load_iris() lowerCamelCase_ ,lowerCamelCase_ = data_handling(UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = train_test_split( UpperCAmelCase_ , UpperCAmelCase_ , test_size=0.25 ) lowerCamelCase_ = iris["target_names"] # Create an XGBoost Classifier from the training data lowerCamelCase_ = xgboost(UpperCAmelCase_ , UpperCAmelCase_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , display_labels=UpperCAmelCase_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
445
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Optional[int] = BarthezTokenizer __A : Union[str, Any] = BarthezTokenizerFast __A : List[Any] = True __A : str = True def UpperCamelCase( self ): super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_UpperCamelCase ) _UpperCAmelCase = tokenizer def UpperCamelCase( self ): _UpperCAmelCase = '''<pad>''' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_UpperCamelCase ) , 101122 ) def UpperCamelCase( self ): self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def UpperCamelCase( self ): _UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( _UpperCamelCase , max_length=len(_UpperCamelCase ) , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='''pt''' ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = '''I was born in 92000, and this is falsé.''' _UpperCAmelCase = tokenizer.tokenize(_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @slow def UpperCamelCase( self ): # fmt: off _UpperCAmelCase = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=_UpperCamelCase , )
32
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class SCREAMING_SNAKE_CASE__ (_a , unittest.TestCase ): lowercase_ : List[str] = WavaVecaPhonemeCTCTokenizer lowercase_ : Dict = False def A__ ( self : str ): """simple docstring""" super().setUp() lowerCAmelCase__ = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) lowerCAmelCase__ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCAmelCase__ = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '''\n''' ) def A__ ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=20 , __lowerCamelCase : Any=5 ): """simple docstring""" lowerCAmelCase__ = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCamelCase )) for i in range(len(__lowerCamelCase ) )] lowerCAmelCase__ = list(filter(lambda __lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__lowerCamelCase ) , __lowerCamelCase ) ) if max_length is not None and len(__lowerCamelCase ) > max_length: lowerCAmelCase__ = toks[:max_length] if min_length is not None and len(__lowerCamelCase ) < min_length and len(__lowerCamelCase ) > 0: while len(__lowerCamelCase ) < min_length: lowerCAmelCase__ = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase__ = [t[0] for t in toks] # Ensure consistency lowerCAmelCase__ = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) if " " not in output_txt and len(__lowerCamelCase ) > 1: lowerCAmelCase__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCamelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCamelCase ) ) if with_prefix_space: lowerCAmelCase__ = ''' ''' + output_txt lowerCAmelCase__ = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) return output_txt, output_ids def A__ ( self : List[str] , **__lowerCamelCase : Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def A__ ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) lowerCAmelCase__ = tokenizer('''m xxx ɪ''' , do_phonemize=__lowerCamelCase ).input_ids self.assertEqual(__lowerCamelCase , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) lowerCAmelCase__ = tokenizer('''m aaa ɪ ccc''' , do_phonemize=__lowerCamelCase ).input_ids self.assertEqual(__lowerCamelCase , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa lowerCAmelCase__ = tokenizer('''maɪ c''' , do_phonemize=__lowerCamelCase ).input_ids self.assertEqual(__lowerCamelCase , [3, 2_00] ) # mai should be <unk> (=3) def A__ ( self : int ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCAmelCase__ = '''Hello how are you''' lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowerCamelCase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def A__ ( self : str ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCAmelCase__ = '''Hello how are you''' lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowerCamelCase ).input_ids , tokenizer(__lowerCamelCase , do_phonemize=__lowerCamelCase ).input_ids ) def A__ ( self : int ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCAmelCase__ = '''Hello how are you''' lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) lowerCAmelCase__ = tokenizer.decode(tokenizer(__lowerCamelCase ).input_ids ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCAmelCase__ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCAmelCase__ = tokenizer.decode(sample_ids[0] ) lowerCAmelCase__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , batch_tokens[0] ) self.assertEqual(__lowerCamelCase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def A__ ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCAmelCase__ = '''Hello how are you''' lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowerCamelCase , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def A__ ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCAmelCase__ = '''Hello how are you''' lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowerCamelCase ).input_ids , tokenizer(__lowerCamelCase , do_phonemize=__lowerCamelCase ).input_ids ) def A__ ( self : str ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off lowerCAmelCase__ = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCAmelCase__ = tokenizer.decode(sample_ids[0] ) lowerCAmelCase__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , batch_tokens[0] ) self.assertEqual(__lowerCamelCase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter lowerCAmelCase__ = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__lowerCamelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__lowerCamelCase , filter_word_delimiter_token=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , batch_tokens[0] ) self.assertEqual(__lowerCamelCase , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def A__ ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCAmelCase__ = '''Hello how are you''' lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) lowerCAmelCase__ = tokenizer.decode(tokenizer(__lowerCamelCase ).input_ids , filter_word_delimiter_token=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : str ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCAmelCase__ = '''Hello how are you''' lowerCAmelCase__ = tokenizer.phonemize(__lowerCamelCase , phonemizer_lang='''en-us''' ) lowerCAmelCase__ = tokenizer.decode(tokenizer(__lowerCamelCase ).input_ids , filter_word_delimiter_token=__lowerCamelCase ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , __lowerCamelCase ) def A__ ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=__lowerCamelCase ) lowerCAmelCase__ = '''Hello how are you''' lowerCAmelCase__ = tokenizer(__lowerCamelCase , phonemizer_lang='''en-us''' ).input_ids lowerCAmelCase__ = tokenizer(__lowerCamelCase , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = tokenizer.decode(__lowerCamelCase ) lowerCAmelCase__ = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(__lowerCamelCase , '''ɛ l o h aʊ a ʁ j u''' ) def A__ ( self : int ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCAmelCase__ = '''Hello how Are you''' lowerCAmelCase__ = '''hello how are you''' lowerCAmelCase__ = tokenizer(__lowerCamelCase ).input_ids lowerCAmelCase__ = tokenizer(__lowerCamelCase ).input_ids self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : str ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off lowerCAmelCase__ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on lowerCAmelCase__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def A__ ( __lowerCamelCase : Any , __lowerCamelCase : Tuple ): """simple docstring""" lowerCAmelCase__ = [d[key] for d in offsets] return retrieved_list def A__ ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCAmelCase__ = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCAmelCase__ = tokenizer.decode(__lowerCamelCase , output_char_offsets=__lowerCamelCase , filter_word_delimiter_token=__lowerCamelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def A__ ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ): self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) ) self.assertTrue(isinstance(outputs_list[0] , __lowerCamelCase ) ) # transform list to ModelOutput lowerCAmelCase__ = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(__lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ): if isinstance(__lowerCamelCase , __lowerCamelCase ): [recursive_check(__lowerCamelCase , __lowerCamelCase ) for la, la in zip(__lowerCamelCase , __lowerCamelCase )] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off lowerCAmelCase__ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCAmelCase__ = tokenizer.batch_decode(__lowerCamelCase , output_char_offsets=__lowerCamelCase ) lowerCAmelCase__ = [tokenizer.decode(__lowerCamelCase , output_char_offsets=__lowerCamelCase ) for ids in sample_ids] check_list_tuples_equal(__lowerCamelCase , __lowerCamelCase ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def A__ ( self : str ): """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def A__ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def A__ ( self : List[Any] ): """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def A__ ( self : Union[str, Any] ): """simple docstring""" pass def A__ ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ = tokenizer.vocab_size lowerCAmelCase__ = len(__lowerCamelCase ) self.assertNotEqual(__lowerCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase__ = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] lowerCAmelCase__ = tokenizer.add_tokens(__lowerCamelCase ) lowerCAmelCase__ = tokenizer.vocab_size lowerCAmelCase__ = len(__lowerCamelCase ) self.assertNotEqual(__lowerCamelCase , 0 ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , len(__lowerCamelCase ) ) self.assertEqual(__lowerCamelCase , all_size + len(__lowerCamelCase ) ) lowerCAmelCase__ = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__lowerCamelCase ) self.assertGreaterEqual(len(__lowerCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase__ = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} lowerCAmelCase__ = tokenizer.add_special_tokens(__lowerCamelCase ) lowerCAmelCase__ = tokenizer.vocab_size lowerCAmelCase__ = len(__lowerCamelCase ) self.assertNotEqual(__lowerCamelCase , 0 ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , len(__lowerCamelCase ) ) self.assertEqual(__lowerCamelCase , all_size_a + len(__lowerCamelCase ) ) lowerCAmelCase__ = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__lowerCamelCase ) self.assertGreaterEqual(len(__lowerCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def A__ ( self : Tuple ): """simple docstring""" pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def A__ ( self : Optional[Any] ): """simple docstring""" pass def A__ ( self : int ): """simple docstring""" # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. lowerCAmelCase__ = self.get_tokenizers(fast=__lowerCamelCase , do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase__ = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] lowerCAmelCase__ = tokenizer.convert_tokens_to_string(__lowerCamelCase ) self.assertIsInstance(output['''text'''] , __lowerCamelCase )
615
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A_ ( snake_case : Any=None , snake_case : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=snake_case ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case = list_field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def A_ ( snake_case : int ) -> int: '''simple docstring''' try: int(snake_case ) return True except ValueError: return False def A_ ( snake_case : int ) -> Any: '''simple docstring''' try: float(snake_case ) return True except ValueError: return False class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = args __UpperCamelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: __UpperCamelCase = csv.DictReader(SCREAMING_SNAKE_CASE_ ) for row in reader: __UpperCamelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None __UpperCamelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None __UpperCamelCase = float(row['''result'''] ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = plt.subplots() __UpperCamelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' __UpperCamelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __UpperCamelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) __UpperCamelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) __UpperCamelCase = self.result_dict[model_name]['''result'''] ((__UpperCamelCase) , (__UpperCamelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __UpperCamelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __UpperCamelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=SCREAMING_SNAKE_CASE_ , ) else: __UpperCamelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__UpperCamelCase) , (__UpperCamelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) __UpperCamelCase = np.asarray(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[: len(SCREAMING_SNAKE_CASE_ )] plt.scatter( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''--''' ) title_str += F" {label_model_name} vs." __UpperCamelCase = title_str[:-4] __UpperCamelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(SCREAMING_SNAKE_CASE_ ) plt.xlabel(SCREAMING_SNAKE_CASE_ ) plt.ylabel(SCREAMING_SNAKE_CASE_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def A_ ( ) -> Tuple: '''simple docstring''' __UpperCamelCase = HfArgumentParser(snake_case ) __UpperCamelCase = parser.parse_args_into_dataclasses()[0] __UpperCamelCase = Plot(args=snake_case ) plot.plot() if __name__ == "__main__": main()
715
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def A_ ( snake_case : str , snake_case : str , **snake_case : List[str] ) -> Dict: '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained(snake_case , **snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_config(snake_case ) model.save_pretrained(snake_case ) AutoTokenizer.from_pretrained(snake_case ).save_pretrained(snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
451
0
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging __UpperCAmelCase =["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] __UpperCAmelCase ={"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase =" Hello world! cécé herlolip" __UpperCAmelCase =[ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[Any]: __lowerCamelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: __lowerCamelCase = dct.pop(UpperCamelCase__ ) __lowerCamelCase = val def __lowerCAmelCase ( UpperCamelCase__ ) -> List[str]: __lowerCamelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' ) __lowerCamelCase = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase = emb.weight.shape __lowerCamelCase = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) __lowerCamelCase = emb.weight.data return lin_layer @torch.no_grad() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: if not os.path.exists(UpperCamelCase__ ): __lowerCamelCase = torch.hub.load('''pytorch/fairseq''' , UpperCamelCase__ ).eval() else: __lowerCamelCase = load_xsum_checkpoint(UpperCamelCase__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __lowerCamelCase = checkpoint_path.replace('''.''' , '''-''' ) __lowerCamelCase = BartConfig.from_pretrained(UpperCamelCase__ ) __lowerCamelCase = bart.encode(UpperCamelCase__ ).unsqueeze(0 ) __lowerCamelCase = BartTokenizer.from_pretrained(UpperCamelCase__ ).encode(UpperCamelCase__ , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(UpperCamelCase__ , UpperCamelCase__ ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": __lowerCamelCase = bart.state_dict() remove_ignore_keys_(UpperCamelCase__ ) __lowerCamelCase = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = BartForSequenceClassification(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) __lowerCamelCase = bart.predict('''mnli''' , UpperCamelCase__ , return_logits=UpperCamelCase__ ) __lowerCamelCase = model(UpperCamelCase__ )[0] # logits else: # no classification heads to worry about __lowerCamelCase = bart.model.state_dict() remove_ignore_keys_(UpperCamelCase__ ) __lowerCamelCase = state_dict['''decoder.embed_tokens.weight'''] __lowerCamelCase = bart.extract_features(UpperCamelCase__ ) if hf_checkpoint_name == "facebook/bart-large": __lowerCamelCase = BartModel(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) __lowerCamelCase = model(UpperCamelCase__ ).model[0] else: __lowerCamelCase = BartForConditionalGeneration(UpperCamelCase__ ).eval() # an existing summarization ckpt model.model.load_state_dict(UpperCamelCase__ ) if hasattr(UpperCamelCase__ , '''lm_head''' ): __lowerCamelCase = make_linear_from_emb(model.model.shared ) __lowerCamelCase = model.model(UpperCamelCase__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) __UpperCAmelCase =parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
546
'''simple docstring''' import numpy as np def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: __lowerCamelCase = int(np.ceil((x_end - xa) / h ) ) __lowerCamelCase = np.zeros((n + 1,) ) __lowerCamelCase = ya __lowerCamelCase = xa for k in range(UpperCamelCase__ ): __lowerCamelCase = f(UpperCamelCase__ , y[k] ) __lowerCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowerCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowerCamelCase = f(x + h , y[k] + h * ka ) __lowerCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
546
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
710
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __a ( unittest.TestCase ): def __init__( self : Dict , lowercase__ : Optional[int] , lowercase__ : Optional[Any]=7 , lowercase__ : Dict=3 , lowercase__ : Optional[int]=18 , lowercase__ : Any=30 , lowercase__ : Tuple=4_00 , lowercase__ : Dict=True , lowercase__ : List[str]=None , lowercase__ : Tuple=True , lowercase__ : Optional[int]=None , lowercase__ : Any=True , lowercase__ : Union[str, Any]=[0.5, 0.5, 0.5] , lowercase__ : Tuple=[0.5, 0.5, 0.5] , lowercase__ : Optional[Any]=False , ) ->str: """simple docstring""" _lowercase = size if size is not None else {"""height""": 20, """width""": 20} _lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowercase = parent _lowercase = batch_size _lowercase = num_channels _lowercase = image_size _lowercase = min_resolution _lowercase = max_resolution _lowercase = do_resize _lowercase = size _lowercase = do_center_crop _lowercase = crop_size _lowercase = do_normalize _lowercase = image_mean _lowercase = image_std _lowercase = do_reduce_labels def _UpperCAmelCase ( self : Union[str, Any]) ->str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _SCREAMING_SNAKE_CASE ( ): _lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _lowercase = Image.open(dataset[0]["""file"""] ) _lowercase = Image.open(dataset[1]["""file"""] ) return image, map def _SCREAMING_SNAKE_CASE ( ): _lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _lowercase = Image.open(ds[0]["""file"""] ) _lowercase = Image.open(ds[1]["""file"""] ) _lowercase = Image.open(ds[2]["""file"""] ) _lowercase = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __a ( _snake_case ,unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = BeitImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : Any) ->str: """simple docstring""" _lowercase = BeitImageProcessingTester(self) @property def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : Optional[int]) ->Any: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase__ , """do_resize""")) self.assertTrue(hasattr(lowercase__ , """size""")) self.assertTrue(hasattr(lowercase__ , """do_center_crop""")) self.assertTrue(hasattr(lowercase__ , """center_crop""")) self.assertTrue(hasattr(lowercase__ , """do_normalize""")) self.assertTrue(hasattr(lowercase__ , """image_mean""")) self.assertTrue(hasattr(lowercase__ , """image_std""")) def _UpperCAmelCase ( self : Optional[Any]) ->str: """simple docstring""" _lowercase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) self.assertEqual(image_processor.do_reduce_labels , lowercase__) _lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowercase__) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) self.assertEqual(image_processor.do_reduce_labels , lowercase__) def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" pass def _UpperCAmelCase ( self : List[str]) ->int: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : str) ->int: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : Dict) ->Union[str, Any]: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(lowercase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : Dict) ->Any: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__) _lowercase = [] for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input _lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test batched _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test not batched input (PIL images) _lowercase , _lowercase = prepare_semantic_single_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) # Test batched input (PIL images) _lowercase , _lowercase = prepare_semantic_batch_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long) self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55) def _UpperCAmelCase ( self : Dict) ->Optional[Any]: """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowercase , _lowercase = prepare_semantic_single_inputs() _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 1_50) _lowercase = True _lowercase = image_processing(lowercase__ , lowercase__ , return_tensors="""pt""") self.assertTrue(encoding["""labels"""].min().item() >= 0) self.assertTrue(encoding["""labels"""].max().item() <= 2_55)
572
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Optional[Any]: assert isinstance(__snake_case , __snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Optional[Any]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader(__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case ).read() _check_parquet_dataset(__snake_case , __snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Optional[int]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader(__snake_case , features=__snake_case , cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case , __snake_case ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Any: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = ParquetDatasetReader(__snake_case , cache_dir=__snake_case , split=__snake_case ).read() _check_parquet_dataset(__snake_case , __snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Any: if issubclass(__snake_case , __snake_case ): _UpperCAmelCase = parquet_path elif issubclass(__snake_case , __snake_case ): _UpperCAmelCase = [parquet_path] _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = ParquetDatasetReader(__snake_case , cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case=("train",) ) -> List[str]: assert isinstance(__snake_case , __snake_case ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Tuple: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=__snake_case , keep_in_memory=__snake_case ).read() _check_parquet_datasetdict(__snake_case , __snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> Optional[Any]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader({"""train""": parquet_path} , features=__snake_case , cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case , __snake_case ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> List[Any]: if split: _UpperCAmelCase = {split: parquet_path} else: _UpperCAmelCase = """train""" _UpperCAmelCase = {"""train""": parquet_path, """test""": parquet_path} _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = ParquetDatasetReader(__snake_case , cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case , __snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Dict: _UpperCAmelCase = ParquetDatasetWriter(__snake_case , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _UpperCAmelCase = pq.ParquetFile(tmp_path / """foo.parquet""" ) _UpperCAmelCase = pf.read() assert dataset.data.table == output_table def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> List[Any]: _UpperCAmelCase = str(shared_datadir / """test_image_rgb.jpg""" ) _UpperCAmelCase = {"""image""": [image_path]} _UpperCAmelCase = Features({"""image""": Image()} ) _UpperCAmelCase = Dataset.from_dict(__snake_case , features=__snake_case ) _UpperCAmelCase = ParquetDatasetWriter(__snake_case , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _UpperCAmelCase = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _UpperCAmelCase = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__snake_case ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> List[Any]: assert get_writer_batch_size(__snake_case ) == expected
108
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ) -> str: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ = DisjunctiveConstraint(_lowerCamelCase ) self.assertTrue(isinstance(dc.token_ids , _lowerCamelCase ) ) with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __A ( self : List[Any] ) -> str: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint(_lowerCamelCase ) # fails here def __A ( self : List[Any] ) -> int: __magic_name__ = [[1, 2, 3], [1, 2, 4]] __magic_name__ = DisjunctiveConstraint(_lowerCamelCase ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) __magic_name__ = stepped is True and completed is False and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) __magic_name__ = stepped is True and completed is False and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(3 ) __magic_name__ = stepped is True and completed is True and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __A ( self : Any ) -> Union[str, Any]: __magic_name__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ = DisjunctiveConstraint(_lowerCamelCase ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
664
0
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 42 class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = (16, 32, 96, 2_56) lowerCamelCase__ = jnp.floataa def A_ ( self ): _lowerCamelCase : Optional[Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowerCamelCase : Any = [] for i in range(len(self.block_out_channels ) - 1 ): _lowerCamelCase : str = self.block_out_channels[i] _lowerCamelCase : Any = self.block_out_channels[i + 1] _lowerCamelCase : Tuple = nn.Conv( lowercase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase ) _lowerCamelCase : Optional[int] = nn.Conv( lowercase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase ) _lowerCamelCase : str = blocks _lowerCamelCase : int = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase ): _lowerCamelCase : Dict = self.conv_in(lowercase ) _lowerCamelCase : Optional[Any] = nn.silu(lowercase ) for block in self.blocks: _lowerCamelCase : Any = block(lowercase ) _lowerCamelCase : Optional[int] = nn.silu(lowercase ) _lowerCamelCase : List[str] = self.conv_out(lowercase ) return embedding @flax_register_to_config class lowerCAmelCase__ ( nn.Module, lowercase, lowercase ): '''simple docstring''' lowerCamelCase__ = 32 lowerCamelCase__ = 4 lowerCamelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCamelCase__ = False lowerCamelCase__ = (3_20, 6_40, 12_80, 12_80) lowerCamelCase__ = 2 lowerCamelCase__ = 8 lowerCamelCase__ = None lowerCamelCase__ = 12_80 lowerCamelCase__ = 0.0 lowerCamelCase__ = False lowerCamelCase__ = jnp.floataa lowerCamelCase__ = True lowerCamelCase__ = 0 lowerCamelCase__ = "rgb" lowerCamelCase__ = (16, 32, 96, 2_56) def A_ ( self , lowercase ): # init input tensors _lowerCamelCase : int = (1, self.in_channels, self.sample_size, self.sample_size) _lowerCamelCase : Optional[Any] = jnp.zeros(lowercase , dtype=jnp.floataa ) _lowerCamelCase : List[Any] = jnp.ones((1,) , dtype=jnp.intaa ) _lowerCamelCase : Any = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _lowerCamelCase : int = (1, 3, self.sample_size * 8, self.sample_size * 8) _lowerCamelCase : Optional[Any] = jnp.zeros(lowercase , dtype=jnp.floataa ) _lowerCamelCase, _lowerCamelCase : List[Any] = jax.random.split(lowercase ) _lowerCamelCase : List[str] = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase , lowercase , lowercase , lowercase , lowercase )["params"] def A_ ( self ): _lowerCamelCase : Dict = self.block_out_channels _lowerCamelCase : List[str] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowerCamelCase : List[str] = self.num_attention_heads or self.attention_head_dim # input _lowerCamelCase : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _lowerCamelCase : Optional[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _lowerCamelCase : int = FlaxTimestepEmbedding(lowercase , dtype=self.dtype ) _lowerCamelCase : Dict = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _lowerCamelCase : int = self.only_cross_attention if isinstance(lowercase , lowercase ): _lowerCamelCase : Tuple = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase , lowercase ): _lowerCamelCase : int = (num_attention_heads,) * len(self.down_block_types ) # down _lowerCamelCase : List[str] = [] _lowerCamelCase : List[Any] = [] _lowerCamelCase : Union[str, Any] = block_out_channels[0] _lowerCamelCase : List[str] = nn.Conv( lowercase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase ) for i, down_block_type in enumerate(self.down_block_types ): _lowerCamelCase : Optional[int] = output_channel _lowerCamelCase : Union[str, Any] = block_out_channels[i] _lowerCamelCase : List[Any] = i == len(lowercase ) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowerCamelCase : Optional[int] = FlaxCrossAttnDownBlockaD( in_channels=lowercase , out_channels=lowercase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _lowerCamelCase : Union[str, Any] = FlaxDownBlockaD( in_channels=lowercase , out_channels=lowercase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase ) for _ in range(self.layers_per_block ): _lowerCamelCase : Tuple = nn.Conv( lowercase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase ) if not is_final_block: _lowerCamelCase : Tuple = nn.Conv( lowercase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase ) _lowerCamelCase : Optional[Any] = down_blocks _lowerCamelCase : List[Any] = controlnet_down_blocks # mid _lowerCamelCase : List[Any] = block_out_channels[-1] _lowerCamelCase : str = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _lowerCamelCase : str = nn.Conv( lowercase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase , lowercase , lowercase , lowercase , lowercase = 1.0 , lowercase = True , lowercase = False , ): _lowerCamelCase : Dict = self.controlnet_conditioning_channel_order if channel_order == "bgr": _lowerCamelCase : int = jnp.flip(lowercase , axis=1 ) # 1. time if not isinstance(lowercase , jnp.ndarray ): _lowerCamelCase : str = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase , jnp.ndarray ) and len(timesteps.shape ) == 0: _lowerCamelCase : Union[str, Any] = timesteps.astype(dtype=jnp.floataa ) _lowerCamelCase : List[Any] = jnp.expand_dims(lowercase , 0 ) _lowerCamelCase : Dict = self.time_proj(lowercase ) _lowerCamelCase : Tuple = self.time_embedding(lowercase ) # 2. pre-process _lowerCamelCase : Dict = jnp.transpose(lowercase , (0, 2, 3, 1) ) _lowerCamelCase : Tuple = self.conv_in(lowercase ) _lowerCamelCase : Any = jnp.transpose(lowercase , (0, 2, 3, 1) ) _lowerCamelCase : List[str] = self.controlnet_cond_embedding(lowercase ) sample += controlnet_cond # 3. down _lowerCamelCase : int = (sample,) for down_block in self.down_blocks: if isinstance(lowercase , lowercase ): _lowerCamelCase, _lowerCamelCase : Optional[int] = down_block(lowercase , lowercase , lowercase , deterministic=not train ) else: _lowerCamelCase, _lowerCamelCase : str = down_block(lowercase , lowercase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid _lowerCamelCase : Tuple = self.mid_block(lowercase , lowercase , lowercase , deterministic=not train ) # 5. contronet blocks _lowerCamelCase : Dict = () for down_block_res_sample, controlnet_block in zip(lowercase , self.controlnet_down_blocks ): _lowerCamelCase : Any = controlnet_block(lowercase ) controlnet_down_block_res_samples += (down_block_res_sample,) _lowerCamelCase : str = controlnet_down_block_res_samples _lowerCamelCase : int = self.controlnet_mid_block(lowercase ) # 6. scaling _lowerCamelCase : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase , mid_block_res_sample=lowercase )
492
"""simple docstring""" def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = int(lowercase__ ) if decimal in (0, 1): # Exit cases for the recursion return str(lowercase__ ) _lowerCamelCase, _lowerCamelCase : Dict = divmod(lowercase__ , 2 ) return binary_recursive(lowercase__ ) + str(lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = str(lowercase__ ).strip() if not number: raise ValueError('No input value was provided' ) _lowerCamelCase : str = '-' if number.startswith('-' ) else '' _lowerCamelCase : Union[str, Any] = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f'''{negative}0b{binary_recursive(int(lowercase__ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
492
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ) -> Any: """simple docstring""" __snake_case : Tuple = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=_lowerCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=_lowerCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=_lowerCamelCase ) return parser.parse_args() def _a ( ) -> str: """simple docstring""" __snake_case : Optional[Any] = parse_args() # Import training_script as a module. __snake_case : Optional[int] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __snake_case : Any = script_fpath.stem __snake_case : List[str] = importlib.import_module(_lowerCamelCase ) # Patch sys.argv __snake_case : int = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : str , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : int ): warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
81
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase__ : Tuple = 192 lowercase__ : List[Any] = 768 lowercase__ : Tuple = 12 lowercase__ : List[str] = 3 lowercase__ : List[Any] = [800, 1_333] lowercase__ : Union[str, Any] = False elif yolos_name == "yolos_s_dWr": lowercase__ : str = 330 lowercase__ : List[Any] = 14 lowercase__ : Tuple = 6 lowercase__ : Optional[int] = 1_320 elif "yolos_s" in yolos_name: lowercase__ : Dict = 384 lowercase__ : str = 1_536 lowercase__ : List[Any] = 12 lowercase__ : List[Any] = 6 elif "yolos_b" in yolos_name: lowercase__ : int = [800, 1_344] lowercase__ : Tuple = 91 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : Optional[int] = "coco-detection-id2label.json" lowercase__ : Any = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : List[Any] = idalabel lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Any = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowercase__ : Any = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowercase__ : Union[str, Any] = in_proj_bias[: config.hidden_size] lowercase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : str = in_proj_weight[-config.hidden_size :, :] lowercase__ : Tuple = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if "backbone" in name: lowercase__ : Union[str, Any] = name.replace("backbone" , "vit" ) if "cls_token" in name: lowercase__ : List[str] = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowercase__ : List[str] = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowercase__ : List[Any] = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowercase__ : Dict = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowercase__ : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowercase__ : int = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowercase__ : Optional[Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowercase__ : Optional[int] = name.replace("attn" , "attention.self" ) if "norm1" in name: lowercase__ : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowercase__ : int = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowercase__ : Union[str, Any] = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowercase__ : int = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowercase__ : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowercase__ : Optional[Any] = name.replace("vit.norm" , "vit.layernorm" ) return name def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ : List[Any] = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowercase__ : Dict = key.split("." ) lowercase__ : List[Any] = int(key_split[2] ) lowercase__ : Optional[int] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase__ : str = val[:dim, :] lowercase__ : int = val[ dim : dim * 2, : ] lowercase__ : str = val[-dim:, :] else: lowercase__ : Tuple = val[:dim] lowercase__ : Any = val[dim : dim * 2] lowercase__ : Optional[Any] = val[-dim:] else: lowercase__ : Optional[Any] = val return orig_state_dict def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : List[str] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" lowercase__ : List[Any] = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowercase__ : Dict = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowercase__ : Dict = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowercase__ : int = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowercase__ : Dict = 800 if yolos_name != "yolos_ti" else 512 lowercase__ : Optional[Any] = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowercase__ : int = image_processor(images=prepare_img() , return_tensors="pt" ) lowercase__ : int = model(**lowerCamelCase__ ) lowercase__ , lowercase__ : int = outputs.logits, outputs.pred_boxes lowercase__ , lowercase__ : int = None, None if yolos_name == "yolos_ti": lowercase__ : Optional[int] = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) lowercase__ : Dict = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": lowercase__ : Any = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) lowercase__ : List[str] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": lowercase__ : Dict = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) lowercase__ : Tuple = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": lowercase__ : Optional[Any] = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) lowercase__ : int = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": lowercase__ : List[str] = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) lowercase__ : List[str] = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowercase__ : Tuple = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowercase__ : Optional[int] = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
81
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( a__ ): snake_case__ = '''megatron-bert''' def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache
4
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__(A , A , A ) ->dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
218
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowercase__ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__) class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Any , **lowercase_ : Optional[Any] ): super().__init__(**lowercase_ ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , '''vision''' ) self.check_model_type(lowercase_ ) def __call__( self : Optional[int] , lowercase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , lowercase_ : Union[str, List[str]] = None , **lowercase_ : int , ): if "text_queries" in kwargs: snake_case_ : str = kwargs.pop('''text_queries''' ) if isinstance(lowercase_ , (str, Image.Image) ): snake_case_ : List[Any] = {'''image''': image, '''candidate_labels''': candidate_labels} else: snake_case_ : List[Any] = image snake_case_ : Tuple = super().__call__(lowercase_ , **lowercase_ ) return results def _snake_case ( self : List[str] , **lowercase_ : str ): snake_case_ : Optional[int] = {} if "threshold" in kwargs: snake_case_ : Tuple = kwargs['''threshold'''] if "top_k" in kwargs: snake_case_ : Dict = kwargs['''top_k'''] return {}, {}, postprocess_params def _snake_case ( self : str , lowercase_ : List[Any] ): snake_case_ : Optional[Any] = load_image(inputs['''image'''] ) snake_case_ : Tuple = inputs['''candidate_labels'''] if isinstance(lowercase_ , lowercase_ ): snake_case_ : Optional[int] = candidate_labels.split(''',''' ) snake_case_ : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase_ ): snake_case_ : Any = self.tokenizer(lowercase_ , return_tensors=self.framework ) snake_case_ : Tuple = self.image_processor(lowercase_ , return_tensors=self.framework ) yield { "is_last": i == len(lowercase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _snake_case ( self : List[Any] , lowercase_ : Optional[int] ): snake_case_ : Optional[Any] = model_inputs.pop('''target_size''' ) snake_case_ : Tuple = model_inputs.pop('''candidate_label''' ) snake_case_ : int = model_inputs.pop('''is_last''' ) snake_case_ : List[Any] = self.model(**lowercase_ ) snake_case_ : Optional[int] = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def _snake_case ( self : Dict , lowercase_ : Optional[int] , lowercase_ : List[str]=0.1 , lowercase_ : Optional[int]=None ): snake_case_ : Any = [] for model_output in model_outputs: snake_case_ : Any = model_output['''candidate_label'''] snake_case_ : Tuple = BaseModelOutput(lowercase_ ) snake_case_ : int = self.image_processor.post_process_object_detection( outputs=lowercase_ , threshold=lowercase_ , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): snake_case_ : str = outputs['''scores'''][index].item() snake_case_ : Dict = self._get_bounding_box(outputs['''boxes'''][index][0] ) snake_case_ : List[str] = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase_ ) snake_case_ : str = sorted(lowercase_ , key=lambda lowercase_ : x["score"] , reverse=lowercase_ ) if top_k: snake_case_ : Optional[Any] = results[:top_k] return results def _snake_case ( self : List[Any] , lowercase_ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) snake_case_, snake_case_, snake_case_, snake_case_ : Optional[Any] = box.int().tolist() snake_case_ : Any = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
485
"""simple docstring""" def __lowercase ( _a , _a ): snake_case_ : str = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ : int = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ : Any = min(_a , _a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
485
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :Optional[Any] , snake_case :List[str] , snake_case :Any=13 , snake_case :Optional[Any]=7 , snake_case :Tuple=True , snake_case :int=True , snake_case :str=True , snake_case :str=True , snake_case :Optional[int]=99 , snake_case :Optional[Any]=32 , snake_case :Dict=5 , snake_case :Union[str, Any]=4 , snake_case :List[str]=37 , snake_case :Dict="gelu" , snake_case :Optional[Any]=0.1 , snake_case :List[str]=0.1 , snake_case :Dict=512 , snake_case :str=16 , snake_case :Optional[int]=2 , snake_case :Any=0.02 , snake_case :Dict=4 , ): '''simple docstring''' A_ : int = parent A_ : Any = batch_size A_ : int = seq_length A_ : List[str] = is_training A_ : List[Any] = use_attention_mask A_ : Any = use_token_type_ids A_ : Any = use_labels A_ : int = vocab_size A_ : Tuple = hidden_size A_ : Dict = num_hidden_layers A_ : str = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : Tuple = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : List[Any] = max_position_embeddings A_ : Dict = type_vocab_size A_ : List[Any] = type_sequence_label_size A_ : Dict = initializer_range A_ : Optional[Any] = num_choices def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = None if self.use_attention_mask: A_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A_ : List[Any] = None if self.use_token_type_ids: A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : List[Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Dict = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ : Tuple = config_and_inputs A_ : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : str = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ : List[str] = config_and_inputs A_ : int = True A_ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = True __UpperCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Dict = FlaxRobertaPreLayerNormModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_class_name in self.all_model_classes: A_ : Optional[int] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=snake_case ) A_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case ) @require_flax class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : List[Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=snake_case ) A_ : Any = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) A_ : str = model(snake_case )[0] A_ : Union[str, Any] = [1, 11, 50_265] self.assertEqual(list(output.shape ) , snake_case ) # compare the actual values for a slice. A_ : int = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=snake_case ) A_ : Optional[int] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) A_ : int = model(snake_case )[0] # compare the actual values for a slice. A_ : str = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
454
import logging from transformers import PretrainedConfig _lowerCAmelCase : str = logging.getLogger(__name__) _lowerCAmelCase : Dict = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''bertabs''' def __init__( self :Optional[int] , snake_case :Any=30_522 , snake_case :List[str]=512 , snake_case :str=6 , snake_case :int=512 , snake_case :Optional[Any]=8 , snake_case :Tuple=512 , snake_case :str=0.2 , snake_case :Any=6 , snake_case :Optional[Any]=768 , snake_case :Optional[Any]=8 , snake_case :List[Any]=2_048 , snake_case :Dict=0.2 , **snake_case :List[str] , ): '''simple docstring''' super().__init__(**snake_case ) A_ : List[str] = vocab_size A_ : int = max_pos A_ : Tuple = enc_layers A_ : Tuple = enc_hidden_size A_ : str = enc_heads A_ : Optional[Any] = enc_ff_size A_ : Optional[Any] = enc_dropout A_ : List[str] = dec_layers A_ : List[Any] = dec_hidden_size A_ : Optional[int] = dec_heads A_ : Any = dec_ff_size A_ : Optional[int] = dec_dropout
454
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False ) -> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(UpperCamelCase_ ), magnitude * sin(UpperCamelCase_ )] return [magnitude * cos(radians(UpperCamelCase_ ) ), magnitude * sin(radians(UpperCamelCase_ ) )] def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 10**-1 ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ = cross(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase_ ) return abs(UpperCamelCase_ ) < eps if __name__ == "__main__": # Test to check if it works __snake_case = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) __snake_case = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __snake_case = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) __snake_case = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __snake_case = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) __snake_case = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
400
from typing import TYPE_CHECKING from ...utils import _LazyModule __snake_case = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
400
1
import glob import os import random from string import ascii_lowercase, digits import cva A : Any = '' A : Any = '' A : Dict = '' A : Tuple = 1 # (0 is vertical, 1 is horizontal) def __lowerCAmelCase ( ) -> None: __a , __a = get_dataset(a__ , a__ ) print('''Processing...''' ) __a , __a , __a = update_image_and_anno(a__ , a__ , a__ ) for index, image in enumerate(a__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __a = random_chars(32 ) __a = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] __a = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , a__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Success {index+1}/{len(a__ )} with {file_name}""" ) __a = [] for anno in new_annos[index]: __a = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(a__ ) with open(F"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __lowerCAmelCase ( a__ , a__ ) -> tuple[list, list]: __a = [] __a = [] for label_file in glob.glob(os.path.join(a__ , '''*.txt''' ) ): __a = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(a__ ) as in_file: __a = in_file.readlines() __a = os.path.join(a__ , F"""{label_name}.jpg""" ) __a = [] for obj_list in obj_lists: __a = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(a__ ) labels.append(a__ ) return img_paths, labels def __lowerCAmelCase ( a__ , a__ , a__ = 1 ) -> tuple[list, list, list]: __a = [] __a = [] __a = [] for idx in range(len(a__ ) ): __a = [] __a = img_list[idx] path_list.append(a__ ) __a = anno_list[idx] __a = cva.imread(a__ ) if flip_type == 1: __a = cva.flip(a__ , a__ ) for bbox in img_annos: __a = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __a = cva.flip(a__ , a__ ) for bbox in img_annos: __a = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(a__ ) new_imgs_list.append(a__ ) return new_imgs_list, new_annos_lists, path_list def __lowerCAmelCase ( a__ = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __a = ascii_lowercase + digits return "".join(random.choice(a__ ) for _ in range(a__ ) ) if __name__ == "__main__": main() print('DONE ✅')
219
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[str] = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
219
1
"""simple docstring""" import os def A_ (): '''simple docstring''' A_ = os.path.join(os.path.dirname(__a ) , "num.txt" ) with open(__a ) as file_hand: return str(sum(int(__a ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
482
"""simple docstring""" from __future__ import annotations def A_ (__a , __a = None , __a = None , __a = False , ): '''simple docstring''' A_ = cipher_alphabet or [chr(__a ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) A_ = { "a": 0.08497, "b": 0.01492, "c": 0.02202, "d": 0.04253, "e": 0.11162, "f": 0.02228, "g": 0.02015, "h": 0.06094, "i": 0.07546, "j": 0.00153, "k": 0.01292, "l": 0.04025, "m": 0.02406, "n": 0.06749, "o": 0.07507, "p": 0.01929, "q": 0.00095, "r": 0.07587, "s": 0.06327, "t": 0.09356, "u": 0.02758, "v": 0.00978, "w": 0.02560, "x": 0.00150, "y": 0.01994, "z": 0.00077, } else: # Custom frequencies dictionary A_ = frequencies_dict if not case_sensitive: A_ = ciphertext.lower() # Chi squared statistic values A_ = {} # cycle through all of the shifts for shift in range(len(__a ) ): A_ = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet A_ = (alphabet_letters.index(letter.lower() ) - shift) % len( __a ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter A_ = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: A_ = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message A_ = decrypted_with_shift.lower().count(__a ) # Get the excepcted amount of times the letter should appear based # on letter frequencies A_ = frequencies[letter] * occurrences # Complete the chi squared statistic formula A_ = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message A_ = decrypted_with_shift.count(__a ) # Get the excepcted amount of times the letter should appear based # on letter frequencies A_ = frequencies[letter] * occurrences # Complete the chi squared statistic formula A_ = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary A_ = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__a ) -> tuple[float, str]: return chi_squared_statistic_values[key] A_ = min( __a , key=__a , ) # Get all the data from the most likely cipher (key, decoded message) ( ( A_ ) , ( A_ ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
482
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( lowercase , unittest.TestCase ): __lowercase : Optional[int] = LayoutLMTokenizer __lowercase : Optional[int] = LayoutLMTokenizerFast __lowercase : Optional[Any] = True __lowercase : Optional[int] = True def lowercase ( self ) -> Tuple: """simple docstring""" super().setUp() _UpperCamelCase = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowercase ( self , **lowerCamelCase_ ) -> Dict: """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ ) -> Tuple: """simple docstring""" _UpperCamelCase = "UNwant\u00E9d,running" _UpperCamelCase = "unwanted, running" return input_text, output_text def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.tokenizer_class(self.vocab_file ) _UpperCamelCase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def lowercase ( self ) -> Dict: """simple docstring""" pass
147
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCAmelCase = datasets.utils.logging.get_logger(__name__) __lowerCAmelCase = ["""names""", """prefix"""] __lowerCAmelCase = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] __lowerCAmelCase = ["""encoding_errors""", """on_bad_lines"""] __lowerCAmelCase = ["""date_format"""] @dataclass class lowerCamelCase_ ( datasets.BuilderConfig ): __lowercase : str = "," __lowercase : Optional[str] = None __lowercase : Optional[Union[int, List[int], str]] = "infer" __lowercase : Optional[List[str]] = None __lowercase : Optional[List[str]] = None __lowercase : Optional[Union[int, str, List[int], List[str]]] = None __lowercase : Optional[Union[List[int], List[str]]] = None __lowercase : Optional[str] = None __lowercase : bool = True __lowercase : Optional[Literal["c", "python", "pyarrow"]] = None __lowercase : Dict[Union[int, str], Callable[[Any], Any]] = None __lowercase : Optional[list] = None __lowercase : Optional[list] = None __lowercase : bool = False __lowercase : Optional[Union[int, List[int]]] = None __lowercase : Optional[int] = None __lowercase : Optional[Union[str, List[str]]] = None __lowercase : bool = True __lowercase : bool = True __lowercase : bool = False __lowercase : bool = True __lowercase : Optional[str] = None __lowercase : str = "." __lowercase : Optional[str] = None __lowercase : str = '"' __lowercase : int = 0 __lowercase : Optional[str] = None __lowercase : Optional[str] = None __lowercase : Optional[str] = None __lowercase : Optional[str] = None __lowercase : bool = True __lowercase : bool = True __lowercase : int = 0 __lowercase : bool = True __lowercase : bool = False __lowercase : Optional[str] = None __lowercase : int = 10000 __lowercase : Optional[datasets.Features] = None __lowercase : Optional[str] = "strict" __lowercase : Literal["error", "warn", "skip"] = "error" __lowercase : Optional[str] = None def lowercase ( self ) -> Any: """simple docstring""" if self.delimiter is not None: _UpperCamelCase = self.delimiter if self.column_names is not None: _UpperCamelCase = self.column_names @property def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCamelCase_ ( datasets.ArrowBasedBuilder ): __lowercase : Optional[int] = CsvConfig def lowercase ( self ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowercase ( self , lowerCamelCase_ ) -> Dict: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase_ , (str, list, tuple) ): _UpperCamelCase = data_files if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _UpperCamelCase = [files] _UpperCamelCase = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _UpperCamelCase = [files] _UpperCamelCase = [dl_manager.iter_files(lowerCamelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase_ , gen_kwargs={"files": files} ) ) return splits def lowercase ( self , lowerCamelCase_ ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(lowerCamelCase_ ) for feature in self.config.features.values() ): # cheaper cast _UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCamelCase = table_cast(lowerCamelCase_ , lowerCamelCase_ ) return pa_table def lowercase ( self , lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase_ ) ): _UpperCamelCase = pd.read_csv(lowerCamelCase_ , iterator=lowerCamelCase_ , dtype=lowerCamelCase_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCamelCase_ ): _UpperCamelCase = pa.Table.from_pandas(lowerCamelCase_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase_ ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(lowerCamelCase_ )}: {e}''' ) raise
147
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
import os lowerCAmelCase_ = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00} def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Any = 0 lowercase : Any = 0 while index < len(__magic_name__ ) - 1: lowercase : List[Any] = SYMBOLS[numerals[index]] lowercase : Optional[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : List[Any] = '''''' lowercase : Tuple = num // 10_00 numerals += m_count * "M" num %= 10_00 lowercase : int = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 lowercase : Optional[Any] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def snake_case( __magic_name__ = "/p089_roman.txt" ) -> int: '''simple docstring''' lowercase : Union[str, Any] = 0 with open(os.path.dirname(__magic_name__ ) + roman_numerals_filename ) as filea: lowercase : List[str] = filea.readlines() for line in lines: lowercase : Dict = line.strip() lowercase : Optional[int] = parse_roman_numerals(__magic_name__ ) lowercase : List[Any] = generate_roman_numerals(__magic_name__ ) savings += len(__magic_name__ ) - len(__magic_name__ ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
596
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = ["image_processor", "tokenizer"] UpperCAmelCase__ = "FlavaImageProcessor" UpperCAmelCase__ = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Optional[Any] , __snake_case : Dict=None , __snake_case : List[str]=None , **__snake_case : int ) -> Any: __magic_name__: str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __snake_case , ) __magic_name__: List[str] = kwargs.pop("""feature_extractor""" ) __magic_name__: Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__snake_case , __snake_case ) __magic_name__: Any = self.image_processor def __call__( self : str , __snake_case : Optional[ImageInput] = None , __snake_case : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = False , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Any , ) -> Optional[int]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __magic_name__: Optional[Any] = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) if images is not None: __magic_name__: List[str] = self.image_processor( __snake_case , return_image_mask=__snake_case , return_codebook_pixels=__snake_case , return_tensors=__snake_case , **__snake_case , ) if text is not None and images is not None: encoding.update(__snake_case ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : Optional[int] ) -> Dict: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCamelCase__ ( self : Dict , *__snake_case : List[Any] , **__snake_case : Optional[int] ) -> int: return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowerCamelCase__ ( self : Union[str, Any] ) -> str: __magic_name__: List[str] = self.tokenizer.model_input_names __magic_name__: List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __snake_case , ) return self.image_processor_class @property def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __snake_case , ) return self.image_processor
96
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A__ ( __A : List[str] ) ->str: __A =[] for line in lines: __A =re.sub(r'''#.*''' , '''''' , __A ) # remove comments if line: filtered_lines.append(__A ) __A ='''\n'''.join(__A ) # Make a hash from all this code __A =full_str.encode('''utf-8''' ) return shaaaa(__A ).hexdigest() # get importable module names and hash for caching _lowerCamelCase : Dict = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _lowerCamelCase : int = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _lowerCamelCase : List[str] = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name _lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
184
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = Dict[str, Any] UpperCamelCase = List[Prediction] @add_end_docstrings(__A ) class _lowerCamelCase ( __A ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' A_ : List[Any] = {} if "threshold" in kwargs: A_ : Dict = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : Optional[Any] = load_image(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = torch.IntTensor([[image.height, image.width]] ) A_ : List[str] = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: A_ : Union[str, Any] = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) A_ : List[str] = target_size return inputs def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Any = model_inputs.pop('''target_size''' ) A_ : Dict = self.model(**_SCREAMING_SNAKE_CASE ) A_ : Dict = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: A_ : List[str] = model_inputs['bbox'] return model_outputs def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9 )->Any: '''simple docstring''' A_ : str = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A_ : Union[str, Any] = target_size[0].tolist() def unnormalize(_SCREAMING_SNAKE_CASE ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) A_ : Optional[Any] = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A_ : Tuple = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A_ : str = [unnormalize(_SCREAMING_SNAKE_CASE ) for bbox in model_outputs['bbox'].squeeze(0 )] A_ : Tuple = ['score', 'label', 'box'] A_ : Any = [dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for vals in zip(scores.tolist() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A_ : List[Any] = self.image_processor.post_process_object_detection(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = raw_annotations[0] A_ : List[Any] = raw_annotation['scores'] A_ : Any = raw_annotation['labels'] A_ : Union[str, Any] = raw_annotation['boxes'] A_ : List[Any] = scores.tolist() A_ : str = [self.model.config.idalabel[label.item()] for label in labels] A_ : Union[str, Any] = [self._get_bounding_box(_SCREAMING_SNAKE_CASE ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A_ : Optional[int] = ['score', 'label', 'box'] A_ : str = [ dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def _snake_case ( self , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) A_ : Dict = box.int().tolist() A_ : Union[str, Any] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
704
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = FunnelTokenizer snake_case = FunnelTokenizerFast snake_case = True snake_case = True def _snake_case ( self )->Tuple: '''simple docstring''' super().setUp() A_ : Dict = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : Optional[int] = '''UNwant\u00E9d,running''' A_ : List[Any] = '''unwanted, running''' return input_text, output_text def _snake_case ( self )->int: '''simple docstring''' A_ : List[str] = self.tokenizer_class(self.vocab_file ) A_ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self )->str: '''simple docstring''' A_ : List[Any] = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: A_ : Optional[Any] = tokenizer('''UNwant\u00E9d,running''' ) A_ : Tuple = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) A_ : str = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
152
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCamelCase__ (): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowerCamelCase ): requests.request("GET", "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET", "https://huggingface.co", timeout=1.0 ) @pytest.mark.integration def lowerCamelCase__ (): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET", "https://huggingface.co" ) def lowerCamelCase__ (): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowerCamelCase ): http_head("https://huggingface.co" )
249
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'align_text_model' def __init__( self , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-12 , __lowerCamelCase=0 , __lowerCamelCase="absolute" , __lowerCamelCase=True , **__lowerCamelCase , ) -> Optional[int]: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = vocab_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size _SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers _SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : Any = intermediate_size _SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings _SCREAMING_SNAKE_CASE : Dict = type_vocab_size _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps _SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type _SCREAMING_SNAKE_CASE : Any = use_cache _SCREAMING_SNAKE_CASE : str = pad_token_id @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": _SCREAMING_SNAKE_CASE : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'align_vision_model' def __init__( self , __lowerCamelCase = 3 , __lowerCamelCase = 6_0_0 , __lowerCamelCase = 2.0 , __lowerCamelCase = 3.1 , __lowerCamelCase = 8 , __lowerCamelCase = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __lowerCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __lowerCamelCase = [] , __lowerCamelCase = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase = 0.25 , __lowerCamelCase = "swish" , __lowerCamelCase = 2_5_6_0 , __lowerCamelCase = "mean" , __lowerCamelCase = 0.02 , __lowerCamelCase = 0.001 , __lowerCamelCase = 0.99 , __lowerCamelCase = 0.2 , **__lowerCamelCase , ) -> Dict: super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = num_channels _SCREAMING_SNAKE_CASE : Tuple = image_size _SCREAMING_SNAKE_CASE : Tuple = width_coefficient _SCREAMING_SNAKE_CASE : str = depth_coefficient _SCREAMING_SNAKE_CASE : int = depth_divisor _SCREAMING_SNAKE_CASE : Union[str, Any] = kernel_sizes _SCREAMING_SNAKE_CASE : Tuple = in_channels _SCREAMING_SNAKE_CASE : int = out_channels _SCREAMING_SNAKE_CASE : Optional[Any] = depthwise_padding _SCREAMING_SNAKE_CASE : List[str] = strides _SCREAMING_SNAKE_CASE : Any = num_block_repeats _SCREAMING_SNAKE_CASE : List[str] = expand_ratios _SCREAMING_SNAKE_CASE : List[Any] = squeeze_expansion_ratio _SCREAMING_SNAKE_CASE : List[Any] = hidden_act _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dim _SCREAMING_SNAKE_CASE : List[Any] = pooling_type _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : List[str] = batch_norm_eps _SCREAMING_SNAKE_CASE : List[str] = batch_norm_momentum _SCREAMING_SNAKE_CASE : Any = drop_connect_rate _SCREAMING_SNAKE_CASE : Optional[int] = sum(__lowerCamelCase ) * 4 @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": _SCREAMING_SNAKE_CASE : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'align' __snake_case = True def __init__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=6_4_0 , __lowerCamelCase=1.0 , __lowerCamelCase=0.02 , **__lowerCamelCase , ) -> Optional[int]: super().__init__(**__lowerCamelCase ) if text_config is None: _SCREAMING_SNAKE_CASE : List[Any] = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: _SCREAMING_SNAKE_CASE : Optional[Any] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) _SCREAMING_SNAKE_CASE : Union[str, Any] = AlignTextConfig(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = AlignVisionConfig(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = projection_dim _SCREAMING_SNAKE_CASE : Any = temperature_init_value _SCREAMING_SNAKE_CASE : int = initializer_range @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE : Optional[int] = self.text_config.to_dict() _SCREAMING_SNAKE_CASE : Union[str, Any] = self.vision_config.to_dict() _SCREAMING_SNAKE_CASE : int = self.__class__.model_type return output
249
1
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase__ : List[str] = logging.get_logger(__name__) def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : Any ): """simple docstring""" try: with open(__lowerCAmelCase , '''rb''' ) as flax_state_f: snake_case__ : Any = from_bytes(__lowerCAmelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(__lowerCAmelCase ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__lowerCAmelCase , __lowerCAmelCase ) def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights snake_case__ : int = flatten_dict(jax.tree_util.tree_map(lambda __lowerCAmelCase : x.dtype == jnp.bfloataa , __lowerCAmelCase ) ).values() if any(__lowerCAmelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) snake_case__ : int = jax.tree_util.tree_map( lambda __lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __lowerCAmelCase ) snake_case__ : int = '''''' snake_case__ : Tuple = flatten_dict(__lowerCAmelCase , sep='''.''' ) snake_case__ : int = pt_model.state_dict() # keep track of unexpected & missing keys snake_case__ : Dict = [] snake_case__ : Optional[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case__ : Dict = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: snake_case__ : Optional[Any] = flax_key_tuple_array[:-1] + ['''weight'''] snake_case__ : Any = jnp.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": snake_case__ : str = flax_key_tuple_array[:-1] + ['''weight'''] snake_case__ : List[Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": snake_case__ : Dict = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__lowerCAmelCase ): snake_case__ : Optional[int] = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) snake_case__ : int = '''.'''.join(__lowerCAmelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict snake_case__ : Any = np.asarray(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , np.ndarray ) else flax_tensor snake_case__ : int = torch.from_numpy(__lowerCAmelCase ) # remove from missing keys missing_keys.remove(__lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__lowerCAmelCase ) pt_model.load_state_dict(__lowerCAmelCase ) # re-transform missing_keys to list snake_case__ : int = list(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(__lowerCAmelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) return pt_model
719
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowerCAmelCase__ : Any = True except (ImportError, AttributeError): lowerCAmelCase__ : Dict = object def _a ( *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Tuple ): """simple docstring""" pass lowerCAmelCase__ : str = False lowerCAmelCase__ : List[str] = logging.get_logger("""transformers-cli/serving""") def _a ( __lowerCAmelCase : Namespace ): """simple docstring""" snake_case__ : Union[str, Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__lowerCAmelCase , args.host , args.port , args.workers ) class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod def __magic_name__ ( snake_case_ : ArgumentParser ): '''simple docstring''' snake_case__ : Optional[Any] = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=snake_case_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=snake_case_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=snake_case_ , default=8_8_8_8 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=snake_case_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=snake_case_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=snake_case_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=snake_case_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=snake_case_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=snake_case_ ) def __init__( self : Union[str, Any] , snake_case_ : Pipeline , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : Any = pipeline snake_case__ : Tuple = host snake_case__ : Optional[Any] = port snake_case__ : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) snake_case__ : str = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=snake_case_ , response_class=snake_case_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ), ] , timeout=6_0_0 , ) def __magic_name__ ( self : str ): '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __magic_name__ ( self : List[str] , snake_case_ : str = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) ): '''simple docstring''' try: snake_case__ : Optional[Any] = self._pipeline.tokenizer.tokenize(snake_case_ ) if return_ids: snake_case__ : Optional[int] = self._pipeline.tokenizer.convert_tokens_to_ids(snake_case_ ) return ServeTokenizeResult(tokens=snake_case_ , tokens_ids=snake_case_ ) else: return ServeTokenizeResult(tokens=snake_case_ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(snake_case_ )} ) def __magic_name__ ( self : List[Any] , snake_case_ : List[int] = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) , ): '''simple docstring''' try: snake_case__ : Optional[int] = self._pipeline.tokenizer.decode(snake_case_ , snake_case_ , snake_case_ ) return ServeDeTokenizeResult(model='''''' , text=snake_case_ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(snake_case_ )} ) async def __magic_name__ ( self : Tuple , snake_case_ : List[str]=Body(snake_case_ , embed=snake_case_ ) ): '''simple docstring''' if len(snake_case_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model snake_case__ : Tuple = self._pipeline(snake_case_ ) return ServeForwardResult(output=snake_case_ ) except Exception as e: raise HTTPException(5_0_0 , {'''error''': str(snake_case_ )} )
502
0
"""simple docstring""" def _snake_case ( snake_case__ : int = 1000 ): A = 2**power A = 0 while n: A , A = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
91
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = ['''image_processor''', '''tokenizer'''] _lowerCamelCase: Optional[int] = '''Pix2StructImageProcessor''' _lowerCamelCase: Dict = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : Optional[int] ,A_ : List[str] ,A_ : Optional[int] ) -> int: A = False super().__init__(A_ ,A_ ) def __call__( self : Any ,A_ : List[str]=None ,A_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,A_ : bool = True ,A_ : Union[bool, str, PaddingStrategy] = False ,A_ : Union[bool, str, TruncationStrategy] = None ,A_ : Optional[int] = None ,A_ : Optional[int] = 2048 ,A_ : int = 0 ,A_ : Optional[int] = None ,A_ : Optional[bool] = None ,A_ : bool = False ,A_ : bool = False ,A_ : bool = False ,A_ : bool = False ,A_ : bool = False ,A_ : bool = True ,A_ : Optional[Union[str, TensorType]] = None ,**A_ : Tuple ,) -> BatchEncoding: if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: A = self.tokenizer A = self.tokenizer( text=A_ ,add_special_tokens=A_ ,padding=A_ ,truncation=A_ ,max_length=A_ ,stride=A_ ,pad_to_multiple_of=A_ ,return_attention_mask=A_ ,return_overflowing_tokens=A_ ,return_special_tokens_mask=A_ ,return_offsets_mapping=A_ ,return_token_type_ids=A_ ,return_length=A_ ,verbose=A_ ,return_tensors=A_ ,**A_ ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values A = self.image_processor( A_ ,return_tensors=A_ ,max_patches=A_ ,**A_ ) else: # add pixel_values and bbox A = self.image_processor( A_ ,return_tensors=A_ ,max_patches=A_ ,header_text=A_ ,**A_ ) if text is not None and not self.image_processor.is_vqa: A = self.tokenizer( text=A_ ,add_special_tokens=A_ ,padding=A_ ,truncation=A_ ,max_length=A_ ,stride=A_ ,pad_to_multiple_of=A_ ,return_attention_mask=A_ ,return_overflowing_tokens=A_ ,return_special_tokens_mask=A_ ,return_offsets_mapping=A_ ,return_token_type_ids=A_ ,return_length=A_ ,verbose=A_ ,return_tensors=A_ ,**A_ ,) if "attention_mask" in text_encoding: A = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: A = text_encoding.pop('input_ids' ) else: A = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,*A_ : Optional[Any] ,**A_ : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,*A_ : Tuple ,**A_ : List[str] ) -> Any: return self.tokenizer.decode(*A_ ,**A_ ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
91
1
from manim import * class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('CPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('GPU' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Model' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.8 ) target.move_to(A_ ) model_arr.append(A_ ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text('Disk' , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4, -1.25, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ) ) lowerCamelCase_ = Square(0.3 ) input.set_fill(A_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , A_ , buff=0.5 ) self.play(Write(A_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=A_ , buff=0.02 ) self.play(MoveToTarget(A_ ) ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = Arrow(start=A_ , end=A_ , color=A_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , A_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase_ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) lowerCamelCase_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(A_ ) , Circumscribe(model_arr[0] , color=A_ , **A_ ) , Circumscribe(model_cpu_arr[0] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , A_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase_ = AnimationGroup( FadeOut(A_ , run_time=0.5 ) , MoveToTarget(A_ , run_time=0.5 ) , FadeIn(A_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(A_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase_ = 0.7 self.play( Circumscribe(model_arr[i] , **A_ ) , Circumscribe(cpu_left_col_base[i] , **A_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , Circumscribe(model_arr[i + 1] , color=A_ , **A_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=A_ , **A_ ) , Circumscribe(cpu_left_col_base[-1] , color=A_ , **A_ ) , Circumscribe(gpu_rect[0] , color=A_ , **A_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase_ = a_c lowerCamelCase_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(A_ ) , FadeOut(A_ , run_time=0.5 ) , ) lowerCamelCase_ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) , MoveToTarget(A_ ) ) self.wait()
651
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Tuple , A_ : str , A_ : int ) -> Any: """simple docstring""" self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = None ops.enable_eager_execution_internal() lowerCamelCase_ = tf.config.list_physical_devices('CPU' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase_ = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase_ = GradientAccumulator() lowerCamelCase_ = tf.Variable([4.0, 3.0] ) lowerCamelCase_ , lowerCamelCase_ = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase_ = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ : Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ : List[Any] , A_ : Tuple ): with strategy.scope(): lowerCamelCase_ = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ : List[Any] , A_ : str ): lowerCamelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
651
1
'''simple docstring''' # Imports import numpy as np class __a : def __init__( self : Any ,lowerCamelCase : int=None ,lowerCamelCase : List[str]=None ,lowerCamelCase : Tuple=None ,lowerCamelCase : Tuple=None ,lowerCamelCase : str=None ): '''simple docstring''' self.set_matricies(red=lowerCamelCase ,green=lowerCamelCase ,blue=lowerCamelCase ,red_edge=lowerCamelCase ,nir=lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : int=None ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Tuple=None ,lowerCamelCase : Tuple=None ,lowerCamelCase : str=None ): '''simple docstring''' if red is not None: __SCREAMING_SNAKE_CASE = red if green is not None: __SCREAMING_SNAKE_CASE = green if blue is not None: __SCREAMING_SNAKE_CASE = blue if red_edge is not None: __SCREAMING_SNAKE_CASE = red_edge if nir is not None: __SCREAMING_SNAKE_CASE = nir return True def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str="" ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=None ,lowerCamelCase : int=None ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Union[str, Any]=None ): '''simple docstring''' self.set_matricies(red=lowerCamelCase ,green=lowerCamelCase ,blue=lowerCamelCase ,red_edge=lowerCamelCase ,nir=lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Tuple=0.08 ,lowerCamelCase : Any=1.22 ,lowerCamelCase : Union[str, Any]=0.03 ): '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.nir - self.green def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : List[Any]=0.16 ): '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int]=0.5 ): '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : List[str]=None ): '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return self.nir / self.red def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase__ ( self : str ): '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __SCREAMING_SNAKE_CASE = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return self.nir / self.red def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
109
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Any = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) SCREAMING_SNAKE_CASE : List[Any] = CLIPImageProcessor() SCREAMING_SNAKE_CASE : Tuple = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') SCREAMING_SNAKE_CASE : int = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
260
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : int =logging.get_logger(__name__) UpperCAmelCase__ : Tuple ={ """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class __A ( SCREAMING_SNAKE_CASE__ ): __A = """mra""" def __init__( self , UpperCAmelCase_=50265 , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=512 , UpperCAmelCase_=1 , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=1E-5 , UpperCAmelCase_="absolute" , UpperCAmelCase_=4 , UpperCAmelCase_="full" , UpperCAmelCase_=0 , UpperCAmelCase_=0 , UpperCAmelCase_=1 , UpperCAmelCase_=0 , UpperCAmelCase_=2 , **UpperCAmelCase_ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCamelCase =vocab_size lowerCamelCase =max_position_embeddings lowerCamelCase =hidden_size lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =intermediate_size lowerCamelCase =hidden_act lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =initializer_range lowerCamelCase =type_vocab_size lowerCamelCase =layer_norm_eps lowerCamelCase =position_embedding_type lowerCamelCase =block_per_row lowerCamelCase =approx_mode lowerCamelCase =initial_prior_first_n_blocks lowerCamelCase =initial_prior_diagonal_n_blocks
719
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=32 , UpperCAmelCase_=2 , UpperCAmelCase_=3 , UpperCAmelCase_=16 , UpperCAmelCase_=[32, 64, 128] , UpperCAmelCase_=[1, 2, 1] , UpperCAmelCase_=[2, 2, 4] , UpperCAmelCase_=2 , UpperCAmelCase_=2.0 , UpperCAmelCase_=True , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_="gelu" , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=1E-5 , UpperCAmelCase_=True , UpperCAmelCase_=None , UpperCAmelCase_=True , UpperCAmelCase_=10 , UpperCAmelCase_=8 , UpperCAmelCase_=["stage1", "stage2"] , UpperCAmelCase_=[1, 2] , ): lowerCamelCase =parent lowerCamelCase =batch_size lowerCamelCase =image_size lowerCamelCase =patch_size lowerCamelCase =num_channels lowerCamelCase =embed_dim lowerCamelCase =hidden_sizes lowerCamelCase =depths lowerCamelCase =num_heads lowerCamelCase =window_size lowerCamelCase =mlp_ratio lowerCamelCase =qkv_bias lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =drop_path_rate lowerCamelCase =hidden_act lowerCamelCase =use_absolute_embeddings lowerCamelCase =patch_norm lowerCamelCase =layer_norm_eps lowerCamelCase =initializer_range lowerCamelCase =is_training lowerCamelCase =scope lowerCamelCase =use_labels lowerCamelCase =type_sequence_label_size lowerCamelCase =encoder_stride lowerCamelCase =out_features lowerCamelCase =out_indices def _snake_case ( self ): lowerCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase =None if self.use_labels: lowerCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase =self.get_config() return config, pixel_values, labels def _snake_case ( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =FocalNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase =model(UpperCAmelCase_ ) lowerCamelCase =((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase =int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =FocalNetBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase =model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase =None lowerCamelCase =FocalNetBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase =model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =FocalNetForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase =model(UpperCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase =1 lowerCamelCase =FocalNetForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase =model(UpperCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =self.type_sequence_label_size lowerCamelCase =FocalNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase =model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase =1 lowerCamelCase =FocalNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase =model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self ): lowerCamelCase =self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase =config_and_inputs lowerCamelCase ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( a , a , unittest.TestCase ): __A = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __A = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _snake_case ( self ): lowerCamelCase =FocalNetModelTester(self ) lowerCamelCase =ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 , has_text_modality=UpperCAmelCase_ ) def _snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ): return def _snake_case ( self ): lowerCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def _snake_case ( self ): pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def _snake_case ( self ): pass def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase =model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase =[*signature.parameters.keys()] lowerCamelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCamelCase =outputs.hidden_states lowerCamelCase =getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # FocalNet has a different seq_length lowerCamelCase =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase =outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =reshaped_hidden_states[0].shape lowerCamelCase =( reshaped_hidden_states[0].view(UpperCAmelCase_ , UpperCAmelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase =True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase =True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase =3 lowerCamelCase =( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase =( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase =image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase =image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase =True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase =True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) @slow def _snake_case ( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase =FocalNetModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase =_config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: lowerCamelCase =model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __A ( unittest.TestCase ): @cached_property def _snake_case ( self ): # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def _snake_case ( self ): lowerCamelCase =FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(UpperCAmelCase_ ) lowerCamelCase =self.default_image_processor lowerCamelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase =image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase =model(**UpperCAmelCase_ ) # verify the logits lowerCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowerCamelCase =torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __A ( a , unittest.TestCase ): __A = (FocalNetBackbone,) if is_torch_available() else () __A = FocalNetConfig __A = False def _snake_case ( self ): lowerCamelCase =FocalNetModelTester(self )
269
0
from __future__ import annotations from collections import deque class _A : '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : list[str] ): '''simple docstring''' __lowercase = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(a_ ) self.set_fail_transitions() def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = 0 for character in keyword: __lowercase = self.find_next_state(a_ , a_ ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __lowercase = len(self.adlist ) - 1 else: __lowercase = next_state self.adlist[current_state]["output"].append(a_ ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = deque() for node in self.adlist[0]["next_states"]: q.append(a_ ) __lowercase = 0 while q: __lowercase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(a_ ) __lowercase = self.adlist[r]["fail_state"] while ( self.find_next_state(a_ , self.adlist[child]["value"] ) is None and state != 0 ): __lowercase = self.adlist[state]["fail_state"] __lowercase = self.find_next_state( a_ , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: __lowercase = 0 __lowercase = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _snake_case ( self : Tuple , lowerCamelCase : str ): '''simple docstring''' __lowercase = {} # returns a dict with keywords and list of its occurrences __lowercase = 0 for i in range(len(a_ ) ): while ( self.find_next_state(a_ , string[i] ) is None and current_state != 0 ): __lowercase = self.adlist[current_state]["fail_state"] __lowercase = self.find_next_state(a_ , string[i] ) if next_state is None: __lowercase = 0 else: __lowercase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __lowercase = [] result[key].append(i - len(a_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
402
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def snake_case (UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[int]=1e-12 ): '''simple docstring''' lowerCamelCase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T lowerCamelCase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T return jnp.matmul(UpperCamelCase , norm_emb_a.T ) class lowercase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = jnp.floataa def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" lowerCamelCase__ = FlaxCLIPVisionModule(self.config.vision_config ) lowerCamelCase__ = nn.Dense(self.config.projection_dim , use_bias=a_ , dtype=self.dtype ) lowerCamelCase__ = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowerCamelCase__ = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowerCamelCase__ = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) lowerCamelCase__ = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__( self : Optional[Any] , a_ : int ): """simple docstring""" lowerCamelCase__ = self.vision_model(a_ )[1] lowerCamelCase__ = self.visual_projection(a_ ) lowerCamelCase__ = jax_cosine_distance(a_ , self.special_care_embeds ) lowerCamelCase__ = jax_cosine_distance(a_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCamelCase__ = 0.0 lowerCamelCase__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCamelCase__ = jnp.round(a_ , 3 ) lowerCamelCase__ = jnp.any(special_scores > 0 , axis=1 , keepdims=a_ ) # Use a lower threshold if an image has any special care concept lowerCamelCase__ = is_special_care * 0.0_1 lowerCamelCase__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCamelCase__ = jnp.round(a_ , 3 ) lowerCamelCase__ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class lowercase ( UpperCAmelCase_ ): """simple docstring""" snake_case_ = CLIPConfig snake_case_ = 'clip_input' snake_case_ = FlaxStableDiffusionSafetyCheckerModule def __init__( self : List[Any] , a_ : CLIPConfig , a_ : Optional[Tuple] = None , a_ : int = 0 , a_ : jnp.dtype = jnp.floataa , a_ : bool = True , **a_ : Union[str, Any] , ): """simple docstring""" if input_shape is None: lowerCamelCase__ = (1, 2_24, 2_24, 3) lowerCamelCase__ = self.module_class(config=a_ , dtype=a_ , **a_ ) super().__init__(a_ , a_ , input_shape=a_ , seed=a_ , dtype=a_ , _do_init=_do_init ) def _UpperCamelCase ( self : Optional[int] , a_ : jax.random.KeyArray , a_ : Tuple , a_ : FrozenDict = None ): """simple docstring""" lowerCamelCase__ = jax.random.normal(a_ , a_ ) lowerCamelCase__ , lowerCamelCase__ = jax.random.split(a_ ) lowerCamelCase__ = {"""params""": params_rng, """dropout""": dropout_rng} lowerCamelCase__ = self.module.init(a_ , a_ )["""params"""] return random_params def __call__( self : Union[str, Any] , a_ : Tuple , a_ : dict = None , ): """simple docstring""" lowerCamelCase__ = jnp.transpose(a_ , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(a_ , dtype=jnp.floataa ) , rngs={} , )
165
0
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> str: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = F"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE )}""" raise ValueError(_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = F"""Expected boolean as use_pascal parameter, found {type(_SCREAMING_SNAKE_CASE )}""" raise ValueError(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = input_str.split("""_""" ) SCREAMING_SNAKE_CASE = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE = words[start_index:] SCREAMING_SNAKE_CASE = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
707
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for line in lines: SCREAMING_SNAKE_CASE = re.sub(r"""#.*""" , """""" , _SCREAMING_SNAKE_CASE ) # remove comments if line: filtered_lines.append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = """\n""".join(_SCREAMING_SNAKE_CASE ) # Make a hash from all this code SCREAMING_SNAKE_CASE = full_str.encode("""utf-8""" ) return shaaaa(_SCREAMING_SNAKE_CASE ).hexdigest() # get importable module names and hash for caching SCREAMING_SNAKE_CASE_ = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions SCREAMING_SNAKE_CASE_ = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) SCREAMING_SNAKE_CASE_ = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name SCREAMING_SNAKE_CASE_ = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
116
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __A = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __A = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } __A = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } __A = { '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } __A = { '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } __A = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } __A = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } __A = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class UpperCAmelCase (_snake_case ): """simple docstring""" _UpperCAmelCase :int = VOCAB_FILES_NAMES _UpperCAmelCase :Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :List[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class UpperCAmelCase (_snake_case ): """simple docstring""" _UpperCAmelCase :Tuple = VOCAB_FILES_NAMES _UpperCAmelCase :List[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :int = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :List[Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __A = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __A = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_snake_case ) class UpperCAmelCase : """simple docstring""" def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): if titles is None and texts is None: return super().__call__( _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) elif titles is None or texts is None: lowercase__: Any = titles if texts is None else texts return super().__call__( _lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) lowercase__: List[Any] = titles if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [titles] lowercase__: List[str] = texts if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [texts] lowercase__: int = len(_lowerCamelCase ) lowercase__: Dict = questions if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [questions] * n_passages if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( F"""There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts.""" ) lowercase__: Tuple = super().__call__(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids'''] lowercase__: List[str] = super().__call__(_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids'''] lowercase__: List[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase , _lowerCamelCase ) ] } if return_attention_mask is not False: lowercase__: Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__: List[str] = attention_mask return self.pad(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 16 , _UpperCAmelCase = 64 , _UpperCAmelCase = 4 , ): lowercase__: List[Any] = reader_input['''input_ids'''] lowercase__: List[Any] = reader_output[:3] lowercase__: int = len(_lowerCamelCase ) lowercase__: str = sorted(range(_lowerCamelCase ) , reverse=_lowerCamelCase , key=relevance_logits.__getitem__ ) lowercase__: List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowercase__: Any = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__: Tuple = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__: Optional[int] = sequence_ids.index(self.pad_token_id ) else: lowercase__: str = len(_lowerCamelCase ) lowercase__: Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCamelCase , top_spans=_lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCamelCase , start_index=_lowerCamelCase , end_index=_lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): lowercase__: Union[str, Any] = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__: Optional[Any] = sorted(_lowerCamelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_lowerCamelCase ) lowercase__: Dict = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) lowercase__: Optional[Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_snake_case ) class UpperCAmelCase (_snake_case ,_snake_case ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = VOCAB_FILES_NAMES _UpperCAmelCase :Dict = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :List[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :Any = ["input_ids", "attention_mask"]
586
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch snake_case : Dict = random.Random() def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=None ): """simple docstring""" if rng is None: a :str = global_rng a :List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=400 , _lowerCamelCase=2000 , _lowerCamelCase=1 , _lowerCamelCase=0.0 , _lowerCamelCase=1_6000 , _lowerCamelCase=True , _lowerCamelCase=80 , _lowerCamelCase=16 , _lowerCamelCase=64 , _lowerCamelCase="hann_window" , _lowerCamelCase=80 , _lowerCamelCase=7600 , _lowerCamelCase=1e-10 , _lowerCamelCase=True , ): a :Tuple = parent a :Optional[int] = batch_size a :Tuple = min_seq_length a :List[Any] = max_seq_length a :str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a :Optional[int] = feature_size a :List[Any] = padding_value a :Dict = sampling_rate a :Union[str, Any] = do_normalize a :str = num_mel_bins a :Tuple = hop_length a :Optional[int] = win_length a :Any = win_function a :Dict = fmin a :Optional[int] = fmax a :Optional[Any] = mel_floor a :Dict = return_attention_mask def SCREAMING_SNAKE_CASE__ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=False , _lowerCamelCase=False ): def _flatten(_lowerCamelCase ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: a :List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a :str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a :Dict = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=False , _lowerCamelCase=False ): if equal_length: a :Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a :Optional[int] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a :Optional[int] = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = SpeechTaFeatureExtractor def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = SpeechTaFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): self.assertTrue(np.all(np.mean(_lowerCamelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCamelCase , axis=0 ) - 1 ) < 1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus a :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a :Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :Union[str, Any] = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input a :List[str] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values a :int = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test batched a :Tuple = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values a :str = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a :Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad'''] a :List[Any] = [None, 1600, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ): a :int = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors='''np''' ) a :List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a :Tuple = range(800 , 1400 , 200 ) a :Dict = [floats_list((1, x) )[0] for x in lengths] a :List[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] a :Any = [None, 1600, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ): a :Tuple = feat_extract(_lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase ) a :Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a :Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :Optional[int] = feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) a :str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a :Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :Any = feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) a :List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) a :List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :str = feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) a :Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a :Any = np.random.rand(100 ).astype(np.floataa ) a :Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a :Optional[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a :str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus a :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a :Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a :Tuple = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test feature size a :List[Any] = feature_extractor(audio_target=_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input a :List[Any] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values a :Any = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test batched a :str = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values a :Union[str, Any] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. a :Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] a :Optional[int] = np.asarray(_lowerCamelCase ) a :List[Any] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values a :List[Any] = feature_extractor(_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() a :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) a :Any = feat_extract.model_input_names[0] a :List[str] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCamelCase ) == len(_lowerCamelCase ) for x, y in zip(_lowerCamelCase , processed_features[input_name] ) ) ) a :Any = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCamelCase ) a :Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) a :Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: a :Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCamelCase ) a :Tuple = self.feature_extraction_class(**self.feat_extract_dict ) a :List[Any] = feat_extract.model_input_names[0] a :List[str] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) a :Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: a :List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = self.feature_extraction_class(**self.feat_extract_dict ) a :str = self.feat_extract_tester.prepare_inputs_for_target() a :Optional[int] = feat_extract.model_input_names[0] a :str = BatchFeature({input_name: speech_inputs} ) a :Dict = feat_extract.num_mel_bins # hack! a :Optional[Any] = feat_extract.pad(_lowerCamelCase , padding='''longest''' , return_tensors='''np''' )[input_name] a :List[str] = feat_extract.pad(_lowerCamelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.feat_extract_dict a :Any = True a :Union[str, Any] = self.feature_extraction_class(**_lowerCamelCase ) a :int = self.feat_extract_tester.prepare_inputs_for_target() a :Dict = [len(_lowerCamelCase ) for x in speech_inputs] a :List[Any] = feat_extract.model_input_names[0] a :Optional[int] = BatchFeature({input_name: speech_inputs} ) a :List[Any] = feat_extract.num_mel_bins # hack! a :Optional[Any] = feat_extract.pad(_lowerCamelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = self.feat_extract_dict a :str = True a :Any = self.feature_extraction_class(**_lowerCamelCase ) a :Any = self.feat_extract_tester.prepare_inputs_for_target() a :Dict = [len(_lowerCamelCase ) for x in speech_inputs] a :Tuple = feat_extract.model_input_names[0] a :int = BatchFeature({input_name: speech_inputs} ) a :Optional[Any] = min(_lowerCamelCase ) a :Dict = feat_extract.num_mel_bins # hack! a :Dict = feat_extract.pad( _lowerCamelCase , padding='''max_length''' , max_length=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): from datasets import load_dataset a :List[str] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a :List[str] = ds.sort('''id''' ).select(range(_lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE__ ( self ): # fmt: off a :Dict = torch.tensor( [2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03, 3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03, 2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04, 4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03, 7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04, 4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03] ) # fmt: on a :List[Any] = self._load_datasamples(1 ) a :Any = SpeechTaFeatureExtractor() a :Optional[int] = feature_extractor(_lowerCamelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_3680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCamelCase , atol=1e-6 ) ) def SCREAMING_SNAKE_CASE__ ( self ): # fmt: off a :str = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on a :int = self._load_datasamples(1 ) a :int = SpeechTaFeatureExtractor() a :List[Any] = feature_extractor(audio_target=_lowerCamelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCamelCase , atol=1e-4 ) )
445
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class A__ ( UpperCAmelCase__ ): lowercase = ["pixel_values"] def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 255 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Any , ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) lowerCAmelCase__ : List[str] = size if size is not None else {"shortest_edge": 256} lowerCAmelCase__ : Any = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) lowerCAmelCase__ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase__ : Optional[Any] = get_size_dict(lowerCamelCase__ , param_name='crop_size' ) lowerCAmelCase__ : Optional[int] = do_resize lowerCAmelCase__ : int = size lowerCAmelCase__ : Dict = do_center_crop lowerCAmelCase__ : Optional[Any] = crop_size lowerCAmelCase__ : int = resample lowerCAmelCase__ : Optional[Any] = do_rescale lowerCAmelCase__ : str = rescale_factor lowerCAmelCase__ : Union[str, Any] = offset lowerCAmelCase__ : int = do_normalize lowerCAmelCase__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BILINEAR , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ): '''simple docstring''' lowerCAmelCase__ : int = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" in size: lowerCAmelCase__ : Union[str, Any] = get_resize_output_image_size(lowerCamelCase__ , size['shortest_edge'] , default_to_square=lowerCamelCase__ ) elif "height" in size and "width" in size: lowerCAmelCase__ : Any = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[Any] , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCamelCase__ , size=(size['height'], size['width']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _lowerCamelCase ( self : Any , a : np.ndarray , a : Union[int, float] , a : bool = True , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , ): '''simple docstring''' lowerCAmelCase__ : Dict = image.astype(np.floataa ) if offset: lowerCAmelCase__ : Optional[Any] = image - (scale / 2) return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _lowerCamelCase ( self : str , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ): '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _lowerCamelCase ( self : List[str] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[ChannelDimension] = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. lowerCAmelCase__ : int = to_numpy_array(lowerCamelCase__ ) if do_resize: lowerCAmelCase__ : List[str] = self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) if do_center_crop: lowerCAmelCase__ : Dict = self.center_crop(lowerCamelCase__ , size=lowerCamelCase__ ) if do_rescale: lowerCAmelCase__ : List[Any] = self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ , offset=lowerCamelCase__ ) if do_normalize: lowerCAmelCase__ : Any = self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) lowerCAmelCase__ : Union[str, Any] = to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) return image def _lowerCamelCase ( self : Optional[Any] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Union[str, Any] , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : Dict = offset if offset is not None else self.offset lowerCAmelCase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : int = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : int = image_std if image_std is not None else self.image_std lowerCAmelCase__ : Dict = size if size is not None else self.size lowerCAmelCase__ : Union[str, Any] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) lowerCAmelCase__ : int = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : Optional[Any] = get_size_dict(lowerCamelCase__ , param_name='crop_size' ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) lowerCAmelCase__ : Any = make_batched(lowerCamelCase__ ) lowerCAmelCase__ : Optional[Any] = [ [ self._preprocess_image( image=lowerCamelCase__ , do_resize=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , do_center_crop=lowerCamelCase__ , crop_size=lowerCamelCase__ , do_rescale=lowerCamelCase__ , rescale_factor=lowerCamelCase__ , offset=lowerCamelCase__ , do_normalize=lowerCamelCase__ , image_mean=lowerCamelCase__ , image_std=lowerCamelCase__ , data_format=lowerCamelCase__ , ) for img in video ] for video in videos ] lowerCAmelCase__ : Dict = {"pixel_values": videos} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
718
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
69
0
import re def __a ( lowerCAmelCase_ : str ) -> bool: '''simple docstring''' UpperCAmelCase_= re.compile(r"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(lowerCAmelCase_ ,lowerCAmelCase_ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
593
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __a ( lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= botoa.client("""iam""" ) UpperCAmelCase_= { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowerCAmelCase_ ,AssumeRolePolicyDocument=json.dumps(lowerCAmelCase_ ,indent=2 ) ) UpperCAmelCase_= { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowerCAmelCase_ ,PolicyName=F"""{role_name}_policy_permission""" ,PolicyDocument=json.dumps(lowerCAmelCase_ ,indent=2 ) ,) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def __a ( lowerCAmelCase_ : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_= botoa.client("""iam""" ) return iam_client.get_role(RoleName=lowerCAmelCase_ )["Role"]["Arn"] def __a ( ) -> int: '''simple docstring''' UpperCAmelCase_= _ask_options( """How do you want to authorize?""" ,["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] ,lowerCAmelCase_ ,) UpperCAmelCase_= None if credentials_configuration == 0: UpperCAmelCase_= _ask_field("""Enter your AWS Profile name: [default] """ ,default="""default""" ) UpperCAmelCase_= aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) UpperCAmelCase_= _ask_field("""AWS Access Key ID: """ ) UpperCAmelCase_= aws_access_key_id UpperCAmelCase_= _ask_field("""AWS Secret Access Key: """ ) UpperCAmelCase_= aws_secret_access_key UpperCAmelCase_= _ask_field("""Enter your AWS Region: [us-east-1]""" ,default="""us-east-1""" ) UpperCAmelCase_= aws_region UpperCAmelCase_= _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" ,["""Provide IAM Role name""", """Create new IAM role using credentials"""] ,lowerCAmelCase_ ,) if role_management == 0: UpperCAmelCase_= _ask_field("""Enter your IAM role name: """ ) else: UpperCAmelCase_= """accelerate_sagemaker_execution_role""" print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(lowerCAmelCase_ ) UpperCAmelCase_= _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,) UpperCAmelCase_= None if is_custom_docker_image: UpperCAmelCase_= _ask_field("""Enter your Docker image: """ ,lambda lowerCAmelCase_ : str(lowerCAmelCase_ ).lower() ) UpperCAmelCase_= _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,) UpperCAmelCase_= None if is_sagemaker_inputs_enabled: UpperCAmelCase_= _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ ,lambda lowerCAmelCase_ : str(lowerCAmelCase_ ).lower() ,) UpperCAmelCase_= _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,) UpperCAmelCase_= None if is_sagemaker_metrics_enabled: UpperCAmelCase_= _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ ,lambda lowerCAmelCase_ : str(lowerCAmelCase_ ).lower() ,) UpperCAmelCase_= _ask_options( """What is the distributed mode?""" ,["""No distributed training""", """Data parallelism"""] ,_convert_sagemaker_distributed_mode ,) UpperCAmelCase_= {} UpperCAmelCase_= _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,) if use_dynamo: UpperCAmelCase_= """dynamo_""" UpperCAmelCase_= _ask_options( """Which dynamo backend would you like to use?""" ,[x.lower() for x in DYNAMO_BACKENDS] ,_convert_dynamo_backend ,default=2 ,) UpperCAmelCase_= _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,) if use_custom_options: UpperCAmelCase_= _ask_options( """Which mode do you want to use?""" ,lowerCAmelCase_ ,lambda lowerCAmelCase_ : TORCH_DYNAMO_MODES[int(lowerCAmelCase_ )] ,default="""default""" ,) UpperCAmelCase_= _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,) UpperCAmelCase_= _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ ,_convert_yes_no_to_bool ,default=lowerCAmelCase_ ,error_message="""Please enter yes or no.""" ,) UpperCAmelCase_= """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: UpperCAmelCase_= _ask_options( lowerCAmelCase_ ,lowerCAmelCase_ ,lambda lowerCAmelCase_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowerCAmelCase_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" UpperCAmelCase_= _ask_field(lowerCAmelCase_ ,lambda lowerCAmelCase_ : str(lowerCAmelCase_ ).lower() ,default="""ml.p3.2xlarge""" ) UpperCAmelCase_= 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): UpperCAmelCase_= _ask_field( """How many machines do you want use? [1]: """ ,lowerCAmelCase_ ,default=1 ,) UpperCAmelCase_= _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" ,["""no""", """fp16""", """bf16""", """fp8"""] ,_convert_mixed_precision ,) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=lowerCAmelCase_ ,compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER ,distributed_type=lowerCAmelCase_ ,use_cpu=lowerCAmelCase_ ,dynamo_config=lowerCAmelCase_ ,eca_instance_type=lowerCAmelCase_ ,profile=lowerCAmelCase_ ,region=lowerCAmelCase_ ,iam_role_name=lowerCAmelCase_ ,mixed_precision=lowerCAmelCase_ ,num_machines=lowerCAmelCase_ ,sagemaker_inputs_file=lowerCAmelCase_ ,sagemaker_metrics_file=lowerCAmelCase_ ,)
593
1
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _UpperCamelCase : Tuple =logging.getLogger(__name__) def lowerCamelCase_ ( ): __lowerCamelCase = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=A_ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=A_ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=A_ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=A_ , default='''data/dump''' , help='''The dump file prefix.''' ) __lowerCamelCase = parser.parse_args() logger.info(f'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __lowerCamelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) __lowerCamelCase = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __lowerCamelCase = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __lowerCamelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __lowerCamelCase = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __lowerCamelCase = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __lowerCamelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __lowerCamelCase = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __lowerCamelCase = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __lowerCamelCase = fp.readlines() logger.info('''Start encoding''' ) logger.info(f'''{len(A_ )} examples to process.''' ) __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = 1_00_00 __lowerCamelCase = time.time() for text in data: __lowerCamelCase = f'''{bos} {text.strip()} {sep}''' __lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) rslt.append(A_ ) iter += 1 if iter % interval == 0: __lowerCamelCase = time.time() logger.info(f'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __lowerCamelCase = time.time() logger.info('''Finished binarization''' ) logger.info(f'''{len(A_ )} examples processed.''' ) __lowerCamelCase = f'''{args.dump_file}.{args.tokenizer_name}.pickle''' __lowerCamelCase = tokenizer.vocab_size if vocab_size < (1 << 16): __lowerCamelCase = [np.uintaa(A_ ) for d in rslt] else: __lowerCamelCase = [np.intaa(A_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'''Dump to {dp_file}''' ) with open(A_ , '''wb''' ) as handle: pickle.dump(rslt_ , A_ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
575
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _UpperCamelCase : Any =logging.get_logger(__name__) # General docstring _UpperCamelCase : List[Any] ="PoolFormerConfig" # Base docstring _UpperCamelCase : List[str] ="sail/poolformer_s12" _UpperCamelCase : List[Any] =[1, 5_12, 7, 7] # Image classification docstring _UpperCamelCase : List[str] ="sail/poolformer_s12" _UpperCamelCase : Tuple ="tabby, tabby cat" _UpperCamelCase : Optional[Any] =[ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCamelCase_ ( A_ , A_ = 0.0 , A_ = False ): if drop_prob == 0.0 or not training: return input __lowerCamelCase = 1 - drop_prob __lowerCamelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __lowerCamelCase = keep_prob + torch.rand(A_ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize __lowerCamelCase = input.div(A_ ) * random_tensor return output class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self , _snake_case = None ): """simple docstring""" super().__init__() __lowerCamelCase = drop_prob def _lowerCamelCase ( self , _snake_case ): """simple docstring""" return drop_path(_snake_case , self.drop_prob , self.training ) def _lowerCamelCase ( self ): """simple docstring""" return "p={}".format(self.drop_prob ) class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None ): """simple docstring""" super().__init__() __lowerCamelCase = patch_size if isinstance(_snake_case , collections.abc.Iterable ) else (patch_size, patch_size) __lowerCamelCase = stride if isinstance(_snake_case , collections.abc.Iterable ) else (stride, stride) __lowerCamelCase = padding if isinstance(_snake_case , collections.abc.Iterable ) else (padding, padding) __lowerCamelCase = nn.Convad(_snake_case , _snake_case , kernel_size=_snake_case , stride=_snake_case , padding=_snake_case ) __lowerCamelCase = norm_layer(_snake_case ) if norm_layer else nn.Identity() def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = self.projection(_snake_case ) __lowerCamelCase = self.norm(_snake_case ) return embeddings class _SCREAMING_SNAKE_CASE ( nn.GroupNorm ): """simple docstring""" def __init__( self , _snake_case , **_snake_case ): """simple docstring""" super().__init__(1 , _snake_case , **_snake_case ) class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self , _snake_case ): """simple docstring""" super().__init__() __lowerCamelCase = nn.AvgPoolad(_snake_case , stride=1 , padding=pool_size // 2 , count_include_pad=_snake_case ) def _lowerCamelCase ( self , _snake_case ): """simple docstring""" return self.pool(_snake_case ) - hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" super().__init__() __lowerCamelCase = nn.Convad(_snake_case , _snake_case , 1 ) __lowerCamelCase = nn.Convad(_snake_case , _snake_case , 1 ) __lowerCamelCase = PoolFormerDropPath(_snake_case ) if isinstance(config.hidden_act , _snake_case ): __lowerCamelCase = ACTaFN[config.hidden_act] else: __lowerCamelCase = config.hidden_act def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = self.conva(_snake_case ) __lowerCamelCase = self.act_fn(_snake_case ) __lowerCamelCase = self.drop(_snake_case ) __lowerCamelCase = self.conva(_snake_case ) __lowerCamelCase = self.drop(_snake_case ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" super().__init__() __lowerCamelCase = PoolFormerPooling(_snake_case ) __lowerCamelCase = PoolFormerOutput(_snake_case , _snake_case , _snake_case , _snake_case ) __lowerCamelCase = PoolFormerGroupNorm(_snake_case ) __lowerCamelCase = PoolFormerGroupNorm(_snake_case ) # Useful for training neural nets __lowerCamelCase = PoolFormerDropPath(_snake_case ) if drop_path > 0.0 else nn.Identity() __lowerCamelCase = config.use_layer_scale if config.use_layer_scale: __lowerCamelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((_snake_case) ) , requires_grad=_snake_case ) __lowerCamelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((_snake_case) ) , requires_grad=_snake_case ) def _lowerCamelCase ( self , _snake_case ): """simple docstring""" if self.use_layer_scale: __lowerCamelCase = self.pooling(self.before_norm(_snake_case ) ) __lowerCamelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __lowerCamelCase = hidden_states + self.drop_path(_snake_case ) __lowerCamelCase = () __lowerCamelCase = self.output(self.after_norm(_snake_case ) ) __lowerCamelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __lowerCamelCase = hidden_states + self.drop_path(_snake_case ) __lowerCamelCase = (output,) + outputs return outputs else: __lowerCamelCase = self.drop_path(self.pooling(self.before_norm(_snake_case ) ) ) # First residual connection __lowerCamelCase = pooling_output + hidden_states __lowerCamelCase = () # Second residual connection inside the PoolFormerOutput block __lowerCamelCase = self.drop_path(self.output(self.after_norm(_snake_case ) ) ) __lowerCamelCase = hidden_states + layer_output __lowerCamelCase = (output,) + outputs return outputs class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self , _snake_case ): """simple docstring""" super().__init__() __lowerCamelCase = config # stochastic depth decay rule __lowerCamelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __lowerCamelCase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __lowerCamelCase = nn.ModuleList(_snake_case ) # Transformer blocks __lowerCamelCase = [] __lowerCamelCase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __lowerCamelCase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _snake_case , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_snake_case ) ) __lowerCamelCase = nn.ModuleList(_snake_case ) def _lowerCamelCase ( self , _snake_case , _snake_case=False , _snake_case=True ): """simple docstring""" __lowerCamelCase = () if output_hidden_states else None __lowerCamelCase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __lowerCamelCase , __lowerCamelCase = layers # Get patch embeddings from hidden_states __lowerCamelCase = embedding_layer(_snake_case ) # Send the embeddings through the blocks for _, blk in enumerate(_snake_case ): __lowerCamelCase = blk(_snake_case ) __lowerCamelCase = layer_outputs[0] if output_hidden_states: __lowerCamelCase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case , hidden_states=_snake_case ) class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = PoolFormerConfig SCREAMING_SNAKE_CASE_ = 'poolformer' SCREAMING_SNAKE_CASE_ = 'pixel_values' SCREAMING_SNAKE_CASE_ = True def _lowerCamelCase ( self , _snake_case ): """simple docstring""" if isinstance(_snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_snake_case , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _lowerCamelCase ( self , _snake_case , _snake_case=False ): """simple docstring""" if isinstance(_snake_case , _snake_case ): __lowerCamelCase = value _UpperCamelCase : Any =R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _UpperCamelCase : Tuple =R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , UpperCamelCase , ) class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" def __init__( self , _snake_case ): """simple docstring""" super().__init__(_snake_case ) __lowerCamelCase = config __lowerCamelCase = PoolFormerEncoder(_snake_case ) # Initialize weights and apply final processing self.post_init() def _lowerCamelCase ( self ): """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self , _snake_case = None , _snake_case = None , _snake_case = None , ): """simple docstring""" __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __lowerCamelCase = self.encoder( _snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , ) __lowerCamelCase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_snake_case , hidden_states=encoder_outputs.hidden_states , ) class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self , _snake_case ): """simple docstring""" super().__init__() __lowerCamelCase = nn.Linear(config.hidden_size , config.hidden_size ) def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = self.dense(_snake_case ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , UpperCamelCase , ) class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" def __init__( self , _snake_case ): """simple docstring""" super().__init__(_snake_case ) __lowerCamelCase = config.num_labels __lowerCamelCase = PoolFormerModel(_snake_case ) # Final norm __lowerCamelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __lowerCamelCase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , ): """simple docstring""" __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.poolformer( _snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , ) __lowerCamelCase = outputs[0] __lowerCamelCase = self.classifier(self.norm(_snake_case ).mean([-2, -1] ) ) __lowerCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCamelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCamelCase = '''single_label_classification''' else: __lowerCamelCase = '''multi_label_classification''' if self.config.problem_type == "regression": __lowerCamelCase = MSELoss() if self.num_labels == 1: __lowerCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCamelCase = loss_fct(_snake_case , _snake_case ) elif self.config.problem_type == "single_label_classification": __lowerCamelCase = CrossEntropyLoss() __lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCamelCase = BCEWithLogitsLoss() __lowerCamelCase = loss_fct(_snake_case , _snake_case ) if not return_dict: __lowerCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states )
575
1
import os def UpperCAmelCase__ ( ): '''simple docstring''' with open(os.path.dirname(__snake_case ) + '''/p022_names.txt''' ) as file: lowerCAmelCase : int = str(file.readlines()[0] ) lowerCAmelCase : Tuple = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Dict = 0 for i, name in enumerate(__snake_case ): for letter in name: name_score += ord(__snake_case ) - 64 total_score += (i + 1) * name_score lowerCAmelCase : Tuple = 0 return total_score if __name__ == "__main__": print(solution())
348
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=3_0 , _UpperCamelCase=4_0_0 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=True , _UpperCamelCase=1 / 2_5_5 , _UpperCamelCase=True , ) -> Dict: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase_ : Dict = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : Optional[int] = min_resolution UpperCAmelCase_ : List[Any] = max_resolution UpperCAmelCase_ : str = do_resize UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : str = image_mean UpperCAmelCase_ : Any = image_std UpperCAmelCase_ : Optional[Any] = do_rescale UpperCAmelCase_ : Union[str, Any] = rescale_factor UpperCAmelCase_ : Optional[int] = do_pad def __UpperCAmelCase ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False ) -> Tuple: if not batched: UpperCAmelCase_ : List[Any] = image_inputs[0] if isinstance(_UpperCamelCase , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ : str = image.size else: UpperCAmelCase_ , UpperCAmelCase_ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ : Tuple = int(self.size['shortest_edge'] * h / w ) UpperCAmelCase_ : int = self.size['shortest_edge'] elif w > h: UpperCAmelCase_ : Any = self.size['shortest_edge'] UpperCAmelCase_ : List[Any] = int(self.size['shortest_edge'] * w / h ) else: UpperCAmelCase_ : Optional[Any] = self.size['shortest_edge'] UpperCAmelCase_ : str = self.size['shortest_edge'] else: UpperCAmelCase_ : Tuple = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ : Optional[Any] = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[0] )[0] UpperCAmelCase_ : Tuple = max(_UpperCamelCase , key=lambda _UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = YolosImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Tuple = YolosImageProcessingTester(self ) @property def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'size' ) ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=_UpperCamelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: pass def __UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : str = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) UpperCAmelCase_ : Dict = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCAmelCase ( self ) -> Dict: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ : int = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.image_processor_tester.get_expected_values(_UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ : Optional[Any] = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.image_processor_tester.get_expected_values(_UpperCamelCase , batched=_UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processings UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase_ : str = self.image_processing_class(do_resize=_UpperCamelCase , do_normalize=_UpperCamelCase , do_rescale=_UpperCamelCase ) # create random PyTorch tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCAmelCase_ : int = image_processing_a.pad(_UpperCamelCase , return_tensors='pt' ) UpperCAmelCase_ : int = image_processing_a(_UpperCamelCase , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ) -> Optional[Any]: # prepare image and target UpperCAmelCase_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: UpperCAmelCase_ : str = json.loads(f.read() ) UpperCAmelCase_ : Dict = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them UpperCAmelCase_ : str = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) UpperCAmelCase_ : Optional[Any] = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , return_tensors='pt' ) # verify pixel values UpperCAmelCase_ : Any = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify area UpperCAmelCase_ : int = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) ) # verify boxes UpperCAmelCase_ : int = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1E-3 ) ) # verify image_id UpperCAmelCase_ : List[Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) ) # verify is_crowd UpperCAmelCase_ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) ) # verify class_labels UpperCAmelCase_ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) ) # verify orig_size UpperCAmelCase_ : str = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) ) # verify size UpperCAmelCase_ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) ) @slow def __UpperCAmelCase ( self ) -> str: # prepare image, target and masks_path UpperCAmelCase_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: UpperCAmelCase_ : Union[str, Any] = json.loads(f.read() ) UpperCAmelCase_ : List[str] = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} UpperCAmelCase_ : int = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them UpperCAmelCase_ : str = YolosImageProcessor(format='coco_panoptic' ) UpperCAmelCase_ : List[Any] = image_processing(images=_UpperCamelCase , annotations=_UpperCamelCase , masks_path=_UpperCamelCase , return_tensors='pt' ) # verify pixel values UpperCAmelCase_ : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify area UpperCAmelCase_ : Dict = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCamelCase ) ) # verify boxes UpperCAmelCase_ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCamelCase , atol=1E-3 ) ) # verify image_id UpperCAmelCase_ : Dict = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCamelCase ) ) # verify is_crowd UpperCAmelCase_ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCamelCase ) ) # verify class_labels UpperCAmelCase_ : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCamelCase ) ) # verify masks UpperCAmelCase_ : Optional[Any] = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCamelCase ) # verify orig_size UpperCAmelCase_ : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCamelCase ) ) # verify size UpperCAmelCase_ : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCamelCase ) )
406
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''unispeech''' def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(512, 512, 512, 512, 512, 512, 512) , _lowercase=(5, 2, 2, 2, 2, 2, 2) , _lowercase=(10, 3, 3, 3, 3, 2, 2) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=False , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase=320 , _lowercase=2 , _lowercase=0.1 , _lowercase=100 , _lowercase=256 , _lowercase=256 , _lowercase=0.1 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=80 , _lowercase=0 , _lowercase=1 , _lowercase=2 , _lowercase=0.5 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_norm _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = list(_lowercase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = num_ctc_classes _lowerCAmelCase = vocab_size _lowerCAmelCase = do_stable_layer_norm _lowerCAmelCase = use_weighted_layer_sum _lowerCAmelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = apply_spec_augment _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase = num_codevectors_per_group _lowerCAmelCase = num_codevector_groups _lowerCAmelCase = contrastive_logits_temperature _lowerCAmelCase = feat_quantizer_dropout _lowerCAmelCase = num_negatives _lowerCAmelCase = codevector_dim _lowerCAmelCase = proj_codevector_dim _lowerCAmelCase = diversity_loss_weight # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # pretraining loss _lowerCAmelCase = replace_prob @property def _lowercase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
162
'''simple docstring''' def A (__lowerCamelCase :str , __lowerCamelCase :str ): assert x is not None assert y is not None _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = len(__lowerCamelCase ) # declaring the array for storing the dp values _lowerCAmelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 _lowerCAmelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _lowerCAmelCase = """""" _lowerCAmelCase , _lowerCAmelCase = m, n while i > 0 and j > 0: _lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _lowerCAmelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _lowercase = """AGGTAB""" _lowercase = """GXTXAYB""" _lowercase = 4 _lowercase = """GTAB""" _lowercase , _lowercase = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
162
1
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
362
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowercase ( unittest.TestCase ): def a ( self ): snake_case_ = 10 def a ( self ): snake_case_ = [1, 2, 3, 4] snake_case_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def a ( self ): snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def a ( self ): snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] snake_case_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(snake_case , self.block_size , 0 ) , snake_case ) def a ( self ): snake_case_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' snake_case_ , snake_case_ = process_story(snake_case ) self.assertEqual(snake_case , [] ) def a ( self ): snake_case_ = '' snake_case_ , snake_case_ = process_story(snake_case ) self.assertEqual(snake_case , [] ) self.assertEqual(snake_case , [] ) def a ( self ): snake_case_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) snake_case_ , snake_case_ = process_story(snake_case ) snake_case_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(snake_case , snake_case ) snake_case_ = ['It was the best of times.'] self.assertEqual(snake_case , snake_case ) def a ( self ): snake_case_ = torch.tensor([1, 2, 3, 4] ) snake_case_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(snake_case , 0 ).numpy() , expected.numpy() ) def a ( self ): snake_case_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) snake_case_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(snake_case , 23 ).numpy() , expected.numpy() ) def a ( self ): snake_case_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) snake_case_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(snake_case , 1 ).numpy() , expected.numpy() ) def a ( self ): snake_case_ = 101 snake_case_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) snake_case_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) snake_case_ = compute_token_type_ids(snake_case , snake_case ) np.testing.assert_array_equal(snake_case , snake_case )
362
1
'''simple docstring''' from __future__ import annotations from statistics import mean def __lowerCAmelCase ( a_ , a_ , a_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * no_of_processes SCREAMING_SNAKE_CASE : Optional[Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(a_ ): SCREAMING_SNAKE_CASE : Tuple = burst_time[i] SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Dict = -1 for i in range(a_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(a_ ) if len(a_ ) > 0: SCREAMING_SNAKE_CASE : Dict = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: SCREAMING_SNAKE_CASE : Union[str, Any] = i total_time += burst_time[target_process] completed += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Tuple = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __lowerCAmelCase ( a_ , a_ , a_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [0] * no_of_processes for i in range(a_ ): SCREAMING_SNAKE_CASE : List[Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") _lowerCAmelCase :Optional[int] = 4 _lowerCAmelCase :Optional[int] = [2, 5, 3, 7] _lowerCAmelCase :List[str] = [0, 0, 0, 0] _lowerCAmelCase :Union[str, Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _lowerCAmelCase :Any = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
179
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase :int = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[str] = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
179
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _A = TypeVar("""T""") class SCREAMING_SNAKE_CASE_ ( Generic[T] ): def __init__( self , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any | T = None __SCREAMING_SNAKE_CASE : int = len(snake_case__ ) __SCREAMING_SNAKE_CASE : list[T] = [any_type for _ in range(self.N )] + arr __SCREAMING_SNAKE_CASE : List[str] = fnc self.build() def _snake_case ( self ) -> Any: '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): __SCREAMING_SNAKE_CASE : Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _snake_case ( self , lowercase , lowercase ) -> List[Any]: '''simple docstring''' p += self.N __SCREAMING_SNAKE_CASE : Dict = v while p > 1: __SCREAMING_SNAKE_CASE : List[str] = p // 2 __SCREAMING_SNAKE_CASE : Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _snake_case ( self , lowercase , lowercase ) -> Optional[int]: # noqa: E741 '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = l + self.N, r + self.N __SCREAMING_SNAKE_CASE : T | None = None while l <= r: if l % 2 == 1: __SCREAMING_SNAKE_CASE : Tuple = self.st[l] if res is None else self.fn(snake_case__ , self.st[l] ) if r % 2 == 0: __SCREAMING_SNAKE_CASE : List[str] = self.st[r] if res is None else self.fn(snake_case__ , self.st[r] ) __SCREAMING_SNAKE_CASE : Optional[int] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _A = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] _A = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } _A = SegmentTree(test_array, min) _A = SegmentTree(test_array, max) _A = SegmentTree(test_array, lambda a, b: a + b) def A_ ( ) -> None: for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE : List[str] = reduce(__SCREAMING_SNAKE_CASE , test_array[i : j + 1] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = reduce(__SCREAMING_SNAKE_CASE , test_array[i : j + 1] ) __SCREAMING_SNAKE_CASE : Optional[int] = reduce(lambda __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert max_range == max_segment_tree.query(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert sum_range == sum_segment_tree.query(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) test_all_segments() for index, value in test_updates.items(): _A = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
158
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , snake_case__=1000 , ): '''simple docstring''' lowercase__ : Union[str, Any]= parent lowercase__ : Any= batch_size lowercase__ : str= seq_length lowercase__ : str= is_training lowercase__ : Optional[int]= use_input_mask lowercase__ : Dict= use_token_type_ids lowercase__ : Optional[int]= use_labels lowercase__ : List[str]= vocab_size lowercase__ : Optional[int]= hidden_size lowercase__ : List[str]= num_hidden_layers lowercase__ : Optional[int]= num_attention_heads lowercase__ : Tuple= intermediate_size lowercase__ : int= hidden_act lowercase__ : Any= hidden_dropout_prob lowercase__ : Dict= attention_probs_dropout_prob lowercase__ : List[Any]= max_position_embeddings lowercase__ : Optional[int]= type_vocab_size lowercase__ : str= type_sequence_label_size lowercase__ : Union[str, Any]= initializer_range lowercase__ : Union[str, Any]= num_labels lowercase__ : Dict= num_choices lowercase__ : Dict= scope lowercase__ : int= range_bbox def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowercase__ : str= ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase__ : Any= bbox[i, j, 3] lowercase__ : Tuple= bbox[i, j, 1] lowercase__ : int= t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase__ : str= bbox[i, j, 2] lowercase__ : List[Any]= bbox[i, j, 0] lowercase__ : int= t lowercase__ : Optional[int]= tf.convert_to_tensor(snake_case__ ) lowercase__ : Any= None if self.use_input_mask: lowercase__ : Dict= random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[Any]= None if self.use_token_type_ids: lowercase__ : Dict= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : int= None lowercase__ : Tuple= None lowercase__ : List[str]= None if self.use_labels: lowercase__ : Optional[Any]= ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : List[Any]= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Union[str, Any]= ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Any= LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= TFLayoutLMModel(config=snake_case__ ) lowercase__ : Dict= model(snake_case__ , snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowercase__ : str= model(snake_case__ , snake_case__ , token_type_ids=snake_case__ ) lowercase__ : Any= model(snake_case__ , snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : List[str]= TFLayoutLMForMaskedLM(config=snake_case__ ) lowercase__ : int= model(snake_case__ , snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= self.num_labels lowercase__ : List[Any]= TFLayoutLMForSequenceClassification(config=snake_case__ ) lowercase__ : Optional[Any]= model(snake_case__ , snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Dict= self.num_labels lowercase__ : Union[str, Any]= TFLayoutLMForTokenClassification(config=snake_case__ ) lowercase__ : Tuple= model(snake_case__ , snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : int= TFLayoutLMForQuestionAnswering(config=snake_case__ ) lowercase__ : int= model(snake_case__ , snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Any= self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) : Any= config_and_inputs lowercase__ : Optional[Any]= { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __lowerCamelCase = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = 10 def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[str]= TFLayoutLMModelTester(self ) lowercase__ : List[Any]= ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Any= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def UpperCAmelCase_ ( self ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int= TFLayoutLMModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def UpperCAmelCase_ ( self ): '''simple docstring''' pass def lowercase__() ->List[Any]: """simple docstring""" lowercase__ : List[str]= tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 lowercase__ : List[str]= tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowercase__ : Tuple= tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 lowercase__ : Optional[int]= tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowercase__ : Dict= tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[int]= TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ : Union[str, Any]= prepare_layoutlm_batch_inputs() # forward pass lowercase__ : Union[str, Any]= model(input_ids=snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) # test the sequence output on [0, :3, :3] lowercase__ : Tuple= tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-3 ) ) # test the pooled output on [1, :3] lowercase__ : Tuple= tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case__ , atol=1e-3 ) ) @slow def UpperCAmelCase_ ( self ): '''simple docstring''' # initialize model with randomly initialized sequence classification head lowercase__ : int= TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ : Dict= prepare_layoutlm_batch_inputs() # forward pass lowercase__ : List[Any]= model( input_ids=snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowercase__ : Any= outputs.loss lowercase__ : Union[str, Any]= (2,) self.assertEqual(loss.shape , snake_case__ ) # test the shape of the logits lowercase__ : Dict= outputs.logits lowercase__ : Optional[int]= (2, 2) self.assertEqual(logits.shape , snake_case__ ) @slow def UpperCAmelCase_ ( self ): '''simple docstring''' # initialize model with randomly initialized token classification head lowercase__ : List[str]= TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ : Any= prepare_layoutlm_batch_inputs() # forward pass lowercase__ : Optional[Any]= model( input_ids=snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) # test the shape of the logits lowercase__ : List[str]= outputs.logits lowercase__ : Dict= tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case__ ) @slow def UpperCAmelCase_ ( self ): '''simple docstring''' # initialize model with randomly initialized token classification head lowercase__ : List[Any]= TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ : str= prepare_layoutlm_batch_inputs() # forward pass lowercase__ : int= model(input_ids=snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) # test the shape of the logits lowercase__ : List[str]= tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case__ ) self.assertEqual(outputs.end_logits.shape , snake_case__ )
218
0
from collections import deque from .hash_table import HashTable class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Any , *__lowercase : List[Any] , **__lowercase : List[str] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : Union[str, Any] , __lowercase : str ): '''simple docstring''' __a = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowercase ) __a = self.values[key] def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( sum(self.charge_factor - len(__lowercase ) for slot in self.values ) / self.size_table * self.charge_factor ) def UpperCamelCase_ ( self : str , __lowercase : List[Any] , __lowercase : str=None ): '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowercase ) == 0 ): return key return super()._collision_resolution(__lowercase , __lowercase )
547
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : str =['pixel_values'] def __init__( self : str , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = PIL.Image.BICUBIC , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : Union[int, float] = 1 / 255 , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Any , ): '''simple docstring''' super().__init__(**__lowercase ) __a = size if size is not None else {"""height""": 256, """width""": 256} __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase , param_name="""crop_size""" ) __a = do_resize __a = size __a = resample __a = do_center_crop __a = crop_size __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PIL.Image.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Union[str, Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return resize( __lowercase , size=(size["""height"""], size["""width"""]) , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Dict , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : int , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[str] , ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Optional[Any] , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : Dict=None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : Optional[Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = resample if resample is not None else self.resample __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__lowercase , param_name="""crop_size""" ) __a = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__lowercase ) for image in images] if do_resize: __a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
547
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule lowercase__ = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
610
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : Dict = HfArgumentParser(snake_case__) lowerCAmelCase_ : Dict = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : List[Any] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : str = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Optional[Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : List[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : int = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
659
0
from math import sqrt def _lowercase ( a_ : int ) -> bool: '''simple docstring''' assert isinstance(a_ ,a_ ) and ( number >= 0 ), "'number' must been an int and positive" __magic_name__ = True # 0 and 1 are none primes. if number <= 1: __magic_name__ = False for divisor in range(2 ,int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __magic_name__ = False break # precondition assert isinstance(a_ ,a_ ), "'status' must been from type bool" return status def _lowercase ( a_ : Any ) -> str: '''simple docstring''' assert isinstance(a_ ,a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __magic_name__ = list(range(2 ,n + 1 ) ) __magic_name__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 ,len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __magic_name__ = 0 # filters actual prime numbers. __magic_name__ = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ ,a_ ), "'ans' must been from type list" return ans def _lowercase ( a_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' assert isinstance(a_ ,a_ ) and (n > 2), "'N' must been an int and > 2" __magic_name__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 ,n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ ,a_ ), "'ans' must been from type list" return ans def _lowercase ( a_ : Union[str, Any] ) -> Any: '''simple docstring''' assert isinstance(a_ ,a_ ) and number >= 0, "'number' must been an int and >= 0" __magic_name__ = [] # this list will be returns of the function. # potential prime number factors. __magic_name__ = 2 __magic_name__ = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ ,a_ ), "'ans' must been from type list" return ans def _lowercase ( a_ : Union[str, Any] ) -> str: '''simple docstring''' assert isinstance(a_ ,a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __magic_name__ = 0 # prime factorization of 'number' __magic_name__ = prime_factorization(a_ ) __magic_name__ = max(a_ ) # precondition assert isinstance(a_ ,a_ ), "'ans' must been from type int" return ans def _lowercase ( a_ : str ) -> Tuple: '''simple docstring''' assert isinstance(a_ ,a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __magic_name__ = 0 # prime factorization of 'number' __magic_name__ = prime_factorization(a_ ) __magic_name__ = min(a_ ) # precondition assert isinstance(a_ ,a_ ), "'ans' must been from type int" return ans def _lowercase ( a_ : Tuple ) -> Tuple: '''simple docstring''' assert isinstance(a_ ,a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 ,a_ ), "compare bust been from type bool" return number % 2 == 0 def _lowercase ( a_ : Optional[int] ) -> str: '''simple docstring''' assert isinstance(a_ ,a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 ,a_ ), "compare bust been from type bool" return number % 2 != 0 def _lowercase ( a_ : int ) -> Any: '''simple docstring''' assert ( isinstance(a_ ,a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __magic_name__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __magic_name__ = get_prime_numbers(a_ ) __magic_name__ = len(a_ ) # run variable for while-loops. __magic_name__ = 0 __magic_name__ = None # exit variable. for break up the loops __magic_name__ = True while i < len_pn and loop: __magic_name__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __magic_name__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ ,a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowercase ( a_ : Union[str, Any] ,a_ : List[str] ) -> int: '''simple docstring''' assert ( isinstance(a_ ,a_ ) and isinstance(a_ ,a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __magic_name__ = 0 while numbera != 0: __magic_name__ = numbera % numbera __magic_name__ = numbera __magic_name__ = rest # precondition assert isinstance(a_ ,a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowercase ( a_ : Optional[Any] ,a_ : List[Any] ) -> str: '''simple docstring''' assert ( isinstance(a_ ,a_ ) and isinstance(a_ ,a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __magic_name__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __magic_name__ = prime_factorization(a_ ) __magic_name__ = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __magic_name__ = [] __magic_name__ = [] __magic_name__ = max(a_ ,a_ ) __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __magic_name__ = prime_fac_a.count(a_ ) __magic_name__ = prime_fac_a.count(a_ ) for _ in range(max(a_ ,a_ ) ): ans *= n else: __magic_name__ = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __magic_name__ = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ ,a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowercase ( a_ : Union[str, Any] ) -> List[str]: '''simple docstring''' assert isinstance(a_ ,a_ ) and (n >= 0), "'number' must been a positive int" __magic_name__ = 0 __magic_name__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ ,a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def _lowercase ( a_ : List[Any] ,a_ : List[str] ) -> Dict: '''simple docstring''' assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __magic_name__ = p_number_a + 1 # jump to the next number __magic_name__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ ,a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowercase ( a_ : Union[str, Any] ) -> int: '''simple docstring''' assert isinstance(a_ ,a_ ) and (n >= 1), "'n' must been int and >= 1" __magic_name__ = [] # will be returned. for divisor in range(1 ,n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowercase ( a_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' assert isinstance(a_ ,a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __magic_name__ = get_divisors(a_ ) # precondition assert ( isinstance(a_ ,a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowercase ( a_ : Any ,a_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' assert ( isinstance(a_ ,a_ ) and isinstance(a_ ,a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __magic_name__ = gcd(abs(a_ ) ,abs(a_ ) ) # precondition assert ( isinstance(a_ ,a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowercase ( a_ : List[Any] ) -> Tuple: '''simple docstring''' assert isinstance(a_ ,a_ ) and (n >= 0), "'n' must been a int and >= 0" __magic_name__ = 1 # this will be return. for factor in range(1 ,n + 1 ): ans *= factor return ans def _lowercase ( a_ : Optional[int] ) -> List[str]: '''simple docstring''' assert isinstance(a_ ,a_ ) and (n >= 0), "'n' must been an int and >= 0" __magic_name__ = 0 __magic_name__ = 1 __magic_name__ = 1 # this will be return for _ in range(n - 1 ): __magic_name__ = ans ans += fiba __magic_name__ = tmp return ans
709
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _lowercase ( a_ : Optional[Any] ,a_ : Dict ,a_ : Any ,a_ : Any=None ,a_ : Any=None ,a_ : List[str]=None ,a_ : Union[str, Any]=None ,a_ : Dict=None ,) -> Optional[Any]: '''simple docstring''' if attention_mask is None: __magic_name__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __magic_name__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __magic_name__ = torch.ones(config.encoder_layers ,config.encoder_attention_heads ,device=a_ ) if decoder_head_mask is None: __magic_name__ = torch.ones(config.decoder_layers ,config.decoder_attention_heads ,device=a_ ) if cross_attn_head_mask is None: __magic_name__ = torch.ones(config.decoder_layers ,config.decoder_attention_heads ,device=a_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __UpperCamelCase : def __init__( self: Union[str, Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: List[Any]=13 , __UpperCamelCase: Tuple=7 , __UpperCamelCase: Dict=True , __UpperCamelCase: Optional[int]=False , __UpperCamelCase: str=99 , __UpperCamelCase: Optional[Any]=16 , __UpperCamelCase: List[Any]=2 , __UpperCamelCase: Optional[int]=4 , __UpperCamelCase: Tuple=4 , __UpperCamelCase: Optional[int]="relu" , __UpperCamelCase: Optional[Any]=0.1 , __UpperCamelCase: Dict=0.1 , __UpperCamelCase: int=0.0 , __UpperCamelCase: int=0.0 , __UpperCamelCase: List[Any]=20 , __UpperCamelCase: Union[str, Any]=2 , __UpperCamelCase: List[Any]=1 , __UpperCamelCase: Tuple=0 , ): '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = self.eos_token_id # Eos Token __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __magic_name__ = input_ids.clamp(self.pad_token_id + 1 ) __magic_name__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) __magic_name__ = self.get_config() __magic_name__ = prepare_mam_aaa_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__, __magic_name__ = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self: Tuple , __UpperCamelCase: Tuple , __UpperCamelCase: Union[str, Any] ): '''simple docstring''' __magic_name__ = MaMaaaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() __magic_name__ = inputs_dict['input_ids'] __magic_name__ = inputs_dict['attention_mask'] __magic_name__ = inputs_dict['head_mask'] # first forward pass __magic_name__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , head_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) __magic_name__, __magic_name__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __magic_name__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __magic_name__ = torch.cat([input_ids, next_tokens] , dim=-1 ) __magic_name__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __magic_name__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )['last_hidden_state'] __magic_name__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[ 'last_hidden_state' ] # select random slice __magic_name__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() __magic_name__ = output_from_no_past[:, -3:, random_slice_idx].detach() __magic_name__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-2 ) ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , __UpperCamelCase: Any , __UpperCamelCase: int ): '''simple docstring''' __magic_name__ = MaMaaaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() __magic_name__ = model(**__UpperCamelCase ) __magic_name__ = outputs.encoder_last_hidden_state __magic_name__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = model.get_encoder() encoder.save_pretrained(__UpperCamelCase ) __magic_name__ = MaMaaaEncoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) __magic_name__ = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = model.get_decoder() decoder.save_pretrained(__UpperCamelCase ) __magic_name__ = MaMaaaDecoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) __magic_name__ = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowercase : Tuple = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _lowercase : Dict = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _lowercase : Tuple = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _lowercase : List[str] = True _lowercase : Dict = True _lowercase : Union[str, Any] = False _lowercase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self: Dict , __UpperCamelCase: Any , __UpperCamelCase: Optional[Any] , __UpperCamelCase: List[str] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Tuple ): '''simple docstring''' if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' __magic_name__ = MaMaaaModelTester(self ) __magic_name__ = ConfigTester(self , config_class=__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__, __magic_name__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __magic_name__ = model_class(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) __magic_name__, __magic_name__ = model_class.from_pretrained(__UpperCamelCase , output_loading_info=__UpperCamelCase ) self.assertEqual(info['missing_keys'] , [] ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[Any] ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[str] ): '''simple docstring''' __magic_name__, __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __magic_name__ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __magic_name__ = copy.deepcopy(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) if not self.is_encoder_decoder: __magic_name__ = inputs['input_ids'] del inputs["input_ids"] else: __magic_name__ = inputs['input_ids'] __magic_name__ = inputs.get('decoder_input_ids' , __UpperCamelCase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , __UpperCamelCase ) __magic_name__ = model.get_input_embeddings() if not self.is_encoder_decoder: __magic_name__ = wte(__UpperCamelCase ) else: __magic_name__ = wte(__UpperCamelCase ) __magic_name__ = wte(__UpperCamelCase ) with torch.no_grad(): model(**__UpperCamelCase )[0] def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' __magic_name__, __magic_name__ = self.model_tester.prepare_config_and_inputs() __magic_name__ = input_dict['input_ids'] __magic_name__ = input_ids.ne(1 ).to(__UpperCamelCase ) __magic_name__ = MaMaaaForConditionalGeneration(__UpperCamelCase ).eval().to(__UpperCamelCase ) if torch_device == "cuda": model.half() model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase ) model.generate(num_beams=4 , do_sample=__UpperCamelCase , early_stopping=__UpperCamelCase , num_return_sequences=3 ) def _lowercase ( a_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return torch.tensor(a_ ,dtype=torch.long ,device=a_ ) A__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __UpperCamelCase ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' __magic_name__ = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__UpperCamelCase ) __magic_name__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) __magic_name__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) __magic_name__ = prepare_mam_aaa_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) with torch.no_grad(): __magic_name__ = model(**__UpperCamelCase )[0] __magic_name__ = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here __magic_name__ = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' __magic_name__ = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCamelCase ) # change to intended input __magic_name__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) __magic_name__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) __magic_name__ = prepare_mam_aaa_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) with torch.no_grad(): __magic_name__ = model(**__UpperCamelCase )[0] __magic_name__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here __magic_name__ = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): '''simple docstring''' __magic_name__ = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__UpperCamelCase ) __magic_name__ = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) __magic_name__ = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __magic_name__ = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors='pt' ) __magic_name__ = model.generate( input_ids=dct['input_ids'].to(__UpperCamelCase ) , attention_mask=dct['attention_mask'].to(__UpperCamelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) __magic_name__ = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] __magic_name__ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) assert generated == expected_en
184
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( UpperCAmelCase ): a_ = ['''image_processor''', '''tokenizer'''] a_ = '''ViltImageProcessor''' a_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[Any] , __a : int=None , __a : Optional[int]=None , **__a : Union[str, Any] ) -> str: __UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __a , ) __UpperCAmelCase = kwargs.pop('''feature_extractor''' ) __UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__a , __a ) __UpperCAmelCase = self.image_processor def __call__( self : str , __a : Optional[Any] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : str , ) -> BatchEncoding: __UpperCAmelCase = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel_values + pixel_mask __UpperCAmelCase = self.image_processor(__a , return_tensors=__a ) encoding.update(__a ) return encoding def snake_case__ ( self : Union[str, Any] , *__a : List[Any] , **__a : Optional[Any] ) -> List[Any]: return self.tokenizer.batch_decode(*__a , **__a ) def snake_case__ ( self : Any , *__a : Dict , **__a : str ) -> Tuple: return self.tokenizer.decode(*__a , **__a ) @property def snake_case__ ( self : List[str] ) -> Union[str, Any]: __UpperCAmelCase = self.tokenizer.model_input_names __UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case__ ( self : str ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __a , ) return self.image_processor_class @property def snake_case__ ( self : Optional[Any] ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __a , ) return self.image_processor
262
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCAmelCase ( UpperCamelCase__ : BertModel , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __UpperCAmelCase = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) __UpperCAmelCase = model.state_dict() def to_tf_var_name(UpperCamelCase__ : str ): for patt, repl in iter(UpperCamelCase__ ): __UpperCAmelCase = name.replace(UpperCamelCase__ , UpperCamelCase__ ) return f"""bert/{name}""" def create_tf_var(UpperCamelCase__ : np.ndarray , UpperCamelCase__ : str , UpperCamelCase__ : tf.Session ): __UpperCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) __UpperCAmelCase = tf.get_variable(dtype=UpperCamelCase__ , shape=tensor.shape , name=UpperCamelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCamelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __UpperCAmelCase = to_tf_var_name(UpperCamelCase__ ) __UpperCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __UpperCAmelCase = torch_tensor.T __UpperCAmelCase = create_tf_var(tensor=UpperCamelCase__ , name=UpperCamelCase__ , session=UpperCamelCase__ ) tf.keras.backend.set_value(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = session.run(UpperCamelCase__ ) print(f"""Successfully created {tf_name}: {np.allclose(UpperCamelCase__ , UpperCamelCase__ )}""" ) __UpperCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def lowerCAmelCase ( UpperCamelCase__ : List[str]=None ): """simple docstring""" __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''Directory in which to save tensorflow model''' ) __UpperCAmelCase = parser.parse_args(UpperCamelCase__ ) __UpperCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCamelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
262
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __A( UpperCAmelCase ): def lowercase__ ( self : List[Any] ): lowerCamelCase_ = SMALL_MODEL_IDENTIFIER lowerCamelCase_ = """pt""" lowerCamelCase_ = """tf""" def lowercase__ ( self : Tuple , __UpperCamelCase : Optional[int] ): lowerCamelCase_ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : Tuple ): lowerCamelCase_ = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCamelCase ) model_tf.save_pretrained(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = """mock_framework""" # Framework provided - return whatever the user provides lowerCamelCase_ = FeaturesManager.determine_framework(self.test_model , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCamelCase ) lowerCamelCase_ = FeaturesManager.determine_framework(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCamelCase ) lowerCamelCase_ = FeaturesManager.determine_framework(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Optional[int] ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCamelCase ) lowerCamelCase_ = FeaturesManager.determine_framework(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCamelCase ) lowerCamelCase_ = FeaturesManager.determine_framework(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__UpperCamelCase ): lowerCamelCase_ = FeaturesManager.determine_framework(__UpperCamelCase ) def lowercase__ ( self : List[str] ): lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , __UpperCamelCase ): lowerCamelCase_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCamelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase ) with patch("""transformers.onnx.features.is_torch_available""" , __UpperCamelCase ): lowerCamelCase_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCamelCase , self.framework_tf ) # Both in environment -> use PyTorch lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase ) lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , __UpperCamelCase ), patch( """transformers.onnx.features.is_torch_available""" , __UpperCamelCase ): lowerCamelCase_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCamelCase , self.framework_pt ) # Both not in environment -> raise error lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase ) lowerCamelCase_ = MagicMock(return_value=__UpperCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , __UpperCamelCase ), patch( """transformers.onnx.features.is_torch_available""" , __UpperCamelCase ): with self.assertRaises(__UpperCamelCase ): lowerCamelCase_ = FeaturesManager.determine_framework(self.test_model )
721
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A: def __init__( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Dict=7 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : List[Any]=3_7 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : List[str]=0.02 , __UpperCamelCase : Any=3 , __UpperCamelCase : int=4 , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Union[str, Any]=0 , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope lowerCamelCase_ = projection_dim def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) lowerCamelCase_ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFDPRContextEncoder(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFDPRQuestionEncoder(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ): lowerCamelCase_ = TFDPRReader(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __A( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowercase__ ( self : Dict ): lowerCamelCase_ = TFDPRModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Any ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__UpperCamelCase ) def lowercase__ ( self : Dict ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__UpperCamelCase ) def lowercase__ ( self : List[str] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__UpperCamelCase ) @slow def lowercase__ ( self : Optional[int] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRContextEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFDPRReader.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __A( unittest.TestCase ): @slow def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) lowerCamelCase_ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] lowerCamelCase_ = model(__UpperCamelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
103
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _a ( ) -> Optional[int]: __SCREAMING_SNAKE_CASE = HfArgumentParser(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0] __SCREAMING_SNAKE_CASE = TensorFlowBenchmark(args=UpperCAmelCase__ ) try: __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()[0] except ValueError as e: __SCREAMING_SNAKE_CASE = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' __SCREAMING_SNAKE_CASE = ''' '''.join(str(UpperCAmelCase__ ).split(''' ''' )[:-1] ) __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = eval(str(UpperCAmelCase__ ).split(''' ''' )[-1] ) __SCREAMING_SNAKE_CASE = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: __SCREAMING_SNAKE_CASE = full_error_msg + begin_error_msg + str(UpperCAmelCase__ ) raise ValueError(UpperCAmelCase__ ) benchmark.run() if __name__ == "__main__": main()
482
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__: def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : int=10 , __SCREAMING_SNAKE_CASE : List[Any]=[8, 16, 32, 64] , __SCREAMING_SNAKE_CASE : str=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[str]="relu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Dict=["stage2", "stage3", "stage4"] , __SCREAMING_SNAKE_CASE : Optional[Any]=[2, 3, 4] , __SCREAMING_SNAKE_CASE : int=1 , ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = out_features __SCREAMING_SNAKE_CASE = out_indices __SCREAMING_SNAKE_CASE = num_groups def _a ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _a ( self : Any ) -> str: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = BitModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = BitForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BitBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = BitBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : int ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = BitModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Any ) -> Optional[int]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : int ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Optional[int] ) -> Dict: """simple docstring""" pass def _a ( self : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(config=__SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def _a ( self : int ) -> Dict: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = BitModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( ) -> List[Any]: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A__( unittest.TestCase ): @cached_property def _a ( self : Dict ) -> str: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @require_torch class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = (BitBackbone,) if is_torch_available() else () lowerCAmelCase = BitConfig lowerCAmelCase = False def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BitModelTester(self )
482
1
'''simple docstring''' def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [1] for i in range(2 , a__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[str] = list(range(a__ ) ) # Find permutation while factorials: SCREAMING_SNAKE_CASE : Tuple = factorials.pop() SCREAMING_SNAKE_CASE : Union[str, Any] = divmod(a__ , a__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
715
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = AutoencoderKL __SCREAMING_SNAKE_CASE : Optional[int] = 'sample' __SCREAMING_SNAKE_CASE : Any = 1E-2 @property def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = 4 SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : int = (32, 32) SCREAMING_SNAKE_CASE : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) return {"sample": image} @property def __lowerCAmelCase ( self ) ->str: return (3, 32, 32) @property def __lowerCAmelCase ( self ) ->Dict: return (3, 32, 32) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ) ->Dict: pass def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def __lowerCAmelCase ( self ) ->Dict: # enable deterministic behavior for gradient checkpointing SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = self.model_class(**_lowerCamelCase ) model.to(_lowerCamelCase ) assert not model.is_gradient_checkpointing and model.training SCREAMING_SNAKE_CASE : Tuple = model(**_lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn_like(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing SCREAMING_SNAKE_CASE : str = self.model_class(**_lowerCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training SCREAMING_SNAKE_CASE : Any = model_a(**_lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() SCREAMING_SNAKE_CASE : Tuple = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) SCREAMING_SNAKE_CASE : List[Any] = dict(model.named_parameters() ) SCREAMING_SNAKE_CASE : Optional[int] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) SCREAMING_SNAKE_CASE : Dict = model.to(_lowerCamelCase ) model.eval() if torch_device == "mps": SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) else: SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE : List[Any] = image.to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , sample_posterior=_lowerCamelCase , generator=_lowerCamelCase ).sample SCREAMING_SNAKE_CASE : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": SCREAMING_SNAKE_CASE : str = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: SCREAMING_SNAKE_CASE : Dict = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1e-2 ) ) @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: return F"""gaussian_noise_s={seed}_shape={"_".join([str(_lowerCamelCase ) for s in shape] )}.npy""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self , _lowerCamelCase=0 , _lowerCamelCase=(4, 3, 512, 512) , _lowerCamelCase=False ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCamelCase , _lowerCamelCase ) ) ).to(_lowerCamelCase ).to(_lowerCamelCase ) return image def __lowerCAmelCase ( self , _lowerCamelCase="CompVis/stable-diffusion-v1-4" , _lowerCamelCase=False ) ->List[Any]: SCREAMING_SNAKE_CASE : List[str] = '''fp16''' if fpaa else None SCREAMING_SNAKE_CASE : Dict = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL.from_pretrained( _lowerCamelCase , subfolder='''vae''' , torch_dtype=_lowerCamelCase , revision=_lowerCamelCase , ) model.to(_lowerCamelCase ).eval() return model def __lowerCAmelCase ( self , _lowerCamelCase=0 ) ->Optional[int]: if torch_device == "mps": return torch.manual_seed(_lowerCamelCase ) return torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.get_generator(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , generator=_lowerCamelCase , sample_posterior=_lowerCamelCase ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE : Any = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model(fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_sd_image(_lowerCamelCase , fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.get_generator(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase , generator=_lowerCamelCase , sample_posterior=_lowerCamelCase ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Optional[int] = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE : str = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(_lowerCamelCase ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : str = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE : Any = sample[-1, -2:, :2, -2:].flatten().cpu() SCREAMING_SNAKE_CASE : Tuple = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model(fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model(fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model.decode(_lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : int = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model.decode(_lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_generator(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model.encode(_lowerCamelCase ).latent_dist SCREAMING_SNAKE_CASE : int = dist.sample(generator=_lowerCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] SCREAMING_SNAKE_CASE : Optional[Any] = sample[0, -1, -3:, -3:].flatten().cpu() SCREAMING_SNAKE_CASE : List[str] = torch.tensor(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase )
333
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( snake_case_ ): def lowercase_ ( self : Tuple ): '''simple docstring''' a_ : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase__ , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , lowercase__ : int , lowercase__ : int=13 , lowercase__ : List[str]=64 , lowercase__ : List[Any]=2 , lowercase__ : List[str]=3 , lowercase__ : Any="swish" , lowercase__ : Union[str, Any]=3 , lowercase__ : Optional[int]=32 , lowercase__ : Any=0.1 , lowercase__ : Tuple=0.02 , lowercase__ : int=True , lowercase__ : Optional[Any]=True , lowercase__ : str=10 , lowercase__ : Union[str, Any]=None , lowercase__ : str=0.25 , lowercase__ : Tuple=0.0 , lowercase__ : Optional[Any]=0.0 , ): '''simple docstring''' a_ : str = parent a_ : List[Any] = batch_size a_ : Optional[int] = image_size a_ : Optional[Any] = patch_size a_ : Tuple = num_channels a_ : Any = make_divisible(512 * width_multiplier , divisor=8 ) a_ : Optional[Any] = hidden_act a_ : Optional[int] = conv_kernel_size a_ : Tuple = output_stride a_ : int = classifier_dropout_prob a_ : List[Any] = use_labels a_ : Optional[Any] = is_training a_ : int = num_labels a_ : int = initializer_range a_ : List[Any] = scope a_ : Optional[int] = width_multiplier a_ : str = ffn_dropout a_ : Any = attn_dropout def lowercase_ ( self : Any ): '''simple docstring''' a_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Optional[int] = None a_ : int = None if self.use_labels: a_ : Dict = ids_tensor([self.batch_size] , self.num_labels ) a_ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a_ : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self : str ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase_ ( self : List[Any] , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Tuple ): '''simple docstring''' a_ : List[str] = MobileViTVaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ : Any = model(lowercase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self : int , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : Dict ): '''simple docstring''' a_ : Dict = self.num_labels a_ : List[Any] = MobileViTVaForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() a_ : Optional[Any] = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict , lowercase__ : Dict , lowercase__ : Any , lowercase__ : str , lowercase__ : List[Any] ): '''simple docstring''' a_ : Dict = self.num_labels a_ : Optional[Any] = MobileViTVaForSemanticSegmentation(lowercase__ ) model.to(lowercase__ ) model.eval() a_ : Tuple = model(lowercase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a_ : Optional[int] = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self : Tuple ): '''simple docstring''' a_ : List[str] = self.prepare_config_and_inputs() a_ , a_ , a_ , a_ : Any = config_and_inputs a_ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__ : Union[str, Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __magic_name__ : List[Any] = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ : str = False __magic_name__ : Tuple = False __magic_name__ : Optional[int] = False __magic_name__ : Any = False def lowercase_ ( self : str ): '''simple docstring''' a_ : int = MobileViTVaModelTester(self ) a_ : List[Any] = MobileViTVaConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ ) def lowercase_ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def lowercase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase_ ( self : List[str] ): '''simple docstring''' pass def lowercase_ ( self : List[str] ): '''simple docstring''' a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Any = model_class(lowercase__ ) a_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : str = [*signature.parameters.keys()] a_ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase__ ) def lowercase_ ( self : int ): '''simple docstring''' a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def lowercase_ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : int ): a_ : int = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): a_ : Dict = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) a_ : List[Any] = outputs.hidden_states a_ : Optional[Any] = 5 self.assertEqual(len(lowercase__ ) , lowercase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. a_ : Optional[int] = 2 for i in range(len(lowercase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : List[str] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : List[Any] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def lowercase_ ( self : str ): '''simple docstring''' a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) def lowercase_ ( self : Dict ): '''simple docstring''' a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase__ ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Tuple = MobileViTVaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" a_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def lowercase_ ( self : List[Any] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' a_ : List[Any] = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( lowercase__ ) a_ : Union[str, Any] = self.default_image_processor a_ : Dict = prepare_img() a_ : Union[str, Any] = image_processor(images=lowercase__ , return_tensors="""pt""" ).to(lowercase__ ) # forward pass with torch.no_grad(): a_ : str = model(**lowercase__ ) # verify the logits a_ : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) a_ : int = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' a_ : List[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) a_ : int = model.to(lowercase__ ) a_ : List[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) a_ : Any = prepare_img() a_ : int = image_processor(images=lowercase__ , return_tensors="""pt""" ).to(lowercase__ ) # forward pass with torch.no_grad(): a_ : List[str] = model(**lowercase__ ) a_ : Union[str, Any] = outputs.logits # verify the logits a_ : List[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowercase__ ) a_ : Any = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=lowercase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase__ , atol=1e-4 ) ) @slow def lowercase_ ( self : int ): '''simple docstring''' a_ : Any = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) a_ : int = model.to(lowercase__ ) a_ : str = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) a_ : Optional[int] = prepare_img() a_ : List[Any] = image_processor(images=lowercase__ , return_tensors="""pt""" ).to(lowercase__ ) # forward pass with torch.no_grad(): a_ : List[Any] = model(**lowercase__ ) a_ : Union[str, Any] = outputs.logits.detach().cpu() a_ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase__ , target_sizes=[(50, 60)] ) a_ : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowercase__ ) a_ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase__ ) a_ : int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowercase__ )
442
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=snake_case_ ): __magic_name__ : Dict = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : List[str] , *lowercase__ : Dict , **lowercase__ : int ): '''simple docstring''' requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def lowercase_ ( cls : Dict , *lowercase__ : List[str] , **lowercase__ : str ): '''simple docstring''' requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def lowercase_ ( cls : str , *lowercase__ : Optional[int] , **lowercase__ : Any ): '''simple docstring''' requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
442
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def snake_case ( UpperCAmelCase : Optional[Any], UpperCAmelCase : Any ): A = args.log_outputs A = '''_'''.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric A = load_metric('wer' ) A = load_metric('cer' ) # compute metrics A = wer.compute(references=result['target'], predictions=result['prediction'] ) A = cer.compute(references=result['target'], predictions=result['prediction'] ) # print & log results A = f'WER: {wer_result}\nCER: {cer_result}' print(UpperCAmelCase ) with open(f'{dataset_id}_eval_results.txt', 'w' ) as f: f.write(UpperCAmelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A = f'log_{dataset_id}_predictions.txt' A = f'log_{dataset_id}_targets.txt' with open(UpperCAmelCase, 'w' ) as p, open(UpperCAmelCase, 'w' ) as t: # mapping function to write output def write_to_file(UpperCAmelCase : Any, UpperCAmelCase : Union[str, Any] ): p.write(f'{i}' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f'{i}' + '\n' ) t.write(batch['target'] + '\n' ) result.map(UpperCAmelCase, with_indices=UpperCAmelCase ) def snake_case ( UpperCAmelCase : str ): A = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A = re.sub(UpperCAmelCase, '', text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A = ''' '''.join(text.split(UpperCAmelCase ) ) return text def snake_case ( UpperCAmelCase : Dict ): A = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=UpperCAmelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A = AutoFeatureExtractor.from_pretrained(args.model_id ) A = feature_extractor.sampling_rate # resample audio A = dataset.cast_column('audio', Audio(sampling_rate=UpperCAmelCase ) ) # load eval pipeline if args.device is None: A = 0 if torch.cuda.is_available() else -1 A = pipeline('automatic-speech-recognition', model=args.model_id, device=args.device ) # map function to decode audio def map_to_pred(UpperCAmelCase : Any ): A = asr( batch['audio']['array'], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s ) A = prediction['''text'''] A = normalize_text(batch['sentence'] ) return batch # run inference on all examples A = dataset.map(UpperCAmelCase, remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(UpperCAmelCase, UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) lowerCAmelCase_ = parser.parse_args() main(args)
718
import math def snake_case ( UpperCAmelCase : list, UpperCAmelCase : int ): A = len(UpperCAmelCase ) A = int(math.floor(math.sqrt(UpperCAmelCase ) ) ) A = 0 while arr[min(UpperCAmelCase, UpperCAmelCase ) - 1] < x: A = step step += int(math.floor(math.sqrt(UpperCAmelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: A = prev + 1 if prev == min(UpperCAmelCase, UpperCAmelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase_ = [int(item) for item in user_input.split(',')] lowerCAmelCase_ = int(input('Enter the number to be searched:\n')) lowerCAmelCase_ = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f'''Number {x} is at index {res}''')
110
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , __A : List[str] , __A : List[str]=7 , __A : Optional[Any]=3 , __A : Union[str, Any]=3_0 , __A : int=4_0_0 , __A : Union[str, Any]=True , __A : Union[str, Any]=None , __A : str=True , __A : Dict=[0.5, 0.5, 0.5] , __A : Any=[0.5, 0.5, 0.5] , __A : List[str]=True , __A : Dict=1 / 2_5_5 , __A : List[Any]=True , ): """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowercase = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} _lowercase = parent _lowercase = batch_size _lowercase = num_channels _lowercase = min_resolution _lowercase = max_resolution _lowercase = do_resize _lowercase = size _lowercase = do_normalize _lowercase = image_mean _lowercase = image_std _lowercase = do_rescale _lowercase = rescale_factor _lowercase = do_pad def snake_case ( self : Tuple ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case ( self : Any , __A : Optional[int] , __A : Optional[Any]=False ): """simple docstring""" if not batched: _lowercase = image_inputs[0] if isinstance(__A , Image.Image ): _lowercase , _lowercase = image.size else: _lowercase , _lowercase = image.shape[1], image.shape[2] if w < h: _lowercase = int(self.size["shortest_edge"] * h / w ) _lowercase = self.size["shortest_edge"] elif w > h: _lowercase = self.size["shortest_edge"] _lowercase = int(self.size["shortest_edge"] * w / h ) else: _lowercase = self.size["shortest_edge"] _lowercase = self.size["shortest_edge"] else: _lowercase = [] for image in image_inputs: _lowercase , _lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowercase = max(__A , key=lambda __A : item[0] )[0] _lowercase = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = DetaImageProcessor if is_vision_available() else None def snake_case ( self : int ): """simple docstring""" _lowercase = DetaImageProcessingTester(self ) @property def snake_case ( self : List[Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : Optional[Any] ): """simple docstring""" _lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def snake_case ( self : Optional[int] ): """simple docstring""" _lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) def snake_case ( self : Dict ): """simple docstring""" pass def snake_case ( self : str ): """simple docstring""" # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A , batched=__A ) _lowercase = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self : Any ): """simple docstring""" # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowercase = image_processing(__A , return_tensors="pt" ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self : Any ): """simple docstring""" # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input _lowercase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowercase = image_processing(__A , return_tensors="pt" ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case ( self : List[Any] ): """simple docstring""" # prepare image and target _lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: _lowercase = json.loads(f.read() ) _lowercase = {"image_id": 3_9_7_6_9, "annotations": target} # encode them _lowercase = DetaImageProcessor() _lowercase = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values _lowercase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) _lowercase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area _lowercase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes _lowercase = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) _lowercase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id _lowercase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd _lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels _lowercase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size _lowercase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size _lowercase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def snake_case ( self : Dict ): """simple docstring""" # prepare image, target and masks_path _lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: _lowercase = json.loads(f.read() ) _lowercase = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} _lowercase = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them _lowercase = DetaImageProcessor(format="coco_panoptic" ) _lowercase = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values _lowercase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) _lowercase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area _lowercase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes _lowercase = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) _lowercase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id _lowercase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd _lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels _lowercase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks _lowercase = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size _lowercase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size _lowercase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
497
'''simple docstring''' from __future__ import annotations def A__ ( A_ , A_ ) -> list[str]: if nth_term == "": return [""] _lowercase = int(A_ ) _lowercase = int(A_ ) _lowercase = [] for temp in range(int(A_ ) ): series.append(F"""1 / {pow(temp + 1 , int(A_ ) )}""" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ : Any = int(input('''Enter the last number (nth term) of the P-Series''')) __magic_name__ : Dict = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
497
1
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Dict = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = BartphoTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' super().setUp() UpperCamelCase = ['▁This', '▁is', '▁a', '▁t', 'est'] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) UpperCamelCase = BartphoTokenizer(A_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self , **A_ )-> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = 'This is a là test' UpperCamelCase = 'This is a<unk><unk> test' return input_text, output_text def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = BartphoTokenizer(A_ , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCamelCase = 'This is a là test' UpperCamelCase = '▁This ▁is ▁a ▁l à ▁t est'.split() UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
432
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowerCAmelCase : int = logging.get_logger('transformers.models.speecht5') lowerCAmelCase : Tuple = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } lowerCAmelCase : List[str] = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } lowerCAmelCase : Dict = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } lowerCAmelCase : Optional[Any] = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } lowerCAmelCase : Any = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } lowerCAmelCase : Optional[int] = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } lowerCAmelCase : List[Any] = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } lowerCAmelCase : str = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } lowerCAmelCase : Dict = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowerCAmelCase : int = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCAmelCase : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[Any] = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] lowerCAmelCase : int = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] lowerCAmelCase : Optional[int] = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] lowerCAmelCase : Any = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def A_( A : Optional[Any] , A : Dict , A : str , A : Optional[int] , A : List[str]): for attribute in key.split('.'): UpperCamelCase = getattr(A , A) if weight_type is not None: UpperCamelCase = getattr(A , A).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''') if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value else: UpperCamelCase = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''') def A_( A : List[str] , A : Tuple): for key in ignore_keys: if key.endswith('.*'): if name.startswith(key[:-1]): return True elif ".*." in key: UpperCamelCase , UpperCamelCase = key.split('.*.') if prefix in name and suffix in name: return True elif key in name: return True return False def A_( A : Union[str, Any] , A : List[str] , A : Optional[int]): UpperCamelCase = [] if task == "s2t": UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase = MAPPING_S2T UpperCamelCase = IGNORE_KEYS_S2T elif task == "t2s": UpperCamelCase = None UpperCamelCase = MAPPING_T2S UpperCamelCase = IGNORE_KEYS_T2S elif task == "s2s": UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase = MAPPING_S2S UpperCamelCase = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''') for name, value in fairseq_dict.items(): if should_ignore(A , A): logger.info(f'''{name} was ignored''') continue UpperCamelCase = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCamelCase , UpperCamelCase = key.split('.*.') if prefix in name and suffix in name: UpperCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(A)[0].split('.')[-2] UpperCamelCase = mapped_key.replace('*' , A) if "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(A , A , A , A , A) continue if not is_used: unused_weights.append(A) logger.warning(f'''Unused weights: {unused_weights}''') def A_( A : Dict , A : Optional[int] , A : str , A : Dict , A : Any): UpperCamelCase = full_name.split('conv_layers.')[-1] UpperCamelCase = name.split('.') UpperCamelCase = int(items[0]) UpperCamelCase = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(A) @torch.no_grad() def A_( A : Optional[Any] , A : List[str] , A : Tuple , A : Optional[Any]=None , A : Any=None , A : Optional[int]=None , ): if config_path is not None: UpperCamelCase = SpeechTaConfig.from_pretrained(A) else: UpperCamelCase = SpeechTaConfig() if task == "s2t": UpperCamelCase = config.max_text_positions UpperCamelCase = SpeechTaForSpeechToText(A) elif task == "t2s": UpperCamelCase = 1876 UpperCamelCase = 600 UpperCamelCase = config.max_speech_positions UpperCamelCase = SpeechTaForTextToSpeech(A) elif task == "s2s": UpperCamelCase = 1876 UpperCamelCase = config.max_speech_positions UpperCamelCase = SpeechTaForSpeechToSpeech(A) else: raise ValueError(f'''Unknown task name: {task}''') if vocab_path: UpperCamelCase = SpeechTaTokenizer(A , model_max_length=config.max_text_positions) # Mask token behaves like a normal word, i.e. include the space before it UpperCamelCase = AddedToken('<mask>' , lstrip=A , rstrip=A) UpperCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token}) tokenizer.add_tokens(['<ctc_blank>']) UpperCamelCase = SpeechTaFeatureExtractor() UpperCamelCase = SpeechTaProcessor(tokenizer=A , feature_extractor=A) processor.save_pretrained(A) UpperCamelCase = torch.load(A) recursively_load_weights(fairseq_checkpoint['model'] , A , A) model.save_pretrained(A) if repo_id: print('Pushing to the hub...') processor.push_to_hub(A) model.push_to_hub(A) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowerCAmelCase : int = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
432
1
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __lowerCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCAmelCase : Any = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=8 ): """simple docstring""" lowerCAmelCase__ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowerCAmelCase__ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class a_ ( __UpperCamelCase ): def __init__( self : Any , snake_case__ : MultilingualCLIP , snake_case__ : XLMRobertaTokenizer , snake_case__ : UNetaDConditionModel , snake_case__ : Union[DDIMScheduler, DDPMScheduler] , snake_case__ : VQModel , ): super().__init__() self.register_modules( text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) lowerCAmelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Optional[int] ): if latents is None: lowerCAmelCase__ = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCAmelCase__ = latents.to(snake_case__ ) lowerCAmelCase__ = latents * scheduler.init_noise_sigma return latents def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Dict , snake_case__ : str , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Any=None , ): lowerCAmelCase__ = len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings lowerCAmelCase__ = self.tokenizer( snake_case__ , padding="""max_length""" , truncation=snake_case__ , max_length=77 , return_attention_mask=snake_case__ , add_special_tokens=snake_case__ , return_tensors="""pt""" , ) lowerCAmelCase__ = text_inputs.input_ids lowerCAmelCase__ = self.tokenizer(snake_case__ , padding="""longest""" , return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(snake_case__ , snake_case__ ): lowerCAmelCase__ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowerCAmelCase__ = text_input_ids.to(snake_case__ ) lowerCAmelCase__ = text_inputs.attention_mask.to(snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = self.text_encoder( input_ids=snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase__ = prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) lowerCAmelCase__ = text_encoder_hidden_states.repeat_interleave(snake_case__ , dim=0 ) lowerCAmelCase__ = text_mask.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase__ = 42 if negative_prompt is None: lowerCAmelCase__ = [""""""] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=""" F""" {type(snake_case__ )}.""" ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: lowerCAmelCase__ = negative_prompt lowerCAmelCase__ = self.tokenizer( snake_case__ , padding="""max_length""" , max_length=77 , truncation=snake_case__ , return_attention_mask=snake_case__ , add_special_tokens=snake_case__ , return_tensors="""pt""" , ) lowerCAmelCase__ = uncond_input.input_ids.to(snake_case__ ) lowerCAmelCase__ = uncond_input.attention_mask.to(snake_case__ ) lowerCAmelCase__ , lowerCAmelCase__ = self.text_encoder( input_ids=snake_case__ , attention_mask=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ = negative_prompt_embeds.shape[1] lowerCAmelCase__ = negative_prompt_embeds.repeat(1 , snake_case__ ) lowerCAmelCase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ ) lowerCAmelCase__ = uncond_text_encoder_hidden_states.shape[1] lowerCAmelCase__ = uncond_text_encoder_hidden_states.repeat(1 , snake_case__ , 1 ) lowerCAmelCase__ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , snake_case__ , -1 ) lowerCAmelCase__ = uncond_text_mask.repeat_interleave(snake_case__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowerCAmelCase__ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowerCAmelCase__ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase__ = torch.device(F"""cuda:{gpu_id}""" ) lowerCAmelCase__ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase__ = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase__ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowerCAmelCase__ , lowerCAmelCase__ = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) if self.safety_checker is not None: lowerCAmelCase__ , lowerCAmelCase__ = cpu_offload_with_hook(self.safety_checker , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. lowerCAmelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _SCREAMING_SNAKE_CASE ( self : Dict ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : Union[str, Any] , snake_case__ : Union[str, List[str]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case__ : Optional[Union[str, List[str]]] = None , snake_case__ : int = 512 , snake_case__ : int = 512 , snake_case__ : int = 100 , snake_case__ : float = 4.0 , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = 1 elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = len(snake_case__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}""" ) lowerCAmelCase__ = self._execution_device lowerCAmelCase__ = batch_size * num_images_per_prompt lowerCAmelCase__ = guidance_scale > 1.0 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._encode_prompt( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = torch.cat(snake_case__ , dim=0 ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase__ = image_embeds.repeat_interleave(snake_case__ , dim=0 ) lowerCAmelCase__ = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) lowerCAmelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=snake_case__ ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) lowerCAmelCase__ = self.scheduler.timesteps lowerCAmelCase__ = self.unet.config.in_channels lowerCAmelCase__ , lowerCAmelCase__ = get_new_h_w(snake_case__ , snake_case__ , self.movq_scale_factor ) # create initial latent lowerCAmelCase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , snake_case__ , snake_case__ , snake_case__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase__ = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} lowerCAmelCase__ = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.chunk(2 ) lowerCAmelCase__ , lowerCAmelCase__ = variance_pred.chunk(2 ) lowerCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , ).prev_sample # post-processing lowerCAmelCase__ = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCAmelCase__ = image * 0.5 + 0.5 lowerCAmelCase__ = image.clamp(0 , 1 ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase__ = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
644
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if (ksize % 2) == 0: lowerCAmelCase__ = ksize + 1 lowerCAmelCase__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase__ ): for x in range(lowerCamelCase__ ): # distance from center lowerCAmelCase__ = x - ksize // 2 lowerCAmelCase__ = y - ksize // 2 # degree to radiant lowerCAmelCase__ = theta / 180 * np.pi lowerCAmelCase__ = np.cos(_theta ) lowerCAmelCase__ = np.sin(_theta ) # get kernel x lowerCAmelCase__ = cos_theta * px + sin_theta * py # get kernel y lowerCAmelCase__ = -sin_theta * px + cos_theta * py # fill kernel lowerCAmelCase__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCAmelCase : Tuple = imread("../image_data/lena.jpg") # turn image in gray scale value __lowerCAmelCase : List[str] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCAmelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCAmelCase : Union[str, Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCAmelCase : Optional[int] = out / out.max() * 2_55 __lowerCAmelCase : Tuple = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
644
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __UpperCAmelCase = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } __UpperCAmelCase = { """camembert-base""": 512, } __UpperCAmelCase = """▁""" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Optional[Any] =VOCAB_FILES_NAMES lowerCamelCase : int =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int =["input_ids", "attention_mask"] def __init__( self : str , lowerCAmelCase : Dict , lowerCAmelCase : Dict="<s>" , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Optional[int]="<s>" , lowerCAmelCase : Optional[Any]="<unk>" , lowerCAmelCase : Optional[Any]="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : List[Any]=["<s>NOTUSED", "</s>NOTUSED"] , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Any , ) -> None: """simple docstring""" __lowerCAmelCase : str = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token __lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) __lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) __lowerCAmelCase : Any = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __lowerCAmelCase : List[str] = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} __lowerCAmelCase : int = len(self.fairseq_tokens_to_ids ) __lowerCAmelCase : Optional[int] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase : Dict = [self.cls_token_id] __lowerCAmelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowerCAmelCase : Dict = [self.sep_token_id] __lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(lowercase_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(lowercase_ ) def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = [] __lowerCAmelCase : Union[str, Any] = """""" __lowerCAmelCase : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_ ) + token __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : str = [] else: current_sub_tokens.append(lowercase_ ) __lowerCAmelCase : Tuple = False out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def __getstate__( self : Tuple ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.__dict__.copy() __lowerCAmelCase : int = None return state def __setstate__( self : Optional[Any] , lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase : Tuple = {} __lowerCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : List[str] = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , """wb""" ) as fi: __lowerCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
716
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def snake_case_ (__A : str , __A : str , __A : str , __A : PreTrainedTokenizer , __A : int , __A : Optional[int] = None , ) -> Tuple: __lowerCAmelCase : int = {} if train_file is not None: __lowerCAmelCase : Optional[Any] = [train_file] if eval_file is not None: __lowerCAmelCase : Dict = [eval_file] if test_file is not None: __lowerCAmelCase : Tuple = [test_file] __lowerCAmelCase : Dict = datasets.load_dataset("""csv""" , data_files=__A ) __lowerCAmelCase : Optional[Any] = list(ds[list(files.keys() )[0]].features.keys() ) __lowerCAmelCase : Optional[Any] = features_name.pop(__A ) __lowerCAmelCase : int = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowerCAmelCase : Optional[Any] = {label: i for i, label in enumerate(__A )} __lowerCAmelCase : Union[str, Any] = tokenizer.model_input_names __lowerCAmelCase : List[Any] = {} if len(__A ) == 1: for k in files.keys(): __lowerCAmelCase : Tuple = ds[k].map( lambda __A : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__A , max_length=__A , padding="""max_length""" ) , batched=__A , ) elif len(__A ) == 2: for k in files.keys(): __lowerCAmelCase : Optional[int] = ds[k].map( lambda __A : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__A , max_length=__A , padding="""max_length""" , ) , batched=__A , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowerCAmelCase : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCAmelCase : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowerCAmelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCAmelCase : List[str] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowerCAmelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCAmelCase : str = labelaid[ex[label_name]] yield (d, label) __lowerCAmelCase : Dict = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowerCAmelCase : str = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowerCAmelCase : Dict = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowerCAmelCase : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowerCAmelCase : Optional[Any] = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowerCAmelCase : Any = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : int =field(metadata={"help": "Which column contains the label"} ) lowerCamelCase : str =field(default=a_ , metadata={"help": "The path of the training file"} ) lowerCamelCase : Optional[str] =field(default=a_ , metadata={"help": "The path of the development file"} ) lowerCamelCase : Optional[str] =field(default=a_ , metadata={"help": "The path of the test file"} ) lowerCamelCase : int =field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : str =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : bool =field(default=a_ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def snake_case_ () -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : int = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__A , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowerCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__A ) , labelaid=__A , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowerCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , ) def compute_metrics(__A : EvalPrediction ) -> Dict: __lowerCAmelCase : str = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowerCAmelCase : Tuple = TFTrainer( model=__A , args=__A , train_dataset=__A , eval_dataset=__A , compute_metrics=__A , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCAmelCase : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase : List[str] = trainer.evaluate() __lowerCAmelCase : Any = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(__A , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__A ) return results if __name__ == "__main__": main()
218
0
import numpy # List of input, output pairs lowerCamelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCamelCase__ = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) lowerCamelCase__ = [2, 4, 1, 5] lowerCamelCase__ = len(train_data) lowerCamelCase__ = 0.0_09 def _lowerCamelCase( __snake_case , __snake_case="train" ) -> Union[str, Any]: return calculate_hypothesis_value(a__ , a__ ) - output( a__ , a__ ) def _lowerCamelCase( __snake_case ) -> Union[str, Any]: __snake_case = 0 for i in range(len(a__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCamelCase( __snake_case , __snake_case ) -> Union[str, Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCamelCase( __snake_case , __snake_case ) -> int: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCamelCase( __snake_case , __snake_case=m ) -> Dict: __snake_case = 0 for i in range(a__ ): if index == -1: summation_value += _error(a__ ) else: summation_value += _error(a__ ) * train_data[i][0][index] return summation_value def _lowerCamelCase( __snake_case ) -> Optional[Any]: __snake_case = summation_of_cost_derivative(a__ , a__ ) / m return cost_derivative_value def _lowerCamelCase( ) -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output __snake_case = 0.0_0_0_0_0_2 __snake_case = 0 __snake_case = 0 while True: j += 1 __snake_case = [0, 0, 0, 0] for i in range(0 , len(a__ ) ): __snake_case = get_cost_derivative(i - 1 ) __snake_case = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( a__ , a__ , atol=a__ , rtol=a__ , ): break __snake_case = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCamelCase( ) -> Optional[Any]: for i in range(len(a__ ) ): print(("Actual output value:", output(a__ , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(a__ , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
524
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =8 # DPR tok _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _SCREAMING_SNAKE_CASE =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _SCREAMING_SNAKE_CASE ={'''unk_token''': '''<unk>'''} _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCamelCase ( self : List[str] ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Dict ) -> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __UpperCamelCase ( self : Optional[int] , _a : bool ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dataset''' ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _a ) , ) return retriever def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) _SCREAMING_SNAKE_CASE ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(_a , open(_a , '''wb''' ) ) _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , _a ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" import torch _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , np.ndarray ) _SCREAMING_SNAKE_CASE =retriever( _a , _a , prefix=retriever.config.generator.prefix , n_docs=_a , return_tensors='''pt''' , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dpr_ctx_encoder_tokenizer() _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) retriever.set_ctx_encoder_tokenizer(_a ) _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) self.assertEqual( len(_a ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , _a ) # check for doc token related keys in dictionary.
691
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') __UpperCamelCase : Tuple = {'target_lang': 'fi', 'source_lang': 'en'} __UpperCamelCase : Dict = '>>zh<<' __UpperCamelCase : int = 'Helsinki-NLP/' if is_torch_available(): __UpperCamelCase : List[str] = 'pt' elif is_tf_available(): __UpperCamelCase : Union[str, Any] = 'tf' else: __UpperCamelCase : Union[str, Any] = 'jax' @require_sentencepiece class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = MarianTokenizer UpperCamelCase_ = False UpperCamelCase_ = True def __A ( self : Optional[int] ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Dict = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] SCREAMING_SNAKE_CASE : List[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = Path(self.tmpdirname ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) SCREAMING_SNAKE_CASE : int = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : Any , **UpperCamelCase__ : List[str] ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __A ( self : Dict , UpperCamelCase__ : Optional[int] ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = '''</s>''' SCREAMING_SNAKE_CASE : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(UpperCamelCase__ ) , 9 ) def __A ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) SCREAMING_SNAKE_CASE : List[str] = en_de_tokenizer(['''I am a small frog'''] , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(UpperCamelCase__ , batch.input_ids[0] ) SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = [x.name for x in Path(UpperCamelCase__ ).glob('''*''' )] self.assertIn('''source.spm''' , UpperCamelCase__ ) MarianTokenizer.from_pretrained(UpperCamelCase__ ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[Any] = tok( ['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE : int = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = {'''input_ids''': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) SCREAMING_SNAKE_CASE : List[Any] = '''Tämä on testi''' SCREAMING_SNAKE_CASE : Dict = '''This is a test''' SCREAMING_SNAKE_CASE : List[Any] = [76, 7, 2047, 2] SCREAMING_SNAKE_CASE : int = [69, 12, 11, 940, 2] SCREAMING_SNAKE_CASE : List[Any] = tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer(text_target=UpperCamelCase__ ).input_ids self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
720
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __UpperCamelCase : Dict = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def A ( _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ): SCREAMING_SNAKE_CASE : Union[str, Any] = True while ask_again: SCREAMING_SNAKE_CASE : Optional[Any] = input(_lowercase ) try: if default is not None and len(_lowercase ) == 0: return default return convert_value(_lowercase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowercase ) def A ( _lowercase , _lowercase=[] , _lowercase=None , _lowercase=0 ): SCREAMING_SNAKE_CASE : Dict = BulletMenu(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : str = menu.run(default_choice=_lowercase ) return convert_value(_lowercase ) if convert_value is not None else result def A ( _lowercase ): SCREAMING_SNAKE_CASE : Dict = int(_lowercase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Any = int(_lowercase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = int(_lowercase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def A ( _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = int(_lowercase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Dict = int(_lowercase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def A ( _lowercase ): return {"yes": True, "no": False}[value.lower()] class lowercase__ ( argparse.RawDescriptionHelpFormatter): def __A ( self : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = super()._format_usage(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
34
0
import requests from bsa import BeautifulSoup def snake_case (UpperCAmelCase__ = "AAPL" ) -> str: UpperCamelCase_: List[Any] = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' UpperCamelCase_: List[Any] = BeautifulSoup(requests.get(UpperCAmelCase__ ).text , 'html.parser' ) UpperCamelCase_: List[Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
57
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class lowercase_ ( lowerCAmelCase_ ): def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Tuple = tempfile.mkdtemp() snake_case__ : Dict = 8 # DPR tok snake_case__ : Any = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case__ : Optional[int] = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) snake_case__ : Tuple = os.path.join(__lowerCamelCase , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok snake_case__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] snake_case__ : str = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) snake_case__ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case__ : Any = {'unk_token': '<unk>'} snake_case__ : List[str] = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) snake_case__ : Dict = os.path.join(__lowerCamelCase , BART_VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : int = os.path.join(__lowerCamelCase , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowerCamelCase ) ) def _lowerCAmelCase ( self : Optional[int] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCAmelCase ( self : Union[str, Any] ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCAmelCase ( self : Any ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def _lowerCAmelCase ( self : int ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : str ): snake_case__ : int = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowerCAmelCase ( self : Any ): snake_case__ : List[str] = self.get_dummy_dataset() snake_case__ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: snake_case__ : Optional[Any] = dataset snake_case__ : List[Any] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : bool ): snake_case__ : Union[str, Any] = self.get_dummy_dataset() snake_case__ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: snake_case__ : List[Any] = os.path.join(self.tmpdirname , 'dataset' ) snake_case__ : List[str] = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset snake_case__ : Optional[int] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case__ : Union[str, Any] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __lowerCamelCase ) , ) return retriever def _lowerCAmelCase ( self : Tuple ): snake_case__ : Dict = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case__ : List[str] = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) snake_case__ : Optional[int] = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) snake_case__ : Optional[Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(__lowerCamelCase , open(__lowerCamelCase , 'wb' ) ) snake_case__ : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) snake_case__ : List[str] = RagRetriever( __lowerCamelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowerCAmelCase ( self : List[Any] ): snake_case__ : List[str] = 1 snake_case__ : int = self.get_dummy_canonical_hf_index_retriever() snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : int = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: snake_case__ : Union[str, Any] = self.get_dummy_dataset() retriever.save_pretrained(__lowerCamelCase ) snake_case__ : List[Any] = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Tuple = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : int ): snake_case__ : Any = 1 snake_case__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) snake_case__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : int ): snake_case__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) snake_case__ : int = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : Any = 1 snake_case__ : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) snake_case__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) snake_case__ : int = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : int ): snake_case__ : Tuple = 1 snake_case__ : Tuple = self.get_dummy_legacy_index_retriever() snake_case__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ , snake_case__ , snake_case__ : List[str] = retriever.retrieve(__lowerCamelCase , n_docs=__lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__lowerCamelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , __lowerCamelCase ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ : Any = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__lowerCamelCase ) snake_case__ : Dict = RagRetriever.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) snake_case__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[Any] = retriever.retrieve(__lowerCamelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowerCAmelCase ( self : Any ): import torch snake_case__ : Optional[Any] = 1 snake_case__ : int = self.get_dummy_canonical_hf_index_retriever() snake_case__ : List[Any] = [[5, 7], [10, 11]] snake_case__ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Any = retriever(__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase ) snake_case__ , snake_case__ , snake_case__ : Any = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , np.ndarray ) snake_case__ : Dict = retriever( __lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase , return_tensors='pt' , ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) self.assertIsInstance(__lowerCamelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : List[Any] = self.get_dpr_ctx_encoder_tokenizer() snake_case__ : List[Any] = 1 snake_case__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__lowerCamelCase ) retriever.set_ctx_encoder_tokenizer(__lowerCamelCase ) snake_case__ : Optional[int] = [[5, 7], [10, 11]] snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Tuple = retriever(__lowerCamelCase , __lowerCamelCase , prefix=retriever.config.generator.prefix , n_docs=__lowerCamelCase ) self.assertEqual( len(__lowerCamelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , __lowerCamelCase ) # check for doc token related keys in dictionary.
270
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( a__ , unittest.TestCase ): __UpperCAmelCase = RobertaTokenizer __UpperCAmelCase = RobertaTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = {'cls_token': '<s>'} def __a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__ = dict(zip(a , range(len(a ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a ) ) def __a ( self , **a ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a ) def __a ( self , **a ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **a ) def __a ( self , a ): UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def __a ( self ): UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] UpperCamelCase__ = tokenizer.tokenize(a ) # , add_prefix_space=True) self.assertListEqual(a , a ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def __a ( self ): UpperCamelCase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=a ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=a ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __a ( self ): UpperCamelCase__ = self.tokenizer_class.from_pretrained("roberta-base" ) UpperCamelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=a ) UpperCamelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=a ) UpperCamelCase__ = tokenizer.encode( "sequence builders" , add_special_tokens=a , add_prefix_space=a ) UpperCamelCase__ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=a , add_prefix_space=a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __a ( self ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = "Encode this sequence." UpperCamelCase__ = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments UpperCamelCase__ = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a , a ) UpperCamelCase__ = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a , a ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) UpperCamelCase__ = tokenizer.encode(a , add_special_tokens=a ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a , a ) # Testing spaces after special tokens UpperCamelCase__ = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(a , lstrip=a , rstrip=a )} ) # mask token has a left space UpperCamelCase__ = tokenizer.convert_tokens_to_ids(a ) UpperCamelCase__ = "Encode <mask> sequence" UpperCamelCase__ = "Encode <mask>sequence" UpperCamelCase__ = tokenizer.encode(a ) UpperCamelCase__ = encoded.index(a ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a , a ) UpperCamelCase__ = tokenizer.encode(a ) UpperCamelCase__ = encoded.index(a ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a , a ) def __a ( self ): pass def __a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a , **a ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(a , **a ) UpperCamelCase__ = "A, <mask> AllenNLP sentence." UpperCamelCase__ = tokenizer_r.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) UpperCamelCase__ = tokenizer_p.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( a , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __a ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a , add_prefix_space=a , trim_offsets=a ) UpperCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , a ) self.assertEqual(post_processor_state["add_prefix_space"] , a ) self.assertEqual(post_processor_state["trim_offsets"] , a ) def __a ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'''{text_of_1_token} {text_of_1_token}''' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , ) UpperCamelCase__ = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) UpperCamelCase__ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , )
706
'''simple docstring''' def _UpperCamelCase ( __A ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(__A , __A ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _UpperCamelCase ( __A ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(__A , __A ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
223
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self: Optional[Any] , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any=13 , _UpperCAmelCase: Union[str, Any]=7 , _UpperCAmelCase: Optional[int]=6 , _UpperCAmelCase: Dict=17 , _UpperCAmelCase: List[str]=23 , _UpperCAmelCase: Optional[int]=11 , _UpperCAmelCase: Optional[Any]=True , ): _lowerCAmelCase :List[str] = parent _lowerCAmelCase :Union[str, Any] = batch_size _lowerCAmelCase :List[str] = seq_length _lowerCAmelCase :List[Any] = act_dim _lowerCAmelCase :Optional[int] = state_dim _lowerCAmelCase :Union[str, Any] = hidden_size _lowerCAmelCase :Any = max_length _lowerCAmelCase :Any = is_training def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _lowerCAmelCase :Tuple = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _lowerCAmelCase :Any = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCAmelCase :List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCAmelCase :str = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) _lowerCAmelCase :Any = random_attention_mask((self.batch_size, self.seq_length) ) _lowerCAmelCase :int = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self: Any ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: str , _UpperCAmelCase: Dict , _UpperCAmelCase: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: str , ): _lowerCAmelCase :Any = DecisionTransformerModel(config=__a ) model.to(__a ) model.eval() _lowerCAmelCase :Tuple = model(__a , __a , __a , __a , __a , __a ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Optional[Any] = self.prepare_config_and_inputs() ( _lowerCAmelCase ) :int = config_and_inputs _lowerCAmelCase :int = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ (a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = (DecisionTransformerModel,) if is_torch_available() else () lowerCamelCase : Tuple = () lowerCamelCase : str = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCamelCase : List[str] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCamelCase : Dict = False lowerCamelCase : int = False lowerCamelCase : Optional[int] = False lowerCamelCase : List[Any] = False lowerCamelCase : List[Any] = False lowerCamelCase : Any = False lowerCamelCase : Optional[Any] = False lowerCamelCase : Optional[int] = False lowerCamelCase : Any = False def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :int = DecisionTransformerModelTester(self ) _lowerCAmelCase :int = ConfigTester(self , config_class=__a , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @slow def SCREAMING_SNAKE_CASE__ ( self: List[str] ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :Union[str, Any] = DecisionTransformerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase :Optional[int] = model_class(__a ) _lowerCAmelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :Union[str, Any] = [*signature.parameters.keys()] _lowerCAmelCase :Optional[Any] = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(__a )] , __a ) @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :Optional[int] = 2 # number of steps of autoregressive prediction we will perform _lowerCAmelCase :Union[str, Any] = 10 # defined by the RL environment, may be normalized _lowerCAmelCase :Tuple = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) _lowerCAmelCase :List[Any] = model.to(__a ) _lowerCAmelCase :int = model.config torch.manual_seed(0 ) _lowerCAmelCase :Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=__a , dtype=torch.floataa ) # env.reset() _lowerCAmelCase :List[str] = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=__a ) _lowerCAmelCase :Optional[Any] = torch.tensor(__a , device=__a , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _lowerCAmelCase :Optional[int] = state _lowerCAmelCase :List[Any] = torch.zeros(1 , 0 , config.act_dim , device=__a , dtype=torch.floataa ) _lowerCAmelCase :Tuple = torch.zeros(1 , 0 , device=__a , dtype=torch.floataa ) _lowerCAmelCase :Tuple = torch.tensor(0 , device=__a , dtype=torch.long ).reshape(1 , 1 ) for step in range(__a ): _lowerCAmelCase :str = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__a )] , dim=1 ) _lowerCAmelCase :Tuple = torch.cat([rewards, torch.zeros(1 , 1 , device=__a )] , dim=1 ) _lowerCAmelCase :List[str] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _lowerCAmelCase :List[Any] = model( states=__a , actions=__a , rewards=__a , returns_to_go=__a , timesteps=__a , attention_mask=__a , return_dict=__a , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _lowerCAmelCase :str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=__a , dtype=torch.floataa ), 1.0, False, {}, ) _lowerCAmelCase :Dict = action_pred[0, -1] _lowerCAmelCase :Optional[int] = torch.cat([states, state] , dim=1 ) _lowerCAmelCase :Tuple = returns_to_go[0, -1] - reward _lowerCAmelCase :Tuple = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _lowerCAmelCase :List[str] = torch.cat( [timesteps, torch.ones((1, 1) , device=__a , dtype=torch.long ) * (step + 1)] , dim=1 )
687
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
116
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : int = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
711
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[Any] = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
233
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowercase__ = "deberta-v2" def __init__( self : List[str] ,lowercase_ : Union[str, Any]=1_2_8_1_0_0 ,lowercase_ : Any=1_5_3_6 ,lowercase_ : Any=2_4 ,lowercase_ : Optional[Any]=2_4 ,lowercase_ : Optional[Any]=6_1_4_4 ,lowercase_ : List[Any]="gelu" ,lowercase_ : Tuple=0.1 ,lowercase_ : List[str]=0.1 ,lowercase_ : str=5_1_2 ,lowercase_ : List[Any]=0 ,lowercase_ : int=0.02 ,lowercase_ : str=1E-7 ,lowercase_ : Optional[Any]=False ,lowercase_ : List[str]=-1 ,lowercase_ : Tuple=0 ,lowercase_ : Optional[int]=True ,lowercase_ : str=None ,lowercase_ : Dict=0 ,lowercase_ : List[str]="gelu" ,**lowercase_ : int ,): super().__init__(**_lowercase ) lowerCAmelCase__ : Dict = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : Optional[Any] = num_attention_heads lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : int = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : int = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : str = relative_attention lowerCAmelCase__ : Dict = max_relative_positions lowerCAmelCase__ : List[Any] = pad_token_id lowerCAmelCase__ : List[Any] = position_biased_input # Backwards compatibility if type(_lowercase ) == str: lowerCAmelCase__ : Any = [x.strip() for x in pos_att_type.lower().split('''|''' )] lowerCAmelCase__ : List[str] = pos_att_type lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Dict = kwargs.get('''pooler_hidden_size''' ,_lowercase ) lowerCAmelCase__ : Union[str, Any] = pooler_dropout lowerCAmelCase__ : List[str] = pooler_hidden_act class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __lowerCAmelCase ( self : Union[str, Any] ): if self.task == "multiple-choice": lowerCAmelCase__ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase__ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __lowerCAmelCase ( self : Optional[Any] ): return 1_2 def __lowerCAmelCase ( self : int ,lowercase_ : List[str] ,lowercase_ : List[str] = -1 ,lowercase_ : str = -1 ,lowercase_ : Tuple = -1 ,lowercase_ : str = False ,lowercase_ : List[Any] = None ,lowercase_ : Dict = 3 ,lowercase_ : Tuple = 4_0 ,lowercase_ : Dict = 4_0 ,lowercase_ : Dict = None ,): lowerCAmelCase__ : Tuple = super().generate_dummy_inputs(preprocessor=_lowercase ,framework=_lowercase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
450
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase : List[Any] = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Tuple = StableUnCLIPImgaImgPipeline UpperCAmelCase_ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCAmelCase_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase_ : Optional[int] = frozenset([] ) def snake_case ( self ) -> Any: A : Dict = 32 A : Optional[int] = embedder_hidden_size # image encoding components A : str = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) A : List[Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__UpperCAmelCase , projection_dim=__UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) A : int = StableUnCLIPImageNormalizer(embedding_dim=__UpperCAmelCase ) A : str = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) A : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) A : Optional[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) A : List[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__UpperCAmelCase , layers_per_block=1 , upcast_attention=__UpperCAmelCase , use_linear_projection=__UpperCAmelCase , ) torch.manual_seed(0 ) A : Optional[Any] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) A : Union[str, Any] = AutoencoderKL() A : Tuple = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=True ) -> Tuple: if str(__UpperCAmelCase ).startswith('''mps''' ): A : List[Any] = torch.manual_seed(__UpperCAmelCase ) else: A : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) if pil_image: A : int = input_image * 0.5 + 0.5 A : List[str] = input_image.clamp(0 , 1 ) A : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A : Tuple = DiffusionPipeline.numpy_to_pil(__UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def snake_case ( self ) -> Dict: A : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator A : Dict = self.get_dummy_components() A : Dict = StableUnCLIPImgaImgPipeline(**__UpperCAmelCase ) A : Union[str, Any] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A : int = self.get_dummy_inputs(__UpperCAmelCase ) inputs.update({'''image_embeds''': None} ) A : Union[str, Any] = sd_pipe(**__UpperCAmelCase ).images A : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : Dict = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self ) -> int: A : List[Any] = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__UpperCAmelCase ) def snake_case ( self ) -> List[str]: A : Any = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__UpperCAmelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__UpperCAmelCase ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ) -> Optional[Any]: A : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) A : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) A : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) A : Tuple = pipe(__UpperCAmelCase , '''anime turle''' , generator=__UpperCAmelCase , output_type='''np''' ) A : str = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ) -> Any: A : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) A : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) A : int = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) A : List[Any] = pipe(__UpperCAmelCase , '''anime turle''' , generator=__UpperCAmelCase , output_type='''np''' ) A : int = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ) -> Optional[int]: A : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) A : Dict = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A : List[Any] = pipe( __UpperCAmelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) A : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
423
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : List[str] = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = '''vit_mae''' def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=2_24 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , __UpperCAmelCase=5_12 , __UpperCAmelCase=8 , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.7_5 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) A : List[Any] = hidden_size A : str = num_hidden_layers A : Optional[Any] = num_attention_heads A : List[str] = intermediate_size A : Any = hidden_act A : str = hidden_dropout_prob A : Optional[int] = attention_probs_dropout_prob A : Optional[Any] = initializer_range A : Optional[int] = layer_norm_eps A : List[Any] = image_size A : Tuple = patch_size A : Optional[int] = num_channels A : int = qkv_bias A : Optional[Any] = decoder_num_attention_heads A : Optional[Any] = decoder_hidden_size A : Union[str, Any] = decoder_num_hidden_layers A : List[str] = decoder_intermediate_size A : List[Any] = mask_ratio A : Union[str, Any] = norm_pix_loss
423
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def a ( snake_case__: Tuple ): '''simple docstring''' lowercase_ = SwinConfig(image_size=192 ) if "base" in model_name: lowercase_ = 6 lowercase_ = 128 lowercase_ = (2, 2, 18, 2) lowercase_ = (4, 8, 16, 32) elif "large" in model_name: lowercase_ = 12 lowercase_ = 192 lowercase_ = (2, 2, 18, 2) lowercase_ = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowercase_ = window_size lowercase_ = embed_dim lowercase_ = depths lowercase_ = num_heads return config def a ( snake_case__: str ): '''simple docstring''' if "encoder.mask_token" in name: lowercase_ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowercase_ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowercase_ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowercase_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase_ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase_ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowercase_ = '''layernorm.weight''' if name == "encoder.norm.bias": lowercase_ = '''layernorm.bias''' if "decoder" in name: pass else: lowercase_ = '''swin.''' + name return name def a ( snake_case__: str , snake_case__: Union[str, Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase_ = orig_state_dict.pop(snake_case__ ) if "attn_mask" in key: pass elif "qkv" in key: lowercase_ = key.split('''.''' ) lowercase_ = int(key_split[2] ) lowercase_ = int(key_split[4] ) lowercase_ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[ dim : dim * 2, : ] lowercase_ = val[-dim:, :] else: lowercase_ = val[ :dim ] lowercase_ = val[ dim : dim * 2 ] lowercase_ = val[ -dim: ] else: lowercase_ = val return orig_state_dict def a ( snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: List[str] , snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = torch.load(snake_case__ , map_location='''cpu''' )['''model'''] lowercase_ = get_swin_config(snake_case__ ) lowercase_ = SwinForMaskedImageModeling(snake_case__ ) model.eval() lowercase_ = convert_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ ) lowercase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase_ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowercase_ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) lowercase_ = image_processor(images=snake_case__ , return_tensors='''pt''' ) with torch.no_grad(): lowercase_ = model(**snake_case__ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
97
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __snake_case : Union[str, Any] = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __snake_case : Any = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def _lowercase ( __snake_case ) -> List[Any]: __lowerCAmelCase : int = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) ,dtype=__snake_case )[0] @deprecated(__snake_case ,"Please use tf.data to implement this functionality." ) def _lowercase ( __snake_case ) -> Union[str, Any]: print("Extracting" ,f.name ) with gzip.GzipFile(fileobj=__snake_case ) as bytestream: __lowerCAmelCase : Union[str, Any] = _readaa(__snake_case ) if magic != 2_051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) __lowerCAmelCase : List[str] = _readaa(__snake_case ) __lowerCAmelCase : Union[str, Any] = _readaa(__snake_case ) __lowerCAmelCase : int = _readaa(__snake_case ) __lowerCAmelCase : int = bytestream.read(rows * cols * num_images ) __lowerCAmelCase : Optional[Any] = numpy.frombuffer(__snake_case ,dtype=numpy.uinta ) __lowerCAmelCase : str = data.reshape(__snake_case ,__snake_case ,__snake_case ,1 ) return data @deprecated(__snake_case ,"Please use tf.one_hot on tensors." ) def _lowercase ( __snake_case ,__snake_case ) -> Any: __lowerCAmelCase : Union[str, Any] = labels_dense.shape[0] __lowerCAmelCase : Optional[int] = numpy.arange(__snake_case ) * num_classes __lowerCAmelCase : int = numpy.zeros((num_labels, num_classes) ) __lowerCAmelCase : str = 1 return labels_one_hot @deprecated(__snake_case ,"Please use tf.data to implement this functionality." ) def _lowercase ( __snake_case ,__snake_case=False ,__snake_case=10 ) -> str: print("Extracting" ,f.name ) with gzip.GzipFile(fileobj=__snake_case ) as bytestream: __lowerCAmelCase : List[str] = _readaa(__snake_case ) if magic != 2_049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) __lowerCAmelCase : Union[str, Any] = _readaa(__snake_case ) __lowerCAmelCase : Union[str, Any] = bytestream.read(__snake_case ) __lowerCAmelCase : Dict = numpy.frombuffer(__snake_case ,dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__snake_case ,__snake_case ) return labels class A__ : '''simple docstring''' @deprecated( _SCREAMING_SNAKE_CASE , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: int=False , _SCREAMING_SNAKE_CASE: str=dtypes.floataa , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = random_seed.get_seed(_SCREAMING_SNAKE_CASE) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda) __lowerCAmelCase : Optional[Any] = dtypes.as_dtype(_SCREAMING_SNAKE_CASE).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype) if fake_data: __lowerCAmelCase : Tuple = 1_0000 __lowerCAmelCase : Optional[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"""images.shape: {images.shape} labels.shape: {labels.shape}""" __lowerCAmelCase : Union[str, Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowerCAmelCase : List[str] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2]) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowerCAmelCase : Dict = images.astype(numpy.floataa) __lowerCAmelCase : int = numpy.multiply(_SCREAMING_SNAKE_CASE , 1.0 / 255.0) __lowerCAmelCase : Optional[Any] = images __lowerCAmelCase : int = labels __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : Optional[int] = 0 @property def _SCREAMING_SNAKE_CASE ( self: Dict) -> Tuple: """simple docstring""" return self._images @property def _SCREAMING_SNAKE_CASE ( self: Dict) -> int: """simple docstring""" return self._labels @property def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" return self._num_examples @property def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]: """simple docstring""" return self._epochs_completed def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int=False , _SCREAMING_SNAKE_CASE: List[str]=True) -> int: """simple docstring""" if fake_data: __lowerCAmelCase : Dict = [1] * 784 __lowerCAmelCase : str = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_SCREAMING_SNAKE_CASE)], [fake_label for _ in range(_SCREAMING_SNAKE_CASE)], ) __lowerCAmelCase : Tuple = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowerCAmelCase : Any = numpy.arange(self._num_examples) numpy.random.shuffle(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = self.images[perma] __lowerCAmelCase : Dict = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowerCAmelCase : Tuple = self._num_examples - start __lowerCAmelCase : List[str] = self._images[start : self._num_examples] __lowerCAmelCase : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowerCAmelCase : Tuple = numpy.arange(self._num_examples) numpy.random.shuffle(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = self.images[perm] __lowerCAmelCase : Dict = self.labels[perm] # Start next epoch __lowerCAmelCase : str = 0 __lowerCAmelCase : Dict = batch_size - rest_num_examples __lowerCAmelCase : str = self._index_in_epoch __lowerCAmelCase : Optional[Any] = self._images[start:end] __lowerCAmelCase : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0), ) else: self._index_in_epoch += batch_size __lowerCAmelCase : int = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__snake_case ,"Please write your own downloading logic." ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: if not gfile.Exists(__snake_case ): gfile.MakeDirs(__snake_case ) __lowerCAmelCase : Tuple = os.path.join(__snake_case ,__snake_case ) if not gfile.Exists(__snake_case ): urllib.request.urlretrieve(__snake_case ,__snake_case ) # noqa: S310 with gfile.GFile(__snake_case ) as f: __lowerCAmelCase : Union[str, Any] = f.size() print("Successfully downloaded" ,__snake_case ,__snake_case ,"bytes." ) return filepath @deprecated( __snake_case ,"Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def _lowercase ( __snake_case ,__snake_case=False ,__snake_case=False ,__snake_case=dtypes.floataa ,__snake_case=True ,__snake_case=5_000 ,__snake_case=None ,__snake_case=DEFAULT_SOURCE_URL ,) -> Tuple: if fake_data: def fake(): return _DataSet( [] ,[] ,fake_data=__snake_case ,one_hot=__snake_case ,dtype=__snake_case ,seed=__snake_case ) __lowerCAmelCase : Union[str, Any] = fake() __lowerCAmelCase : Optional[Any] = fake() __lowerCAmelCase : List[Any] = fake() return _Datasets(train=__snake_case ,validation=__snake_case ,test=__snake_case ) if not source_url: # empty string check __lowerCAmelCase : Optional[Any] = DEFAULT_SOURCE_URL __lowerCAmelCase : Dict = "train-images-idx3-ubyte.gz" __lowerCAmelCase : int = "train-labels-idx1-ubyte.gz" __lowerCAmelCase : List[str] = "t10k-images-idx3-ubyte.gz" __lowerCAmelCase : Any = "t10k-labels-idx1-ubyte.gz" __lowerCAmelCase : Any = _maybe_download( __snake_case ,__snake_case ,source_url + train_images_file ) with gfile.Open(__snake_case ,"rb" ) as f: __lowerCAmelCase : Union[str, Any] = _extract_images(__snake_case ) __lowerCAmelCase : Optional[int] = _maybe_download( __snake_case ,__snake_case ,source_url + train_labels_file ) with gfile.Open(__snake_case ,"rb" ) as f: __lowerCAmelCase : Optional[int] = _extract_labels(__snake_case ,one_hot=__snake_case ) __lowerCAmelCase : Optional[int] = _maybe_download( __snake_case ,__snake_case ,source_url + test_images_file ) with gfile.Open(__snake_case ,"rb" ) as f: __lowerCAmelCase : List[Any] = _extract_images(__snake_case ) __lowerCAmelCase : str = _maybe_download( __snake_case ,__snake_case ,source_url + test_labels_file ) with gfile.Open(__snake_case ,"rb" ) as f: __lowerCAmelCase : List[Any] = _extract_labels(__snake_case ,one_hot=__snake_case ) if not 0 <= validation_size <= len(__snake_case ): __lowerCAmelCase : Tuple = ( "Validation size should be between 0 and " F"""{len(__snake_case )}. Received: {validation_size}.""" ) raise ValueError(__snake_case ) __lowerCAmelCase : Any = train_images[:validation_size] __lowerCAmelCase : Any = train_labels[:validation_size] __lowerCAmelCase : List[str] = train_images[validation_size:] __lowerCAmelCase : Optional[Any] = train_labels[validation_size:] __lowerCAmelCase : Dict = {"dtype": dtype, "reshape": reshape, "seed": seed} __lowerCAmelCase : str = _DataSet(__snake_case ,__snake_case ,**__snake_case ) __lowerCAmelCase : Dict = _DataSet(__snake_case ,__snake_case ,**__snake_case ) __lowerCAmelCase : Union[str, Any] = _DataSet(__snake_case ,__snake_case ,**__snake_case ) return _Datasets(train=__snake_case ,validation=__snake_case ,test=__snake_case )
293
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''LayoutLMv2FeatureExtractor'''] lowerCAmelCase__ = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 1_0, "max_num_jobs": 1}, [range(1_0 )]), ({"num_shards": 1_0, "max_num_jobs": 1_0}, [range(lowerCAmelCase_ , i + 1 ) for i in range(1_0 )]), ({"num_shards": 1, "max_num_jobs": 1_0}, [range(1 )]), ({"num_shards": 1_0, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({"num_shards": 3, "max_num_jobs": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: List[Any] , lowerCAmelCase_: int ): snake_case_ : List[str] = _distribute_shards(**lowerCAmelCase_ ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 1_0, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: str , lowerCAmelCase_: Any , lowerCAmelCase_: Optional[int] ): snake_case_ : Tuple = _split_gen_kwargs(lowerCAmelCase_ , lowerCAmelCase_ ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: List[Any] , lowerCAmelCase_: Union[str, Any] ): if expected is RuntimeError: with pytest.raises(lowerCAmelCase_ ): _number_of_shards_in_gen_kwargs(lowerCAmelCase_ ) else: snake_case_ : Any = _number_of_shards_in_gen_kwargs(lowerCAmelCase_ ) assert out == expected
666
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: str , lowerCAmelCase_: str ): def get_matched_characters(lowerCAmelCase_: str , lowerCAmelCase_: str ) -> str: snake_case_ : Tuple = [] snake_case_ : Tuple = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): snake_case_ : str = int(max(0 , i - limit ) ) snake_case_ : Optional[int] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCAmelCase_ ) snake_case_ : List[Any] = f"{_stra[0:_stra.index(lowerCAmelCase_ )]} {_stra[_stra.index(lowerCAmelCase_ ) + 1:]}" return "".join(lowerCAmelCase_ ) # matching characters snake_case_ : List[Any] = get_matched_characters(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : int = get_matched_characters(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Optional[int] = len(lowerCAmelCase_ ) # transposition snake_case_ : List[str] = ( len([(ca, ca) for ca, ca in zip(lowerCAmelCase_ , lowerCAmelCase_ ) if ca != ca] ) // 2 ) if not match_count: snake_case_ : str = 0.0 else: snake_case_ : Optional[Any] = ( 1 / 3 * ( match_count / len(lowerCAmelCase_ ) + match_count / len(lowerCAmelCase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters snake_case_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
666
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCamelCase = logging.getLogger(__name__) def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" __lowerCAmelCase = np.argmax(UpperCAmelCase__ , axis=1 ) return np.sum(outputs == labels ) def __lowercase ( UpperCAmelCase__ ): """simple docstring""" with open(UpperCAmelCase__ , encoding='utf_8' ) as f: __lowerCAmelCase = csv.reader(UpperCAmelCase__ ) __lowerCAmelCase = [] next(UpperCAmelCase__ ) # skip the first line for line in tqdm(UpperCAmelCase__ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" __lowerCAmelCase = [] for dataset in encoded_datasets: __lowerCAmelCase = len(UpperCAmelCase__ ) __lowerCAmelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __lowerCAmelCase = np.zeros((n_batch, 2) , dtype=np.intaa ) __lowerCAmelCase = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) __lowerCAmelCase = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(UpperCAmelCase__ ): __lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowerCAmelCase = with_conta __lowerCAmelCase = with_conta __lowerCAmelCase = len(UpperCAmelCase__ ) - 1 __lowerCAmelCase = len(UpperCAmelCase__ ) - 1 __lowerCAmelCase = with_conta __lowerCAmelCase = with_conta __lowerCAmelCase = mc_label __lowerCAmelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(UpperCAmelCase__ ) for t in all_inputs ) ) return tensor_datasets def __lowercase ( ): """simple docstring""" __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=UpperCAmelCase__ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=UpperCAmelCase__ , default='' ) parser.add_argument('--eval_dataset' , type=UpperCAmelCase__ , default='' ) parser.add_argument('--seed' , type=UpperCAmelCase__ , default=42 ) parser.add_argument('--num_train_epochs' , type=UpperCAmelCase__ , default=3 ) parser.add_argument('--train_batch_size' , type=UpperCAmelCase__ , default=8 ) parser.add_argument('--eval_batch_size' , type=UpperCAmelCase__ , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=UpperCAmelCase__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=UpperCAmelCase__ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=UpperCAmelCase__ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=UpperCAmelCase__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=UpperCAmelCase__ , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=UpperCAmelCase__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=UpperCAmelCase__ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=UpperCAmelCase__ , default=0.01 ) parser.add_argument('--lm_coef' , type=UpperCAmelCase__ , default=0.9 ) parser.add_argument('--n_valid' , type=UpperCAmelCase__ , default=374 ) parser.add_argument('--server_ip' , type=UpperCAmelCase__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=UpperCAmelCase__ , default='' , help='Can be used for distant debugging.' ) __lowerCAmelCase = parser.parse_args() print(UpperCAmelCase__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCAmelCase__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __lowerCAmelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __lowerCAmelCase = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(UpperCAmelCase__ , UpperCAmelCase__ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __lowerCAmelCase = ['_start_', '_delimiter_', '_classify_'] __lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(UpperCAmelCase__ ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) __lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(UpperCAmelCase__ ) ) model.to(UpperCAmelCase__ ) # Load and encode the datasets def tokenize_and_encode(UpperCAmelCase__ ): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(UpperCAmelCase__ ) ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return obj return [tokenize_and_encode(UpperCAmelCase__ ) for o in obj] logger.info('Encoding dataset...' ) __lowerCAmelCase = load_rocstories_dataset(args.train_dataset ) __lowerCAmelCase = load_rocstories_dataset(args.eval_dataset ) __lowerCAmelCase = (train_dataset, eval_dataset) __lowerCAmelCase = tokenize_and_encode(UpperCAmelCase__ ) # Compute the max input length for the Transformer __lowerCAmelCase = model.config.n_positions // 2 - 2 __lowerCAmelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __lowerCAmelCase = min(UpperCAmelCase__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __lowerCAmelCase = pre_process_datasets(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ ) __lowerCAmelCase, __lowerCAmelCase = tensor_datasets[0], tensor_datasets[1] __lowerCAmelCase = TensorDataset(*UpperCAmelCase__ ) __lowerCAmelCase = RandomSampler(UpperCAmelCase__ ) __lowerCAmelCase = DataLoader(UpperCAmelCase__ , sampler=UpperCAmelCase__ , batch_size=args.train_batch_size ) __lowerCAmelCase = TensorDataset(*UpperCAmelCase__ ) __lowerCAmelCase = SequentialSampler(UpperCAmelCase__ ) __lowerCAmelCase = DataLoader(UpperCAmelCase__ , sampler=UpperCAmelCase__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __lowerCAmelCase = args.max_steps __lowerCAmelCase = args.max_steps // (len(UpperCAmelCase__ ) // args.gradient_accumulation_steps) + 1 else: __lowerCAmelCase = len(UpperCAmelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs __lowerCAmelCase = list(model.named_parameters() ) __lowerCAmelCase = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __lowerCAmelCase = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __lowerCAmelCase = AdamW(UpperCAmelCase__ , lr=args.learning_rate , eps=args.adam_epsilon ) __lowerCAmelCase = get_linear_schedule_with_warmup( UpperCAmelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=UpperCAmelCase__ ) if args.do_train: __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = tqdm(UpperCAmelCase__ , desc='Training' ) for step, batch in enumerate(UpperCAmelCase__ ): __lowerCAmelCase = tuple(t.to(UpperCAmelCase__ ) for t in batch ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = batch __lowerCAmelCase = model(UpperCAmelCase__ , mc_token_ids=UpperCAmelCase__ , lm_labels=UpperCAmelCase__ , mc_labels=UpperCAmelCase__ ) __lowerCAmelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __lowerCAmelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __lowerCAmelCase = 'Training loss: {:.2e} lr: {:.2e}'.format(UpperCAmelCase__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __lowerCAmelCase = model.module if hasattr(UpperCAmelCase__ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __lowerCAmelCase = os.path.join(args.output_dir , UpperCAmelCase__ ) __lowerCAmelCase = os.path.join(args.output_dir , UpperCAmelCase__ ) torch.save(model_to_save.state_dict() , UpperCAmelCase__ ) model_to_save.config.to_json_file(UpperCAmelCase__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(UpperCAmelCase__ ) if args.do_eval: model.eval() __lowerCAmelCase, __lowerCAmelCase = 0, 0 __lowerCAmelCase, __lowerCAmelCase = 0, 0 for batch in tqdm(UpperCAmelCase__ , desc='Evaluating' ): __lowerCAmelCase = tuple(t.to(UpperCAmelCase__ ) for t in batch ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = batch with torch.no_grad(): __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase = model( UpperCAmelCase__ , mc_token_ids=UpperCAmelCase__ , lm_labels=UpperCAmelCase__ , mc_labels=UpperCAmelCase__ ) __lowerCAmelCase = mc_logits.detach().cpu().numpy() __lowerCAmelCase = mc_labels.to('cpu' ).numpy() __lowerCAmelCase = accuracy(UpperCAmelCase__ , UpperCAmelCase__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __lowerCAmelCase = eval_loss / nb_eval_steps __lowerCAmelCase = eval_accuracy / nb_eval_examples __lowerCAmelCase = tr_loss / nb_tr_steps if args.do_train else None __lowerCAmelCase = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __lowerCAmelCase = os.path.join(args.output_dir , 'eval_results.txt' ) with open(UpperCAmelCase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , UpperCAmelCase__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
102
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class snake_case_ ( _a ): """simple docstring""" __UpperCAmelCase =42 class snake_case_ ( _a , _a ): """simple docstring""" __UpperCAmelCase =True @register_to_config def __init__( self , _A = 3 , _A = 3 , _A = ("DownEncoderBlock2D",) , _A = ("UpDecoderBlock2D",) , _A = (6_4,) , _A = 1 , _A = "silu" , _A = 4 , _A = 3_2 , _A = 3_2 , _A = 0.1_8215 , ): super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=_A , out_channels=_A , down_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , double_z=_A , ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=_A , out_channels=_A , up_block_types=_A , block_out_channels=_A , layers_per_block=_A , norm_num_groups=_A , act_fn=_A , ) __lowerCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCAmelCase = nn.Convad(_A , _A , 1 ) __lowerCAmelCase = False __lowerCAmelCase = False # only relevant if vae tiling is enabled __lowerCAmelCase = self.config.sample_size __lowerCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCAmelCase = 0.25 def A__ ( self , _A , _A=False ): if isinstance(_A , (Encoder, Decoder) ): __lowerCAmelCase = value def A__ ( self , _A = True ): __lowerCAmelCase = use_tiling def A__ ( self ): self.enable_tiling(_A ) def A__ ( self ): __lowerCAmelCase = True def A__ ( self ): __lowerCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): __lowerCAmelCase = {} def fn_recursive_add_processors(_A , _A , _A ): if hasattr(_A , 'set_processor' ): __lowerCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , _A , _A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A , _A , _A ) return processors def A__ ( self , _A ): __lowerCAmelCase = len(self.attn_processors.keys() ) if isinstance(_A , _A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A , _A , _A ): if hasattr(_A , 'set_processor' ): if not isinstance(_A , _A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , _A , _A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A , _A , _A ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def A__ ( self , _A , _A = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_A , return_dict=_A ) if self.use_slicing and x.shape[0] > 1: __lowerCAmelCase = [self.encoder(_A ) for x_slice in x.split(1 )] __lowerCAmelCase = torch.cat(_A ) else: __lowerCAmelCase = self.encoder(_A ) __lowerCAmelCase = self.quant_conv(_A ) __lowerCAmelCase = DiagonalGaussianDistribution(_A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_A ) def A__ ( self , _A , _A = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_A , return_dict=_A ) __lowerCAmelCase = self.post_quant_conv(_A ) __lowerCAmelCase = self.decoder(_A ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) @apply_forward_hook def A__ ( self , _A , _A = True ): if self.use_slicing and z.shape[0] > 1: __lowerCAmelCase = [self._decode(_A ).sample for z_slice in z.split(1 )] __lowerCAmelCase = torch.cat(_A ) else: __lowerCAmelCase = self._decode(_A ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_A ) def A__ ( self , _A , _A , _A ): __lowerCAmelCase = min(a.shape[2] , b.shape[2] , _A ) for y in range(_A ): __lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def A__ ( self , _A , _A , _A ): __lowerCAmelCase = min(a.shape[3] , b.shape[3] , _A ) for x in range(_A ): __lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def A__ ( self , _A , _A = True ): __lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCAmelCase = [] for i in range(0 , x.shape[2] , _A ): __lowerCAmelCase = [] for j in range(0 , x.shape[3] , _A ): __lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCAmelCase = self.encoder(_A ) __lowerCAmelCase = self.quant_conv(_A ) row.append(_A ) rows.append(_A ) __lowerCAmelCase = [] for i, row in enumerate(_A ): __lowerCAmelCase = [] for j, tile in enumerate(_A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j] , _A , _A ) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1] , _A , _A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_A , dim=3 ) ) __lowerCAmelCase = torch.cat(_A , dim=2 ) __lowerCAmelCase = DiagonalGaussianDistribution(_A ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_A ) def A__ ( self , _A , _A = True ): __lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCAmelCase = [] for i in range(0 , z.shape[2] , _A ): __lowerCAmelCase = [] for j in range(0 , z.shape[3] , _A ): __lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCAmelCase = self.post_quant_conv(_A ) __lowerCAmelCase = self.decoder(_A ) row.append(_A ) rows.append(_A ) __lowerCAmelCase = [] for i, row in enumerate(_A ): __lowerCAmelCase = [] for j, tile in enumerate(_A ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j] , _A , _A ) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1] , _A , _A ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_A , dim=3 ) ) __lowerCAmelCase = torch.cat(_A , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) def A__ ( self , _A , _A = False , _A = True , _A = None , ): __lowerCAmelCase = sample __lowerCAmelCase = self.encode(_A ).latent_dist if sample_posterior: __lowerCAmelCase = posterior.sample(generator=_A ) else: __lowerCAmelCase = posterior.mode() __lowerCAmelCase = self.decode(_A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_A )
102
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase_ : def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: a__ =parent a__ =13 a__ =7 a__ =True a__ =True a__ =True a__ =True a__ =99 a__ =384 a__ =2 a__ =4 a__ =37 a__ ="gelu" a__ =0.1 a__ =0.1 a__ =512 a__ =16 a__ =2 a__ =0.02 a__ =3 a__ =4 a__ =128 a__ =2 a__ =9 a__ =1 a__ =None def __UpperCamelCase ( self) -> str: a__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__ =None if self.use_input_mask: a__ =random_attention_mask([self.batch_size, self.seq_length]) a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a__ =ids_tensor([self.batch_size] , self.num_choices) a__ =ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any: a__ =TFConvBertModel(config=_lowerCAmelCase) a__ ={"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a__ =[input_ids, input_mask] a__ =model(_lowerCAmelCase) a__ =model(_lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[str]: a__ =TFConvBertForMaskedLM(config=_lowerCAmelCase) a__ ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ =model(_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> List[Any]: a__ =self.num_labels a__ =TFConvBertForSequenceClassification(config=_lowerCAmelCase) a__ ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ =model(_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any: a__ =self.num_choices a__ =TFConvBertForMultipleChoice(config=_lowerCAmelCase) a__ =tf.tile(tf.expand_dims(_lowerCAmelCase , 1) , (1, self.num_choices, 1)) a__ =tf.tile(tf.expand_dims(_lowerCAmelCase , 1) , (1, self.num_choices, 1)) a__ =tf.tile(tf.expand_dims(_lowerCAmelCase , 1) , (1, self.num_choices, 1)) a__ ={ "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } a__ =model(_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Dict: a__ =self.num_labels a__ =TFConvBertForTokenClassification(config=_lowerCAmelCase) a__ ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ =model(_lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> int: a__ =TFConvBertForQuestionAnswering(config=_lowerCAmelCase) a__ ={ "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ =model(_lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __UpperCamelCase ( self) -> int: a__ =self.prepare_config_and_inputs() ( a__ ) =config_and_inputs a__ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowercase_ (_A , _A , unittest.TestCase ): snake_case =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) snake_case =( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: a__ =TFConvBertModelTester(self) a__ =ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37) def __UpperCamelCase ( self) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCamelCase ( self) -> Dict: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase) def __UpperCamelCase ( self) -> str: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase) def __UpperCamelCase ( self) -> int: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase) def __UpperCamelCase ( self) -> Optional[Any]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase) def __UpperCamelCase ( self) -> Any: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase) def __UpperCamelCase ( self) -> Dict: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase) @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =True if hasattr(_lowerCAmelCase , 'use_cache'): a__ =True a__ =getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) a__ =getattr(self.model_tester , 'key_length' , _lowerCAmelCase) for model_class in self.all_model_classes: a__ =self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase) a__ =model_class(_lowerCAmelCase) a__ =len(model(_lowerCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase , saved_model=_lowerCAmelCase) a__ =os.path.join(_lowerCAmelCase , 'saved_model' , '1') a__ =tf.keras.models.load_model(_lowerCAmelCase) a__ =model(_lowerCAmelCase) if self.is_encoder_decoder: a__ =outputs["encoder_hidden_states"] a__ =outputs["encoder_attentions"] else: a__ =outputs["hidden_states"] a__ =outputs["attentions"] self.assertEqual(len(_lowerCAmelCase) , _lowerCAmelCase) a__ =getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_lowerCAmelCase) , _lowerCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowerCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __UpperCamelCase ( self) -> Optional[int]: a__ =TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_lowerCAmelCase) def __UpperCamelCase ( self) -> Any: a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) a__ =getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) a__ =getattr(self.model_tester , 'key_length' , _lowerCAmelCase) a__ =getattr(self.model_tester , 'key_length' , _lowerCAmelCase) def check_decoder_attentions_output(lowercase_): a__ =len(_lowerCAmelCase) self.assertEqual(out_len % 2 , 0) a__ =outputs.decoder_attentions self.assertEqual(len(_lowerCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowercase_): a__ =[ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowerCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: a__ =True a__ =False a__ =model_class(_lowerCAmelCase) a__ =model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase)) a__ =len(_lowerCAmelCase) self.assertEqual(config.output_hidden_states , _lowerCAmelCase) check_encoder_attentions_output(_lowerCAmelCase) if self.is_encoder_decoder: a__ =model_class(_lowerCAmelCase) a__ =model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase)) self.assertEqual(config.output_hidden_states , _lowerCAmelCase) check_decoder_attentions_output(_lowerCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a__ =True a__ =model_class(_lowerCAmelCase) a__ =model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase)) self.assertEqual(config.output_hidden_states , _lowerCAmelCase) check_encoder_attentions_output(_lowerCAmelCase) # Check attention is always last and order is fine a__ =True a__ =True a__ =model_class(_lowerCAmelCase) a__ =model(self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowerCAmelCase)) self.assertEqual(model.config.output_hidden_states , _lowerCAmelCase) check_encoder_attentions_output(_lowerCAmelCase) @require_tf class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Any: a__ =TFConvBertModel.from_pretrained('YituTech/conv-bert-base') a__ =tf.constant([[0, 1, 2, 3, 4, 5]]) a__ =model(_lowerCAmelCase)[0] a__ =[1, 6, 768] self.assertEqual(output.shape , _lowerCAmelCase) a__ =tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4)
20
from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Union[str, Any] = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCAmelCase ( _A ): """simple docstring""" A = '''vivit''' def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=32 , _lowerCAmelCase=[2, 16, 16] , _lowerCAmelCase=3 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3_072 , _lowerCAmelCase="gelu_fast" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-06 , _lowerCAmelCase=True , **_lowerCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Any = hidden_size lowerCAmelCase__ :Union[str, Any] = num_hidden_layers lowerCAmelCase__ :Dict = num_attention_heads lowerCAmelCase__ :int = intermediate_size lowerCAmelCase__ :List[Any] = hidden_act lowerCAmelCase__ :str = hidden_dropout_prob lowerCAmelCase__ :Tuple = attention_probs_dropout_prob lowerCAmelCase__ :Optional[int] = initializer_range lowerCAmelCase__ :Optional[int] = layer_norm_eps lowerCAmelCase__ :Optional[int] = image_size lowerCAmelCase__ :Any = num_frames lowerCAmelCase__ :List[str] = tubelet_size lowerCAmelCase__ :List[str] = num_channels lowerCAmelCase__ :str = qkv_bias super().__init__(**_lowerCAmelCase )
145
0
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float: """simple docstring""" if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(lowercase_ ) * abs(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
721
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _lowerCamelCase : Any = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCAmelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__ , A__ , A__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , lowercase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ = training_args.get_process_log_level() logger.setLevel(lowercase_ ) datasets.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: A__ = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: A__ = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ = train_dataset.features['''label'''].names if training_args.do_eval: A__ = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ = eval_dataset.features['''label'''].names if training_args.do_predict: A__ = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ = predict_dataset.features['''label'''].names # Labels A__ = len(lowercase_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase_ , idalabel={str(lowercase_ ): label for i, label in enumerate(lowercase_ )} , labelaid={label: i for i, label in enumerate(lowercase_ )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: A__ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch A__ = False def preprocess_function(lowercase_ ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=lowercase_ , max_length=data_args.max_seq_length , truncation=lowercase_ , ) if training_args.do_train: if data_args.max_train_samples is not None: A__ = min(len(lowercase_ ) , data_args.max_train_samples ) A__ = train_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): A__ = train_dataset.map( lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowercase_ ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: A__ = min(len(lowercase_ ) , data_args.max_eval_samples ) A__ = eval_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): A__ = eval_dataset.map( lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: A__ = min(len(lowercase_ ) , data_args.max_predict_samples ) A__ = predict_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): A__ = predict_dataset.map( lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function A__ = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase_ ): A__ = p.predictions[0] if isinstance(p.predictions , lowercase_ ) else p.predictions A__ = np.argmax(lowercase_ , axis=1 ) return metric.compute(predictions=lowercase_ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: A__ = default_data_collator elif training_args.fpaa: A__ = DataCollatorWithPadding(lowercase_ , pad_to_multiple_of=8 ) else: A__ = None # Initialize our Trainer A__ = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , data_collator=lowercase_ , ) # Training if training_args.do_train: A__ = None if training_args.resume_from_checkpoint is not None: A__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ = last_checkpoint A__ = trainer.train(resume_from_checkpoint=lowercase_ ) A__ = train_result.metrics A__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase_ ) ) A__ = min(lowercase_ , len(lowercase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , lowercase_ ) trainer.save_metrics('''train''' , lowercase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A__ = trainer.evaluate(eval_dataset=lowercase_ ) A__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase_ ) A__ = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics('''eval''' , lowercase_ ) trainer.save_metrics('''eval''' , lowercase_ ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) A__ , A__ , A__ = trainer.predict(lowercase_ , metric_key_prefix='''predict''' ) A__ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowercase_ ) ) A__ = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics('''predict''' , lowercase_ ) trainer.save_metrics('''predict''' , lowercase_ ) A__ = np.argmax(lowercase_ , axis=1 ) A__ = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(lowercase_ , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowercase_ ): A__ = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
177
0
def _UpperCAmelCase (): '''simple docstring''' for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def _UpperCAmelCase (UpperCamelCase_ : List[str] ): '''simple docstring''' _lowerCAmelCase : int = 1 _lowerCAmelCase : List[Any] = 2 while i * i <= n: _lowerCAmelCase : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _UpperCAmelCase (): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
429
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __UpperCamelCase : Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): def __init__( self :Union[str, Any] , *__magic_name__ :int , **__magic_name__ :str ): '''simple docstring''' warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
468
0
from typing import Any import numpy as np def lowercase ( _a ) -> bool: return np.array_equal(_a ,matrix.conjugate().T ) def lowercase ( _a ,_a ) -> Any: UpperCAmelCase_: Optional[Any] = v.conjugate().T UpperCAmelCase_: Optional[Any] = v_star.dot(_a ) assert isinstance(_a ,np.ndarray ) return (v_star_dot.dot(_a )) / (v_star.dot(_a )) def lowercase ( ) -> None: UpperCAmelCase_: Optional[int] = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) UpperCAmelCase_: int = np.array([[1], [2], [3]] ) assert is_hermitian(_a ), f"{a} is not hermitian." print(rayleigh_quotient(_a ,_a ) ) UpperCAmelCase_: int = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_a ), f"{a} is not hermitian." assert rayleigh_quotient(_a ,_a ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
306
class UpperCAmelCase__ : def __init__( self , A__ ): """simple docstring""" UpperCAmelCase_: Tuple = arr.split("," ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = [int(self.array[0] )] * len(self.array ) UpperCAmelCase_: List[str] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCAmelCase_: Dict = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCAmelCase_: Tuple = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _lowerCAmelCase = input("""please input some numbers:""") _lowerCAmelCase = SubArray(whole_array) _lowerCAmelCase = array.solve_sub_array() print(("""the results is:""", re))
306
1
"""simple docstring""" __UpperCAmelCase : str = tuple[float, float, float] __UpperCAmelCase : List[str] = tuple[float, float, float] def A ( _A, _A ): """simple docstring""" snake_case_ :Optional[int] = end_pointa[0] - end_pointa[0] snake_case_ :List[str] = end_pointa[1] - end_pointa[1] snake_case_ :Tuple = end_pointa[2] - end_pointa[2] return (x, y, z) def A ( _A, _A ): """simple docstring""" snake_case_ :int = ab[1] * ac[2] - ab[2] * ac[1] # *i snake_case_ :List[Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j snake_case_ :List[Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def A ( _A, _A ): """simple docstring""" return tuple(round(_lowerCAmelCase, _lowerCAmelCase ) for x in vector ) == (0, 0, 0) def A ( _A, _A, _A, _A = 10 ): """simple docstring""" snake_case_ :Optional[int] = create_vector(_lowerCAmelCase, _lowerCAmelCase ) snake_case_ :Any = create_vector(_lowerCAmelCase, _lowerCAmelCase ) return is_zero_vector(get_ad_vectors_cross(_lowerCAmelCase, _lowerCAmelCase ), _lowerCAmelCase )
584
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : List[str] = tempfile.mkdtemp() __UpperCamelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] __UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __UpperCamelCase : Optional[Any] = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], "do_convert_rgb": True, } __UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Dict: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Any: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self , **__UpperCamelCase ) -> Dict: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __UpperCamelCase : Dict = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : str = self.get_tokenizer() __UpperCamelCase : Union[str, Any] = self.get_rust_tokenizer() __UpperCamelCase : Any = self.get_image_processor() __UpperCamelCase : str = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCamelCase : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCamelCase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase : Optional[Any] = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) __UpperCamelCase : Tuple = self.get_image_processor(do_normalize=__UpperCamelCase ) __UpperCamelCase : List[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__UpperCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : List[str] = self.get_image_processor() __UpperCamelCase : List[str] = self.get_tokenizer() __UpperCamelCase : Tuple = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : Optional[Any] = self.prepare_image_inputs() __UpperCamelCase : List[str] = image_processor(__UpperCamelCase , return_tensors="np" ) __UpperCamelCase : List[Any] = processor(images=__UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = self.get_image_processor() __UpperCamelCase : Union[str, Any] = self.get_tokenizer() __UpperCamelCase : int = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : int = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : int = processor(text=__UpperCamelCase ) __UpperCamelCase : int = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : List[str] = self.get_image_processor() __UpperCamelCase : List[str] = self.get_tokenizer() __UpperCamelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : str = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : List[Any] = self.prepare_image_inputs() __UpperCamelCase : Union[str, Any] = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' __UpperCamelCase : Tuple = self.get_image_processor() __UpperCamelCase : Any = self.get_tokenizer() __UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase : str = processor.batch_decode(__UpperCamelCase ) __UpperCamelCase : Dict = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[int] = self.get_image_processor() __UpperCamelCase : Tuple = self.get_tokenizer() __UpperCamelCase : Dict = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __UpperCamelCase : Tuple = "Alexandra,T-shirt的价格是15便士。" __UpperCamelCase : Optional[int] = self.prepare_image_inputs() __UpperCamelCase : Tuple = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
327
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def A__ ( self): lowercase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''') lowercase = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" lowercase = model(A__)['''last_hidden_state'''] lowercase = tf.TensorShape((1, 1_0, 7_6_8)) self.assertEqual(output.shape ,A__) # compare the actual values for a slice. lowercase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4))
712
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ :Tuple = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :List[str] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowercase__ :List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
633
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } _lowerCamelCase : str = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def A__ ( __A : Dict ) ->Optional[int]: __A ={} with open(__A , '''r''' ) as file: for line_number, line in enumerate(__A ): __A =line.strip() if line: __A =line.split() __A =line_number __A =words[0] __A =value return result def A__ ( __A : Optional[int] , __A : Dict , __A : Tuple , __A : List[str] , __A : Optional[Any] ) ->Dict: for attribute in key.split('''.''' ): __A =getattr(__A , __A ) __A =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __A =PARAM_MAPPING[full_name.split('''.''' )[-1]] __A ='''param''' if weight_type is not None and weight_type != "param": __A =getattr(__A , __A ).shape elif weight_type is not None and weight_type == "param": __A =hf_pointer for attribute in hf_param_name.split('''.''' ): __A =getattr(__A , __A ) __A =shape_pointer.shape # let's reduce dimension __A =value[0] else: __A =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __A =value elif weight_type == "weight_g": __A =value elif weight_type == "weight_v": __A =value elif weight_type == "bias": __A =value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __A =getattr(__A , __A ) __A =value else: __A =value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A__ ( __A : Optional[int] , __A : Optional[Any] , __A : Dict , __A : str , __A : Optional[int] ) ->str: __A =None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __A =PARAM_MAPPING[full_name.split('''.''' )[-1]] __A ='''param''' if weight_type is not None and weight_type != "param": __A ='''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __A ='''.'''.join([key, hf_param_name] ) else: __A =key __A =value if '''lm_head''' in full_key else value[0] _lowerCamelCase : str = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def A__ ( __A : List[Any] , __A : Any , __A : Optional[Any]=None , __A : List[Any]=None ) ->Optional[Any]: __A =False for key, mapped_key in MAPPING.items(): __A ='''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __A =True if "*" in mapped_key: __A =name.split(__A )[0].split('''.''' )[-2] __A =mapped_key.replace('''*''' , __A ) if "weight_g" in name: __A ='''weight_g''' elif "weight_v" in name: __A ='''weight_v''' elif "bias" in name: __A ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A ='''weight''' else: __A =None if hf_dict is not None: rename_dict(__A , __A , __A , __A , __A ) else: set_recursively(__A , __A , __A , __A , __A ) return is_used return is_used def A__ ( __A : List[str] , __A : Tuple , __A : Optional[Any] ) ->str: __A =[] __A =fairseq_model.state_dict() __A =hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __A =False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) __A =True else: __A =load_wavaveca_layer(__A , __A , __A ) if not is_used: unused_weights.append(__A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def A__ ( __A : Union[str, Any] , __A : Any , __A : Union[str, Any] , __A : Tuple , __A : Dict ) ->List[str]: __A =full_name.split('''conv_layers.''' )[-1] __A =name.split('''.''' ) __A =int(items[0] ) __A =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__A ) @torch.no_grad() def A__ ( __A : List[str] , __A : str , __A : Dict=None , __A : Tuple=None , __A : Tuple=True , __A : Union[str, Any]=False ) ->Optional[Any]: if config_path is not None: __A =WavaVecaConfig.from_pretrained(__A ) else: __A =WavaVecaConfig() if is_seq_class: __A =read_txt_into_dict(__A ) __A =idalabel __A =WavaVecaForSequenceClassification(__A ) __A =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) feature_extractor.save_pretrained(__A ) elif is_finetuned: if dict_path: __A =Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __A =target_dict.pad_index __A =target_dict.bos_index __A =target_dict.eos_index __A =len(target_dict.symbols ) __A =os.path.join(__A , '''vocab.json''' ) if not os.path.isdir(__A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__A ) ) return os.makedirs(__A , exist_ok=__A ) __A =target_dict.indices # fairseq has the <pad> and <s> switched __A =0 __A =1 with open(__A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__A , __A ) __A =WavaVecaCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__A , ) __A =True if config.feat_extract_norm == '''layer''' else False __A =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) __A =WavaVecaProcessor(feature_extractor=__A , tokenizer=__A ) processor.save_pretrained(__A ) __A =WavaVecaForCTC(__A ) else: __A =WavaVecaForPreTraining(__A ) if is_finetuned or is_seq_class: __A , __A , __A =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __A =argparse.Namespace(task='''audio_pretraining''' ) __A =fairseq.tasks.setup_task(__A ) __A , __A , __A =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__A ) __A =model[0].eval() recursively_load_weights(__A , __A , not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) _lowerCamelCase : List[Any] = parser.parse_args() _lowerCamelCase : Dict = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
184
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” _lowerCamelCase : List[str] = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = 0xe_0_0_0 _lowerCamelCase : Union[str, Any] = 0xe_0_0_1 _lowerCamelCase : Any = 0xe_0_0_2 _lowerCamelCase : List[str] = 0xe_0_0_3 _lowerCamelCase : Any = 0xe_0_0_4 # Maps special codepoints to human-readable names. _lowerCamelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _lowerCamelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=chr(lowercase__ ) , lowercase__=False , lowercase__=2_0_4_8 , **lowercase__ , ): '''simple docstring''' __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __A =AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , model_max_length=lowercase__ , **lowercase__ , ) # Creates a mapping for looking up the IDs of special symbols. __A ={} for codepoint, name in SPECIAL_CODEPOINTS.items(): __A =codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __A ={ codepoint: name for name, codepoint in self._special_codepoints.items() } __A =UNICODE_VOCAB_SIZE __A =len(self._special_codepoints ) @property def __UpperCamelCase ( self ): '''simple docstring''' return self._unicode_vocab_size def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' return list(lowercase__ ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' try: return ord(lowercase__ ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowercase__ ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' return "".join(lowercase__ ) def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' __A =[self.sep_token_id] __A =[self.cls_token_id] __A =cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __UpperCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) __A =[1] + ([0] * len(lowercase__ )) + [1] if token_ids_a is not None: result += ([0] * len(lowercase__ )) + [1] return result def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' __A =[self.sep_token_id] __A =[self.cls_token_id] __A =len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __UpperCamelCase ( self , lowercase__ , lowercase__ = None ): '''simple docstring''' return ()
184
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Tuple = 'pt' elif is_tf_available(): A_ : Optional[int] = 'tf' else: A_ : str = 'jax' class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Dict = PerceiverTokenizer UpperCAmelCase__: str = False def __A ( self ): super().setUp() A__ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self ): return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def __A ( self , **A__ ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **A__ ) def __A ( self , A__ , A__=False , A__=20 , A__=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. A__ : int = [] for i in range(len(A__ ) ): try: A__ : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=A__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) A__ : Dict = list(filter(lambda A__ : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , A__ ) ) A__ : str = list(filter(lambda A__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=A__ ) , A__ ) ) if max_length is not None and len(A__ ) > max_length: A__ : List[Any] = toks[:max_length] if min_length is not None and len(A__ ) < min_length and len(A__ ) > 0: while len(A__ ) < min_length: A__ : List[Any] = toks + toks # toks_str = [t[1] for t in toks] A__ : Tuple = [t[0] for t in toks] # Ensure consistency A__ : Union[str, Any] = tokenizer.decode(A__ , clean_up_tokenization_spaces=A__ ) if " " not in output_txt and len(A__ ) > 1: A__ : List[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A__ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A__ ) ) if with_prefix_space: A__ : List[Any] = """ """ + output_txt A__ : Optional[Any] = tokenizer.encode(A__ , add_special_tokens=A__ ) return output_txt, output_ids def __A ( self ): A__ : Union[str, Any] = self.perceiver_tokenizer A__ : str = """Unicode €.""" A__ : Union[str, Any] = tokenizer(A__ ) A__ : Any = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["""input_ids"""] , A__ ) # decoding A__ : List[Any] = tokenizer.decode(A__ ) self.assertEqual(A__ , """[CLS]Unicode €.[SEP]""" ) A__ : Any = tokenizer("""e è é ê ë""" ) A__ : str = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["""input_ids"""] , A__ ) # decoding A__ : Tuple = tokenizer.decode(A__ ) self.assertEqual(A__ , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def __A ( self ): A__ : int = self.perceiver_tokenizer A__ : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off A__ : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on A__ : Union[str, Any] = tokenizer(A__ , padding=A__ , return_tensors=A__ ) self.assertIsInstance(A__ , A__ ) if FRAMEWORK != "jax": A__ : Dict = list(batch.input_ids.numpy()[0] ) else: A__ : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(A__ , A__ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def __A ( self ): A__ : Tuple = self.perceiver_tokenizer A__ : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] A__ : List[str] = tokenizer(A__ , padding=A__ , return_tensors=A__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , A__ ) self.assertIn("""attention_mask""" , A__ ) self.assertNotIn("""decoder_input_ids""" , A__ ) self.assertNotIn("""decoder_attention_mask""" , A__ ) def __A ( self ): A__ : Optional[int] = self.perceiver_tokenizer A__ : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] A__ : Optional[Any] = tokenizer( text_target=A__ , max_length=32 , padding="""max_length""" , truncation=A__ , return_tensors=A__ ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def __A ( self ): # safety check on max_len default value so we are sure the test works A__ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test A__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc A__ : Tuple = tempfile.mkdtemp() A__ : Tuple = """ He is very happy, UNwant\u00E9d,running""" A__ : Optional[Any] = tokenizer.encode(A__ , add_special_tokens=A__ ) tokenizer.save_pretrained(A__ ) A__ : List[str] = tokenizer.__class__.from_pretrained(A__ ) A__ : int = after_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) shutil.rmtree(A__ ) A__ : List[str] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc A__ : Optional[Any] = tempfile.mkdtemp() A__ : Any = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) A__ : Optional[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) A__ : Optional[Any] = tokenizer.encode(A__ , add_special_tokens=A__ ) tokenizer.save_pretrained(A__ ) A__ : List[Any] = tokenizer.__class__.from_pretrained(A__ ) A__ : Optional[int] = after_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) A__ : Dict = tokenizer.__class__.from_pretrained(A__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(A__ ) def __A ( self ): A__ : Dict = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A__ ) with open(os.path.join(A__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: A__ : int = json.load(A__ ) with open(os.path.join(A__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: A__ : Tuple = json.load(A__ ) A__ : str = [F"""<extra_id_{i}>""" for i in range(125 )] A__ : Optional[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] A__ : Dict = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(A__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A__ , A__ ) with open(os.path.join(A__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A__ , A__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A__ : List[str] = tokenizer_class.from_pretrained( A__ , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A__ : Tuple = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=A__ )] A__ : Tuple = tokenizer_class.from_pretrained( A__ , additional_special_tokens=A__ , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def __A ( self ): A__ : Any = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , """�""" ) def __A ( self ): pass def __A ( self ): pass def __A ( self ): pass def __A ( self ): pass def __A ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens A__ : int = self.get_tokenizers(fast=A__ , do_lower_case=A__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): A__ : Tuple = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] A__ : Dict = tokenizer.convert_tokens_to_string(A__ ) self.assertIsInstance(A__ , A__ )
64
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def UpperCamelCase (lowercase_: List[str] , lowercase_: str ) -> Optional[Any]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A__ : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) A__ : Optional[int] = torch.permute(lowercase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase_ ): # linear layer A__ : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) A__ : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A__ : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def UpperCamelCase (lowercase_: Tuple , lowercase_: Optional[int] , lowercase_: str ) -> Union[str, Any]: if "metadata" in layer: A__ : Tuple = layer.split("""metadata""" ) A__ : Optional[Any] = """""".join(split_layer[0] )[:-1] A__ : Optional[Any] = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: A__ : str = layer.split("""kvstore""" ) A__ : int = """""".join(split_layer[0] )[:-1] A__ : Optional[int] = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: A__ : Any = layer.split("""/""" ) A__ : int = """/""".join(split_layer[:-1] ) A__ : str = (split_layer[-1],) if "kvstore/path" in layer: A__ : Dict = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: A__ : Optional[int] = """file""" else: A__ : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def UpperCamelCase (lowercase_: str , lowercase_: List[Any] ) -> int: A__ : int = rename_keys(lowercase_ ) A__ : Any = {} for k, v in current_block.items(): A__ : Dict = v A__ : str = new_current_block torch.save(lowercase_ , lowercase_ ) def UpperCamelCase (lowercase_: Dict , lowercase_: Optional[Any] , lowercase_: Optional[Any] , lowercase_: Optional[int] , lowercase_: str = WEIGHTS_NAME ) -> Tuple: A__ : Optional[int] = convert_file_size_to_int(lowercase_ ) A__ : List[Any] = [] A__ : int = {} A__ : List[str] = 0 A__ : Any = 0 os.makedirs(lowercase_ , exist_ok=lowercase_ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: A__ : Optional[Any] = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] A__ : Dict = flatten_dict(lowercase_ , sep="""/""" ) A__ : Any = {} for layer in checkpoint_info.keys(): A__ , A__ , A__ : Union[str, Any] = get_key_and_tensorstore_dict( lowercase_ , lowercase_ , lowercase_ ) if curr_real_layer_name in all_layers: A__ : Optional[int] = content else: A__ : List[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A__ : Optional[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A__ : List[Any] = torch.tensor(lowercase_ ) A__ : List[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A__ , A__ : Any = rename_base_flax_keys(tuple(key.split("""/""" ) ) , lowercase_ ) A__ : Any = """/""".join(lowercase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A__ : List[Any] = os.path.join( lowercase_ , weights_name.replace(""".bin""" , f"""-{len(lowercase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowercase_ , lowercase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block A__ : Any = {} A__ : str = 0 A__ : List[str] = raw_weights.to(getattr(lowercase_ , lowercase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block A__ : Union[str, Any] = os.path.join(lowercase_ , weights_name.replace(""".bin""" , f"""-{len(lowercase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowercase_ , lowercase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowercase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A__ : str = {} A__ : Any = {} for idx, shard in enumerate(lowercase_ ): A__ : Any = weights_name.replace( """.bin""" , f"""-{idx+1:05d}-of-{len(lowercase_ ):05d}.bin""" ) # len(sharded_state_dicts):05d} A__ : Dict = os.path.join(lowercase_ , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) A__ : str = shard for key in shard: A__ : Any = shard_file # Add the metadata A__ : Tuple = {"""total_size""": total_size} A__ : Union[str, Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(lowercase_ , lowercase_ ) , """w""" , encoding="""utf-8""" ) as f: A__ : Dict = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + """\n""" f.write(lowercase_ ) return metadata, index if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) A_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def UpperCamelCase () -> int: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A__ : str = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) A__ : str = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) A__ : Tuple = TaTokenizer.from_pretrained("""t5-small""" ) A__ : Dict = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" A__ : Union[str, Any] = tokenizer(lowercase_ , return_tensors="""pt""" ).input_ids A__ : Tuple = model.generate(lowercase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
64
1
import numpy as np import datasets __a = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __a = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __a = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a( datasets.Metric ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' ,id='''sequence''' ) ,id='''X''' ), } ) ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # convert to numpy arrays UpperCAmelCase_ : str = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.array(_SCREAMING_SNAKE_CASE ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction UpperCAmelCase_ : List[str] = X - np.mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = np.cov(reference_distribution.T ) try: UpperCAmelCase_ : Any = np.linalg.inv(_SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: UpperCAmelCase_ : List[str] = np.linalg.pinv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = np.dot(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.dot(_SCREAMING_SNAKE_CASE ,X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
30
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position snake_case_ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case_ = concatenate_datasets snake_case_ = DownloadConfig snake_case_ = DownloadManager snake_case_ = DownloadMode snake_case_ = DownloadConfig snake_case_ = DownloadMode snake_case_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
592
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __magic_name__ : UpperCamelCase__ = XGLMConfig UpperCamelCase__ = {} UpperCamelCase__ = 'gelu' def __init__( self , snake_case_ , snake_case_=14 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_12 , snake_case_=0.02 , ): lowercase =parent lowercase =batch_size lowercase =seq_length lowercase =is_training lowercase =use_input_mask lowercase =use_labels lowercase =vocab_size lowercase =d_model lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =ffn_dim lowercase =activation_function lowercase =activation_dropout lowercase =attention_dropout lowercase =max_position_embeddings lowercase =initializer_range lowercase =None lowercase =0 lowercase =2 lowercase =1 def _A( self ): return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _A( self ): lowercase =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowercase =None if self.use_input_mask: lowercase =random_attention_mask([self.batch_size, self.seq_length] ) lowercase =self.get_config() lowercase =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _A( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=snake_case_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=snake_case_ , ) def _A( self ): lowercase =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) =config_and_inputs lowercase ={ '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def _A( self ): lowercase =TFXGLMModelTester(self ) lowercase =ConfigTester(self , config_class=snake_case_ , n_embd=37 ) def _A( self ): self.config_tester.run_common_tests() @slow def _A( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase =TFXGLMModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _A( self ): super().test_resize_token_embeddings() @require_tf class __magic_name__ ( unittest.TestCase ): @slow def _A( self , snake_case_=True ): lowercase =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowercase =tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowercase =[2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on lowercase =model.generate(snake_case_ , do_sample=snake_case_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , snake_case_ ) @slow def _A( self ): lowercase =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowercase =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) lowercase =tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) lowercase =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): lowercase =model.generate(snake_case_ , do_sample=snake_case_ , seed=[7, 0] ) lowercase =tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case_ ) lowercase =( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(snake_case_ , snake_case_ ) @slow def _A( self ): lowercase =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowercase =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowercase ='''left''' # use different length sentences to test batching lowercase =[ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] lowercase =tokenizer(snake_case_ , return_tensors='''tf''' , padding=snake_case_ ) lowercase =inputs['''input_ids'''] lowercase =model.generate(input_ids=snake_case_ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) lowercase =tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids lowercase =model.generate(input_ids=snake_case_ , max_new_tokens=12 ) lowercase =tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids lowercase =model.generate(input_ids=snake_case_ , max_new_tokens=12 ) lowercase =tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) lowercase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case_ ) lowercase =tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case_ ) lowercase =[ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , [non_padded_sentence, padded_sentence] )
145
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __magic_name__ : def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_12 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): lowercase =parent lowercase =13 lowercase =7 lowercase =True lowercase =True lowercase =True lowercase =True lowercase =99 lowercase =3_84 lowercase =2 lowercase =4 lowercase =37 lowercase ='''gelu''' lowercase =0.1 lowercase =0.1 lowercase =5_12 lowercase =16 lowercase =2 lowercase =0.02 lowercase =3 lowercase =4 lowercase =1_28 lowercase =2 lowercase =9 lowercase =1 lowercase =None def _A( self ): lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase =None if self.use_input_mask: lowercase =random_attention_mask([self.batch_size, self.seq_length] ) lowercase =None if self.use_token_type_ids: lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase =None lowercase =None lowercase =None if self.use_labels: lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase =ids_tensor([self.batch_size] , self.num_choices ) lowercase =ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowercase =TFConvBertModel(config=snake_case_ ) lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase =[input_ids, input_mask] lowercase =model(snake_case_ ) lowercase =model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowercase =TFConvBertForMaskedLM(config=snake_case_ ) lowercase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase =model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowercase =self.num_labels lowercase =TFConvBertForSequenceClassification(config=snake_case_ ) lowercase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase =model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowercase =self.num_choices lowercase =TFConvBertForMultipleChoice(config=snake_case_ ) lowercase =tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) lowercase =tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) lowercase =tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) lowercase ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase =model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowercase =self.num_labels lowercase =TFConvBertForTokenClassification(config=snake_case_ ) lowercase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase =model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowercase =TFConvBertForQuestionAnswering(config=snake_case_ ) lowercase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase =model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A( self ): lowercase =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) =config_and_inputs lowercase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def _A( self ): lowercase =TFConvBertModelTester(self ) lowercase =ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def _A( self ): self.config_tester.run_common_tests() def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def _A( self ): lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common() lowercase =True lowercase =True if hasattr(snake_case_ , '''use_cache''' ): lowercase =True lowercase =getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) lowercase =getattr(self.model_tester , '''key_length''' , snake_case_ ) for model_class in self.all_model_classes: lowercase =self._prepare_for_class(snake_case_ , snake_case_ ) lowercase =model_class(snake_case_ ) lowercase =len(model(snake_case_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ , saved_model=snake_case_ ) lowercase =os.path.join(snake_case_ , '''saved_model''' , '''1''' ) lowercase =tf.keras.models.load_model(snake_case_ ) lowercase =model(snake_case_ ) if self.is_encoder_decoder: lowercase =outputs['''encoder_hidden_states'''] lowercase =outputs['''encoder_attentions'''] else: lowercase =outputs['''hidden_states'''] lowercase =outputs['''attentions'''] self.assertEqual(len(snake_case_ ) , snake_case_ ) lowercase =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case_ ) , snake_case_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _A( self ): lowercase =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(snake_case_ ) def _A( self ): lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common() lowercase =True lowercase =getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) lowercase =getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) lowercase =getattr(self.model_tester , '''key_length''' , snake_case_ ) lowercase =getattr(self.model_tester , '''key_length''' , snake_case_ ) def check_decoder_attentions_output(snake_case_ ): lowercase =len(snake_case_ ) self.assertEqual(out_len % 2 , 0 ) lowercase =outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case_ ): lowercase =[ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowercase =True lowercase =False lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) lowercase =len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase =True lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine lowercase =True lowercase =True lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @require_tf class __magic_name__ ( unittest.TestCase ): @slow def _A( self ): lowercase =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) lowercase =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase =model(snake_case_ )[0] lowercase =[1, 6, 7_68] self.assertEqual(output.shape , snake_case_ ) lowercase =tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
145
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') _SCREAMING_SNAKE_CASE : List[str] = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) _SCREAMING_SNAKE_CASE : List[str] = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _SCREAMING_SNAKE_CASE : Any = BeautifulSoup(res.text, '''html.parser''') _SCREAMING_SNAKE_CASE : str = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F"https://google.com{link.get('href')}")
493
import math def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [True] * n SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE__ = i * 2 while index < n: SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = index + i SCREAMING_SNAKE_CASE__ = [2] for i in range(3 , _A , 2 ): if is_prime[i]: primes.append(_A ) return primes def UpperCAmelCase_ ( _A = 99_99_66_66_33_33 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = math.floor(math.sqrt(_A ) ) + 1_00 SCREAMING_SNAKE_CASE__ = prime_sieve(_A ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = primes[prime_index] while (last_prime**2) <= limit: SCREAMING_SNAKE_CASE__ = primes[prime_index + 1] SCREAMING_SNAKE_CASE__ = last_prime**2 SCREAMING_SNAKE_CASE__ = next_prime**2 # Get numbers divisible by lps(current) SCREAMING_SNAKE_CASE__ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) SCREAMING_SNAKE_CASE__ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps SCREAMING_SNAKE_CASE__ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair SCREAMING_SNAKE_CASE__ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
493
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : List[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
1
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCAmelCase : Dict = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase : List[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCAmelCase : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING __UpperCAmelCase : List[Any] = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def A ( _A, _A, _A, _A ): """simple docstring""" snake_case_ :Tuple = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): snake_case_ :Optional[int] = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''', snake_case_, ) is not None ): snake_case_ :Optional[Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: snake_case_ :Any = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files snake_case_ :Dict = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] snake_case_ :Union[str, Any] = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed snake_case_ :List[Any] = True if not attribute_used: snake_case_ :List[str] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: snake_case_ :Any = True elif attribute in ["tie_word_embeddings"] and default_value is False: snake_case_ :str = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: snake_case_ :List[str] = True elif attribute.endswith("_token_id" ): snake_case_ :List[Any] = True # configuration class specific cases if not case_allowed: snake_case_ :Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] ) snake_case_ :Union[str, Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A ( _A ): """simple docstring""" snake_case_ :Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters ) snake_case_ :Any = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] snake_case_ :Any = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass snake_case_ :Dict = {} if len(config_class.attribute_map ) > 0: snake_case_ :Any = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files snake_case_ :Optional[Any] = inspect.getsourcefile(snake_case_ ) snake_case_ :Optional[Any] = os.path.dirname(snake_case_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. snake_case_ :str = [os.path.join(snake_case_, snake_case_ ) for fn in os.listdir(snake_case_ ) if fn.startswith("modeling_" )] # Get the source code strings snake_case_ :List[Any] = [] for path in modeling_paths: if os.path.isfile(snake_case_ ): with open(snake_case_ ) as fp: modeling_sources.append(fp.read() ) snake_case_ :List[Any] = [] for config_param, default_value in zip(snake_case_, snake_case_ ): # `attributes` here is all the variant names for `config_param` snake_case_ :Optional[Any] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(snake_case_, snake_case_, snake_case_, snake_case_ ): unused_attributes.append(attributes[0] ) return sorted(snake_case_ ) def A ( ): """simple docstring""" snake_case_ :Tuple = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) snake_case_ :int = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ), lambda _A : inspect.isclass(snake_case_ ) and issubclass(snake_case_, snake_case_ ) and inspect.getmodule(snake_case_ ) == inspect.getmodule(_config_class ), ) ] for config_class in config_classes_in_module: snake_case_ :Dict = check_config_attributes_being_used(snake_case_ ) if len(snake_case_ ) > 0: snake_case_ :Dict = unused_attributes if len(snake_case_ ) > 0: snake_case_ :str = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(snake_case_ ) if __name__ == "__main__": check_config_attributes()
584
"""simple docstring""" def A_ ( snake_case_ : int = 1_0_0_0_0_0_0 ): '''simple docstring''' UpperCamelCase : List[Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,snake_case_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
499
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _lowerCAmelCase( unittest.TestCase): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self , UpperCAmelCase )-> Any: __A = 3 __A = 2_50 __A = ids_tensor((batch_size, length) , UpperCAmelCase ) __A = torch.ones((batch_size, length) , device=UpperCAmelCase , dtype=torch.float ) / length return input_ids, scores def SCREAMING_SNAKE_CASE__ ( self )-> Optional[int]: __A , __A = self._get_tensors(5 ) __A = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self )-> Dict: __A = MaxLengthCriteria(max_length=10 ) __A , __A = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self )-> Union[str, Any]: __A = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __A , __A = self._get_tensors(5 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(9 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A , __A = self._get_tensors(10 ) self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def SCREAMING_SNAKE_CASE__ ( self )-> Optional[Any]: __A , __A = self._get_tensors(5 ) __A = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCAmelCase , UpperCAmelCase ) ) __A = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCAmelCase , UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self )-> int: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __A = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCAmelCase ) , 1 )
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase : str = { """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any = ["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
341
0
"""simple docstring""" from copy import deepcopy class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ,A_ : list[int] | None = None ,A_ : int | None = None ) -> None: if arr is None and size is not None: A = size A = [0] * size elif arr is not None: self.init(A_ ) else: raise ValueError('Either arr or size must be specified' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : list[int] ) -> None: A = len(A_ ) A = deepcopy(A_ ) for i in range(1 ,self.size ): A = self.next_(A_ ) if j < self.size: self.tree[j] += self.tree[i] def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> list[int]: A = self.tree[:] for i in range(self.size - 1 ,0 ,-1 ): A = self.next_(A_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : int ) -> int: return index + (index & (-index)) @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : int ) -> int: return index - (index & (-index)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ,A_ : int ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value A = self.next_(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : int ,A_ : int ) -> None: self.add(A_ ,value - self.get(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> int: if right == 0: return 0 A = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] A = self.prev(A_ ) return result def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : int ) -> int: return self.prefix(A_ ) - self.prefix(A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : int ) -> int: return self.query(A_ ,index + 1 ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : int ) -> int: value -= self.tree[0] if value < 0: return -1 A = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 A = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
91
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __A(lowerCAmelCase ) -> Optional[int]: """simple docstring""" _UpperCamelCase = np.inf def set_batch_size(lowerCAmelCase ) -> None: nonlocal batch_size if isinstance(lowerCAmelCase , lowerCAmelCase ): _UpperCamelCase = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): _UpperCamelCase = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowerCAmelCase , lowerCAmelCase ) and feature.dtype == "binary": _UpperCamelCase = min(lowerCAmelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowerCAmelCase , lowerCAmelCase ) return None if batch_size is np.inf else batch_size class lowerCAmelCase__ ( __lowercase ): def __init__( self , a , a = None , a = None , a = None , a = False , a = False , a = None , **a , ) -> Tuple: '''simple docstring''' super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) _UpperCamelCase = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} _UpperCamelCase = _PACKAGED_DATASETS_MODULES["""parquet"""][1] _UpperCamelCase = Parquet( cache_dir=a , data_files=a , features=a , hash=a , **a , ) def A_ ( self ) -> Optional[int]: '''simple docstring''' if self.streaming: _UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) _UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase__ : def __init__( self , a , a , a = None , **a , ) -> str: '''simple docstring''' _UpperCamelCase = dataset _UpperCamelCase = path_or_buf _UpperCamelCase = batch_size or get_writer_batch_size(dataset.features ) _UpperCamelCase = parquet_writer_kwargs def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , """wb+""" ) as buffer: _UpperCamelCase = self._write(file_obj=a , batch_size=a , **self.parquet_writer_kwargs ) else: _UpperCamelCase = self._write(file_obj=self.path_or_buf , batch_size=a , **self.parquet_writer_kwargs ) return written def A_ ( self , a , a , **a ) -> int: '''simple docstring''' _UpperCamelCase = 0 _UpperCamelCase = parquet_writer_kwargs.pop("""path_or_buf""" , a ) _UpperCamelCase = self.dataset.features.arrow_schema _UpperCamelCase = pq.ParquetWriter(a , schema=a , **a ) for offset in logging.tqdm( range(0 , len(self.dataset ) , a ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): _UpperCamelCase = query_table( table=self.dataset._data , key=slice(a , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(a ) written += batch.nbytes writer.close() return written
612
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a_ ( __snake_case ) -> Optional[int]: '''simple docstring''' def wrapper(*__snake_case , **__snake_case ): UpperCamelCase_ = timeit.default_timer() UpperCamelCase_ = func(*__snake_case , **__snake_case ) UpperCamelCase_ = timeit.default_timer() - starttime return delta UpperCamelCase_ = func.__name__ return wrapper def a_ ( __snake_case , __snake_case=1_0_0 , __snake_case=None ) -> List[Any]: '''simple docstring''' UpperCamelCase_ = [] UpperCamelCase_ = seq_shapes or {} for i in range(__snake_case ): UpperCamelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__snake_case , _ArrayXD ): UpperCamelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__snake_case , datasets.Value ): if v.dtype == "string": UpperCamelCase_ = 'The small grey turtle was surprisingly fast when challenged.' else: UpperCamelCase_ = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(__snake_case , datasets.Sequence ): while isinstance(__snake_case , datasets.Sequence ): UpperCamelCase_ = v.feature UpperCamelCase_ = seq_shapes[k] UpperCamelCase_ = np.random.rand(*__snake_case ).astype(v.dtype ) UpperCamelCase_ = data dummy_data.append((i, example) ) return dummy_data def a_ ( __snake_case , __snake_case , __snake_case=1_0_0 , __snake_case=None ) -> Tuple: '''simple docstring''' UpperCamelCase_ = generate_examples(__snake_case , num_examples=__snake_case , seq_shapes=__snake_case ) with ArrowWriter(features=__snake_case , path=__snake_case ) as writer: for key, record in dummy_data: UpperCamelCase_ = features.encode_example(__snake_case ) writer.write(__snake_case ) UpperCamelCase_ , UpperCamelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) UpperCamelCase_ = datasets.Dataset.from_file(filename=__snake_case , info=datasets.DatasetInfo(features=__snake_case ) ) return dataset
701
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = inspect.getfile(accelerate.test_utils ) _SCREAMING_SNAKE_CASE : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) _SCREAMING_SNAKE_CASE : Optional[Any] = ['''accelerate''', '''launch'''] _SCREAMING_SNAKE_CASE : Optional[int] = Path.home() / '''.cache/huggingface/accelerate''' _SCREAMING_SNAKE_CASE : str = '''default_config.yaml''' _SCREAMING_SNAKE_CASE : Optional[int] = config_folder / config_file _SCREAMING_SNAKE_CASE : Optional[Any] = config_folder / '''_default_config.yaml''' _SCREAMING_SNAKE_CASE : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Optional[int] ) -> Optional[int]: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : Union[str, Any] ) -> str: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : str ) -> Tuple: """simple docstring""" for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=__UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(__UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = '''test-tpu''' _SCREAMING_SNAKE_CASE : List[str] = '''us-central1-a''' _SCREAMING_SNAKE_CASE : Optional[int] = '''ls''' _SCREAMING_SNAKE_CASE : Dict = ['''accelerate''', '''tpu-config'''] _SCREAMING_SNAKE_CASE : List[Any] = '''cd /usr/share''' _SCREAMING_SNAKE_CASE : Optional[Any] = '''tests/test_samples/test_command_file.sh''' _SCREAMING_SNAKE_CASE : Dict = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=__UpperCAmelCase ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , )
559
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _a ( lowerCamelCase_ ): """simple docstring""" A_ = 42 class _a ( nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=("DownEncoderBlock2D",) , _UpperCAmelCase=(64,) , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase="silu" , _UpperCAmelCase=True , ) -> Tuple: super().__init__() UpperCamelCase_ = layers_per_block UpperCamelCase_ = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase_ = None UpperCamelCase_ = nn.ModuleList([] ) # down UpperCamelCase_ = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_ ): UpperCamelCase_ = output_channel UpperCamelCase_ = block_out_channels[i] UpperCamelCase_ = i == len(lowerCamelCase_ ) - 1 UpperCamelCase_ = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_ ) # mid UpperCamelCase_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out UpperCamelCase_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 ) UpperCamelCase_ = nn.SiLU() UpperCamelCase_ = 2 * out_channels if double_z else out_channels UpperCamelCase_ = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 ) UpperCamelCase_ = False def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Any: UpperCamelCase_ = x UpperCamelCase_ = self.conv_in(lowerCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(_UpperCAmelCase ): def custom_forward(*_UpperCAmelCase ): return module(*lowerCamelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: UpperCamelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) # middle UpperCamelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: for down_block in self.down_blocks: UpperCamelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ ) # middle UpperCamelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ ) else: # down for down_block in self.down_blocks: UpperCamelCase_ = down_block(lowerCamelCase_ ) # middle UpperCamelCase_ = self.mid_block(lowerCamelCase_ ) # post-process UpperCamelCase_ = self.conv_norm_out(lowerCamelCase_ ) UpperCamelCase_ = self.conv_act(lowerCamelCase_ ) UpperCamelCase_ = self.conv_out(lowerCamelCase_ ) return sample class _a ( nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=("UpDecoderBlock2D",) , _UpperCAmelCase=(64,) , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase="silu" , _UpperCAmelCase="group" , ) -> Optional[int]: super().__init__() UpperCamelCase_ = layers_per_block UpperCamelCase_ = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase_ = None UpperCamelCase_ = nn.ModuleList([] ) UpperCamelCase_ = in_channels if norm_type == 'spatial' else None # mid UpperCamelCase_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up UpperCamelCase_ = list(reversed(lowerCamelCase_ ) ) UpperCamelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): UpperCamelCase_ = output_channel UpperCamelCase_ = reversed_block_out_channels[i] UpperCamelCase_ = i == len(lowerCamelCase_ ) - 1 UpperCamelCase_ = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_ ) UpperCamelCase_ = output_channel # out if norm_type == "spatial": UpperCamelCase_ = SpatialNorm(block_out_channels[0] , lowerCamelCase_ ) else: UpperCamelCase_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 ) UpperCamelCase_ = nn.SiLU() UpperCamelCase_ = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 ) UpperCamelCase_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> str: UpperCamelCase_ = z UpperCamelCase_ = self.conv_in(lowerCamelCase_ ) UpperCamelCase_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_UpperCAmelCase ): def custom_forward(*_UpperCAmelCase ): return module(*lowerCamelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle UpperCamelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) UpperCamelCase_ = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: UpperCamelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: # middle UpperCamelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: UpperCamelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) else: # middle UpperCamelCase_ = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: UpperCamelCase_ = up_block(lowerCamelCase_ , lowerCamelCase_ ) # post-process if latent_embeds is None: UpperCamelCase_ = self.conv_norm_out(lowerCamelCase_ ) else: UpperCamelCase_ = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ = self.conv_act(lowerCamelCase_ ) UpperCamelCase_ = self.conv_out(lowerCamelCase_ ) return sample class _a ( nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="random" , _UpperCAmelCase=False , _UpperCAmelCase=True ) -> Any: super().__init__() UpperCamelCase_ = n_e UpperCamelCase_ = vq_embed_dim UpperCamelCase_ = beta UpperCamelCase_ = legacy UpperCamelCase_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCamelCase_ = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) UpperCamelCase_ = self.used.shape[0] UpperCamelCase_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCamelCase_ = self.re_embed UpperCamelCase_ = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: UpperCamelCase_ = n_e UpperCamelCase_ = sane_index_shape def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = inds.shape assert len(lowerCamelCase_ ) > 1 UpperCamelCase_ = inds.reshape(ishape[0] , -1 ) UpperCamelCase_ = self.used.to(lowerCamelCase_ ) UpperCamelCase_ = (inds[:, :, None] == used[None, None, ...]).long() UpperCamelCase_ = match.argmax(-1 ) UpperCamelCase_ = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCamelCase_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCamelCase_ = self.unknown_index return new.reshape(lowerCamelCase_ ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: UpperCamelCase_ = inds.shape assert len(lowerCamelCase_ ) > 1 UpperCamelCase_ = inds.reshape(ishape[0] , -1 ) UpperCamelCase_ = self.used.to(lowerCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token UpperCamelCase_ = 0 # simply set to zero UpperCamelCase_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ ) return back.reshape(lowerCamelCase_ ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: # reshape z -> (batch, height, width, channel) and flatten UpperCamelCase_ = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCamelCase_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCamelCase_ = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 ) UpperCamelCase_ = self.embedding(lowerCamelCase_ ).view(z.shape ) UpperCamelCase_ = None UpperCamelCase_ = None # compute loss for embedding if not self.legacy: UpperCamelCase_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCamelCase_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCamelCase_ = z + (z_q - z).detach() # reshape back to match original input shape UpperCamelCase_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCamelCase_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCamelCase_ = self.remap_to_used(lowerCamelCase_ ) UpperCamelCase_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCamelCase_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: # shape specifying (batch, height, width, channel) if self.remap is not None: UpperCamelCase_ = indices.reshape(shape[0] , -1 ) # add batch axis UpperCamelCase_ = self.unmap_to_all(lowerCamelCase_ ) UpperCamelCase_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCamelCase_ = self.embedding(lowerCamelCase_ ) if shape is not None: UpperCamelCase_ = z_q.view(lowerCamelCase_ ) # reshape back to match original input shape UpperCamelCase_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _a ( lowerCamelCase_ ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=False ) -> str: UpperCamelCase_ = parameters UpperCamelCase_ , UpperCamelCase_ = torch.chunk(lowerCamelCase_ , 2 , dim=1 ) UpperCamelCase_ = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) UpperCamelCase_ = deterministic UpperCamelCase_ = torch.exp(0.5 * self.logvar ) UpperCamelCase_ = torch.exp(self.logvar ) if self.deterministic: UpperCamelCase_ = UpperCamelCase_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _UpperCAmelCase ( self , _UpperCAmelCase = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype UpperCamelCase_ = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCamelCase_ = self.mean + self.std * sample return x def _UpperCAmelCase ( self , _UpperCAmelCase=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=[1, 2, 3] ) -> Optional[int]: if self.deterministic: return torch.Tensor([0.0] ) UpperCamelCase_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ ) def _UpperCAmelCase ( self ) -> str: return self.mean
23
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] ="bert" def __init__( self :Any , _lowercase :Optional[int]=30522 , _lowercase :str=768 , _lowercase :Union[str, Any]=12 , _lowercase :Dict=12 , _lowercase :Optional[Any]=3072 , _lowercase :List[Any]="gelu" , _lowercase :Dict=0.1 , _lowercase :Union[str, Any]=0.1 , _lowercase :Optional[int]=512 , _lowercase :List[str]=2 , _lowercase :List[str]=0.02 , _lowercase :Union[str, Any]=1E-1_2 , _lowercase :Dict=0 , _lowercase :List[str]="absolute" , _lowercase :Union[str, Any]=True , _lowercase :str=None , **_lowercase :Union[str, Any] , ) -> Dict: super().__init__(pad_token_id=_lowercase , **_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a_ ( _snake_case ): @property def __a ( self :str) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
561
0
'''simple docstring''' import argparse lowercase ='docs/source/_static/js/custom.js' def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' with open(__lowerCamelCase , encoding='utf-8' , newline='\n' ) as f: _UpperCAmelCase : Optional[Any] =f.readlines() _UpperCAmelCase : Dict =0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 _UpperCAmelCase : Tuple =f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(__lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__lowerCamelCase ) if __name__ == "__main__": lowercase =argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowercase =parser.parse_args() update_custom_js(args.version)
446
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def lowerCAmelCase ( *snake_case , **snake_case) -> str: '''simple docstring''' pass def lowerCamelCase__ ( __lowerCamelCase : Image ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase__ ( __lowerCamelCase : Image ): '''simple docstring''' _UpperCAmelCase : List[str] =np.array(__lowerCamelCase ) _UpperCAmelCase : List[str] =npimg.shape return {"hash": hashimage(__lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __magic_name__ ( unittest.TestCase ): UpperCAmelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCAmelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> str: '''simple docstring''' _UpperCAmelCase : List[str] =MaskGenerationPipeline(model=snake_case , image_processor=snake_case) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCAmelCase ( self , snake_case , snake_case) -> Optional[Any]: '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF') def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @slow @require_torch def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Any =pipeline('mask-generation' , model='facebook/sam-vit-huge') _UpperCAmelCase : Union[str, Any] =image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_5_6) # Shortening by hashing _UpperCAmelCase : str =[] for i, o in enumerate(outputs['masks']): new_outupt += [{"mask": mask_to_test_readable(snake_case), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(snake_case , decimals=4) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0_21}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.00_53}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.99_67}, {'mask': {'hash': '453c7844bd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_93}, {'mask': {'hash': '3d44f2926d', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.99_09}, {'mask': {'hash': '64033ddc3f', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.98_79}, {'mask': {'hash': '801064ff79', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.98_34}, {'mask': {'hash': '6172f276ef', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.97_16}, {'mask': {'hash': 'b49e60e084', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.96_12}, {'mask': {'hash': 'a811e775fd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_99}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_52}, {'mask': {'hash': '9d8257e080', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_32}, {'mask': {'hash': '32de6454a8', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_16}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_99}, {'mask': {'hash': '3c6db475fb', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_83}, {'mask': {'hash': 'c290813fb9', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_64}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_43}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_43}, {'mask': {'hash': 'c749b25868', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_08}, {'mask': {'hash': 'efb6cab859', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.93_35}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.93_26}, {'mask': {'hash': '788b798e24', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.92_62}, {'mask': {'hash': 'abea804f0e', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_99}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_86}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_84}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.88_73}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.88_71} ] , ) # fmt: on @require_torch @slow def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] ='facebook/sam-vit-huge' _UpperCAmelCase : Optional[int] =pipeline('mask-generation' , model=snake_case) _UpperCAmelCase : str =image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_5_6) # Shortening by hashing _UpperCAmelCase : Tuple =[] for i, o in enumerate(outputs['masks']): new_outupt += [{"mask": mask_to_test_readable(snake_case), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(snake_case , decimals=4) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.02_10}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.00_53}, ] , )
446
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _lowercase ( a_ : str ,a_ : str ,a_ : str ,a_ : Path ,a_ : str = None ,a_ : str = None ,a_ : str = None ,) -> Tuple: '''simple docstring''' if config_name_or_path is None: __magic_name__ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __magic_name__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __magic_name__ = question_encoder_name_or_path __magic_name__ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __magic_name__ = RagConfig.from_pretrained(a_ ) __magic_name__ = AutoConfig.from_pretrained(a_ ) __magic_name__ = AutoConfig.from_pretrained(a_ ) __magic_name__ = gen_config __magic_name__ = question_encoder_config __magic_name__ = model_class.from_pretrained_question_encoder_generator( a_ ,a_ ,config=a_ ) rag_model.save_pretrained(a_ ) # Sanity check. model_class.from_pretrained(a_ ) # Save tokenizers. __magic_name__ = AutoTokenizer.from_pretrained(a_ ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __magic_name__ = AutoTokenizer.from_pretrained(a_ ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) A__ = parser.parse_args() A__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
184
0